1
|
Saylor LM, Cherukuri R, Kammala AK, Richardson L, Ferrer M, Antich C, Frebert S, Han A, Menon R. Exosomal Delivery of Interleukin-10 Reduces Infection-Associated Inflammation in a 3D-Printed Model of a Humanized Feto-Maternal Interface. FASEB J 2025; 39:e70634. [PMID: 40356417 PMCID: PMC12103302 DOI: 10.1096/fj.202500545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Spontaneous preterm birth (PTB) is associated with fetal inflammatory responses that are due to infections. Effective interventions to minimize these fetal responses are limited as drugs do not usually cross the feto-maternal interface (FMi) barrier, and reliable models to test drug efficacy and other pharmacologic parameters have not been available. We leveraged New Approach Methods (NAMs), including employing extracellular vesicles (exosomes of 30-200 nm) to deliver the anti-inflammatory cytokine interleukin (IL)-10 and using a high-throughput 3D-printed FMi model to test the efficacy of this delivery. IL-10 encapsulated exosomes were prepared by encapsulating recombinant IL-10 (rIL-10) using electroporation (eIL-10) or by transfecting RAW264.7 cells with an IL-10-expression plasmid (tIL-10) that enabled the expression of IL-10 in the cells during exosome biogenesis, which was then collected. Using a biocompatible polymer resin, we 3D printed a two-chambered FMi scaffold to mimic the amnion-decidual (feto-maternal) interface. Microchannels were integrated into the lower portions of the scaffold to facilitate intercellular communication. The device was composed of a mix of cells and gelatin methacrylate hydrogel material (lower part) and cell-specific culture medium (upper part). We showed that empty exosomes and IL-10-loaded exosomes delivered to the maternal side of the scaffold were able to cross to the fetal side of our FMi device. Furthermore, the effectiveness of eIL-10 and tIL-100 (500 ng) in reducing LPS-induced FMi inflammation on both the maternal and fetal sides was demonstrated by measuring pro-inflammatory IL-6 and IL-8 concentrations via multiplex assays at 6 h and 24 h timepoints. We determined that our 3D-printed two-chamber FMi model enabled the propagation of IL-10 encapsulated exosomes between the interconnected chambers. LPS treatment to the maternal decidua induced expression of pro-inflammatory IL-6 (p < 0.001) and IL-8 (p < 0.001) in both decidua and amnion compared with healthy (control) conditions. Co-treatment of LPS along with IL-10-loaded exosomes, regardless of its formulation, significantly reduced levels of the maternal and fetal inflammatory cytokines IL-6 and IL-8 at both 6 and 24 h after delivery. A high-throughput 3D-printed FMi model was used to show that IL-10 encapsulated exosomes can reduce infection-induced FMi inflammation. We describe two NAMs with the potential to significantly improve perinatal medicine: (1) an exosomal drug delivery method that protects the drug and can cross feto-maternal barriers and (2) a 3D-printed device that can be used for high-throughput drug screening.
Collapse
Affiliation(s)
- Leah M Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ananth K Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Shayne Frebert
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
2
|
Cao J, Wang Y, Lin Q, Wang S, Shen Y, Zhang L, Li W, Chen L, Liu C, Yao S, Shuai L, Chen X, Li Z, Chang Y. IL-1β stimulates ADAMTS9 expression and contributes to preterm prelabor rupture of membranes. Cell Commun Signal 2025; 23:127. [PMID: 40057799 PMCID: PMC11890524 DOI: 10.1186/s12964-025-02120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Preterm prelabor rupture of membranes (pPROM) is a leading cause of neonatal morbidity and mortality. While intra-amniotic infection is a well-established driver of pPROM, the role of sterile intra-amniotic inflammation remains unclear. Recent evidence suggests that interleukin-1 beta (IL-1β) promotes extracellular matrix (ECM) remodeling via downstream effectors, a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9), while protein O-fucosyltransferase 2 (POFUT2) facilitates its O-fucosylation and secretion, amplifying ECM degradation. This study investigates how IL-1β-triggered nuclear factor kappa-B (NF-κB) activation promotes ADAMTS9 and POFUT2 expression, ultimately driving fetal membrane ECM remodeling and weakening in pPROM without signs of intra-amniotic infection. METHODS A nested case-control study included maternal serum and fetal membrane samples from 60 pregnant women (34 pPROM, 26 full-term births [FTB]). ELISA measured serum levels of IL-1β and ADAMTS9, and their correlations were analyzed. Mechanistic studies utilized primary human amniotic epithelial cells (hAECs) and fetal membrane-decidua explants with IL-1β treatment. The role of NF-κB was explored using chromatin immunoprecipitation (ChIP) and luciferase assays to assess NF-κB binding to the promoters of ADAMTS9 and POFUT2. A murine model of sterile intra-amniotic inflammation under ultrasound-guided IL-1β injection was used to validate in vitro findings and assess pregnancy outcomes. RESULTS Serum IL-1β and ADAMTS9 levels at 16 weeks of gestation were significantly higher in pPROM cases compared to FTB controls (P < 0.001). A combined model of these biomarkers demonstrated high predictive accuracy for pPROM (AUC = 0.83). Mechanistically, IL-1β activated NF-κB, leading to its binding to the promoters of ADAMTS9 and POFUT2. NF-κB activation promoted ADAMTS9 expression, while POFUT2 enhanced its secretion. Together, these processes drove versican degradation and ECM weakening. Intra-amniotic administration of IL-1β in mice induced fetal membrane weakening, preterm birth, and adverse neonatal outcomes, which were mitigated by the NF-κB inhibitor BAY 11-7082 treatment. CONCLUSION Maternal serum ADAMTS9 levels at mid-gestation are promising non-invasive biomarkers for pPROM risk stratification. Mechanistically, IL-1β-induced NF-κB activation promotes ADAMTS9 expression and POFUT2-dependent secretion, contributing to fetal membrane weakening. These findings provide new insights into the role and potential therapeutic target for sterile intra-amniotic inflammation in pPROM.
Collapse
Affiliation(s)
- Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Lei Zhang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Ling Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Chunliu Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Shihan Yao
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Ling Shuai
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xu Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Zongjin Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China.
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Medical School, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Ainomugisha B, Migisha R, Agaba C, Tibaijuka L, Owaraganise A, Muhumuza J, Bazira J, Kayondo M, Ngonzi J. Amniotic Fluid Bacterial Colonization, Antibiotic Susceptibility, and Associated Factors Among Women With Premature Rupture of Membranes at Mbarara Regional Referral Hospital, Southwestern Uganda. Cureus 2024; 16:e72219. [PMID: 39583472 PMCID: PMC11584068 DOI: 10.7759/cureus.72219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Amniotic fluid bacterial colonization in premature rupture of membranes (PROM) is known to initiate labor and lead to postpartum endometritis and early-onset neonatal sepsis. We determined the prevalence and factors associated with amniotic fluid bacterial colonization, described bacterial isolates and examined antibiotic susceptibility patterns among women seeking care at Mbarara Regional Referral Hospital (MRRH) in southwestern Uganda. METHODS We conducted a cross-sectional study from December 21, 2020 to June 12, 2021. We consecutively enrolled women with PROM at ≥24 weeks of gestation and aseptically picked two endo-cervical swabs. Aerobic cultures were performed on blood, chocolate, MacConkey agars, and polymerase chain reaction on culture-negative samples. Antibiotic susceptibility was performed via the Kirby-Bauer disk diffusion and dilution method. Interviewer-administered questionnaires were used to obtain participants' sociodemographic, medical, and obstetric characteristics. We performed multivariable logistic regression to determine factors associated with bacterial colonization. RESULTS We enrolled 144 participants with a mean age of 26.5±6.2 years. The prevalence of cervical amniotic bacterial colonization was 35.4% (n=51; 95% confidence interval (CI): 28.0-43.7). Six bacteria were isolated: Klebsiella pneumoniae, Staphylococcus aureus, Enterobacter agglomerans, Escherichia coli, Streptococcus spp., and Enterococcus faecalis. Ciprofloxacin exhibited the highest sensitivity (88.6%), followed by cefuroxime (75%), while all isolated bacteria demonstrated resistance to ampicillin. Factors independently associated with cervical amniotic fluid bacterial colonization were prime gravidity (aOR=2.69; 95%CI: 1.07-6.71, p=0.035), obesity (aOR=3.15; 95%CI: 1.10-9.11, p=0.024), and being referred-in (aOR=2.37; 95% CI: 1.04-5.3, p=0.038). CONCLUSION Approximately one-third of the women had amniotic fluid bacterial colonization, and this was associated with being prime gravida, being obese, and being referred. The most common bacteria isolated was K. pneumoniae, followed by S. aureus. There was good sensitivity to quinolones and cephalosporins, and all bacterial isolates were resistant to ampicillin - the recommended first line of treatment for PROM by the Ministry of Health calls for revision of guidelines.
