1
|
Tian H, Lyu R, Yi P. Crosstalk between Rho of Plants GTPase signalling and plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3778-3796. [PMID: 38616410 DOI: 10.1093/jxb/erae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Rho of Plants (ROPs) constitute a plant-specific subset of small guanine nucleotide-binding proteins within the Cdc42/Rho/Rac family. These versatile proteins regulate diverse cellular processes, including cell growth, cell division, cell morphogenesis, organ development, and stress responses. In recent years, the dynamic cellular and subcellular behaviours orchestrated by ROPs have unveiled a notable connection to hormone-mediated organ development and physiological responses, thereby expanding our knowledge of the functions and regulatory mechanisms of this signalling pathway. This review delineates advancements in understanding the interplay between plant hormones and the ROP signalling cascade, focusing primarily on the connections with auxin and abscisic acid pathways, alongside preliminary discoveries in cytokinin, brassinosteroid, and salicylic acid responses. It endeavours to shed light on the intricate, coordinated mechanisms bridging cell- and tissue-level signals that underlie plant cell behaviour, organ development, and physiological processes, and highlights future research prospects and challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Haoyu Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Mano NA, Shaikh MA, Widhalm JR, Yoo CY, Mickelbart MV. Transcriptional repression of GTL1 under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance. PLANT DIRECT 2024; 8:e594. [PMID: 38799417 PMCID: PMC11117050 DOI: 10.1002/pld3.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Collapse
Affiliation(s)
- Noel Anthony Mano
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological and Environmental SciencesHeidelberg UniversityTiffinOhioUSA
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Mearaj A. Shaikh
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Joshua R. Widhalm
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Chan Yul Yoo
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Michael V. Mickelbart
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
3
|
CPR5-mediated nucleo-cytoplasmic localization of IAA12 and IAA19 controls lateral root development during abiotic stress. Proc Natl Acad Sci U S A 2023; 120:e2209781120. [PMID: 36623191 PMCID: PMC9934060 DOI: 10.1073/pnas.2209781120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasticity of the root system architecture (RSA) is essential in enabling plants to cope with various environmental stresses and is mainly controlled by the phytohormone auxin. Lateral root development is a major determinant of RSA. Abiotic stresses reduce auxin signaling output, inhibiting lateral root development; however, how abiotic stress translates into a lower auxin signaling output is not fully understood. Here, we show that the nucleo-cytoplasmic distribution of the negative regulators of auxin signaling AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE 12 (AUX/IAA12 or IAA12) and IAA19 determines lateral root development under various abiotic stress conditions. The cytoplasmic localization of IAA12 and IAA19 in the root elongation zone enforces auxin signaling output, allowing lateral root development. Among components of the nuclear pore complex, we show that CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES 5 (CPR5) selectively mediates the cytoplasmic translocation of IAA12/19. Under abiotic stress conditions, CPR5 expression is strongly decreased, resulting in the accumulation of nucleus-localized IAA12/19 in the root elongation zone and the suppression of lateral root development, which is reiterated in the cpr5 mutant. This study reveals a regulatory mechanism for auxin signaling whereby the spatial distribution of AUX/IAA regulators is critical for lateral root development, especially in fluctuating environmental conditions.
Collapse
|
4
|
Liu H, Huang J, Zhang X, Liu G, Liang W, Zhu G, Dong M, Li M, Zhang J, Yang W, Xiao W, Cheung AY, Tao LZ. The RAC/ROP GTPase activator OsRopGEF10 functions in crown root development by regulating cytokinin signaling in rice. THE PLANT CELL 2023; 35:453-468. [PMID: 36190337 PMCID: PMC9806555 DOI: 10.1093/plcell/koac297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
RAC/Rho of plant (ROP) GTPases are major molecular switches that control diverse signaling cascades for plant growth, development, and defense. Here, we discovered a signaling node that connects RAC/ROPs to cytokinins. Rice (Oryza sativa) plants develop a fibrous root system mainly composed of crown roots. Cytokinin signaling via a phosphorelay system is critical for crown root development. We show that OsRopGEF10, which activates RAC/ROPs, acts upstream of the cytoplasmic-nuclear shuttling phosphotransfer proteins AHPs of the cytokinin signaling pathway to promote crown root development. Mutations of OsRopGEF10 induced hypersensitivity to cytokinin, whereas overexpressing this gene reduced the cytokinin response. Loss of OsRopGEF10 function reduced the expression of the response regulator gene OsRR6, a repressor of cytokinin signaling, and impaired crown root development. Mutations in OsAHP1/2 led to increased crown root production and rescued the crown root defect of Osropgef10. Furthermore, auxin activates the ROP GTPase OsRAC3, which attenuates cytokinin signaling for crown root initiation. Molecular interactions between OsRopGEF10, OsRAC3, and OsAHP1/2 implicate a mechanism whereby OsRopGEF10-activated OsRAC3 recruits OsAHP1/2 to the cortical cytoplasm, sequestering them from their phosphorelay function in the nucleus. Together, our findings uncover the OsRopGEF10-OsRAC3-OsAHP1/2 signaling module, establish a link between RAC/ROPs and cytokinin, and reveal molecular crosstalk between auxin and cytokinin during crown root development.
Collapse
Affiliation(s)
- Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiaqing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Guolan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Guangqi Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mengge Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Weiyuan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wu Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Liu T, Liu Q, Yu Z, Wang C, Mai H, Liu G, Li R, Pang G, Chen D, Liu H, Yang J, Tao LZ. eIF4E1 Regulates Arabidopsis Embryo Development and Root Growth by Interacting With RopGEF7. FRONTIERS IN PLANT SCIENCE 2022; 13:938476. [PMID: 35845661 PMCID: PMC9280432 DOI: 10.3389/fpls.2022.938476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic translation initiation factor 4E1 (eIF4E1) is required for the initiation of protein synthesis. The biological function of eIF4E1 in plant-potyvirus interactions has been extensively studied. However, the role of eIF4E1 in Arabidopsis development remains unclear. In this study, we show that eIF4E1 is highly expressed in the embryo and root apical meristem. In addition, eIF4E1 expression is induced by auxin. eIF4E1 mutants show embryonic cell division defects and short primary roots, a result of reduced cell divisions. Furthermore, our results show that mutation in eIF4E1 severely reduces the accumulation of PIN-FORMED (PIN) proteins and decreases auxin-responsive gene expression at the root tip. Yeast two-hybrid assays identified that eIF4E1 interacts with an RAC/ROP GTPase activator, RopGEF7, which has been previously reported to be involved in the maintenance of the root apical meristem. The interaction between eIF4E1 and RopGEF7 is confirmed by protein pull-down and bimolecular fluorescent complementation assays in plant cells. Taken together, our results demonstrated that eIF4E1 is important for auxin-regulated embryo development and root growth. The eIF4E1-RopGEF7 interaction suggests that eIF4E1 may act through ROP signaling to regulate auxin transport, thus regulating auxin-dependent patterning.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qianyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chunling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guolan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ruijing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Dingwu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences and Technology, Guangxi University, Nanning, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Cheung AY, Cosgrove DJ, Hara-Nishimura I, Jürgens G, Lloyd C, Robinson DG, Staehelin LA, Weijers D. A rich and bountiful harvest: Key discoveries in plant cell biology. THE PLANT CELL 2022; 34:53-71. [PMID: 34524464 PMCID: PMC8773953 DOI: 10.1093/plcell/koab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | | | - Gerd Jürgens
- ZMBP-Developmental Genetics, University of Tuebingen, Tuebingen 72076, Germany
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany
| | - L Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, the Netherlands
| |
Collapse
|
8
|
Liu G, Yang W, Zhang X, Peng T, Zou Y, Zhang T, Wang H, Liu X, Tao LZ. Cystathionine beta-lyase is crucial for embryo patterning and the maintenance of root stem cell niche in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:536-555. [PMID: 31002461 DOI: 10.1111/tpj.14343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The growth and development of roots in plants depends on the specification and maintenance of the root apical meristem. Here, we report the identification of CBL, a gene required for embryo and root development in Arabidopsis, and encodes cystathionine beta-lyase (CBL), which catalyzes the penultimate step in methionine (Met) biosynthesis, and which also led to the discovery of a previous unknown, but crucial, metabolic contribution by the Met biosynthesis pathway. CBL is expressed in embryos and shows quiescent center (QC)-enriched expression pattern in the root. cbl mutant has impaired embryo patterning, defective root stem cell niche, stunted root growth, and reduces accumulation of the root master regulators PLETHORA1 (PLT1) and PLT2. Furthermore, mutation in CBL severely decreases abundance of several PIN-FORMED (PIN) proteins and impairs auxin-responsive gene expression in the root tip. cbl seedlings also exhibit global reduction in histone H3 Lys-4 trimethylation (H3K4me3) and DNA methylation. Importantly, mutation in CBL reduces the abundance of H3K4me3 modification in PLT1/2 genes and downregulates their expression. Overexpression of PLT2 partially rescues cbl root meristem defect, suggesting that CBL acts in part through PLT1/2. Moreover, exogenous supplementation of Met also restores the impaired QC activity and the root growth defects of cbl. Taken together, our results highlight the unique role of CBL to maintain the root stem cell niche by cooperative actions between Met biosynthesis and epigenetic modification of key developmental regulators.
