1
|
Guimarães JG, de Campos GY, Machado MP, Oliveira Brito PKM, dos Reis TF, Goldman GH, Bonini Palma PV, de Campos Fraga-Silva TF, Cavallin DCU, Venturini J, da Silva TA. A novel mannan-specific chimeric antigen receptor M-CAR redirects T cells to interact with Candida spp. hyphae and Rhizopus oryzae spores. Bioengineered 2025; 16:2458786. [PMID: 39891522 PMCID: PMC11792852 DOI: 10.1080/21655979.2025.2458786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 08/28/2024] [Indexed: 02/03/2025] Open
Abstract
Invasive fungal infections (IFIs) are responsible for elevated rates of morbidity and mortality, causing around of 1.5 million deaths annually worldwide. One of the main causative agents of IFIs is Candida albicans, and non-albicans Candida species have emerged as a spreading global public health concernment. Furthermore, COVID-19 has contributed to a boost in the incidence of IFIs, such as mucormycosis, in which Rhizopus oryzae is the most prevalent causative agent. The effector host immune response against IFIs depends on the activity of T cells, which are susceptible to the regulatory effects triggered by fungal virulence factors. The fungal cell wall plays a crucial role as a virulence factor, and its remodeling compromises the development of a specific T-cell response. The redirection of Jurkat T cells to target Candida spp. by recognizing targets expressed on the fungal cell wall can be facilitated using chimeric antigen receptor (CAR) technology. This study generated an M-CAR that contains an scFv with specificity to α-1,6 mannose backbone of fungal mannan, and the expression of M-CAR on the surface of modified Jurkat cells triggered a strong activation against Candida albicans (hyphae form), Candida tropicalis (hyphae form), Candida parapsilosis (pseudohyphal form), and Candida glabrata (yeast form). Moreover, M-CAR Jurkat cells recognized Rhizopus oryzae spores, which induced high expression of cell activation markers. Thus, a novel Mannan-specific CAR enabled strong signal transduction in modified Jurkat cells in the presence of Candida spp. or R. oryzae.
Collapse
Affiliation(s)
- Júlia Garcia Guimarães
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara, Sao Paulo State University, São Paulo, Brazil
| | - Gabriela Yamazaki de Campos
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Michele Procópio Machado
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Patricia Vianna Bonini Palma
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | - James Venturini
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Thiago Aparecido da Silva
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara, Sao Paulo State University, São Paulo, Brazil
| |
Collapse
|
2
|
Zheng L, Dong Y, Wang J, Zhang M, Xu Y, Ma L, Guo L. Uncovering the connection between tunicamycin-induced respiratory deficiency and reduced fluconazole tolerance in Candida glabrata. Front Microbiol 2025; 16:1528341. [PMID: 40356653 PMCID: PMC12066676 DOI: 10.3389/fmicb.2025.1528341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Candida glabrata is a prevalent opportunistic fungal pathogen in humans, and fluconazole (FLC) is one of the most commonly used antifungal agents. However, the molecular mechanisms underlying FLC tolerance in C. glabrata remain largely unexplored. Objective This study aims to identify novel mechanisms regulating FLC tolerance, with a particular focus on tunicamycin (TUN)-induced respiratory deficiency. Methods We employed three distinct experimental approaches to investigate the impact of TUN on FLC tolerance: (1) co-treatment with TUN and FLC, (2) exclusive exposure to TUN, and (3) induction of petite formation through alternative methods. Additionally, gene expression analyses were conducted to evaluate the regulation of key genes involved in the ergosterol biosynthesis pathway. Results Our findings reveal that TUN exposure significantly abolishes FLC tolerance in C. glabrata, primarily through the induction of petite formation, which is characterized by mitochondrial dysfunction. Notably, TUN treatment resulted in the downregulation of critical ergosterol biosynthesis genes, including ERG1 and ERG11, indicating a metabolic shift in response to endoplasmic reticulum (ER) stress. Furthermore, both TUN-induced and ethidium bromide-induced petites displayed cross-resistance to TUN and FLC but showed reduced tolerance to FLC. Conclusion These results underscore the pivotal role of TUN-induced ER stress in modulating FLC tolerance via respiratory deficiency and alterations in ergosterol metabolism. Our study emphasizes the importance of mitochondrial integrity in maintaining drug tolerance in C. glabrata and suggests potential therapeutic strategies targeting metabolic pathways associated with antifungal tolerance. A deeper understanding of these mechanisms may enhance our capacity to effectively combat fungal infections.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubo Dong