Collapse
Affiliation(s)
- Brenda Ainomugisha
- Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Richard Migisha
- Physiology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Collins Agaba
- Physiology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Leevan Tibaijuka
- Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, UGA
| | | | - Joy Muhumuza
- Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Joel Bazira
- Microbiology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Musa Kayondo
- Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Joseph Ngonzi
- Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, UGA
| |
Collapse
|
4
|
Ling LJ, Zhou Q, Zhang F, Lei WJ, Li MD, Lu JW, Wang WS, Sun K, Ying H. The dual role of glucocorticoid regeneration in inflammation at parturition. Front Immunol 2024; 15:1459489. [PMID: 39290694 PMCID: PMC11405189 DOI: 10.3389/fimmu.2024.1459489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Fetal membrane inflammation is an integral event of parturition. However, excessive pro-inflammatory cytokines can impose threats to the fetus. Coincidentally, the fetal membranes express abundant 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which generates biologically active cortisol to promote labor through induction of prostaglandin synthesis. Given the well-recognized anti-inflammatory actions of glucocorticoids, we hypothesized that cortisol regenerated in the fetal membranes might be engaged in restraining fetus-hazardous pro-inflammatory cytokine production for the safety of the fetus, while reserving pro-labor effect on prostaglandin synthesis to ensure safe delivery of the fetus. Methods The hypothesis was examined in human amnion tissue and cultured primary human amnion fibroblasts as well as a mouse model. Results 11β-HSD1 was significantly increased in the human amnion in infection-induced preterm birth. Studies in human amnion fibroblasts showed that lipopolysaccharide (LPS) induced 11β-HSD1 expression synergistically with cortisol. Cortisol completely blocked NF-κB-mediated pro-inflammatory cytokine expression by LPS, but STAT3-mediated cyclooxygenase 2 expression, a crucial prostaglandin synthetic enzyme, remained. Further studies in pregnant mice showed that corticosterone did not delay LPS-induced preterm birth, but alleviated LPS-induced fetal organ damages, along with increased 11β-HSD1, cyclooxygenase 2, and decreased pro-inflammatory cytokine in the fetal membranes. Discussion There is a feed-forward cortisol regeneration in the fetal membranes in infection, and cortisol regenerated restrains pro-inflammatory cytokine expression, while reserves pro-labor effect on prostaglandin synthesis. This dual role of cortisol regeneration can prevent excessive pro-inflammatory cytokine production, while ensure in-time delivery for the safety of the fetus.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| |
Collapse
|
5
|
Kim N, Joo EH, Kim S, Kim T, Ahn EH, Jung SH, Ryu HM, Lee JY. Comparative analysis of obstetric, perinatal, and neurodevelopmental outcomes following chorionic villus sampling and amniocentesis. Front Med (Lausanne) 2024; 11:1407710. [PMID: 39005648 PMCID: PMC11239381 DOI: 10.3389/fmed.2024.1407710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Background The risks of invasive prenatal tests are reported in previous studies such as miscarriage, fetal anomalies, and bleeding. However, few compare short-term and long-term outcomes between invasive tests. This study aims to investigate obstetric, perinatal, and children's neurodevelopmental outcomes following chorionic villus sampling (CVS) or amniocentesis in singleton pregnancy. Methods This retrospective cohort study included healthy singleton pregnancies underwent transabdominal CVS (gestational age [GA] at 10-13 weeks) or amniocentesis (GA at 15-21 weeks) at a single medical center between 2012 and 2022. Only cases with normal genetic results were eligible. Short-term and long-term neurodevelopmental outcomes were evaluated. Results The study included 200 CVS cases and 498 amniocentesis cases. No significant differences were found in body mass index, parities, previous preterm birth, conception method, and cervical length (CL) before an invasive test between the groups. Rates of preterm labor, preterm premature rupture of the membranes, preterm birth, neonatal survival, neonatal short-term morbidities, and long-term neurodevelopmental delay were similar. However, the CVS group had a higher rate of cervical cerclage due to short CL before 24 weeks (7.0%) compared to the amniocentesis group (2.4%). CVS markedly increased the risk of cervical cerclage due to short CL (adjusted odd ratio [aOR] = 3.17, 95%CI [1.23-8.12], p = 0.016), after considering maternal characteristics. Conclusion Performing CVS resulted in a higher incidence of cerclage due to short cervix or cervical dilatation compared to amniocentesis in singleton pregnancies. This highlights the importance of cautious selection for CVS and the necessity of informing women about the associated risks beforehand.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
6
|
Amabebe E, Kumar A, Tatiparthy M, Kammala AK, Taylor BD, Menon R. Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:297-328. [PMID: 39698538 PMCID: PMC11648491 DOI: 10.20517/evcna.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 12/20/2024]
Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse reproductive outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
| | | | | | | | | | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Severino ME, Richardson LS, Kacerovsky M, Menon R. Histologic Evidence of Epithelial-Mesenchymal Transition and Autophagy in Human Fetal Membranes. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:684-692. [PMID: 38320630 PMCID: PMC11074980 DOI: 10.1016/j.ajpath.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Preterm, prelabor rupture of the human fetal membranes (pPROM) is involved in 40% of spontaneous preterm births worldwide. Cellular-level disturbances and inflammation are effectors of membrane degradation, weakening, and rupture. Maternal risk factors induce oxidative stress (OS), senescence, and senescence-associated inflammation of the fetal membranes as reported mechanisms related to pPROM. Inflammation can also arise in fetal membrane cells (amnion/chorion) due to OS-induced autophagy and epithelial-mesenchymal transition (EMT). Autophagy, EMT, and their correlation in pPROM, along with OS-induced autophagy-related changes in amnion and chorion cells in vitro, were investigated. Immunocytochemistry staining of cytokeratin-18 (epithelial marker)/vimentin (mesenchymal marker) and proautophagy-inducing factor LC3B were performed in fetal membranes from pPROM, term not in labor, and term labor. Ultrastructural changes associated with autophagy were verified by transmission electron microscopy of the fetal membranes and in cells exposed to cigarette smoke extract (an OS inducer). EMT and LC3B staining was compared in the chorion from pPROM versus term not in labor. Transmission electron microscopy confirmed autophagosome formation in pPROM amnion and chorion. In cell culture, autophagosomes were formed in the amnion with OS treatment, while autophagosomes were accumulated in both cell types with autophagy inhibition. This study documents the association between pPROMs and amniochorion autophagy and EMT, and supports a role for OS in inducing dysfunctional cells that increase inflammation, predisposing membranes to rupture.
Collapse
Affiliation(s)
- Mary E Severino
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas; College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas.
| |
Collapse
|
8
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
9
|
Kammala AK, Richardson LS, Radnaa E, Han A, Menon R. Microfluidic technology and simulation models in studying pharmacokinetics during pregnancy. Front Pharmacol 2023; 14:1241815. [PMID: 37663251 PMCID: PMC10469630 DOI: 10.3389/fphar.2023.1241815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Preterm birth rates and maternal and neonatal mortality remain concerning global health issues, necessitating improved strategies for testing therapeutic compounds during pregnancy. Current 2D or 3D cell models and animal models often fail to provide data that can effectively translate into clinical trials, leading to pregnant women being excluded from drug development considerations and clinical studies. To address this limitation, we explored the utility of in silico simulation modeling and microfluidic-based organ-on-a-chip platforms to assess potential interventional agents. Methods: We developed a multi-organ feto-maternal interface on-chip (FMi-PLA-OOC) utilizing microfluidic channels to maintain intercellular interactions among seven different cell types (fetal membrane-decidua-placenta). This platform enabled the investigation of drug pharmacokinetics in vitro. Pravastatin, a model drug known for its efficacy in reducing oxidative stress and inflammation during pregnancy and currently in clinical trials, was used to test its transfer rate across both feto-maternal interfaces. The data obtained from FMi-PLA-OOC were compared with existing data from in vivo animal models and ex vivo placenta perfusion models. Additionally, we employed mechanistically based simulation software (Gastroplus®) to predict pravastatin pharmacokinetics in pregnant subjects based on validated nonpregnant drug data. Results: Pravastatin transfer across the FMi-PLA-OOC and predicted pharmacokinetics in the in silico models were found to be similar, approximately 18%. In contrast, animal models showed supraphysiologic drug accumulation in the amniotic fluid, reaching approximately 33%. Discussion: The results from this study suggest that the FMi-PLA-OOC and in silico models can serve as alternative methods for studying drug pharmacokinetics during pregnancy, providing valuable insights into drug transport and metabolism across the placenta and fetal membranes. These advanced platforms offer promising opportunities for safe, reliable, and faster testing of therapeutic compounds, potentially reducing the number of pregnant women referred to as "therapeutic orphans" due to the lack of consideration in drug development and clinical trials. By bridging the gap between preclinical studies and clinical trials, these approaches hold great promise in improving maternal and neonatal health outcomes.
Collapse
Affiliation(s)
- Ananth K. Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
10
|
Zhang C, Cao J, Xu M, Wu D, Li W, Chang Y. The role of neutrophils in chorioamnionitis. Front Immunol 2023; 14:1198831. [PMID: 37475854 PMCID: PMC10354368 DOI: 10.3389/fimmu.2023.1198831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Chorioamnionitis, commonly referred to as intrauterine infection or inflammation, is pathologically defined by neutrophil infiltration and inflammation at the maternal-fetal interface. Chorioamnionitis is the common complication during late pregnancy, which lead to a series of serious consequences, such as preterm labor, preterm premature rupture of the fetal membranes, and fetal inflammatory response syndrome. During infection, a large number of neutrophils migrate to the chorio-decidua in response to chemokines. Although neutrophils, a crucial part of innate immune cells, have strong anti-inflammatory properties, over-activating them can harm the body while also eliminating pathogens. This review concentrated on the latest studies on chorioamnionitis-related consequences as well as the function and malfunction of neutrophils. The release of neutrophil extracellular traps, production of reactive oxygen species, and degranulation from neutrophils during intrauterine infection, as well as their pathological roles in complications related to chorioamnionitis, were discussed in detail, offering fresh perspectives on the treatment of chorioamnionitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin central hospital of Gynecology Obstetrics, Tianjin, China
| |
Collapse
|
11
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
12
|
Shahraki O, Shayganpour M, Hashemzaei M, Daneshmand S. Solid lipid nanoparticles (SLNs), the potential novel vehicle for enhanced in vivo efficacy of hesperidin as an anti-inflammatory agent. Bioorg Chem 2023; 131:106333. [PMID: 36587504 DOI: 10.1016/j.bioorg.2022.106333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hesperidin (C28H34O15), a flavanone glycoside abundantly present in citrus fruits, has proven therapeutic effects including anti-inflammatory activities. Herein, we report a novel formulation of HESP loaded solid lipid nanoparticles (SLNs) using hot homogenization and ultrasound to improve the poor solubility and bioavailability. In the present study, the formulation was developed and optimized by response surface method and then characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy (FT-IR), and dynamic light scattering (DLS). Encapsulation efficiency was determined and the anti-inflammatory effect was assessed through in vivo ear edema inflammation model. According to the electron microscopy results, the product has a spherical shape. The optimized parameters produced small size (179.8 ± 3.6 nm) HESP-SLNs with high encapsulation efficiency (93.0 ± 3.8 %). The outcomes exhibited that encapsulation in SLNs carriers improves the anti-inflammatory potential of HESP.
Collapse
Affiliation(s)
- Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohaddeseh Shayganpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Daneshmand
- Department of Pharmaceutics, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
13
|
Goldman B, Radnaa E, Kechichian T, Menon R. Silencing P38 MAPK reduces cellular senescence in human fetal chorion trophoblast cells. Am J Reprod Immunol 2023; 89:e13648. [PMID: 36334089 PMCID: PMC9771926 DOI: 10.1111/aji.13648] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
PROBLEM Amniochorion senescence generates mechanistic signals to initiate parturition. Activation of p38 mitogen-activated kinase (MAPK) in fetal amnion cells is a key mediator of senescence as well as epithelial-mesenchymal transition (EMT) of amnion cells. However, the impact of p38 MAPK in chorion trophoblast cells (CTCs) is unclear. We tested if eliminating p38 will reduce oxidative stress (OS) induced cell fates like cellular senescence, EMT, and inflammation induced by these processes in CTCs. METHODS p38MAPK in CTCs was silenced using CRISPR/Cas9. OS was evoked by cigarette smoke extract (CSE) exposure. EMT was evoked by transforming growth factor (TGF)-ß treatment. Cell cycle, senescence, EMT, and inflammation were analyzed. RESULTS CSE-induced changes in the cell cycle were not seen in p38KO CTCs compared to WT cells. OS induced by CSE evoked senescence and senescence-associated secretory phenotype (SASP as indicated by IL-6 and IL-8 increase) in WT but not in p38MAPK KO CTCs. No changes were noted in HLA-G expression regardless of the status of p38MAPK. Neither CSE nor TGF-ß evoked EMT in either WT or p38 KO CTCs. CONCLUSION Senescence and senescence-associated inflammation in human fetal CTCs are mediated by p38MAPK. Compared to amnion epithelial cells, CTCs are resistant to EMT. This refractoriness may help them to maintain the barrier functions at the choriodecidual interface.