Collapse
Affiliation(s)
- Guolan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiyuan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Peng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xuncheng Liu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Zhang H, Linster E, Gannon L, Leemhuis W, Rundle CA, Theodoulou FL, Wirtz M. Tandem Fluorescent Protein Timers for Noninvasive Relative Protein Lifetime Measurement in Plants. PLANT PHYSIOLOGY 2019; 180:718-731. [PMID: 30872425 PMCID: PMC6548237 DOI: 10.1104/pp.19.00051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/08/2019] [Indexed: 05/17/2023]
Abstract
Targeted protein degradation is an important and pervasive regulatory mechanism in plants, required for perception and response to the environment as well as developmental signaling. Despite the significance of this process, relatively few studies have assessed plant protein turnover in a quantitative fashion. Tandem fluorescent protein timers (tFTs) offer a powerful approach for the assessment of in vivo protein turnover in distinct subcellular compartments of single or multiple cells. A tFT is a fusion of two different fluorescent proteins with distinct fluorophore maturation kinetics, which enable protein age to be estimated from the ratio of fluorescence intensities of the two fluorescent proteins. Here, we used short-lived auxin signaling proteins and model N-end rule (N-recognin) pathway reporters to demonstrate the utility of tFTs for studying protein turnover in living plant cells of Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana We present transient expression of tFTs as an efficient screen for relative protein lifetime, useful for testing the effects of mutations and different genetic backgrounds on protein stability. This work demonstrates the potential for using stably expressed tFTs to study native protein dynamics with high temporal resolution in response to exogenous or endogenous stimuli.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Eric Linster
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Lucy Gannon
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Wiebke Leemhuis
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Chelsea A Rundle
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | | | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
10
|
Mei J, Guo Z, Wang J, Feng Y, Ma G, Zhang C, Qian W, Chen G. Understanding the Resistance Mechanism in Brassica napus to Clubroot Caused by Plasmodiophora brassicae. PHYTOPATHOLOGY 2019; 109:810-818. [PMID: 30614377 DOI: 10.1094/phyto-06-18-0213-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Exploring the mechanism of plant resistance has become the basis for selection of resistance varieties but reports on revealing resistant mechanism in Brassica napus against Plasmodiophora brassicae are rare. In this study, RNA-seq was conducted in the clubroot-resistant B. napus breeding line ZHE-226 and in the clubroot-susceptible rapeseed cultivar Zhongshuang 11 at 0, 3, 6, 9, and 12 days after inoculation. Strong alteration was detected specifically in ZHE-226 as soon as the root hair infection happened, and significant promotion was found in ZHE-226 on cell division or cell cycle, DNA repair and synthesis, protein synthesis, signaling, antioxidation, and secondary metabolites. Combining results from physiological, biochemical, and histochemical assays, our study highlights an effective signaling in ZHE-226 in response to P. brassicae. This response consists of a fast initiation of receptor kinases by P. brassicae; the possible activation of host intercellular G proteins which might, together with an enhanced Ca2+ signaling, promote the production of reactive oxygen species; and programmed cell death in the host. Meanwhile, a strong ability to maintain homeostasis of auxin and cytokinin in ZHE-226 might effectively limit the formation of clubs on host roots. Our study provides initial insights into resistance mechanism in rapeseed to P. brassicae.
Collapse
Affiliation(s)
- Jiaqin Mei
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhen Guo
- 3 College of Plant Protection, Southwest University, Chongqing 400716, China; and
| | - Jinhua Wang
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yuxia Feng
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guanhua Ma
- 3 College of Plant Protection, Southwest University, Chongqing 400716, China; and
| | - Chunyu Zhang
- 4 College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Qian
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guokang Chen
- 3 College of Plant Protection, Southwest University, Chongqing 400716, China; and
| |
Collapse
|
11
|
Dong Q, Zhang Z, Liu Y, Tao LZ, Liu H. FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett 2018; 593:97-106. [PMID: 30417333 DOI: 10.1002/1873-3468.13292] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
The Arabidopsis FERONIA (FER) receptor kinase is a key hub of cell signaling networks mediating various hormone, stress, and immune responses. Previous studies have shown that FER functions correlate with auxin responses, but the underlying molecular mechanism is unknown. Here, we demonstrate that the primary root of the fer-4 mutant displays increased lateral root branching and a delayed gravitropic response, which are associated with polar auxin transport (PAT). Our data suggest that aberrant PIN2 polarity is responsible for the delayed gravitropic response in fer-4. Furthermore, the diminished F-actin cytoskeleton in fer-4 implies that FER modulates F-actin-mediated PIN2 polar localization. Our findings provide new insights into the function of FER in PAT.
Collapse
Affiliation(s)
- QingKun Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - ZhiWei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - YuTing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - HuiLi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Huang J, Liu H, Berberich T, Liu Y, Tao LZ, Liu T. Guanine Nucleotide Exchange Factor 7B (RopGEF7B) is involved in floral organ development in Oryza sativa. RICE (NEW YORK, N.Y.) 2018; 11:42. [PMID: 30062598 PMCID: PMC6066601 DOI: 10.1186/s12284-018-0235-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND RAC/ROP GTPase are versatile signaling molecules controlling diverse biological processes including cell polarity establishment, cell growth, morphogenesis, hormone responses and many other cellular processes in plants. The activities of ROPs are positively regulated by guanine nucleotide exchange factors (GEFs). Evidence suggests that RopGEFs regulate polar auxin transport and polar growth in pollen tube in Arabidopsis thaliana. However, the biological functions of rice RopGEFs during plant development remain largely unknown. RESULTS We investigated a member of the OsRopGEF family, namely OsRopGEF7B. OsRopGEF7Bpro:GUS analysis indicates that OsRopGEF7B is expressed in various tissues, especially in the floral meristem and floral organ primordia. Knock-out and -down of OsRopGEF7B by T-DNA insertion and RNA interference, respectively, predominantly caused an increase in the number of floral organs in the inner whorls (stamen and ovary), as well as abnormal paleae/lemmas and ectopic growth of lodicules, resulting in decline of rice seed setting. Bimolecular fluorescence complement (BiFC) assays as well as yeast two-hybrid assays indicate that OsRopGEF7B interacts with OsRACs. CONCLUSIONS OsRopGEF7B plays roles in floral organ development in rice, affecting rice seed setting rate. Manipulation of OsRopGEF7B has potential for application in genetically modified crops.