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Jing Wang
- Department of Pharmacy, Zibo Zhoucun People’s Hospital, Zibo, China
| | - Maoji Zhang
- Jinzhou Medical University Graduate Training Base (The 960th Hospital of PLA), Jinan, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Linfeng Ma
- Jinzhou Medical University Graduate Training Base (The 960th Hospital of PLA), Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Ahamad I, Fatma T. Investigation of antifungal and antibiofilm activities of green synthesized silver nanoparticles against Candida glabrata. Biometals 2025:10.1007/s10534-025-00680-y. [PMID: 40186085 DOI: 10.1007/s10534-025-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Candida glabrata is an important human fungal pathogen known to cause life-threatening infections in people with impaired immune systems. In the mouth cavities, trachea, and catheters, Candida glabrata biofilm grows unhindered and is the primary etiological factor in the pathophysiology of candidiasis, in the worst cases, this leads to systemic infections. Therefore, developing novel biofilm preventative and therapeutic agents is urgently required. Here, in the present study, an effort was made to monitor the function of silver nanoparticles (AgNPs) generated from a cyanobacterium (Anabaena variabilis) as a novel antibiofilm agent focusing on candidiasis. Anabaena variabilis cell extract was used to synthesize AgNPs, characterized by UV-visible spectroscopy. The minimum inhibitory concentration (MIC) of AgNPs was observed at 25 µg/mL in Candida glabrata. At the concentration of 2MIC of AgNPs (50 µg/mL), 67 ± 0.84% membrane permeability was noticed at the same concentration the viable cells were found at only 2.8 ± 2.0%; while in the early phase of apoptosis, were found at 15.5 ± 1.5%; and in the late phase of apoptosis, were found at 81.8 ± 4.2%, thus confirming the cell's death. Additionally, a cell-cycle study also declared the halted cycle in the S phase by increasing the number of cells. The growth inhibition assay shows that the test organism's growth steadily decreased in comparison to the control with increasing AgNPs concentrations. Additionally, in the scanning electron microscopic pictures of Candida glabrata treated with AgNPs, which exhibited deep wrinkles and deformity, confirming the cells death. At the concentrations of 2MIC of AgNPs (50 µg/mL) showed 72 ± 0.86% of biofilm inhibition and 80 ± 1.3% degradation during the biofilm study. In conclusion, all results demonstrate that AgNPs have great antifungal potential; therefore, AgNPs could be used to control biofilm produced by emerging multidrug-resistant Candida glabrata.
Collapse
Affiliation(s)
- Irshad Ahamad
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
- Brown Cancer Center, School of Medicine, University of Louisville, Kentucky, 40202, USA.
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Krishnan D, Aruna Senthil Kumar S, Jothipandiyan S, Yamuna Devi V, Suresh D, Nithyanand P. Exploring quinazoline-derived copper(I) complex coated intravaginal ring against vulvovaginal candidiasis causing Candida species. BIOFOULING 2025; 41:378-393. [PMID: 40265509 DOI: 10.1080/08927014.2025.2489479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025]
Abstract
Vulvovaginal candidiasis (VVC) is especially prevalent among intrauterine device (IUD) and intravaginal ring (IVR) users. Candida albicans is the leading causative agent of VVC followed by Candida glabrata. Ascribed to the increased drug resistance by Candida spp. to the currently available drugs, this study has focused on the novel quinazoline-derived copper(I) complexes as anti-candida agents. As a novel approach, a vaginal ring was coated with the best quinazoline-derived copper(I) complex, and biofilm disruption ability was evaluated. The coated vaginal ring eradicated 70% of preformed biofilms and also inhibited the hyphal transition of Candida albicans in a simulated vaginal fluid (SVF). The overall study validates the anti-biofilm and anti-virulent properties of the metal complex-coated vaginal ring using various microscopic studies.