Collapse
Affiliation(s)
- Brett Goldman
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Talar Kechichian
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
14
|
Radnaa E, Richardson L, Goldman B, Burks J, Baljinnyam T, Vora N, Zhang HJ, Bonney E, Han A, Menon R. Stress signaler p38 mitogen-activated kinase activation: a cause for concern? Clin Sci (Lond) 2022; 136:1591-1614. [PMID: 36250628 PMCID: PMC9664350 DOI: 10.1042/cs20220491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress (OS) induced activation of p38 mitogen-activated kinase (MAPK) and cell fate from p38 signaling was tested using the human fetal membrane's amnion epithelial cells (AEC). We created p38 KO AEC using the CRISPR/Cas9 approach and tested cell fate in response to OS on an AEC-free fetal membrane extracellular matrix (ECM). Screening using image CyTOF indicated OS causing epithelial-mesenchymal transition (EMT). Further testing revealed p38 deficiency prevented AEC senescence, EMT, cell migration, and inflammation. To functionally validate in vitro findings, fetal membrane-specific conditional KO (cKO) mice were developed by injecting Cre-recombinase encoded exosomes intra-amniotically into p38αloxP/loxP mice. Amnion membranes from p38 cKO mice had reduced senescence, EMT, and increased anti-inflammatory IL-10 compared with WT animals. Our study suggested that overwhelming activation of p38 in response to OS inducing risk exposures can have an adverse impact on cells, cause cell invasion, inflammation, and ECM degradation detrimental to tissue homeostasis.
Collapse
Affiliation(s)
- Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Brett Goldman
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Jared K. Burks
- Flow Cytometry and Cellular Imaging Core Facility, Department of Leukemia, M.D. Anderson Cancer Center, Texas, U.S.A. 77030
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A. 77555
| | - Natasha Vora
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Hui-juan Zhang
- Department of Pathology, The International Peace Maternity and Child Health Hospital, University School of Medicine, Shanghai, China. 200030
| | - Elizabeth A. Bonney
- Department of Obstetrics and Gynecology, The University of Vermont, Burlington, VT, U.S.A. 05405ghout all figures, the following notations were
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, U.S.A. 77843
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| |
Collapse
|
15
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
16
|
Taylor BD, Criscitiello MF, Hernandez T, Norwood B, Noah A, Bazer FW. Interferon epsilon and preterm birth subtypes; a new piece of the type I interferon puzzle during pregnancy? Am J Reprod Immunol 2022; 87:e13526. [PMID: 35147251 PMCID: PMC9978937 DOI: 10.1111/aji.13526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
PROBLEM Interferon epsilon (IFNε) is a unique type I IFN that is expressed in response to sex steroids. Studies suggest that type I IFNs regulate inflammation-induced preterm birth (PTB), but no study has examined the role of IFNε in human pregnancy. METHOD OF STUDY We used stored vaginal swabs between 8 and 26 weeks of gestation from the Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) biobank and measured IFNε by enzyme-linked immunosorbent assay (ELISA). A total of 29 women with spontaneous preterm births, 34 women with medically indicated preterm births, and 134 women with term births were included. Secondary outcomes included a preterm birth with chorioamnionitis and preeclampsia with a preterm birth. Logistic regression calculated odds ratios (OR) and 95% confidence intervals (CI) adjusting for maternal age, race, body mass index, prior pregnancy complications, lower genital tract infections, chronic health conditions, and gestational age at blood draw. RESULTS AND CONCLUSIONS There was no significant association between IFNε and spontaneous preterm birth (ORadj 1.0, 0.8-1.3) or chorioamnionitis (ORadj 1.6, 0.7-3.5). A trend toward increased odds of medically indicated preterm birth (ORadj . 1.3, 1.0-1.8) was observed. This was likely due to elevated IFNε among women with preterm preeclampsia (ORadj . 2.0, 95% CI 1.3-3.2). While exploratory, our novel findings suggest that larger longitudinal studies of IFNε across human pregnancy may be warranted.
Collapse
Affiliation(s)
- Brandie DePaoli Taylor
- Department of Obstetrics and Gynecology, Division of Basic and Translational Research, University of Texas Medical Branch, Galveston, TX, 77555,Department of Preventive Medicine and Population Health, University of Texas Medical Branch-Galveston, Galveston, Texas,Correspondence: Brandie DePaoli Taylor, PhD, MPH, Department of Obstetrics and Gynecology, Division of Basic and Translational Research, University of Texas Medical Branch ; phone: 409-772-7592
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, Texas 77843
| | - Tyne Hernandez
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, 19143
| | - Brooke Norwood
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Akawinyene Noah
- Department of Obstetrics and Gynecology, Division of Basic and Translational Research, University of Texas Medical Branch, Galveston, TX, 77555,Department of Preventive Medicine and Population Health, University of Texas Medical Branch-Galveston, Galveston, Texas
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
17
|
Menon R. Fetal inflammatory response at the fetomaternal interface: A requirement for labor at term and preterm. Immunol Rev 2022; 308:149-167. [PMID: 35285967 DOI: 10.1111/imr.13075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
Human parturition at term and preterm is an inflammatory process synchronously executed by both fetomaternal tissues to transition them from a quiescent state t an active state of labor to ensure delivery. The initiators of the inflammatory signaling mechanism can be both maternal and fetal. The placental (fetal)-maternal immune and endocrine mediated homeostatic imbalances and inflammation are well reported. However, the fetal inflammatory response (FIR) theories initiated by the fetal membranes (amniochorion) at the choriodecidual interface are not well established. Although immune cell migration, activation, and production of proparturition cytokines to the fetal membranes are reported, cellular level events that can generate a unique set of inflammation are not well discussed. This review discusses derangements to fetal membrane cells (physiologically and pathologically at term and preterm, respectively) in response to both endogenous and exogenous factors to generate inflammatory signals. In addition, the mechanisms of inflammatory signal propagation (fetal signaling of parturition) and how these signals cause immune imbalances at the choriodecidual interface are discussed. In addition to maternal inflammation, this review projects FIR as an additional mediator of inflammatory overload required to promote parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
18
|
Woollett LA, Catov JM, Jones HN. Roles of maternal HDL during pregnancy. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159106. [PMID: 34995789 DOI: 10.1016/j.bbalip.2021.159106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND High density lipoproteins (HDL) were first linked to cardiovascular disease (CVD) over 30 years ago when an inverse relationship was shown between CVD and HDL-cholesterol levels. It is now apparent that HDL composition and function, not cholesterol levels, are the pertinent measurements describing HDL's role in various disease processes, especially those with subclinical or overt inflammation. SCOPE OF REVIEW Pregnancy is also an inflammatory state. When inflammation becomes excessive during pregnancy, there is an increased risk for adverse outcomes that affect the health of the mother and fetus, including preterm birth and preeclampsia. Though studies on HDL during pregnancy are limited, recent evidence demonstrates that HDL composition and function change during pregnancy and in women with adverse outcomes. GENERAL SIGNIFICANCE In this review, we will discuss how HDL may play a role in maintaining a healthy pregnancy and how impairments in function could lead to pregnancies with adverse outcomes.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical School, Cincinnati, OH, United States of America.
| | - Janet M Catov
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, PA, United States of America.
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States of America; Center for Research in Perinatal Outcomes, Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
19
|
Ganguly E, Kammala AK, Benson M, Richardson LS, Han A, Menon R. Organic Anion Transporting Polypeptide 2B1 in Human Fetal Membranes: A Novel Gatekeeper for Drug Transport During Pregnancy? Front Pharmacol 2022; 12:771818. [PMID: 34987396 PMCID: PMC8721670 DOI: 10.3389/fphar.2021.771818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Current intervention strategies have not been successful in reducing the risks of adverse pregnancy complications nor maternal and fetal morbidities associated with pregnancy complications. Improving pregnancy and neonatal outcomes requires a better understanding of drug transport mechanisms at the feto-maternal interfaces, specifically the placenta and fetal membrane (FM). The role of several solute carrier uptake transporter proteins (TPs), such as the organic anion transporting polypeptide 2B1 (OATP2B1) in transporting drug across the placenta, is well-established. However, the mechanistic role of FMs in this drug transport has not yet been elucidated. We hypothesize that human FMs express OATP2B1 and functions as an alternate gatekeeper for drug transport at the feto-maternal interface. We determined the expression of OATP2B1 in term, not-in-labor, FM tissues and human FM cells [amnion epithelial cell (AEC), chorion trophoblast cell (CTC), and mesenchymal cells] using western blot analyses and their localization using immunohistochemistry. Changes in OATP2B1 expression was determined for up to 48 h after stimulation with cigarette smoke extract (CSE), an inducer of oxidative stress. The functional role of OATP2B1 was determined by flow cytometry using a zombie violet dye substrate assay. After OATP2B1 gene silencing, its functional relevance in drug transport through the feto-maternal interface was tested using a recently developed feto-maternal interface organ-on-a-chip (OOC) system that contained both FM and maternal decidual cells. Propagation of a drug (Rosuvastatin, that can be transported by OATP2B1) within the feto-maternal interface OOC system was determined by mass spectrometry. FMs express OATP2B1 in the CTC and AEC layers. In FM explants, OATP2B1 expression was not impacted by oxidative stress. Uptake of the zombie violet dye within AECs and CTCs showed OATP2B1 is functionally active. Silencing OATP2B1 in CTCs reduced Rosuvastatin propagation from the decidua to the fetal AEC layer within the feto-maternal interface-OOC model. Our data suggest that TPs in FMs may function as a drug transport system at the feto-maternal interface, a function that was previously thought to be performed exclusively by the placenta. This new knowledge will help improve drug delivery testing during pregnancy and contribute to designing drug delivery strategies to treat adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Esha Ganguly
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Meagan Benson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Lauren S Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
20
|
Radnaa E, Urrabaz-Garza R, Elrod ND, de Castro Silva M, Pyles R, Han A, Menon R. Generation and characterization of human Fetal membrane and Decidual cell lines for reproductive biology experiments†. Biol Reprod 2021; 106:568-582. [PMID: 34935931 PMCID: PMC8934701 DOI: 10.1093/biolre/ioab231] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Human fetal membrane and maternal decidua parietalis form one of the major feto-maternal interfaces during pregnancy. Studies on this feto-maternal interface is limited as several investigators have limited access to the placenta, and experience difficulties to isolate and maintain primary cells. Many cell lines that are currently available do not have the characteristics or properties of their primary cells of origin. Therefore, we created, characterized the immortalized cells from primary isolates from fetal membrane-derived amnion epithelial cells, amnion and chorion mesenchymal cells, chorion trophoblast cells and maternal decidua parietalis cells. Primary cells were isolated from a healthy full-term, not in labor placenta. Primary cells were immortalized using either a HPV16E6E7 retroviral or a SV40T lentiviral system. The immortalized cells were characterized for the morphology, cell type-specific markers, and cell signalling pathway activation. Genomic stability of these cells was tested using RNA seq, karyotyping, and short tandem repeats DNA analysis. Immortalized cells show their characteristic morphology, and express respective epithelial, mesenchymal and decidual markers similar to that of primary cells. Gene expression of immortalized and primary cells were highly correlated (R = 0.798 to R = 0.974). Short tandem repeats DNA analysis showed in the late passage number (>P30) of cell lines matched 84-100% to the early passage number (<P10) of the cell lines revealing there were no genetic drift over the passages. Karyotyping also revealed no chromosomal anomalies. Creation of these cell lines can standardize experimental approaches, eliminate subject to subject variabilities, and benefit the reproductive biological studies on pregnancies by using these cells.