Collapse
Affiliation(s)
- Jiaqing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Wang L, Zhang XL, Wang L, Tian Y, Jia N, Chen S, Shi NB, Huang X, Zhou C, Yu Y, Zhang ZQ, Pang XQ. Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening. Sci Rep 2017; 7:16674. [PMID: 29192231 PMCID: PMC5709409 DOI: 10.1038/s41598-017-16851-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
WRKY transcription factors (TFs) play important roles in stress responses in planta. However, the function of WRKY TFs in the regulation of fruit ripening is unclear. Here, 23 tomato SlWRKYs that are similar to ethylene-responsive WRKY genes from other plant species, or show up-regulation during fruit ripening in previous genome-wide study, were selected, and their function in fruit ripening was investigated. Twelve SlWRKYs were found to be responsive to ethylene (SlER-WRKYs), showing expression patterns similar to those of genes related to fruit ripening. Eight SlER-WRKYs—SlWRKY16, 17, 22, 25, 31, 33, 53, and 54, detected in the nuclei—interacted with and activated the promoters of 4 genes related to color change: Pheophytin Pheophorbide Hydrolase (SlPPH), Pheophorbide a Oxygenase (SlPAO), Phytoene Synthase 1 (SlPSY1) and Phytoene Desaturase (SlPDS). Yeast two-hybrid and bimolecular fluorescence complement (BiFC) assays in Arabidopsis protoplasts indicated that protein interactions occurred between SlWRKY17 and SlRIN, SlERF2b or SlERF7; SlWRKY33 and SlERF7; SlWRKY54 and SlERF2b; and SlWRKY16 and SlWRKY17. Suppression of SlWRKY 16, 17, 53 or 54 by virus-induced gene silencing (VIGS) retarded the red coloration of the fruit. Our study provides comprehensive molecular evidence that WRKY TFs function in fruit ripening, particularly in color change, and are linked to the intricate regulatory network of other ripening regulators.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Xue-Lian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Yanan Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ning Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Shuzhen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ning-Bo Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Xuemei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Chu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yaowen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Zhao-Qi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China.
| | - Xue-Qun Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China. .,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Zheng ZL. Ras and Rho GTPase regulation of Pol II transcription: A shortcut model revisited. Transcription 2017; 8:268-274. [PMID: 28548879 DOI: 10.1080/21541264.2017.1321612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Transcriptional control is critical in relaying signals mediated by Ras and Rho family small GTPases to effect gene expression. In the classical model, signaling components such as MAP kinase target sequence-specific transcription factors, which in turn recruit RNA polymerase (Pol) II holoenzyme to the promoter and activate transcription. Findings in recent years have led to the proposal of a shortcut model in which the Mediator components of the Pol II holoenzyme are regulated by signaling pathways. A very recent finding shows that an evolutionarily conserved Rho GTPase signaling pathway can directly modulate the Pol II C-terminal domain (CTD) phosphorylation by inhibiting the CTD phosphatase in yeast and Arabidopsis. This shortcut model allows direct targeting of the Pol II CTD code and thus has an advantage over the classical model in bringing about rapid, large-scale changes in gene expression.
Collapse
Affiliation(s)
- Zhi-Liang Zheng
- a Department of Biological Sciences, Lehman College , City University of New York , Bronx , NY , USA.,b Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, Citrus Research Institute , Southwest University , Beibei , Chongqing , China
| |
Collapse
|
15
|
Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc Natl Acad Sci U S A 2016; 113:E8197-E8206. [PMID: 27911772 DOI: 10.1073/pnas.1605871113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rho GTPases, including the Rho, Cdc42, Rac, and ROP subfamilies, act as pivotal signaling switches in various growth and developmental processes. Compared with the well-defined role of cytoskeletal organization in Rho signaling, much less is known regarding transcriptional regulation. In a mutant screen for phenotypic enhancers of transgenic Arabidopsis plants expressing a constitutively active form of ROP2 (designated CA1-1), we identified RNA polymerase II (Pol II) C-terminal domain (CTD) phosphatase-like 1 (CPL1) as a transcriptional regulator of ROP2 signaling. We show that ROP2 activation inhibits CPL1 activity by promoting its degradation, leading to an increase in CTD Ser5 and Ser2 phosphorylation. We also observed similar modulation of CTD phosphorylation by yeast Cdc42 GTPase and enhanced degradation of the yeast CTD phosphatase Fcp1 by activated ROP2 signaling. Taken together, our results suggest that modulation of the Pol II CTD code by Rho GTPase signaling represents an evolutionarily conserved mechanism in both unicellular and multicellular eukaryotes.
Collapse
|
17
|
Li C, Wu HM, Cheung AY. FERONIA and Her Pals: Functions and Mechanisms. PLANT PHYSIOLOGY 2016; 171:2379-92. [PMID: 27342308 PMCID: PMC4972288 DOI: 10.1104/pp.16.00667] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Current research into the FERONIA family of receptor kinases highlights both questions and opportunities for understanding signaling strategies in plant growth and survival.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - H-M Wu
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| |
Collapse
|
18
|
Kovaleva LV, Voronkov AS, Zakharova EV, Minkina YV, Timofeeva GV, Andreev IM. Exogenous IAA and ABA stimulate germination of petunia male gametophyte by activating Ca2+-dependent K+-channels and by modulating the activity of plasmalemma H+-ATPase and actin cytoskeleton. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Schapire AL, Lois LM. A Simplified and Rapid Method for the Isolation and Transfection of Arabidopsis Leaf Mesophyll Protoplasts for Large-Scale Applications. Methods Mol Biol 2016; 1363:79-88. [PMID: 26577783 DOI: 10.1007/978-1-4939-3115-6_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arabidopsis leaf mesophyll protoplasts constitute an important and versatile tool for conducting cell-based experiments to analyze the functions of distinct signaling pathways and cellular machineries using proteomic, biochemical, cellular, genetic, and genomic approaches. Thus, the methods for protoplast isolation and transfection have been gradually improved to achieve efficient expression of genes of interest. Although many well-established protocols have been extensively tested, their successful application is sometimes limited to researchers with a high degree of skill and experience in protoplasts handling. Here we present a detailed method for the isolation and transfection of Arabidopsis mesophyll protoplasts, in which many of the time-consuming and critical steps present in the current protocols have been simplified. The method described is fast, simple, and leads to high yields of competent protoplasts allowing large-scale applications.
Collapse
Affiliation(s)
- Arnaldo L Schapire
- Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Edifici CRAG-Campus UAB, Bellaterra, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - L Maria Lois
- Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Edifici CRAG-Campus UAB, Bellaterra, Cerdanyola del Vallés, 08193, Barcelona, Spain
| |
Collapse
|
20
|
Chen J, Wang F, Zheng S, Xu T, Yang Z. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4957-70. [PMID: 26047974 PMCID: PMC4598803 DOI: 10.1093/jxb/erv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals.