Collapse
Affiliation(s)
- Dhesiga Krishnan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Sudaarsan Aruna Senthil Kumar
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Venkatesan Yamuna Devi
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Devarajan Suresh
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
5
|
Angela T, Wahyuni S, Halim S. The effect of soaking heat-polymerized acrylic resin denture base in avocado seed extract ( Persea americana Mill.) on the inhibition of denture-plaque microorganisms biofilm growth. F1000Res 2025; 13:933. [PMID: 39925995 PMCID: PMC11806257 DOI: 10.12688/f1000research.152800.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 02/11/2025] Open
Abstract
Background Heat polymerized acrylic (HPA) resins are known to have high porosity that contributes to increased surface roughness and microcrack formation in stress areas. This facilitates the attachment and growth of polymicrobial biofilms contributing to increased antimicrobial resistance. This research aims to study avocado seeds effect on denture-plaque microorganism mono-species and polymicrobial biofilm on HPA resin. Methods This study uses 144 samples (n=144), namely HPA resin discs covered with mono-species and polymicrobial biofilms. The discs are soaked for 8 hours in the 5%, 10%, 15%, 20% avocado seed extract, positive control (alkaline peroxide), and negative control (aquadest). Each disc is shaken with a vortex mixer for 1 minute, and 100 μL is added into 96-well microplates with three times repetition and incubated for 24 hours. A microtiter plate biofilm formation assay is then conducted. The inhibition values are determined from the percentage inhibition value formula which requires absorption values from a microplate reader (595 nm). The research data are analyzed using a univariant test, and a one-way ANOVA test, accompanied by Welch ANOVA on non-homogenous data. Results In this research, it is found that the MBIC 50 of avocado seed extract against the mono-species of C. albicans (5%), C. glabrata (5%), A. odontolyticus (15%), S. gordonii (15%), S. aureus (10%), while against polymicrobial was 20%. There is a significant effect of soaking HPA resin in avocado seed extract on the inhibition of mono-species and polymicrobial biofilms with a value of p<0.001 (p<0.05). Conclusion The MBIC 50 of avocado seed extract in polymicrobial biofilm group is higher than that in the mono-species biofilm groups. Hence, 20% avocado seed extract is concluded as the effective concentration to inhibit denture-plaque microorganism biofilm.
Collapse
Affiliation(s)
- Thalia Angela
- Dental Undergraduate Study Program, Faculty of Dentistry, University of Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Siti Wahyuni
- Department of Prosthodontics, University of Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Susanna Halim
- Faculty of Medicine, Dentistry and Health Sciences, Prima Indonesia University, Medan, North Sumatra, Indonesia
| |
Collapse
|
6
|
Lew-Smith J, Binkley J, Sherlock G. The Candida Genome Database: annotation and visualization updates. Genetics 2025; 229:iyaf001. [PMID: 39776186 DOI: 10.1093/genetics/iyaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The Candida Genome Database (CGD; www.candidagenome.org) is unique in being both a model organism database and a fungal pathogen database. As a fungal pathogen database, CGD hosts locus pages for 5 species of the best-studied pathogenic fungi in the Candida group. As a model organism database, the species Candida albicans serves as a model both for other Candida spp. and for non-Candida fungi that form biofilms and undergo routine morphogenic switching from the planktonic form to the filamentous form, which is not done by other model yeasts. As pathogenic Candida species have become increasingly drug resistant, the high lethality of invasive candidiasis in immunocompromised people is increasingly alarming. There is a pressing need for additional research into basic Candida biology, epidemiology and phylogeny, and potential new antifungals. CGD serves the needs of this diverse research community by curating the entire gene-based Candida experimental literature as it is published, extracting, organizing, and standardizing gene annotations. Gene pages were added for the species Candida auris, recent outbreaks of which have been labeled an "urgent" threat. Most recently, we have begun linking clinical data on disease to relevant Literature Topics to improve searchability for clinical researchers. Because CGD curates for multiple species and most research focuses on aspects related to pathogenicity, we focus our curation efforts on assigning Literature Topic tags, collecting detailed mutant phenotype data, and assigning controlled Gene Ontology terms with accompanying evidence codes. Our Summary pages for each feature include the primary name and all aliases for that locus, a description of the gene and/or gene product, detailed ortholog information with links, a JBrowse window with a visual view of the gene on its chromosome, summarized phenotype, Gene Ontology, and sequence information, references cited on the summary page itself, and any locus notes. The database serves as a community hub, where we link to various types of reference material of relevance to Candida researchers, including colleague information, news, and notice of upcoming meetings. We routinely survey the community to learn how the field is evolving and how needs may have changed. For example, we asked our users which species we should next add to CGD, and the clear answer was Candida tropicalis. A key future challenge is management of the flood of high-throughput expression data to make it as useful as possible to as many researchers as possible. The central challenge for any community database is to turn data into knowledge, which the community can access, use, and build upon.