Collapse
Affiliation(s)
- Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Mariana de Castro Silva
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Richard Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3128, USA
| | - Ramkumar Menon
- Correspondence: Department of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Shepherd MC, Radnaa E, Tantengco OA, Kechichian T, Urrabaz-Garza R, Kammala AK, Sheller-Miller S, Menon R. Extracellular vesicles from maternal uterine cells exposed to risk factors cause fetal inflammatory response. Cell Commun Signal 2021; 19:100. [PMID: 34620169 PMCID: PMC8499538 DOI: 10.1186/s12964-021-00782-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Background Fetal cell-derived exosomes (extracellular vesicles, 40–160 nm) are communication channels that can signal parturition by inducing inflammatory changes in maternal decidua and myometrium. Little is known about maternal cell-derived exosomes and their functional roles on the fetal side. This study isolated and characterized exosomes from decidual and myometrial cells grown under normal and inflammatory/oxidative stress conditions and determined their impact on fetal membrane cells. Methods Decidual and myometrial cells were grown under standard culture conditions (control) or exposed for 48 h to cigarette smoke extract or tumor necrosis factor-α, as proxies for oxidative stress and inflammation, respectively. Exosomes were isolated from media (differential ultra-centrifugation followed by size exclusion chromatography), quantified (nano particle tracking analysis), and characterized in terms of their size and morphology (cryo-electron microscopy), markers (dot blot), and cargo contents (proteomics followed by bioinformatics analysis). Maternal exosomes (109/mL) were used to treat amnion epithelial cells and chorion trophoblast cells for 24 h. The exosome uptake by fetal cells (confocal microscopy) and the cytokine response (enzyme-linked immunosorbent assays for IL-6, IL-10, and TNF-α) was determined. Results Exosomes from both decidual and myometrial cells were round and expressed tetraspanins and endosomal sorting complexes required for transport (ESCRT) protein markers. The size and quantity was not different between control and treated cell exosomes. Proteomic analysis identified several common proteins in exosomes, as well as unique proteins based on cell type and treatment. Compared to control exosomes, pro-inflammatory cytokine release was higher in both amnion epithelial cell and chorion trophoblast cell media when the cells had been exposed to exosomes from decidual or myometrial cells treated with either cigarette smoke extract or tumor necrosis factor-α. In chorion trophoblast cells, anti-inflammatory IL-10 was increased by exosomes from both decidual and myometrial cells. Conclusion Various pathophysiological conditions cause maternal exosomes to carry inflammatory mediators that can result in cell type dependent fetal inflammatory response. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00782-3.
Collapse
Affiliation(s)
- Megan C Shepherd
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ourlad Alzeus Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
22
|
Pregnancy is accompanied by larger high density lipoprotein particles and compositionally distinct subspecies. J Lipid Res 2021; 62:100107. [PMID: 34416270 PMCID: PMC8441201 DOI: 10.1016/j.jlr.2021.100107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Pregnancy is accompanied by significant physiological changes, which can impact the health and development of the fetus and mother. Pregnancy-induced changes in plasma lipoproteins are well documented, with modest to no impact observed on the generic measure of high density lipoprotein (HDL) cholesterol. However, the impact of pregnancy on the concentration and composition of HDL subspecies has not been examined in depth. In this prospective study, we collected plasma from 24 nonpregnant and 19 pregnant women in their second trimester. Using nuclear magnetic resonance (NMR), we quantified 11 different lipoprotein subspecies from plasma by size, including three in the HDL class. We observed an increase in the number of larger HDL particles in pregnant women, which were confirmed by tracking phospholipids across lipoproteins using high-resolution gel-filtration chromatography. Using liquid chromatography-mass spectrometry (LC-MS), we identified 87 lipid-associated proteins across size-speciated fractions. We report drastic shifts in multiple protein clusters across different HDL size fractions in pregnant females compared with nonpregnant controls that have major implications on HDL function. These findings significantly elevate our understanding of how changes in lipoprotein metabolism during pregnancy could impact the health of both the fetus and the mother.
Collapse
|
23
|
Radnaa E, Richardson LS, Sheller-Miller S, Baljinnyam T, de Castro Silva M, Kumar Kammala A, Urrabaz-Garza R, Kechichian T, Kim S, Han A, Menon R. Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. LAB ON A CHIP 2021; 21:1956-1973. [PMID: 34008619 PMCID: PMC8162392 DOI: 10.1039/d0lc01323d] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Preterm birth (PTB; <37 weeks of gestation) impacts ∼11% of all pregnancies and contributes to 1 million neonatal deaths worldwide annually. An understanding of the feto-maternal (F-M) signals that initiate birthing (parturition) at term is critical to design strategies to prevent their premature activation, resulting in PTB. Although endocrine and immune cell signaling are well-reported, fetal-derived paracrine signals capable of transitioning quiescent uterus to an active state of labor are poorly studied. Recent reports have suggested that senescence of the fetal amnion membrane coinciding with fetal growth and maturation generates inflammatory signals capable of triggering parturition. This is by increasing the inflammatory load at the feto-maternal interface (FMi) tissues (i.e., amniochorion-decidua). High mobility group box 1 protein (HMGB1), an alarmin, is one of the inflammatory signals released by senescent amnion cells via extracellular vesicles (exosomes; 40-160 nm). Increased levels of HMGB1 in the amniotic fluid, cord and maternal blood are associated with term and PTB. This study tested the hypothesis that senescent amnion cells release HMGB1, which is fetal signaling capable of increasing FMi inflammation, predisposing them to parturition. To test this hypothesis, exosomes from amnion epithelial cells (AECs) grown under normal conditions were engineered to contain HMGB1 by electroporation (eHMGB1). eHMGB1 was characterized (quantity, size, shape, markers and loading efficiency), and its propagation through FMi was tested using a four-chamber microfluidic organ-on-a-chip device (FMi-OOC) that contained four distinct cell types (amnion and chorion mesenchymal, chorion trophoblast and decidual cells) connected through microchannels. eHMGB1 propagated through the fetal cells and matrix to the maternal decidua and increased inflammation (receptor expression [RAGE and TLR4] and cytokines). Furthermore, intra-amniotic injection of eHMGB1 (containing 10 ng) into pregnant CD-1 mice on embryonic day 17 led to PTB. Injecting carboxyfluorescein succinimidyl ester (CFSE)-labeled eHMGB1, we determined in vivo kinetics and report that eHMGB1 trafficking resulting in PTB was associated with increased FMi inflammation. This study determined that fetal exosome mediated paracrine signaling can generate inflammation and induce parturition. Besides, in vivo functional validation of FMi-OOC experiments strengthens the reliability of such devices to test physiologic and pathologic systems.
Collapse
Affiliation(s)
- Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA. and Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Mariana de Castro Silva
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| |
Collapse
|
24
|
Shahin HI, Radnaa E, Tantengco OAG, Kechichian T, Kammala AK, Sheller-Miller S, Taylor BD, Menon R. Microvesicles and exosomes released by amnion epithelial cells under oxidative stress cause inflammatory changes in uterine cells†. Biol Reprod 2021; 105:464-480. [PMID: 33962471 DOI: 10.1093/biolre/ioab088] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles play a crucial role in feto-maternal communication and provide an important paracrine signaling mechanism in pregnancy. We hypothesized that fetal cells-derived exosomes and microvesicles (MVs) under oxidative stress (OS) carry unique cargo and traffic through feto-maternal interface, which cause inflammation in uterine cells associated with parturition. Exosomes and MVs, from primary amnion epithelial cell (AEC) culture media under normal or OS-induced conditions, were isolated by optimized differential centrifugation method followed by characterization for size (nanoparticle tracking analyzer), shape (transmission electron microscopy), and protein markers (western blot and immunofluorescence). Cargo and canonical pathways were identified by mass spectroscopy and ingenuity pathway analysis. Myometrial, decidual, and cervical cells were treated with 1 × 107 control/OS-derived exosomes/MVs. Pro-inflammatory cytokines were measured using a Luminex assay. Statistical significance was determined by paired T-test (P < 0.05). AEC produced cup-shaped exosomes of 90-150 nm and circular MVs of 160-400 nm. CD9, heat shock protein 70, and Nanog were detected in exosomes, whereas OCT-4, human leukocyte antigen G, and calnexin were found in MVs. MVs, but not exosomes, were stained for phosphatidylserine. The protein profiles for control versus OS-derived exosomes and MVs were significantly different. Several inflammatory pathways related to OS were upregulated that were distinct between exosomes and MVs. Both OS-derived exosomes and MVs significantly increased pro-inflammatory cytokines (granulocyte-macrophage colony-stimulating factor, interleukin 6 (IL-6), and IL-8) in maternal cells compared with control (P < 0.05). Our findings suggest that fetal-derived exosomes and MVs under OS exhibited distinct characteristics and a synergistic inflammatory role in uterine cells associated with the initiation of parturition.
Collapse
Affiliation(s)
- Hend I Shahin
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
25
|
Richardson L, Kim S, Han A, Menon R. Modeling ascending infection with a feto-maternal interface organ-on-chip. LAB ON A CHIP 2020; 20:4486-4501. [PMID: 33112317 PMCID: PMC7815379 DOI: 10.1039/d0lc00875c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Maternal infection (i.e., ascending infection) and the resulting host inflammatory response are risk factors associated with spontaneous preterm birth (PTB), a major pregnancy complication. However, the path of infection and its propagation from the maternal side to the fetal side have been difficult to study due to the lack of appropriate in vitro models and limitations of animal models. A better understanding of the propagation kinetics of infectious agents and development of the host inflammatory response at the feto-maternal (amniochorion-decidua, respectively) interface (FMi) is critical in curtailing host inflammatory responses that can lead to PTB. To model ascending infection and determine inflammatory responses at the FMi, we developed a microfluidic organ-on-chip (OOC) device containing primary cells from the FMi (decidua, chorion, and amnion [mesenchyme and epithelium]) and collagen matrix harvested from primary tissue. The FMi-OOC is composed of four concentric circular cell/collagen chambers designed to mimic the thickness and cell density of the FMi in vivo. Each layer is connected by arrays of microchannels filled with type IV collagen to recreate the basement membrane of the amniochorion. Cellular characteristics (viability, morphology, production of nascent collagen, cellular transitions, and migration) in the OOC were similar to those seen in utero, validating the physiological relevance and utility of the developed FMi-OOC. The ascending infection model of the FMi-OOC, triggered by exposing the maternal (decidua) side of the OOC to lipopolysaccharide (LPS, 100 ng mL-1), shows that LPS propagated through the chorion, amnion mesenchyme, and reached the fetal amnion within 72 h. LPS induced time-dependent and cell-type-specific pro-inflammatory cytokine production (24 h decidua: IL-6, 48 h chorion: GM-CSF and IL-6, and 72 h amnion mesenchyme and epithelium: GM-CSF and IL-6). Collectively, this OOC model and study successfully modeled ascending infection, its propagation, and distinct inflammatory response at the FMi indicative of pathologic pathways of PTB. This OOC model provides a novel platform to study physiological and pathological cell status at the FMi, and is expected to have broad utility in the field of obstetrics.