Collapse
Affiliation(s)
- Jisheng Chen
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shiqin Zheng
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tongda Xu
- Center for Plant Stress Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Sherif S, El-Sharkawy I, Mathur J, Ravindran P, Kumar P, Paliyath G, Jayasankar S. A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination. BMC Biol 2015; 13:11. [PMID: 25857534 PMCID: PMC4364584 DOI: 10.1186/s12915-015-0124-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variations in floral display represent one of the core features associated with the transition from allogamy to autogamy in angiosperms. The promotion of autogamy under stress conditions suggests the potential involvement of a signaling pathway with a dual role in both flower development and stress response. The jasmonic acid (JA) pathway is a plausible candidate to play such a role because of its involvement in many plant responses to environmental and developmental cues. In the present study, we used peach (Prunus persica L.) varieties with showy and non-showy flowers to investigate the role of JA (and JA signaling suppressors) in floral display. RESULTS Our results show that PpJAZ1, a component of the JA signaling pathway in peach, regulates petal expansion during anthesis and promotes self-pollination. PpJAZ1 transcript levels were higher in petals of the non-showy flowers than those of showy flowers at anthesis. Moreover, the ectopic expression of PpJAZ1 in tobacco (Nicotiana tabacum L.) converted the showy, chasmogamous tobacco flowers into non-showy, cleistogamous flowers. Stability of PpJAZ1 was confirmed in vivo using PpJAZ1-GFP chimeric protein. PpJAZ1 inhibited JA-dependent processes in roots and leaves of transgenic plants, including induction of JA-response genes to mechanical wounding. However, the inhibitory effect of PpJAZ1 on JA-dependent fertility functions was weaker, indicating that PpJAZ1 regulates the spatial localization of JA signaling in different plant organs. Indeed, JA-related genes showed differential expression patterns in leaves and flowers of transgenic plants. CONCLUSIONS Our results reveal that under stress conditions – for example, herbivore attacks – stable JAZ proteins such as PpJAZ1 may alter JA signaling in different plant organs, resulting in autogamy as a reproductive assurance mechanism. This represents an additional mechanism by which plant hormone signaling can modulate a vital developmental process in response to stress.
Collapse
Affiliation(s)
- Sherif Sherif
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Islam El-Sharkawy
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Jaideep Mathur
- />Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Pratibha Ravindran
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Prakash Kumar
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Gopinadhan Paliyath
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Subramanian Jayasankar
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
| |
Collapse
|
22
|
Abstract
Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny-Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled "The relative activities of different auxins" from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin-including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances.
Collapse
|
23
|
Nagawa S, Xu T, Yang Z. RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 2014; 1:78-88. [PMID: 21686259 DOI: 10.4161/sgtp.1.2.14544] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | | | |
Collapse
|
24
|
Ludwig Y, Berendzen KW, Xu C, Piepho HP, Hochholdinger F. Diversity of stability, localization, interaction and control of downstream gene activity in the Maize Aux/IAA protein family. PLoS One 2014; 9:e107346. [PMID: 25203637 PMCID: PMC4159291 DOI: 10.1371/journal.pone.0107346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/13/2014] [Indexed: 12/13/2022] Open
Abstract
AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are central regulators of auxin signal transduction. They control many aspects of plant development, share a conserved domain structure and are localized in the nucleus. In the present study, five maize Aux/IAA proteins (ZmIAA2, ZmIAA11, ZmIAA15, ZmIAA20 and ZmIAA33) representing the evolutionary, phylogenetic and expression diversity of this gene family were characterized. Subcellular localization studies revealed that ZmIAA2, ZmIAA11 and ZmIAA15 are confined to the nucleus while ZmIAA20 and ZmIAA33 are localized in both the nucleus and the cytoplasm. Introduction of specific point mutations in the degron sequence (VGWPPV) of domain II by substituting the first proline by serine or the second proline by leucine stabilized the Aux/IAA proteins. While protein half-life times between ∼11 min (ZmIAA2) to ∼120 min (ZmIAA15) were observed in wild-type proteins, the mutated forms of all five proteins were almost as stable as GFP control proteins. Moreover, all five maize Aux/IAA proteins repressed downstream gene expression in luciferase assays to different degrees. In addition, bimolecular fluorescence complementation (BiFC) analyses demonstrated interaction of all five Aux/IAA proteins with RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1, ZmIAA10) while only ZmIAA15 and ZmIAA33 interacted with the RUM1 paralog RUL1 (RUM-LIKE 1, ZmIAA29). Moreover, ZmIAA11, ZmIAA15 ZmIAA33 displayed homotypic interaction. Hence, despite their conserved domain structure, maize Aux/IAA proteins display a significant variability in their molecular characteristics which is likely associated with the wide spectrum of their developmental functions.
Collapse
Affiliation(s)
- Yvonne Ludwig
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Kenneth W. Berendzen
- Center for Plant Molecular Biology (ZMBP), Central Facilities, University of Tübingen, Tübingen, Germany
| | - Changzheng Xu
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
- College of Resources and Environment (RCBB), Southwest University, Chongqing, China
| | - Hans-Peter Piepho
- Institute for Crop Science, Bioinformatics Unit, University of Hohenheim, Stuttgart, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
25
|
Huang JB, Liu H, Chen M, Li X, Wang M, Yang Y, Wang C, Huang J, Liu G, Liu Y, Xu J, Cheung AY, Tao LZ. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis. THE PLANT CELL 2014; 26:3501-18. [PMID: 25217509 PMCID: PMC4213153 DOI: 10.1105/tpc.114.127902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/12/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.
Collapse
Affiliation(s)
- Jia-bao Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huili Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingyan Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yali Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqing Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guolan Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jian Xu
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Li-zhen Tao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Zhao Y, Li C, Ge J, Xu M, Zhu Q, Wu T, Guo A, Xie J, Dong H. Recessive mutation identifies auxin-repressed protein ARP1, which regulates growth and disease resistance in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:638-54. [PMID: 24875793 DOI: 10.1094/mpmi-08-13-0250-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To study the molecular mechanism that underpins crosstalk between plant growth and disease resistance, we performed a mutant screening on tobacco and created a recessive mutation that caused the phenotype of growth enhancement and resistance impairment (geri1). In the geri1 mutant, growth enhancement accompanies promoted expression of growth-promoting genes, whereas repressed expression of defense response genes is consistent with impaired resistance to diseases caused by viral, bacterial, and oomycete pathogens. The geri1 allele identifies a single genetic locus hypothetically containing the tagged GERI1 gene. The isolated GERI1 gene was predicted to encode auxin-repressed protein ARP1, which was determined to be 13.5 kDa in size. The ARP1/GERI1 gene was further characterized as a repressor of plant growth and an activator of disease resistance based on genetic complementation, gene silencing, and overexpression analyses. ARP1/GERI1 resembles pathogen-associated molecular patterns and is required for them to repress plant growth and activate plant immunity responses. ARP1/GERI1 represses growth by inhibiting the expression of AUXIN RESPONSE FACTOR gene ARF8, and ARP1/GERI1 recruits the NPR1 gene, which is essential for the salicylic-acid-mediated defense, to coregulate disease resistance. In conclusion, ARP1/GERI1 is an integral regulator for crosstalk between growth and disease resistance in the plant.
Collapse
|
27
|
Del Prete S, Arpón J, Sakai K, Andrey P, Gaudin V. Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet Genome Res 2014; 143:28-50. [PMID: 24992956 DOI: 10.1159/000363724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interphase cell nucleus is extraordinarily complex, ordered, and dynamic. In the last decade, remarkable progress has been made in deciphering the functional organisation of the cell nucleus, and intricate relationships between genome functions (transcription, DNA repair, or replication) and various nuclear compartments have been revealed. In this review, we describe the architecture of the Arabidopsis thaliana interphase cell nucleus and discuss the dynamic nature of its organisation. We underline the need for further developments in quantitative and modelling approaches to nuclear organization.