Collapse
Affiliation(s)
- Jodi Lew-Smith
- Department of Genetics, Stanford University, Stanford CA 94305-5120, USA
| | - Jonathan Binkley
- Department of Genetics, Stanford University, Stanford CA 94305-5120, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford CA 94305-5120, USA
| |
Collapse
|
7
|
Wei K, Arlotto M, Overhulse JM, Dinh T, Zhou Y, Dupper NJ, Yang J, Kashemirov BA, Dawi H, Garnaud C, Bourgine G, Mietton F, Champleboux M, Larabi A, Hayat Y, Indorato R, Noirclerc‐Savoye M, Skoufias D, Cornet M, Rabut G, McKenna CE, Petosa C, Govin J. Humanized Candida and NanoBiT Assays Expedite Discovery of Bdf1 Bromodomain Inhibitors With Antifungal Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404260. [PMID: 39821709 PMCID: PMC11904993 DOI: 10.1002/advs.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Indexed: 01/19/2025]
Abstract
The fungal Bromodomain and Extra-Terminal (BET) protein Bdf1 is a potential antifungal target against invasive fungal infections. However, the need to selectively inhibit both Bdf1 bromodomains (BDs) over human orthologs and the lack of molecular tools to assess on-target antifungal efficacy hamper efforts to develop Bdf1 BD inhibitors as antifungal therapeutics. This study reports a phenyltriazine compound that inhibits both Bdf1 BDs from the human fungal pathogen Candida glabrata with selectivity over the orthologous BDs from the human BET protein Brd4. On-target antifungal activity is established by devising two yeast-based inhibition assays: a growth assay using humanized Candida strains in which the Bdf1 BDs are replaced by their Brd4 counterparts, and a NanoBiT assay that evaluates the BD-mediated association of Bdf1 with chromatin. These assays additionally enable the discovery that BET inhibitor I-BET726 targets both Bdf1 BDs, inhibits the growth of a broad spectrum of Candida species, including antifungal-resistant clinical isolates, and displays efficacy in an invertebrate animal model of infection. These collective findings highlight the promising potential of Bdf1 BD inhibitors as an innovative class of antifungal therapeutics and the pivotal role of yeast-based assay development toward achieving this end.
Collapse
Affiliation(s)
- Kaiyao Wei
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Marie Arlotto
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Justin M. Overhulse
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Tuan‐Anh Dinh
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Yingsheng Zhou
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Nathan J. Dupper
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Jiayi Yang
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Boris A. Kashemirov
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Hasan Dawi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Cécile Garnaud
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gaëlle Bourgine
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Flore Mietton
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Morgane Champleboux
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Amédé Larabi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Yordan Hayat
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Rose‐Laure Indorato
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | | | - Dimitrios Skoufias
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Muriel Cornet
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gwenaël Rabut
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Charles E. McKenna
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Carlo Petosa
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Jérôme Govin
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| |
Collapse
|
8
|
Praetorius JP, Hitzler SUJ, Gresnigt MS, Figge MT. Image-based quantification of Candida albicans filamentation and hyphal length using the open-source visual programming language JIPipe. FEMS Yeast Res 2025; 25:foaf011. [PMID: 40082735 PMCID: PMC11963753 DOI: 10.1093/femsyr/foaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025] Open
Abstract
The formation of hyphae is one of the most crucial virulence traits the human pathogenic fungus Candida albicans possesses. The assessment of hyphal length in response to various stimuli, such as exposure to human serum, provides valuable insights into the adaptation strategies of C. albicans to the host environment. Despite the increasing high-throughput capacity live-cell imaging and data generation, the accurate analysis of hyphal growth has remained a laborious, error-prone, and subjective manual process. We developed an analysis pipeline utilizing the open-source visual programming language Java Image Processing Pipeline (JIPipe) to overcome the limitations associated with manual analysis of hyphal growth. By comparing our automated approach with manual analysis, we refined the strategies to achieve accurate differentiation between yeast cells and hyphae. The automated method enables length measurements of individual hyphae, facilitating a time-efficient, high-throughput, and user-friendly analysis. By utilizing this JIPipe analysis approach, we obtained insights into the filamentation behavior of two C. albicans strains when exposed to human serum albumin (HSA), the most abundant protein in human serum. Our findings indicate that despite the known role of HSA in stimulating fungal growth, it reduces filamentous growth. The implementation of our automated JIPipe analysis approach for hyphal growth represents a long-awaited and time-efficient solution to meet the demand of high-throughput data generation. This tool can benefit different research areas investigating the virulence aspects of C. albicans.