Collapse
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| |
Collapse
|
26
|
Menon R, Shahin H. Extracellular vesicles in spontaneous preterm birth. Am J Reprod Immunol 2020; 85:e13353. [PMID: 32975858 DOI: 10.1111/aji.13353] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Feto-maternal communication helps to maintain pregnancy and contributes to parturition at term and preterm. Endocrine and immune factor are well-reported communication mediators. Recent advances in extracellular vesicle (EV) biology have introduced them as major communication channels between the mother and fetus. EVs are round structures with a lipid bilayer membrane. EVs are generally categorized based on their size and mode of biogenesis. The most commonly reported EVs are exosomes with a size range of 30-160 nm that are formed inside the intraluminal vesicles of multivesicular body. Microvesicles (MVs) are larger than > 200 nm and formed by outward budding of plasma membrane. Vesicles are released from all cells and carry various factors that reflect the physiologic state of cell at the time of their release. Analysis of vesicle provides a snapshot of origin cell. Recent studies in perinatal medicine have shown that exosomes are key communicators between feto-maternal units, and they can cross placenta. Fetal-derived exosomes released under term labor-associated conditions can cause parturition-associated changes in maternal uterine tissues. Exosomes carrying inflammatory cargo can cause preterm birth in animal models suggesting their functional role in parturition. A few reports have profiled differences between exosome cargos from term and preterm pregnancies and indicated their biomarker potential to predict high-risk pregnancy status. There are hardly any reports on MVs and their functional roles in reproduction. Herein, we review of EVs and MVs, their characteristics, function, and usefulness predicting adverse pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Hend Shahin
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
27
|
Lavu N, Richardson L, Radnaa E, Kechichian T, Urrabaz-Garza R, Sheller-Miller S, Bonney E, Menon R. Oxidative stress-induced downregulation of glycogen synthase kinase 3 beta in fetal membranes promotes cellular senescence†. Biol Reprod 2020; 101:1018-1030. [PMID: 31292604 DOI: 10.1093/biolre/ioz119] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Oxidative stress (OS)-induced stress signaler p38 mitogen-activated protein kinase (p38MAPK) activation and fetal membrane senescence are associated with parturition. This study determined changes in glycogen synthase kinase 3 beta (GSK3β) and its regulation by p38MAPK in effecting senescence to further delineate the molecular mechanism involved in senescence. METHODS Primary human amnion epithelial cells and amnion mesenchymal cells were treated with cigarette smoke extract (CSE, OS inducer). Expression of total and phosphorylated GSK3β and p38MAPK, and that of GSK3β's downstream targets: beta-catenin (β-Cat) and nuclear factor erythroid 2-related factor 2 (Nrf2) (western blot analysis), cell cycle regulation and senescence (flow cytometry) were determined. The specificity of GSK3β and p38MAPK's mechanistic role was tested by co-treating cells with their respective inhibitors, CHIR99021 and SB203580. Exosomal secretion of β-Cat from OS-induced cells was confirmed by immunofluorescence confocal microscopy and western blot. RESULTS OS induced by CSE resulted in phosphorylation of GSK3β (inactivation) and p38MAPK (activation) that was associated with cell cycle arrest and senescence. Inhibitors to GSK3β and p38MAPK verified their roles. Glycogen synthase kinase 3 beta inactivation was associated with nuclear translocation of antioxidant Nrf2 and exosomal secretion of β-Cat. CONCLUSIONS OS-induced P-p38MAPK activation is associated with functional downregulation of GSK3β and arrest of cell cycle progression and senescence of amnion cells. Lack of nuclear translocation of β-Cat and its excretion via exosomes further supports the postulation that GSK3β down-regulation by p38MAPK may stop cell proliferation preceding cell senescence. A better understanding of molecular mechanisms of senescence will help develop therapeutic strategies to prevent preterm birth.
Collapse
Affiliation(s)
- Narmada Lavu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Talar Kechichian
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Samantha Sheller-Miller
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Elizabeth Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, Vermont, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
28
|
Polettini J, da Silva MG. Telomere-Related Disorders in Fetal Membranes Associated With Birth and Adverse Pregnancy Outcomes. Front Physiol 2020; 11:561771. [PMID: 33123024 PMCID: PMC7573552 DOI: 10.3389/fphys.2020.561771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Telomere disorders have been associated with aging-related diseases, including diabetes, vascular, and neurodegenerative diseases. The main consequence of altered telomere is the induction of the state of irreversible cell cycle arrest. Though several mechanisms responsible for the activation of senescence have been identified, it is still unclear how a cell is indeed induced to become irreversibly arrested. Most tissues in the body will experience senescence throughout its lifespan, but intrinsic and extrinsic stressors, such as chemicals, pollution, oxidative stress (OS), and inflammation accelerate the process. Pregnancy is a state of OS, as the higher metabolic demand of the growing fetus results in increased reactive oxygen species production. As a temporary organ in the mother, senescence in fetal membranes and placenta is expected and linked to term parturition (>37 weeks of gestation). However, a persistent, overwhelming, or premature OS affects placental antioxidant capacity, with consequent accumulation of OS causing damage to lipids, proteins, and DNA in the placental tissues. Therefore, senescence and its main inducer, telomere length (TL) reduction, have been associated with pregnancy complications, including stillbirth, preeclampsia, intrauterine growth restriction, and prematurity. Fetal membranes have a notable role in preterm births, which continue to be a major health issue associated with increased risk of neo and perinatal adverse outcomes and/or predisposition to disease in later life; however, the ability to mediate a delay in parturition during such cases is limited, because the pathophysiology of preterm births and physiological mechanisms of term births are not yet fully elucidated. Here, we review the current knowledge regarding the regulation of telomere-related senescence mechanisms in fetal membranes, highlighting the role of inflammation, methylation, and telomerase activity. Moreover, we present the evidences of TL reduction and senescence in gestational tissues by the time of term parturition. In conclusion, we verified that telomere regulation in fetal membranes requires a more complete understanding, in order to support the development of successful effective interventions of the molecular mechanisms that triggers parturition, including telomere signals, which may vary throughout placental tissues.
Collapse
Affiliation(s)
- Jossimara Polettini
- Universidade Federal da Fronteira Sul (UFFS), Programa de Pós Graduação em Ciências Biomédicas, Faculdade de Medicina, Campus Passo Fundo, Brazil
| | - Marcia Guimarães da Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Departamento de Patologia, Botucatu, Brazil
| |
Collapse
|
29
|
Song Y, Kim Y, Ha S, Sheller-Miller S, Yoo J, Choi C, Park CH. The emerging role of exosomes as novel therapeutics: Biology, technologies, clinical applications, and the next. Am J Reprod Immunol 2020; 85:e13329. [PMID: 32846024 PMCID: PMC7900947 DOI: 10.1111/aji.13329] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
The extracellular vesicles (EVs) research area has grown rapidly because of their pivotal roles in intercellular communications and maintaining homeostasis of individual organism. As a subtype of EVs, exosomes are made via unique biogenesis pathway and exhibit disparate functional and phenotypic characteristics. Functionally, exosomes transfer biological messages from donor cell to recipient cell, which makes exosomes as a novel therapeutic platform delivering therapeutic materials to the target tissue/cell. Currently, both academia and industry try to develop exosome platform‐based therapeutics for disease management, some of which are already in clinical trials. In this review, we will discuss focusing on therapeutic values of exosomes, recent advances in therapeutic exosome platform development, and late development of exosome therapeutics in diverse therapeutic areas.
Collapse
Affiliation(s)
| | | | - Sunhyung Ha
- ILIAS Biologics Inc, Daejeon, Republic of Korea
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Chulhee Choi
- ILIAS Biologics Inc, Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
30
|
Gil A, Rueda R, Ozanne SE, van der Beek EM, van Loo-Bouwman C, Schoemaker M, Marinello V, Venema K, Stanton C, Schelkle B, Flourakis M, Edwards CA. Is there evidence for bacterial transfer via the placenta and any role in the colonization of the infant gut? - a systematic review. Crit Rev Microbiol 2020; 46:493-507. [PMID: 32776793 DOI: 10.1080/1040841x.2020.1800587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 10/23/2022]
Abstract
With the important role of the gut microbiome in health and disease, it is crucial to understand key factors that establish the microbial community, including gut colonization during infancy. It has been suggested that the first bacterial exposure is via a placental microbiome. However, despite many publications, the robustness of the evidence for the placental microbiome and transfer of bacteria from the placenta to the infant gut is unclear and hence the concept disputed. Therefore, we conducted a systematic review of the evidence for the role of the placental, amniotic fluid and cord blood microbiome in healthy mothers in the colonization of the infant gut. Most of the papers which were fully assessed considered placental tissue, but some studied amniotic fluid or cord blood. Great variability in methodology was observed especially regarding sample storage conditions, DNA/RNA extraction, and microbiome characterization. No study clearly considered transfer of the normal placental microbiome to the infant gut. Moreover, some studies in the review and others published subsequently reported little evidence for a placental microbiome in comparison to negative controls. In conclusion, current data are limited and provide no conclusive evidence that there is a normal placental microbiome which has any role in colonization of infant gut.
Collapse
Affiliation(s)
- Angel Gil
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- IBS.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto San Carlos, Madrid, Spain
| | | | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands
- Department of Pediatrics University medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Vittoria Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Koen Venema
- Center for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| | | | - Bettina Schelkle
- ILSI Europe a.i.s.b.l, Brussels, Belgium
- EUFIC, Brussels, Belgium
| | | | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
31
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
32
|
Garrido A, Cruces J, Ceprián N, Hernández-Sánchez C, De Pablo F, De la Fuente M. Social Environment Ameliorates Behavioral and Immune Impairments in Tyrosine Hydroxylase Haploinsufficient Female Mice. J Neuroimmune Pharmacol 2020; 16:548-566. [PMID: 32772235 DOI: 10.1007/s11481-020-09947-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 11/27/2022]
Abstract
The social environment can influence the functional capacity of nervous and immune systems, and consequently the state of health, especially in aged individuals. Adult female tyrosine hydroxylase haploinsufficient (TH-HZ) mice exhibit behavioral impairments, premature immunosenescence and oxidative- inflammatory stress. All these deteriorations are associated with a lower lifespan than wild type (WT) counterparts. The aim was to analyze whether the cohabitation with WT animals could revert or at least ameliorate the deterioration in the nervous and immune systems that female TH-HZ mice show at adult age. Female TH-HZ and WT mice at age of 3-4 weeks were divided into following groups: control TH-HZ (5 TH-HZ mice in the cage; TH-HZ100%), control WT (5 WT mice in the cage; WT100%), TH-HZ > 50% and WT < 50% (5 TH-HZ with 2 WT mice in each cage) as well as TH-HZ < 50% and WT > 50% (2 TH-HZ and 5 WT mice in each cage). At the age of 37-38 weeks, all mice were submitted to a battery of behavioral tests, evaluating sensorimotor abilities, exploratory capacities and anxiety-like behaviors. Subsequently, peritoneal leukocytes were extracted and several immune functions as well as oxidative and inflammatory stress parameters were analyzed. The results showed that the TH-HZ < 50% group had improved behavioral responses, especially anxiety-like behaviors, and the immunosenescence and oxidative stress of their peritoneal leukocytes were ameliorated. However, WT mice that cohabited with TH-HZ mice presented higher anxiety-like behaviors and deterioration in immune functions and in their inflammatory stress parameters. Thus, this social environment is capable of ameliorating the impairments associated with a haploinsufficiency of the th gene. Graphical Abstract.