Collapse
Affiliation(s)
- Stefania Del Prete
- INRA, UMR1318-AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), INRA-Centre de Versailles-Grignon, Versailles, France
| | | | | | | | | |
Collapse
|
28
|
Lee S, Sundaram S, Armitage L, Evans JP, Hawkes T, Kepinski S, Ferro N, Napier RM. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chem Biol 2014; 9:673-82. [PMID: 24313839 PMCID: PMC3964829 DOI: 10.1021/cb400618m] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Structure–activity
profiles for the phytohormone auxin have
been collected for over 70 years, and a number of synthetic auxins
are used in agriculture. Auxin classification schemes and binding
models followed from understanding auxin structures. However, all
of the data came from whole plant bioassays, meaning the output was
the integral of many different processes. The discovery of Transport
Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as
sites of auxin perception and the role of auxin as molecular glue
in the assembly of co-receptor complexes has allowed the development
of a definitive quantitative structure–activity relationship
for TIR1 and AFB5. Factorial analysis of binding activities offered
two uncorrelated factors associated with binding efficiency and binding
selectivity. The six maximum-likelihood estimators of Efficiency are
changes in the overlap matrixes, inferring that Efficiency is related
to the volume of the electronic system. Using the subset of compounds
that bound strongly, chemometric analyses based on quantum chemical
calculations and similarity and self-similarity indices yielded three
classes of Specificity that relate to differential binding. Specificity
may not be defined by any one specific atom or position and is influenced
by coulomb matrixes, suggesting that it is driven by electrostatic
forces. These analyses give the first receptor-specific classification
of auxins and indicate that AFB5 is the preferred site for a number
of auxinic herbicides by allowing interactions with analogues having
van der Waals surfaces larger than that of indole-3-acetic acid. The
quality factors are also examined in terms of long-standing models
for the mechanism of auxin binding.
Collapse
Affiliation(s)
- Sarah Lee
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
| | - Shanthy Sundaram
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
- Centre
for Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Lynne Armitage
- Centre
for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - John P. Evans
- Jealott’s
Hill Intl Research Centre, Syngenta, Ltd., Bracknell, Berkshire RG42 6EY, U.K
| | - Tim Hawkes
- Jealott’s
Hill Intl Research Centre, Syngenta, Ltd., Bracknell, Berkshire RG42 6EY, U.K
| | - Stefan Kepinski
- Centre
for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Noel Ferro
- Mulliken
Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Wegelerstr. 12, D-53115 Bonn, Germany
| | - Richard M. Napier
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
| |
Collapse
|
29
|
Auxin-Binding Protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nat Commun 2013; 4:2496. [DOI: 10.1038/ncomms3496] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/23/2013] [Indexed: 01/30/2023] Open
|
30
|
Nibau C, Tao L, Levasseur K, Wu HM, Cheung AY. The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3425-37. [PMID: 23918972 PMCID: PMC3733156 DOI: 10.1093/jxb/ert179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rac-like GTPases or Rho-related GTPases from plants (RAC/ROPs) are important components of hormone signalling pathways in plants. Based on phylogeny, several groups can be distinguished, and the underlying premise is that members of different groups perform distinct functions in the plant. AtRAC7/ROP9 is phylogenetically unique among 11 Arabidopsis RAC/ROPs, and here it was shown that it functions as a modulator of auxin and abscisic acid (ABA) signalling, a dual role not previously assigned to these small GTPases. Plants with reduced levels of AtRAC7/ROP9 had increased sensitivity to auxin and were less sensitive to ABA. On the other hand, overexpressing AtRAC7/ROP9 activated ABA-induced gene expression but repressed auxin-induced gene expression. In addition, both hormones regulated the activity of the AtRAC7/ROP9 promoter, suggesting a feedback mechanism to modulate the signalling output from the AtRAC7/ROP9-controlled molecular switch. High levels of AtRAC7/ROP9 were detected specifically in embryos and lateral roots, underscoring the important role of this protein during embryo development and lateral root formation. These results place AtRAC7/ROP9 as an important signal transducer in recently described pathways that integrate auxin and ABA signalling in the plant.
Collapse
Affiliation(s)
- Candida Nibau
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- * Present address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK
| | - Lizhen Tao
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Present address: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Kathryn Levasseur
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Present address: Division of Infectious Diseases, Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
- To whom correspondence should be addressed.
| |
Collapse
|
31
|
Wu Y, Zhao S, Tian H, He Y, Xiong W, Guo L, Wu Y. CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3327-38. [PMID: 23846874 PMCID: PMC3733153 DOI: 10.1093/jxb/ert171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The regulation of Rho of plants (ROP) in morphogenesis of leaf epidermal cells has been well studied, but the roles concerning regulators of ROPs such as RhoGDIs are poorly understood. This study reports that AtRhoGDI1 (GDI1) acts as a versatile regulator to modulate development of seedlings and leaf pavement cells. In mutant gdi1, leaf pavement cells showed shorter lobes in comparison with those in wild type. In GDI1-14 seedlings (GDI1-overexpression line) the growth of lobes in pavement cells was severely suppressed and the development of seedlings was altered. These results indicate that GDI1 plays an essential role in morphogenesis of epidermal pavement cells through modulating the ROP signalling pathways. The interaction between GDI1 and ROP2 or ROP6 was detected in the leaf pavement cells using FRET analysis. Dominant negative, not constitutively active, DN-rop6 could weaken the effect caused by overexpression of GDI1; because the pleiotropic phenotype of GDI1-14 plants was eliminated in the hybrid line GDI1-14 DN-rop6. GDI1 could be phosphorylated by CPK3. Three conserved Ser/Thr residues in GDI1 were determined as targeted amino acids for CPK3. Overexpression of GDI1(3D), not GDI1(3A), could rescue the abnormal growth phenotypes of gdi1-1 seedlings, demonstrating the impact of GDI1 phosphorylation in the development of Arabidopsis. In summary, these results suggest that GDI1 regulation in morphogenesis of seedlings and leaf pavement cells could be undergone through modulating the ROP signalling pathways and the phosphorylation of GDI1 by CPK3 was required for the developmental modulation in Arabidopsis.
Collapse
Affiliation(s)
- Yuxuan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Han Tian
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Guo
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Venus Y, Oelmüller R. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. MOLECULAR PLANT 2013; 6:872-86. [PMID: 23118477 DOI: 10.1093/mp/sss101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The RHO-related GTPases ROP1 and ROP6 and the ROP1-interacting protein RIC4 in Arabidopsis are involved in various processes of F-actin dynamics, cell growth, and plant/microbe interactions. The knockout rop1 and rop1 rop6 seeds germinate earlier and are impaired in root hair development. Also root hair branching is strongly affected by manipulation of the RHO-related GTPase (ROP) levels. Furthermore, in the double knockout line rop1 rop6, no actin bundle formation can be detected. We demonstrate that these proteins are required for establishing a mutualistic interaction between the root-colonizing endophytic fungus Piriformospora indica and Arabidopsis. The fungus promotes growth of wild-type plants. rop1, rop6, rop1 rop6, ric4, 35S::ROP1, and 35S::ROP6 seedlings are impaired in the response to the fungus. Since the different root architectures have no effect on root colonization, the impaired response to P. indica should be caused by ROP-mediated events in the root cells. In wild-type roots, P. indica stimulates the formation of F-actin bundles and this does not occur in the rop1 rop6 knockout line. Furthermore, the fungus stimulates the expression of the calmodulin-binding protein gene Cbp60g, and this response is severely reduced in the rop mutants. We propose that ROP1 and ROP6 are required for F-actin bundle formation in the roots, which is required for P. indica-mediated growth promotion in Arabidopsis.
Collapse
Affiliation(s)
- Yvonne Venus
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Straβe 159, D-07743 Jena, Germany
| | | |
Collapse
|
33
|
Choi Y, Lee Y, Kim SY, Lee Y, Hwang JU. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development. PLANT, CELL & ENVIRONMENT 2013; 36:945-955. [PMID: 23078108 DOI: 10.1111/pce.12028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk.