Collapse
Affiliation(s)
- Jan-Philipp Praetorius
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
9
|
Anand J, Agarwal S, Thapa P, Gupta M, Bachheti RK, Rai N. Potential of tea-derived phytoconstituents against Candida albicans and C. glabrata infection. TEA IN HEALTH AND DISEASE PREVENTION 2025:621-633. [DOI: 10.1016/b978-0-443-14158-4.00024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Saha D, Gregor JB, Hoda S, Eastman KE, Gutierrez-Schultz VA, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two HAP1 ohnologs, HAP1A and HAP1B, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. mSphere 2024; 9:e0052424. [PMID: 39440948 PMCID: PMC11580460 DOI: 10.1128/msphere.00524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. Phylogenetic and syntenic analyses revealed that C. glabrata, following a whole genome duplication event, maintained HAP1A and HAP1B, whereas Saccharomyces cerevisiae only retained the HAP1A ortholog, HAP1. In this study, we determined the function of two zinc cluster transcription factors, Hap1A and Hap1B, as direct regulators of ERG genes. In S. cerevisiae, Hap1, an ortholog of Hap1A, is a known transcription factor controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, deleting HAP1 or HAP1B in either S. cerevisiae or C. glabrata, respectively, showed altered susceptibility to azoles. In contrast, the strain deleted for HAP1A did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a hap1BΔ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Hap1A protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions, where Hap1A is required for the repression of ERG genes. However, in the absence of Hap1A, Hap1B can compensate as a transcriptional repressor. Our study shows that Hap1A and Hap1B is utilized by C. glabrata to adapt to specific host and environmental conditions. IMPORTANCE Invasive and drug-resistant fungal infections pose a significant public health concern. Candida glabrata, a human fungal pathogen, is often difficult to treat due to its intrinsic resistance to azole antifungal drugs and its capacity to develop clinical drug resistance. Therefore, understanding the pathways that facilitate fungal growth and environmental adaptation may lead to novel drug targets and/or more efficacious antifungal therapies. While the mechanisms of azole resistance in Candida species have been extensively studied, the roles of zinc cluster transcription factors, such as Hap1A and Hap1B, in C. glabrata have remained largely unexplored until now. Our research shows that these factors play distinct yet crucial roles in regulating ergosterol homeostasis under azole drug treatment and oxygen-limiting growth conditions. These findings offer new insights into how this pathogen adapts to different environmental conditions and enhances our understanding of factors that alter drug susceptibility and/or resistance.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Mindy Navarrete
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott D. Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Nysten J, Peetermans A, Vaneynde D, Jacobs S, Demuyser L, Van Dijck P. The riboflavin biosynthetic pathway as a novel target for antifungal drugs against Candida species. mBio 2024; 15:e0250224. [PMID: 39404356 PMCID: PMC11559065 DOI: 10.1128/mbio.02502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 11/14/2024] Open
Abstract
In recent decades, there has been an increase in the occurrence of fungal infections; yet, the arsenal of drugs available to fight invasive infections remains very limited. The development of new antifungal agents is hindered by the restricted number of molecular targets that can be exploited, given the shared eukaryotic nature of fungi and their hosts which often leads to host toxicity. In this paper, we examine the riboflavin biosynthetic pathway as a potential novel drug target. Riboflavin is an essential nutrient for all living organisms. Its biosynthetic pathway does not exist in humans, who obtain riboflavin through their diet. Our findings demonstrate that all enzymes in the pathway are essential for Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Auxotrophic strains, which mimic a drug targeting the biosynthesis pathway, experience rapid mortality in the absence of supplemented riboflavin. Furthermore, RIB1 is essential for virulence in both C. albicans and C. glabrata in a systemic mouse model. The fungal burden of a RIB1 deletion strain is significantly reduced in the kidneys and brain of infected mice, and this reduction becomes more pronounced over time. Nevertheless, auxotrophic cells can still take up external riboflavin when supplemented. We identified Orf19.4337 