Collapse
Affiliation(s)
- A Garrido
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain.,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - J Cruces
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain.,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - N Ceprián
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain.,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - C Hernández-Sánchez
- 3D Lab (Development, Differentiation and Degeneration), Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - F De Pablo
- 3D Lab (Development, Differentiation and Degeneration), Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain. .,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain.
| |
Collapse
|
33
|
Cervicovaginal natural antimicrobial expression in pregnancy and association with spontaneous preterm birth. Sci Rep 2020; 10:12018. [PMID: 32694552 PMCID: PMC7374562 DOI: 10.1038/s41598-020-68329-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/29/2020] [Indexed: 11/15/2022] Open
Abstract
There is much interest in the role of innate immune system proteins (antimicrobial peptides) in the inflammatory process associated with spontaneous preterm birth (sPTB). After promising pilot work, we aimed to validate the association between the antimicrobial peptides/proteins elafin and cathelicidin and sPTB. An observational cohort study of 405 women at high-risk, and 214 women at low-risk of sPTB. Protein concentrations of elafin and cathelicidin, and the enzyme human neutrophil elastase (HNE) were measured in over 1,000 cervicovaginal fluid (CVF) samples (10 to 24 weeks’ gestation). Adjusted CVF cathelicidin and HNE concentrations (but not elafin) were raised in high-risk women who developed cervical shortening and who delivered prematurely and were predictive of sPTB < 37 weeks, with an area under the curve (AUC) of 0.75 (95% CI 0.68 to 0.81) for cathelicidin concentration at 14 to 15+6 weeks. Elafin concentrations were affected by gestation, body mass index and smoking. CVF elafin in early pregnancy was modestly predictive of sPTB < 34 weeks (AUC 0.63, 0.56–0.70). Alterations in innate immune response proteins in early pregnancy are predictive of sPTB. Further investigation is warranted to understand the drivers for this, and their potential to contribute towards clinically useful prediction techniques.
Collapse
|
34
|
Konishi H, Urabe S, Teraoka Y, Morishita Y, Koh I, Sugimoto J, Sakamoto S, Miyoshi H, Miyauchi M, Takata T, Kajioka S, Kudo Y. Porphyromonas gingivalis, a cause of preterm birth in mice, induces an inflammatory response in human amnion mesenchymal cells but not epithelial cells. Placenta 2020; 99:21-26. [PMID: 32738645 DOI: 10.1016/j.placenta.2020.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Inflammation and infection, including dental infectious diseases, are factors that can induce preterm birth. We previously reported that mice with dental Porphyromonas gingivalis infection could be used as a model of preterm birth. In this model, cyclooxygenase (COX)-2 and interleukin (IL)-1β levels are increased, and P. gingivalis colonies are observed in the fetal membrane. However, the mechanism underlying fetal membrane inflammation remains unknown. Therefore, we investigated the immune responses of human amnion to P. gingivalis in vitro. METHODS Epithelial and mesenchymal cells were isolated from human amnion using trypsin and collagenase, and primary cell cultures were obtained. Confluent cells were stimulated with P. gingivalis lipopolysaccharide (P.g-LPS) or P. gingivalis. mRNA expressions of IL-1β, IL-8, IL-6 and COX-2, protein expressions of nuclear factor (NF)-κB pathway components and culture medium levels of prostaglandin E2 were evaluated. RESULTS Following stimulation with 1 μg/mL P.g-LPS, the mRNA expression levels of IL-1β, IL-8, IL-6 and COX-2 in mesenchymal cells were increased 5.9-, 3.3-, 4.2- and 3.1-fold, respectively. Similarly, the expression levels of IL-1β, IL-8, IL-6 and COX-2 in mesenchymal cells were increased by 7.6-, 8.2-, 13.4- and 9.3-fold, respectively, after coculture with P. gingivalis. Additionally, stimulation with P.g-LPS or P. gingivalis resulted in the activation of NF-κB signaling and increased production of IL-1β and prostaglandin E2. In contrast, no significant changes were observed in epithelial cells. DISCUSSION Our findings suggest that mesenchymal cells might mediate the inflammatory responses to P. gingivalis and P.g-LPS, thereby producing inflammation that contributes to the induction of preterm birth.
Collapse
Affiliation(s)
- Haruhisa Konishi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Satoshi Urabe
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yuko Teraoka
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshito Morishita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Iemasa Koh
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Shinnichi Sakamoto
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hiroshi Miyoshi
- Department of Obstetrics and Gynecology, Hiroshima Prefectural Hospital, Hiroshima, Japan.
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Tokuyama University, Yamaguchi, Japan.
| | - Shunichi Kajioka
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
35
|
Monsivais LA, Sheller-Miller S, Russell W, Saade GR, Dixon CL, Urrabaz-Garza R, Menon R. Fetal membrane extracellular vesicle profiling reveals distinct pathways induced by infection and inflammation in vitro. Am J Reprod Immunol 2020; 84:e13282. [PMID: 32506769 DOI: 10.1111/aji.13282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Fetal inflammatory signals can be propagated to maternal tissues to initiate labor via exosomes (extracellular vesicles; 30-150 nm). We tested the hypothesis that fetal membrane cells exposed to infectious and inflammatory mediators associated with preterm birth (PTB) produce exosomes with distinct protein cargo contents indicative of underlying pathobiology. METHODS OF STUDY Fetal membrane explants (FM) as well as primary amnion epithelial (AEC) and mesenchymal cells (AMC), and chorion cells (CC) from term deliveries were maintained in normal conditions (control) or exposed to LPS 100 ng/mL or TNF-α 50 ng/mL for 48 hours. Exosomes were isolated from media by differential centrifugation and size exclusion chromatography and characterized using cryo-electron microscopy (morphology), nanoparticle tracking analysis (size and quantity), Western blot (markers), and mass spectroscopy (cargo proteins). Ingenuity pathway analysis (IPA) determined pathways indicated by differentially expressed proteins. RESULTS Irrespective of source or treatment, exosomes were spherical, had similar size, quantities, and markers (ALIX, CD63, and CD81). However, exosome cargo proteins were different between FM and individual fetal membrane cell-derived exosomes in response to treatments. Several common proteins were seen; however, there are several unique proteins expressed by exosomes from different cell types in response to distinct stimuli indicative of unique pathways and physiological functions in cells. CONCLUSIONS We demonstrate collective tissue and independent cell response reflected in exosomes in response to infectious and inflammatory stimuli. These cargoes determined underlying physiology and their potential in enhancing inflammation in a paracrine fashion.
Collapse
Affiliation(s)
- Luis A Monsivais
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - William Russell
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George R Saade
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Christopher L Dixon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
36
|
Exploring Inflammatory Mediators in Fetal and Maternal Compartments During Human Parturition. Obstet Gynecol 2020; 134:765-773. [PMID: 31503157 DOI: 10.1097/aog.0000000000003470] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine inflammatory mediators in three fetomaternal biological compartments to inform theory related to the fetal and maternal inflammatory contributions to parturition at term and preterm. METHODS We conducted a cross-sectional study of amniotic fluid, cord blood, and maternal plasma from women with singleton pregnancies. Women had one of four conditions: term labor (n=11), term not in labor (n=13), spontaneous preterm birth with intact membranes (preterm birth; n=13), or preterm prelabor rupture of membranes (PROM; n=8). We measured two damage-associated molecular pattern markers (high-mobility group box-1 [HMGB1] and uric acid) and two acute phase response markers (interleukin [IL]-6 and C-reactive protein [CRP]) using enzyme-linked immunosorbent assay. The distribution of each analyte within amniotic fluid, cord blood, and maternal plasma across the four conditions (term not in labor, term labor, preterm birth, and preterm PROM) were calculated. To explore whether there were distributional differences in each analyte across each of the four labor conditions, we used a nonparametric Kruskal-Wallis test. For analytes that differed across groups, we further compared distributions by labor group (term labor vs term not in labor, and preterm PROM vs preterm birth). RESULTS Fetal compartments (amniotic fluid and cord blood) showed higher HMGB1 in term labor vs term not in labor and preterm PROM vs preterm birth. Amniotic fluid IL-6, cord blood CRP and cord blood uric acid were higher in term vs term not in labor. Cord blood uric acid was higher in preterm PROM vs preterm birth. Only maternal plasma IL-6 was higher in term labor vs term not in labor. CONCLUSION Accumulation of HMGB1 and an overall increase in inflammation observed on the fetal side, but not the maternal side, may be signals of parturition. Understanding fetal-derived proparturition inflammatory signals at term and preterm, especially in preterm PROM, might provide fetal-specific biomarkers and identify underlying mechanisms and targets for interventions to reduce the risk of preterm birth and preterm PROM.
Collapse
|
37
|
Bahrami A, Bo S, Jamialahmadi T, Sahebkar A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res Rev 2020; 58:101024. [PMID: 32006687 DOI: 10.1016/j.arr.2020.101024] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Human ageing is determined by degenerative alterations and processes with different manifestations such as gradual organ dysfunction, tissue function loss, increased population of aged (senescent) cells, incapability of maintaining homeostasis and reduced repair capacity, which collectively lead to an increased risk of diseases and death. The inhibitors of HMG-CoA reductase (statins) are the most widely used lipid-lowering agents, which can reduce cardiovascular morbidity and mortality. Accumulating evidence has documented several pleiotropic effects of statins in addition to their lipid-lowering properties. Recently, several studies have highlighted that statins may have the potential to delay the ageing process and inhibit the onset of senescence. In this review, we focused on the anti-ageing mechanisms of statin drugs and their effects on cardiovascular and non-cardiovascular diseases.
Collapse
|
38
|
Nickodem CA, Menon R, McDonald T, Taylor BD. Circulating Short-Chain Fatty Acids in Preterm Birth: A Pilot Case-Control Study. Reprod Sci 2020; 27:1181-1186. [PMID: 32046422 DOI: 10.1007/s43032-019-00126-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
Short-chain fatty acids (SCFAs) are by-products from microbial metabolism of fibers with anti-inflammatory effects. SCFAs may mitigate inflammatory conditions such as obesity through modulation of histone acetylation. Lipid metabolism and inflammation play critical roles during pregnancy. However, few studies have examined maternal SCFAs in relation to pregnancy outcomes. This pilot study examined plasma SCFAs in spontaneous preterm birth. This study used stored plasma from an existing cohort to measure seven (proponic acid, methanoic acid, butanoic acid, isovaleric acid, pentanoic acid, methylpropylbutanoic and methylbutanoic acids) SCFAs in 20 women with spontaneous preterm delivery (< 37 weeks gestation) and 30 women with a healthy term delivery (≥ 37 weeks gestation). All women had singleton pregnancies and provided serum at the time of admission to labor and delivery. SCFAs were measured by purge and trap gas chromatography/mass spectrometry. SCFAs were log transformed. Logistic regression with penalized likelihood approach examined associations between SCFAs and preterm birth, adjusting for age, BMI, and race. We also explored if SCFAs had a linear association with pre-pregnancy BMI. Propionic acid had a negative association with preterm birth [odds ratioadj: 0.56, 95% confidence interval 0.41-0.86). There was a negative association between propionic acid and BMI after adjustments (β = -0.14, p = 0.0011). No other associations were found. Lower levels of propionic acid were associated with preterm birth and correlated with higher BMI. Larger studies should explore if circulatory SCFAs protect against inflammatory pathways during pregnancy and are associated with adverse outcomes when measured earlier in pregnancy.