Collapse
Affiliation(s)
- Yunjung Choi
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
34
|
Xu P, Yuan D, Liu M, Li C, Liu Y, Zhang S, Yao N, Yang C. AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots. PLANT PHYSIOLOGY 2013; 161:1755-68. [PMID: 23426194 PMCID: PMC3613453 DOI: 10.1104/pp.112.208942] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/15/2013] [Indexed: 05/18/2023]
Abstract
Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.
Collapse
|
35
|
Kang B, Zhang Z, Wang L, Zheng L, Mao W, Li M, Wu Y, Wu P, Mo X. OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:86-97. [PMID: 23289750 DOI: 10.1111/tpj.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 05/20/2023]
Abstract
Auxin plays a pivotal role in many facets of plant development. It acts by inducing the interaction between auxin-responsive [auxin (AUX)/indole-3-acetic acid (IAA)] proteins and the ubiquitin protein ligase SCF(TIR) to promote the degradation of the AUX/IAA proteins. Other cofactors and chaperones that participate in auxin signaling remain to be identified. Here, we characterized rice (Oryza sativa) plants with mutations in a cyclophilin gene (OsCYP2). cyp2 mutants showed defects in auxin responses and exhibited a variety of auxin-related growth defects in the root. In cyp2 mutants, lateral root initiation was blocked after nuclear migration but before the first anticlinal division of the pericycle cell. Yeast two-hybrid and in vitro pull-down results revealed an association between OsCYP2 and the co-chaperone Suppressor of G2 allele of skp1 (OsSGT1). Luciferase complementation imaging assays further supported this interaction. Similar to previous findings in an Arabidopsis thaliana SGT1 mutant (atsgt1b), degradation of AUX/IAA proteins was retarded in cyp2 mutants treated with exogenous 1-naphthylacetic acid. Our results suggest that OsCYP2 participates in auxin signal transduction by interacting with OsSGT1.
Collapse
Affiliation(s)
- Bo Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh OR, Sadot E, Schulze-Lefert P, Gruissem W, Yalovsky S. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. PLANT PHYSIOLOGY 2013; 161:1172-88. [PMID: 23319551 PMCID: PMC3585588 DOI: 10.1104/pp.112.213165] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6(DN)) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6(DN) plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6(DN) was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6(DN) npr1 and rop6(DN) sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6(DN) plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6(DN) plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6(DN) plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution.
Collapse
|
37
|
Singh MK, Ren F, Giesemann T, Dal Bosco C, Pasternak TP, Blein T, Ruperti B, Schmidt G, Aktories K, Molendijk AJ, Palme K. Modification of plant Rac/Rop GTPase signalling using bacterial toxin transgenes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:314-24. [PMID: 23020817 DOI: 10.1111/tpj.12040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 05/23/2023]
Abstract
Bacterial protein toxins which modify Rho GTPase are useful for the analysis of Rho signalling in animal cells, but these toxins cannot be taken up by plant cells. We demonstrate in vitro deamidation of Arabidopsis Rop4 by Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and glucosylation by Clostridium difficile toxin B. Expression of the catalytic domain of CNF1 caused modification and activation of co-expressed Arabidopsis Rop4 GTPase in tobacco leaves, resulting in hypersensitive-like cell death. By contrast, the catalytic domain of toxin B modified and inactivated co-expressed constitutively active Rop4, blocking the hypersensitive response caused by over-expression of active Rops. In transgenic Arabidopsis, both CNF1 and toxin B inhibited Rop-dependent polar morphogenesis of leaf epidermal cells. Toxin B expression also inhibited Rop-dependent morphogenesis of root hairs and trichome branching, and resulted in root meristem enlargement and dwarf growth. Our results show that CNF1 and toxin B transgenes are effective tools in Rop GTPase signalling studies.
Collapse
Affiliation(s)
- Manoj K Singh
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Fugang Ren
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Torsten Giesemann
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Cristina Dal Bosco
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Taras P Pasternak
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Thomas Blein
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benedetto Ruperti
- Department of Environmental Agronomy and Crop Science, University of Padova, Via Romea, 16, Agripolis, 35020, Legnaro, Padova, Italy
| | - Gudula Schmidt
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Arthur J Molendijk
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Klaus Palme
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Centre of Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| |
Collapse
|
38
|
Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 2012; 10:e1001299. [PMID: 22509133 PMCID: PMC3317906 DOI: 10.1371/journal.pbio.1001299] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/21/2012] [Indexed: 01/11/2023] Open
Abstract
Cell polarization via asymmetrical distribution of structures or molecules is essential for diverse cellular functions and development of organisms, but how polarity is developmentally controlled has been poorly understood. In plants, the asymmetrical distribution of the PIN-FORMED (PIN) proteins involved in the cellular efflux of the quintessential phytohormone auxin plays a central role in developmental patterning, morphogenesis, and differential growth. Recently we showed that auxin promotes cell interdigitation by activating the Rho family ROP GTPases in leaf epidermal pavement cells. Here we found that auxin activation of the ROP2 signaling pathway regulates the asymmetric distribution of PIN1 by inhibiting its endocytosis. ROP2 inhibits PIN1 endocytosis via the accumulation of cortical actin microfilaments induced by the ROP2 effector protein RIC4. Our findings suggest a link between the developmental auxin signal and polar PIN1 distribution via Rho-dependent cytoskeletal reorganization and reveal the conservation of a design principle for cell polarization that is based on Rho GTPase-mediated inhibition of endocytosis.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Tongda Xu
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- Temasek Lifesciences Laboratory Ltd, National University of Singapore, Singapore
| | - Deshu Lin
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pankaj Dhonukshe
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Xingxing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiri Friml
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
| | - Ben Scheres
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| |
Collapse
|
39
|
Sherif S, Paliyath G, Jayasankar S. Molecular characterization of peach PR genes and their induction kinetics in response to bacterial infection and signaling molecules. PLANT CELL REPORTS 2012; 31:697-711. [PMID: 22101723 DOI: 10.1007/s00299-011-1188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 05/11/2023]
Abstract
'Venture' and 'BabyGold 5' are two peach cultivars with a demonstrated resistance and susceptibility, respectively, to bacterial spot disease caused by Xanthomonas campestris pv. pruni (Xcp). To explore the differences between these cultivars at the molecular level, two PR1 (Pp-PR1a, Pp-PR1b) and three PR5 (Pp-TLP1, Pp-TLP2 and Pp-TLP3) genes were isolated from peach (Prunus persica L.) and investigated by in silico and in situ approaches. The analysis of gene expression by qRT-PCR indicated that all PR genes, except Pp-PR1a, were induced to a significantly higher degree in the resistant cultivar. In response to signaling molecules, Pp-PR1a was induced chiefly by SA treatment, while other PR genes were induced mainly by ethephon or MeJA treatments. The induction of the same set of PR genes in response to bacterial infection, MeJA or ethephon suggests the involvement of jasmonic acid (JA)/ethylene (ET)-signaling pathways in mediating resistance against Xcp, which is consistent with the potential hemibiotrophic nature of this bacterium. The identification of binding sites for ERF and MYC2 transcription factors in the promoter of Pp-TLP1 and Pp-TLP2 genes further supported the role of JA/ET pathways in the transcription regulation of these genes. The role of stomata in defense against Xcp was also investigated by measuring stomatal apertures in both 'Venture' and 'BabyGold 5' leaves after 1 and 3 HPI. While most stomata closed in both cultivars within 1 HPI, stomata reopened again at 3 HPI with a higher percentage recorded for 'BabyGold 5', suggesting a potential role of stomata in the susceptibility of this cultivar.