as the riboflavin importer in C. albicans and named it Rut1. We found that Rut1 only facilitates growth at external riboflavin concentrations that exceed the physiological concentrations in the human body. This suggests that riboflavin uptake is unlikely to serve as a resistance mechanism against drugs targeting the biosynthesis pathway. Interestingly, the uptake system in S. cerevisiae is more effective than in C. albicans and C. glabrata, enabling an auxotrophic S. cerevisiae strain to outcompete an auxotrophic C. albicans strain in lower riboflavin concentrations. IMPORTANCE Candida species are a common cause of invasive fungal infections. Candida albicans, in particular, poses a significant threat to immunocompromised individuals. This opportunistic pathogen typically lives as a commensal on mucosal surfaces of healthy individuals but it can also cause invasive infections associated with high morbidity and mortality. Currently, there are only three major classes of antifungal drugs available to treat these infections. In addition, the efficacy of these antifungal agents is restricted by host toxicity, suboptimal pharmacokinetics, a narrow spectrum of activity, intrinsic resistance of fungal species, such as Candida glabrata, to certain drugs, and the acquisition of resistance over time. Therefore, it is crucial to identify new antifungal drug targets with novel modes of action to add to the limited armamentarium.
Collapse
Affiliation(s)
- Jana Nysten
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Arne Peetermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Dries Vaneynde
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Grzech-Leśniak Z, Szwach J, Lelonkiewicz M, Migas K, Pyrkosz J, Szwajkowski M, Kosidło P, Pajączkowska M, Wiench R, Matys J, Nowicka J, Grzech-Leśniak K. Effect of Nd:YAG Laser Irradiation on the Growth of Oral Biofilm. Microorganisms 2024; 12:2231. [PMID: 39597620 PMCID: PMC11596257 DOI: 10.3390/microorganisms12112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Oral microbiota comprises a wide variety of microorganisms. The purpose of this study was to evaluate the effects of Nd:YAG laser with a 1064 nm wavelength on the in vitro growth of Candida albicans, Candida glabrata, and Streptococcus mutans clinical strains, as well as their biofilm. The study also aimed to determine whether the parameters recommended for photobiomodulation (PBM) therapy, typically used for tissue wound healing, have any additional antibacterial or antifungal effects. MATERIAL AND METHODS Single- and dual-species planktonic cell solution and biofilm cultures of Streptococcus mutans, Candida albicans, and Candida glabrata were irradiated using an Nd:YAG laser (LightWalker; Fotona; Slovenia) with a flat-top Genova handpiece. Two test groups were evaluated: Group 1 (G-T1) exposed to low power associated parameters (irradiance 0.5 W/cm2) and Group 2 (G-T2) with higher laser parameters (irradiance 1.75 W/cm2). Group 3 (control) was not exposed to any irradiation. The lasers' effect was assessed both immediately after irradiation (DLI; Direct Laser Irradiation) and 24 h post-irradiation (24hLI) of the planktonic suspension using a quantitative method (colony-forming units per 1 mL of suspension; CFU/mL), and the results were compared with the control group, in which no laser was applied. The impact of laser irradiation on biofilm biomass was assessed immediately after laser irradiation using the crystal violet method. RESULTS Nd:YAG laser irradiation with photobiomodulation setting demonstrated an antimicrobial effect with the greatest immediate reduction observed in S. mutans, achieving up to 85.4% reduction at the T2 settings. However, the laser's effectiveness diminished after 24 h. In single biofilm cultures, the highest reductions were noted for C. albicans and S. mutans at the T2 settings, with C. albicans achieving a 92.6 ± 3.3% reduction and S. mutans reaching a 94.3 ± 5.0% reduction. Overall, the T2 settings resulted in greater microbial reductions compared to T1, particularly in biofilm cultures, although the effectiveness varied depending on the microorganism and culture type. Laser irradiation, assessed immediately after using the crystal violet method, showed the strongest biofilm reduction for Streptococcus mutans in the T2 settings for both single-species and dual-species biofilms, with higher reductions observed in all the microbial samples at the T2 laser parameters (p < 0.05) Conclusion: The Nd:YAG laser using standard parameters typically applied for wound healing and analgesic effects significantly reduced the number of Candida albicans; Candida glabrata; and Streptococcus mutans strains.