Collapse
Affiliation(s)
- Colette A Nickodem
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, 400 Bizzell St, College Station, TX, 77843, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Perinatal Research Division, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Thomas McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, 400 Bizzell St, College Station, TX, 77843, USA
| | - Brandie DePaoli Taylor
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, 400 Bizzell St, College Station, TX, 77843, USA. .,Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1801 N Broad St, Philadelphia, PA, 19122, USA.
| |
Collapse
|
39
|
Lavu N, Sheller-Miller S, Kechichian T, Cayenne S, Bonney EA, Menon R. Changes in mediators of pro-cell growth, senescence, and inflammation during murine gestation. Am J Reprod Immunol 2020; 83:e13214. [PMID: 31814178 DOI: 10.1111/aji.13214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Senescence of the fetal membranes and senescence-associated inflammation have been associated with parturition at term and pre-term in both mice and humans. Using a pregnant mouse model, we determined changes in multiple molecular signalers contributing to senescence and inflammation associated with parturition. METHOD OF STUDY Fetal membranes were collected from timed-pregnant CD-1 mice on gestation days (E) 13, 15, 17, 18, and 19. Immunohistochemistry (IHC) localized pro-cell growth factors glycogen synthase kinase 3β (GSK3β) and β-catenin. Gestational age-associated changes in pro-cell growth vs senescence mediators (p38 mitogen-activated protein kinase [p38MAPK]), prooxidants (heme oxygenase-1 [HO-1], peroxisome proliferator-activated receptor γ [PPARγ]), and pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, and IL-1β) were determined by Western blots and Luminex assays. RESULTS Fetal membrane expressions of phosphorylated forms of GSK3β (inactivation) and p38MAPK (activation) increased, while β-catenin expression decreased, as gestation progressed. Antioxidant HO-1 expression decreased while PPARγ increased toward term gestation. IL-6 and IL-8 concentrations were highest on E19 (day of delivery), while IL-10 and IL-1β concentrations were highest on E15. CONCLUSION Mouse fetal membranes showed a progressive senescence marker increase coincided with downregulation of cell growth factors. Development of senescence is associated with inflammation. Senescence-associated changes are natural and physiologic and indicative of fetal membranes' readiness for parturition.
Collapse
Affiliation(s)
- Narmada Lavu
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Elizabeth A Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, VT, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
40
|
Menon R, Moore JJ. Fetal Membranes, Not a Mere Appendage of the Placenta, but a Critical Part of the Fetal-Maternal Interface Controlling Parturition. Obstet Gynecol Clin North Am 2019; 47:147-162. [PMID: 32008665 DOI: 10.1016/j.ogc.2019.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fetal membranes (FMs) play a role in pregnancy maintenance and promoting parturition at term. The FMs are not just part of the placenta, structurally or functionally. Although attached to the placenta, the amnion has a separate embryologic origin, and the chorion deviates from the placenta by the first month of pregnancy. Other than immune protection, these FM functions are not those of the placenta. FM dysfunction is associated with and may cause adverse pregnancy outcomes. Ongoing research may identify biomarkers for pending preterm premature rupture of the FMs as well as therapeutic agents, to prevent it and resulting preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Perinatal Research Division, The University of Texas Medical Branch, MRB 11.138, 301 University Boulevard, Galveston, TX 77555, USA
| | - John J Moore
- Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
41
|
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019; 299:125124. [PMID: 31288163 DOI: 10.1016/j.foodchem.2019.125124] [Citation(s) in RCA: 680] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Inflammation plays a key role in diseases such as diabetes, asthma, cardiovascular diseases and cancer. Diet can influence different stages of inflammation and can have an important impact on several inflammatory diseases. Increasing scientific evidence has shown that polyphenolic compounds, such as flavonoids, which are found in fruits, vegetables, legumes, or cocoa, can have anti-inflammatory properties. Recent studies have demonstrated that flavonoids can inhibit regulatory enzymes or transcription factors important for controlling mediators involved in inflammation. Flavonoids are also known as potent antioxidants with the potential to attenuate tissue damage or fibrosis. Consequently, numerous studies in vitro and in animal models have found that flavonoids have the potential to inhibit the onset and development of inflammatory diseases. In the present review, we focused in flavonoids, the most abundant polyphenols in the diet, to give an overview of the most recent scientific knowledge about their impact on different inflammatory diseases.
Collapse
Affiliation(s)
- Soheila J Maleki
- U.S. Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Jesus F Crespo
- Servicio de Alergia, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Beatriz Cabanillas
- Servicio de Alergia, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; Department of Dermatology and Allergy, University of Bonn Medical Center, Sigmund- Freud-Str., 25, 53127 Bonn, Germany.
| |
Collapse
|
42
|
Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet Gynecol Sci 2019; 62:199-211. [PMID: 31338337 PMCID: PMC6629986 DOI: 10.5468/ogs.2019.62.4.199] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
A better understanding of the underlying mechanisms by which signals from the fetus initiate human parturition is required. Our recent findings support the core hypothesis that oxidative stress (OS) and cellular senescence of the fetal membranes (amnion and chorion) trigger human parturition. Fetal membrane cell senescence at term is a natural physiological response to OS that occurs as a result of increased metabolic demands by the maturing fetus. Fetal membrane senescence is affected by the activation of the p38 mitogen activated kinase-mediated pathway. Similarly, various risk factors of preterm labor and premature rupture of the membranes also cause OS-induced senescence. Data suggest that fetal cell senescence causes inflammatory senescence-associated secretory phenotype (SASP) release. Besides SASP, high mobility group box 1 and cell-free fetal telomere fragments translocate from the nucleus to the cytosol in senescent cells, where they represent damage-associated molecular pattern markers (DAMPs). In fetal membranes, both SASPs and DAMPs augment fetal cell senescence and an associated ‘sterile’ inflammatory reaction. In senescent cells, DAMPs are encapsulated in extracellular vesicles, specifically exosomes, which are 30–150 nm particles, and propagated to distant sites. Exosomes traffic from the fetus to the maternal side and cause labor-associated inflammatory changes in maternal uterine tissues. Thus, fetal membrane senescence and the inflammation generated from this process functions as a paracrine signaling system during parturition. A better understanding of the premature activation of these signals can provide insights into the mechanisms by which fetal signals initiate preterm parturition.
Collapse
|
43
|
Manuel CR, Latuga MS, Ashby CR, Reznik SE. Immune tolerance attenuates gut dysbiosis, dysregulated uterine gene expression and high-fat diet potentiated preterm birth in mice. Am J Obstet Gynecol 2019; 220:596.e1-596.e28. [PMID: 30790568 DOI: 10.1016/j.ajog.2019.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Preterm delivery accounts for 85% of perinatal morbidity and mortality. Although the consumption of a high-fat diet leads to exaggerated proinflammatory responses and, in pregnant women, increased rates of spontaneous preterm birth, the underlying mechanisms remain unclear. OBJECTIVE We sought to elucidate the mechanisms by which maternal consumption of a high-fat diet leads to a dysregulated immune response and, subsequently, spontaneous preterm birth. STUDY DESIGN We performed 16S ribosomal RNA sequencing of DNA extracted and amplified from stool samples and compared the gut microbiomes of lipopolysaccharide-induced pregnant mice that were maintained on a high-fat diet compared to a normal control diet. Next, we sequenced the uterine transcriptomes of the mice. To test the effect of dampening of the immune response on the microbiome, transcriptome, and risk of spontaneous preterm birth, we induced immune tolerance with repetitive subclinical doses (0.2 mg/kg/week for 8 weeks) of endotoxin and performed 16S ribosomal RNA and uterine transcriptome sequencing on these immunotolerized mice. RESULTS High-fat diet potentiates lipopolysaccharide-induced preterm birth by affecting the maternal gut microbiome and uterine transcriptome and reduces antioxidant capacity in a murine model. High-fat diet consumption also increases the colonization of the gut by 5 immunogenic bacteria and decreases colonization by Lachnospiraceae_NK4A136_group. Uteri from high-fat diet mice had increased expression of genes that stimulate the inflammatory-oxidative stress axis, autophagy/apoptosis, and smooth muscle contraction. Repetitive endotoxin priming protects high-fat diet dams from spontaneous preterm birth, increases colonization of the gut by Lachnospiraceae_NK4A136_group, decreases levels of immunogenic bacteria in the gut microbiome, and reduces the number of dysregulated genes after high-fat diet consumption from 994 to 74. CONCLUSION High-fat diet-potentiated spontaneous preterm birth is mediated by increased inflammation, oxidative stress, and gut dysbiosis. The induction of immune tolerance via endotoxin priming reverses these effects and protects high-fat diet dams from spontaneous preterm birth. Based on this work, the role of immunomodulation as a novel therapeutic approach to prevent preterm birth among women who consume high-fat diets should be explored.
Collapse
|
44
|
Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019; 24:molecules24071323. [PMID: 30987256 PMCID: PMC6480387 DOI: 10.3390/molecules24071323] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin (Lf), a cationic glycoprotein able to chelate two ferric irons per molecule, is synthesized by exocrine glands and neutrophils. Since the first anti-microbial function attributed to Lf, several activities have been discovered, including the relevant anti-inflammatory one, especially associated to the down-regulation of pro-inflammatory cytokines, as IL-6. As high levels of IL-6 are involved in iron homeostasis disorders, Lf is emerging as a potent regulator of iron and inflammatory homeostasis. Here, the role of Lf against aseptic and septic inflammation has been reviewed. In particular, in the context of aseptic inflammation, as anemia of inflammation, preterm delivery, Alzheimer’s disease and type 2 diabetes, Lf administration reduces local and/or systemic inflammation. Moreover, Lf oral administration, by decreasing serum IL-6, reverts iron homeostasis disorders. Regarding septic inflammation occurring in Chlamydia trachomatis infection, cystic fibrosis and inflammatory bowel disease, Lf, besides the anti-inflammatory activity, exerts a significant activity against bacterial adhesion, invasion and colonization. Lastly, a critical analysis of literature in vitro data reporting contradictory results on the Lf role in inflammatory processes, ranging from pro- to anti-inflammatory activity, highlighted that they depend on cell models, cell metabolic status, stimulatory or infecting agents as well as on Lf iron saturation degree, integrity and purity.
Collapse
Affiliation(s)
- Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|
45
|
D'Angelo G, Granese R, Marseglia L, Impellizzeri P, Alibrandi A, Palmara A, La Rosa MA, Manti S, Salpietro C, Spina E, Reiter RJ, Falsaperla R, Corsello G, Gitto E. High mobility group box 1 and markers of oxidative stress in human cord blood. Pediatr Int 2019; 61:264-270. [PMID: 30715770 DOI: 10.1111/ped.13795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Parturition induces considerable oxidative stress and many inflammatory mediators, such as high mobility group box 1 (HMGB1), are involved from the beginning of the pregnancy to birth. The aim of the present study was to evaluate serum cord blood concentration of diacron-reactive oxygen metabolites (d-ROM), biological antioxidant potential (BAP), and HMGB1 to investigate the perinatal oxidative status of neonates and correlation with mode of delivery, as well as the influence of labor. METHODS The subjects consisted of 214 neonates delivered at University Hospital "G. Martino", Messina, in a 6 months period. Venous blood samples were collected from the umbilical cord after cord separation. RESULTS Umbilical cord venous blood HMGB1 was significantly higher in the spontaneous vaginal delivery (SVD) group than in the elective or emergency cesarean section (CS) group (P = 0.018). Regarding labor, there was no significant difference in HMGB1 concentration in umbilical vein blood between the spontaneous and induced labor groups (P = 0.250). Furthermore, d-ROM was significantly different between the SVD group and the elective or emergency CS group (P = 0.044). BAP concentration, however, was not significantly different, not even with regard to mode of labor. CONCLUSION Oxidation is higher in newborns delivered by SVD than in those delivered by CS, and HMGB1 may be involved in the mechanisms of birth, and responsible for decidual modifications that lead to birth.