Collapse
Affiliation(s)
- S Sherif
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0, Canada
| | | | | |
Collapse
|
40
|
Li Z, Kang J, Sui N, Liu D. ROP11 GTPase is a negative regulator of multiple ABA responses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:169-79. [PMID: 22233300 DOI: 10.1111/j.1744-7909.2012.01100.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone abscisic acid (ABA) plays crucial roles in plant development and plant responses to environmental stresses. Although ABA receptors and a minimal set of core molecular components have recently been discovered, understanding of the ABA signaling pathway is still far from complete. In this work, we characterized the function of ROP11, a member of the plant-specific ROP small GTPases family, in the ABA signaling process. ROP11 is preferentially expressed in guard cells in all plant organs with stomata. Expression of a constitutively active ROP11 (CA-ROP11) suppresses ABA-mediated responses, whereas reduced expression of ROP11 or expression of its dominant-negative form (DN-ROP11) causes the opposite phenotypes. The affected ABA-mediated responses by ROP11 include seed germination, seedling growth, stomatal closure, induction of ABA-responsive genes, as well as plant response to drought stress. Furthermore, we showed that ROP11 and its closest-related family member, ROP10, act in parallel in mediating these responses. ABA treatment does not affect ROP11 transcription and protein abundance; however, it causes the accumulation of CA-ROP11 in the nucleus. These results demonstrated that ROP11 is a negative regulator of multiple ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Zixing Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
41
|
Reddy ASN, Day IS, Göhring J, Barta A. Localization and dynamics of nuclear speckles in plants. PLANT PHYSIOLOGY 2012; 158:67-77. [PMID: 22045923 PMCID: PMC3252098 DOI: 10.1104/pp.111.186700] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/31/2011] [Indexed: 05/17/2023]
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
42
|
Scherer GFE, Labusch C, Effendi Y. Phospholipases and the Network of Auxin Signal Transduction with ABP1 and TIR1 as Two Receptors: A Comprehensive and Provocative Model. FRONTIERS IN PLANT SCIENCE 2012; 3:56. [PMID: 22629277 PMCID: PMC3355549 DOI: 10.3389/fpls.2012.00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/04/2012] [Indexed: 05/08/2023]
Abstract
Three types of phospholipases, phospholipase D, secreted phospholipase A(2), and patatin-related phospholipase A (pPLA) have functions in auxin signal transduction. Potential linkage to auxin receptors ABP1 or TIR1, their rapid activation or post-translational activation mechanisms, and downstream functions regulated by these phospholipases is reviewed and discussed. Only for pPLA all aspects are known at least to some detail. Evidence is gathered that all these signal reactions are located in the cytosol and seem to merge on regulation of PIN-catalyzed auxin efflux transport proteins. As a consequence, auxin concentration in the nucleus is also affected and this regulates the E3 activity of this auxin receptor. We showed that ABP1, PIN2, and pPLA, all outside the nucleus, have an impact on regulation of auxin-induced genes within 30 min. We propose that regulation of PIN protein activities and of auxin efflux transport are the means to coordinate ABP1 and TIR1 activity and that no physical contact between components of the ABP1-triggered cytosolic pathways and TIR1-triggered nuclear pathways of signaling is necessary to perform this.
Collapse
Affiliation(s)
- Günther F. E. Scherer
- Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität HannoverHannover, Germany
- *Correspondence: Günther F. E. Scherer, Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität Hannover, Herrenhäuser Str. 2, D30419 Hannover, Germany. e-mail:
| | - Corinna Labusch
- Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität HannoverHannover, Germany
| | - Yunus Effendi
- Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
43
|
Hwang JU, Jeon BW, Hong D, Lee Y. Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure. PLANT, CELL & ENVIRONMENT 2011; 34:2172-82. [PMID: 21883287 DOI: 10.1111/j.1365-3040.2011.02413.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
ROP GTPases function as molecular switches in diverse cellular processes. Previously, we showed that ROP2 GTPase is activated upon light irradiation, and thereby negatively regulates light-induced stomatal opening. Here we studied the role of ROP2 during stomatal closure. The expression of a constitutively active form of ROP2 (CA-rop2) in Arabidopsis thaliana and Vicia faba resulted in slower and reduced stomatal closure in response to abscisic acid (ABA) and CO(2) . In contrast, the expression of a dominant-negative form of ROP2 (DN-rop2) and the knockout mutation of ROP2 (rop2 KO) promoted ABA-induced stomatal closure in Arabidopsis. As early as 10 min after ABA treatment, ROP2 was inactivated and translocated to the cytoplasm of the stomatal guard cells. To elucidate the mechanism by which active ROP2 suppresses stomatal closure, we monitored endocytotic membrane trafficking, which is regulated by Rho GTPases in animal cells. We found that the endocytosis of plasma membrane (PM), as tracked by FM4-64, was lower in CA-rop2-expressing guard cells than in those of wild-type plants, which suggests that active ROP2 suppresses the endocytotic internalization of PM, a process required for stomatal closure. Together, our results suggest that ROP2 is inactivated by ABA, and that this inactivation is required for the timely stomatal closure.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- Division of Molecular Life Sciences, POSTECH, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
44
|
Eloy NB, de Freitas Lima M, Van Damme D, Vanhaeren H, Gonzalez N, De Milde L, Hemerly AS, Beemster GTS, Inzé D, Ferreira PCG. The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:351-63. [PMID: 21711400 DOI: 10.1111/j.1365-313x.2011.04691.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The largest E3 ubiquitin-ligase complex, known as anaphase-promoting complex/cyclosome (APC/C), regulates the proteolysis of cell cycle regulators such as CYCLIN B and SECURIN that are essential for sister-chromatid separation and exit from mitosis. Despite its importance, the role of APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, the Arabidopsis thaliana APC/C subunit APC10 was characterized and shown to functionally complement an apc10 yeast mutant. The APC10 protein was located in specific nuclear bodies, most probably resulting from its association with the proteasome complex. An apc10 Arabidopsis knockout mutant strongly impaired female gametogenesis. Surprisingly, constitutive overexpression of APC10 enhanced leaf size. Through kinematic analysis, the increased leaf size was found to be due to enhanced rates of cell division during the early stages of leaf development and, at the molecular level, by increased APC/C activity as measured by an amplification of the proteolysis rate of the mitotic cyclin, CYCB1;1.
Collapse
Affiliation(s)
- Nubia B Eloy
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen M, Liu H, Kong J, Yang Y, Zhang N, Li R, Yue J, Huang J, Li C, Cheung AY, Tao LZ. RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. THE PLANT CELL 2011; 23:2880-94. [PMID: 21828289 PMCID: PMC3180798 DOI: 10.1105/tpc.111.085514] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The root stem cell niche defines the area that specifies and maintains the stem cells and is essential for the maintenance of root growth. Here, we characterize and examine the functional role of a quiescent center (QC)-expressed RAC/ROP GTPase activator, RopGEF7, in Arabidopsis thaliana. We show that RopGEF7 interacts with At RAC1 and overexpression of a C-terminally truncated constitutively active RopGEF7 (RopGEF7ΔC) activates RAC/ROP GTPases. Knockdown of RopGEF7 by RNA interference causes defects in embryo patterning and maintenance of the QC and leads to postembryonic loss of root stem cell population. Gene expression studies indicate that RopGEF7 is required for root meristem maintenance as it regulates the expression of PLETHORA1 (PLT1) and PLT2, which are key transcription factors that mediate the patterning of the root stem cell niche. Genetic analyses show that RopGEF7 interacts with PLT genes to regulate QC maintenance. Moreover, RopGEF7 is induced transcriptionally by auxin while its function is required for the expression of the auxin efflux protein PIN1 and maintenance of normal auxin maxima in embryos and seedling roots. These results suggest that RopGEF7 may integrate auxin-derived positional information in a feed-forward mechanism, regulating PLT transcription factors and thereby controlling the maintenance of root stem cell niches.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huili Liu
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jixiang Kong
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yali Yang
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Naichao Zhang
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ruijing Li
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianbin Yue
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqing Huang
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Li-zhen Tao
- Key Laboratory of Ministry of Education for Rice Fertility Development and Stress Resistance, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Address correspondence to
| |
Collapse
|
46
|
Scherer GFE. AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3339-57. [PMID: 21733909 DOI: 10.1093/jxb/err033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since we are living in the 'age of transcription', awareness of aspects other than transcription in auxin signal transduction seems to have faded. One purpose of this review is to recall these other aspects. The focus will also be on the time scales of auxin responses and their potential or known dependence on either AUXIN BINDING PROTEIN 1 (ABP1) or on TRANSPORT-INHIBITOR-RESISTANT1 (TIR1) as a receptor. Furthermore, both direct and indirect evidence for the function of ABP1 as a receptor will be reviewed. Finally, the potential functions of a two-receptor system for auxin and similarities to other two-receptor signalling systems in plants will be discussed. It is suggested that such a functional arrangement is a property of plants which strengthens tissue autonomy and overcomes the lack of nerves or blood circulation which are responsible for rapid signal transport in animals.