Collapse
Affiliation(s)
- Gabriella D'Angelo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Neonatal Intensive Care Unit, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Roberta Granese
- Obstetrics and Gynecology Unit, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Lucia Marseglia
- Neonatal Intensive Care Unit, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Pietro Impellizzeri
- Unit of Paediatric Surgery, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economical, Business and Environmental Sciences and Quantitative Methods, University of Messina, Messina, Italy
| | - Antonella Palmara
- Neonatal Intensive Care Unit, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Maria Angela La Rosa
- Unit of Paediatric Genetics and Immunology, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Sara Manti
- Unit of Paediatric Genetics and Immunology, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Carmelo Salpietro
- Unit of Paediatric Genetics and Immunology, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Raffaele Falsaperla
- General Pediatrics and Pediatric Acute and Emergency Unit, Policlinico-Vittorio-Emanuele University Hospital, University of Catania, Catania, Italy
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Eloisa Gitto
- Neonatal Intensive Care Unit, Gaetano Barresi Department of Human Pathology in Adult and Developmental Age, University of Messina, Messina, Italy
| |
Collapse
|
46
|
Garrido A, Cruces J, Ceprián N, Vara E, de la Fuente M. Oxidative-Inflammatory Stress in Immune Cells from Adult Mice with Premature Aging. Int J Mol Sci 2019; 20:ijms20030769. [PMID: 30759732 PMCID: PMC6387005 DOI: 10.3390/ijms20030769] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
Oxidative and inflammatory stresses are closely related processes, which contribute to age-associated impairments that affect the regulatory systems such as the immune system and its immunosenescence. Therefore, the aim of this work was to confirm whether an oxidative/inflammatory stress occurs in immune cells from adult mice with premature aging, similar to that shown in leukocytes from chronologically old animals, and if this results in immunosenescence. Several oxidants/antioxidants and inflammatory/anti-inflammatory cytokines were analyzed in peritoneal leukocytes from adult female CD1 mice in two models of premature aging—(a) prematurely aging mice (PAM) and (b) mice with the deletion of a single allele (hemi-zygotic: HZ) of the tyrosine hydroxylase (th) gene (TH-HZ), together with cells from chronologically old animals. Several immune function parameters were also studied in peritoneal phagocytes and lymphocytes. The same oxidants and antioxidants were also analyzed in spleen and thymus leukocytes. The results showed that the immune cells of PAM and TH-HZ mice presented lower values of antioxidant defenses and higher values of oxidants/pro-inflammatory cytokines than cells from corresponding controls, and similar to those in cells from old animals. Moreover, premature immunosenescence in peritoneal leukocytes from both PAM and TH-HZ mice was also observed. In conclusion, adult PAM and TH-HZ mice showed oxidative stress in their immune cells, which would explain their immunosenescence.
Collapse
Affiliation(s)
- Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| | - Julia Cruces
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| | - Noemí Ceprián
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Mónica de la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| |
Collapse
|
47
|
Richardson L, Dixon CL, Aguilera-Aguirre L, Menon R. Oxidative stress-induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells. Biol Reprod 2018; 99:1100-1112. [PMID: 29893818 PMCID: PMC7190655 DOI: 10.1093/biolre/ioy135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Term and preterm parturition are associated with oxidative stress (OS)-induced p38 mitogen-activated protein kinase (p38MAPK)-mediated fetal tissue (amniochorion) senescence. p38MAPK activation is a complex cell- and stimulant-dependent process. Two independent pathways of OS-induced p38MAPK activation were investigated in amnion epithelial cells (AECs) in response to cigarette smoke extract (CSE: a validated OS inducer in fetal cells): (1) the OS-mediated oxidation of apoptosis signal-regulating kinase (ASK)-1 bound Thioredoxin (Trx[SH]2) dissociates this complex, creating free and activated ASK1-signalosome and (2) transforming growth factor-mediated activation of (TGF)-beta-activated kinase (TAK)1 and TGF-beta-activated kinase 1-binding protein (TAB)1. AECs isolated from normal term, not-in-labor fetal membranes increased p38MAPK in response to CSE and downregulated it in response to antioxidant N-acetylcysteine. In AECs, both Trx and ASK1 were localized; however, they remained dissociated and not complexed, regardless of conditions. Silencing either ASK1 or its downstream effectors (MKK3/6) did not affect OS-induced p38MAPK activation. Conversely, OS increased TGF-beta's release from AECs and increased phosphorylation of both p38MAPK and TAB1. Silencing of TAB1, but not TAK1, prevented p38MAPK activation, which is indicative of TAB1-mediated autophosphorylation of p38MAPK, an activation mechanism seldom seen. OS-induced p38MAPK activation in AECs is ASK1-Trx signalosome-independent and is mediated by the TGF-beta pathway. This knowledge will help to design strategies to reduce p38MAPK activation-associated pregnancy risks.
Collapse
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Tx, 77550
| | - Christopher Luke Dixon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
48
|
Staude B, Oehmke F, Lauer T, Behnke J, Göpel W, Schloter M, Schulz H, Krauss-Etschmann S, Ehrhardt H. The Microbiome and Preterm Birth: A Change in Paradigm with Profound Implications for Pathophysiologic Concepts and Novel Therapeutic Strategies. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7218187. [PMID: 30370305 PMCID: PMC6189679 DOI: 10.1155/2018/7218187] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Preterm birth poses a global challenge with a continuously increasing disease burden during the last decades. Advances in understanding the etiopathogenesis did not lead to a reduction of prematurely born infants so far. A balanced development of the host microbiome in early life is key for the maturation of the immune system and many other physiological functions. With the tremendous progress in new diagnostic possibilities, the contribution of microbiota changes to preterm birth and the acute and long-term sequelae of prematurity have come into the research focus. This review summarizes the latest advances in the understanding of microbiomes in the amniotic cavity and the female lower genital tract and how changes in microbiota structures contribute to preterm delivery. The exhibition of these highly vulnerable infants to the hostile environment in the neonatal intensive care unit necessarily entails the rapid colonization with a nonbalanced microbiome in a situation where the organism is still very prone and at an early stage of development. The global research efforts to decipher pathologic changes will pave the way to new pre- and postnatal therapeutic concepts.
Collapse
Affiliation(s)
- Birte Staude
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Frank Oehmke
- Department of Gynecology and Obstetrics, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Tina Lauer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Wolfgang Göpel
- Department of General Pediatrics, University Clinic of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, D-81377 Munich, Germany
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany, Member of the German Center for Lung Research (DZL), Germany
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| |
Collapse
|
49
|
Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Ageing Res Rev 2018; 46:42-59. [PMID: 29803716 DOI: 10.1016/j.arr.2018.05.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022]
Abstract
Growing evidence suggests chronic low-grade inflammation (LGI) as a possible mechanism underlying the aging process. Some biological and pharmaceutical compounds may reduce systemic inflammation and potentially avert functional decline occurring with aging. The aim of the present meta-analysis was to examine the association of pre-selected interventions on two established biomarkers of inflammation, interleukin-6 (IL-6), and C-reactive protein (CRP) in middle-age and older adults with chronic LGI. We reviewed the literature on potential anti-inflammatory compounds, selecting them based on safety, tolerability, acceptability, innovation, affordability, and evidence from randomized controlled trials. Six compounds met all five inclusion criteria for our systematic review and meta-analysis: angiotensin II receptor blockers (ARBs), metformin, omega-3, probiotics, resveratrol and vitamin D. We searched in MEDLINE, PubMed and EMBASE database until January 2017. A total of 49 articles fulfilled the selection criteria. Effect size of each study and pooled effect size for each compound were measured by the standardized mean difference. I2 was computed to measure heterogeneity of effects across studies. The following compounds showed a significant small to large effect in reducing IL-6 levels: probiotics (-0.68 pg/ml), ARBs (-0.37 pg/ml) and omega-3 (-0.19 pg/ml). For CRP, a significant small to medium effect was observed with probiotics (-0.43 mg/L), ARBs (-0.2 mg/L), omega-3 (-0.17 mg/L) and metformin (-0.16 mg/L). Resveratrol and vitamin D were not associated with any significant reductions in either biomarker. These results suggest that nutritional and pharmaceutical compounds can significantly reduce established biomarkers of systemic inflammation in middle-age and older adults. The findings should be interpreted with caution, however, due to the evidence of heterogeneity across the studies.
Collapse
|
50
|
Varrey A, Romero R, Panaitescu B, Miller D, Chaiworapongsa T, Patwardhan M, Faro J, Pacora P, Hassan SS, Hsu CD, Gomez-Lopez N. Human β-defensin-1: A natural antimicrobial peptide present in amniotic fluid that is increased in spontaneous preterm labor with intra-amniotic infection. Am J Reprod Immunol 2018; 80:e13031. [PMID: 30101464 DOI: 10.1111/aji.13031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Human β-defensins (HBDs) are antimicrobial peptides that participate in the soluble innate immune mechanisms against infection. Herein, we determined whether HBD-1 was present in amniotic fluid during normal pregnancy and whether its concentrations change with intra-amniotic inflammation and/or infection. METHOD OF STUDY Amniotic fluid was collected from 219 women in the following groups: (a) midtrimester who delivered at term (n = 35); (b) term with (n = 33) or without (n = 17) labor; (c) preterm labor with intact membranes who delivered at term (n = 29) or who delivered preterm with (n = 19) and without (n = 29) intra-amniotic inflammation and infection or with intra-amniotic inflammation but without infection (n = 21); and (d) preterm prelabor rupture of membranes (pPROM) with (n = 19) and without (n = 17) intra-amniotic inflammation/infection. Amniotic fluid HBD-1 concentrations were determined using a sensitive and specific ELISA kit. RESULTS (a) HBD-1 was detectable in all amniotic fluid samples; (b) amniotic fluid concentrations of HBD-1 were changed with gestational age (midtrimester vs term no labor), being higher in midtrimester; (c) amniotic fluid concentrations of HBD-1 were similar between women with and without spontaneous labor at term; (d) among patients with spontaneous preterm labor, amniotic fluid concentrations of HBD-1 in women with intra-amniotic inflammation/infection and in those with intra-amniotic inflammation without infection were greater than in women without intra-amniotic inflammation or infection who delivered preterm or at term; and (e) the presence of intra-amniotic inflammation and infection in patients with pPROM did not change amniotic fluid concentrations of HBD-1. CONCLUSION HBD-1 is a physiological constituent of amniotic fluid that is increased in midtrimester during normal pregnancy and in the presence of culturable microorganisms in the amniotic cavity. These findings provide insight into the soluble host defense mechanisms against intra-amniotic infection.
Collapse
Affiliation(s)
- Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Manasi Patwardhan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jonathan Faro
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|