Collapse
Affiliation(s)
- Günther F E Scherer
- Leibniz-Universität Hannover, Institute for Ornamental Plants and Wood Science, Section Molecular Developmental Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| |
Collapse
|
47
|
Wu HM, Hazak O, Cheung AY, Yalovsky S. RAC/ROP GTPases and auxin signaling. THE PLANT CELL 2011; 23:1208-18. [PMID: 21478442 PMCID: PMC3101531 DOI: 10.1105/tpc.111.083907] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/13/2011] [Accepted: 03/18/2011] [Indexed: 05/18/2023]
Abstract
Auxin functions as a key morphogen in regulating plant growth and development. Studies on auxin-regulated gene expression and on the mechanism of polar auxin transport and its asymmetric distribution within tissues have provided the basis for realizing the molecular mechanisms underlying auxin function. In eukaryotes, members of the Ras and Rho subfamilies of the Ras superfamily of small GTPases function as molecular switches in many signaling cascades that regulate growth and development. Plants do not have Ras proteins, but they contain Rho-like small G proteins called RACs or ROPs that, like fungal and metazoan Rhos, are regulators of cell polarity and may also undertake some Ras functions. Here, we discuss the advances made over the last decade that implicate RAC/ROPs as mediators for auxin-regulated gene expression, rapid cell surface-located auxin signaling, and directional auxin transport. We also describe experimental data indicating that auxin-RAC/ROP crosstalk may form regulatory feedback loops and theoretical modeling that attempts to connect local auxin gradients with RAC/ROP regulation of cell polarity. We hope that by discussing these experimental and modeling studies, this perspective will stimulate efforts to further refine our understanding of auxin signaling via the RAC/ROP molecular switch.
Collapse
Affiliation(s)
- Hen-ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Ora Hazak
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
- Address correspondence to
| | - Shaul Yalovsky
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
48
|
Bloch D, Monshausen G, Singer M, Gilroy S, Yalovsky S. Nitrogen source interacts with ROP signalling in root hair tip-growth. PLANT, CELL & ENVIRONMENT 2011; 34:76-88. [PMID: 20825579 DOI: 10.1111/j.1365-3040.2010.02227.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11(CA)-induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11(CA) plants, induced the development of longer root hairs in wild-type plants and suppressed the effect of Atrop11(CA) expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11(CA)-induced swelling. Fluorescence ratio imaging experiments revealed that in wild-type root hairs, the addition of NH₄NO₃ to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen-dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.
Collapse
Affiliation(s)
- Daria Bloch
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel Department of Botany, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
49
|
Hsu SW, Wang CS. Lily Cdc42/Rac-interactive binding motif-containing protein, a Rop target, involves calcium influx and phosphoproteins during pollen germination and tube growth. PLANT SIGNALING & BEHAVIOR 2010; 5:1460-3. [PMID: 21060254 PMCID: PMC3115255 DOI: 10.4161/psb.5.11.13466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 05/25/2023]
Abstract
We report unique desiccation-associated ABA signaling transduction through which the Rop (Rho GTPase of plants) and its target LLP12-2 are regulated during the stage of pollen maturation and tube growth. Overexpression of LLP12-2 drastically inhibited pollen germination and tube growth. Studies on the germination inhibitors, Ca (2+) influx blocking agents LaCl 3 and EGTA and an actin-depolymerizing drug, latrunculin B (LatB), revealed that the LLP12-2-induced inhibition of germination and tube growth is significantly suppressed by LaCl 3 and EGTA in the LLP12-2-overexpressing pollen but not by LatB. These results suggested that LLP12-2 is associated with Ca (2+) influx in the cytoplasm and may be not with actin assembly. With the addition of LaCl 3 and EGTA, LLP12-2-overexpressing pollen increased germination and tube growth compared with the one without addition, whereas pollen expressing GFP decreased germination and tube growth. Thus, an optimum level of [Ca (2+) ]cyt influx is crucial for normal germination and tube growth. Studies on the inhibitors, staurosporine and okadaic acid in the LLP12-2-overexpressing pollen, showed no appreciable increase in germination when compared with the one without addition, suggesting that staurosporine-sensitive protein kinases and dephosphorylation of phosphoproteins may be not involved in the LLP12-2 mediated germination. However, the LLP12-2-induced inhibition of tube length was slightly but significantly suppressed by staurosporine, suggesting that staurosporine-sensitive protein kinases involve in the LLP12-2-induced inhibition of tube growth.
Collapse
Affiliation(s)
- Ssu-Wei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|
50
|
Shin DH, Cho MH, Kim TL, Yoo J, Kim JI, Han YJ, Song PS, Jeon JS, Bhoo SH, Hahn TR. A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root development. J Biol Chem 2010; 285:32151-9. [PMID: 20551316 PMCID: PMC2952216 DOI: 10.1074/jbc.m110.133710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/14/2010] [Indexed: 11/06/2022] Open
Abstract
Phytochromes enable plants to sense light information and regulate developmental responses. Phytochromes interact with partner proteins to transmit light signals to downstream components for plant development. PIRF1 (phytochrome-interacting ROP guanine-nucleotide exchange factor (RopGEF 1)) functions as a light-signaling switch regulating root development through the activation of ROPs (Rho-like GTPase of plant) in the cytoplasm. In vitro pulldown and yeast two-hybrid assays confirmed the interaction between PIRF1 and phytochromes. PIRF1 interacted with the N-terminal domain of phytochromes through its conserved PRONE (plant-specific ROP nucleotide exchanger) region. PIRF1 also interacted with ROPs and activated them in a phytochrome-dependent manner. The Pr form of phytochrome A enhanced the RopGEF activity of PIRF1, whereas the Pfr form inhibited it. A bimolecular fluorescence complementation analysis demonstrated that PIRF1 was localized in the cytoplasm and bound to the phytochromes in darkness but not in light. PIRF1 loss of function mutants (pirf1) of Arabidopsis thaliana showed a longer root phenotype in the dark. In addition, both PIRF1 overexpression mutants (PIRF1-OX) and phytochrome-null mutants (phyA-211 and phyB-9) showed retarded root elongation and irregular root hair formation, suggesting that PIRF1 is a negative regulator of phytochrome-mediated primary root development. We propose that phytochrome and ROP signaling are interconnected through PIRF1 in regulating the root growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Dong Ho Shin
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Man-Ho Cho
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Tae-Lim Kim
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Jihye Yoo
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Jeong-Il Kim
- the Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, and
| | - Yun-Jeong Han
- the Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, and
| | - Pill-Soon Song
- the Faculty of Biotechnology, Jeju National University, Jeju 690-756, Korea
| | - Jong-Seong Jeon
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Seong Hee Bhoo
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Tae-Ryong Hahn
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| |
Collapse
|