Collapse
Affiliation(s)
| | - Jagoda Szwach
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (M.L.); (K.M.); (J.P.); (M.S.); (P.K.)
| | - Martyna Lelonkiewicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (M.L.); (K.M.); (J.P.); (M.S.); (P.K.)
| | - Krzysztof Migas
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (M.L.); (K.M.); (J.P.); (M.S.); (P.K.)
| | - Jakub Pyrkosz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (M.L.); (K.M.); (J.P.); (M.S.); (P.K.)
| | - Maciej Szwajkowski
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (M.L.); (K.M.); (J.P.); (M.S.); (P.K.)
| | - Patrycja Kosidło
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (M.L.); (K.M.); (J.P.); (M.S.); (P.K.)
| | - Magdalena Pajączkowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.P.); (J.N.)
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Jacek Matys
- Laser Laboratory, Department of Dental Surgery, Faculty of Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.P.); (J.N.)
| | - Kinga Grzech-Leśniak
- Laser Laboratory, Department of Dental Surgery, Faculty of Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University VCU, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Geum YJ, Han HJ. Case report: A rare secondary systemic candidiasis as a bite wound complication in a dog. Front Vet Sci 2024; 11:1418194. [PMID: 39507221 PMCID: PMC11539114 DOI: 10.3389/fvets.2024.1418194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
An 11-year-old, 4.8 kg, intact male mixed-breed dog was evaluated for a bite wound that had occurred a day prior to consultation. On examination, the patient exhibited signs of early to-late decompensatory shock, hemothorax, pneumothorax, and rib fractures. Initial shock management and resuscitation were performed. After several days of stabilization, exploratory thoracotomy, thoracic wall reconstruction, culture sampling, and antibiotic susceptibility tests were conducted. Empirical antimicrobial treatments were performed while pending culture results. Despite aggressive antimicrobial therapy, the patient had focal seizures and wound dehiscence, presumably due to the worsening of infection and inflammation. Necrotic tissues adjacent to the dehiscence were debrided, and the wound was opened. A previous analysis of wound and blood cultures identified Candida glabrata, and itraconazole was initiated in accordance with the culture results. Successful treatment was achieved, and the wound was closed. The patient remained healthy after 2 months of monitoring. To the best of our knowledge, this was the first case report of systemic candidiasis in a dog secondary to a bite wound diagnosed via blood culture. Additionally, this case highlights successful treatment with itraconazole.
Collapse
Affiliation(s)
| | - Hyun-Jung Han
- Department of Veterinary Emergency and Critical Care, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Zheng L, Xu Y, Wang C, Dong Y, Guo L. Parallel evolution of fluconazole resistance and tolerance in Candida glabrata. Front Cell Infect Microbiol 2024; 14:1456907. [PMID: 39397866 PMCID: PMC11466938 DOI: 10.3389/fcimb.2024.1456907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction With the growing population of immunocompromised individuals, opportunistic fungal pathogens pose a global health threat. Candida species, particularly C. albicans and non-albicans Candida species such as C. glabrata, are the most prevalent pathogenic fungi. Azoles, especially fluconazole, are widely used therapeutic options. Objective This study investigates how C. glabrata adapts to fluconazole, with a focus on understanding the factors regulating fluconazole tolerance and its relationship to resistance. Methods This study compared the factors regulating fluconazole tolerance between C. albicans and C. glabrata. We analyzed the impact of temperature on fluconazole tolerance, and requirement of calcineurin and Hsp90 for maintenance of fluconazole tolerance. We isolated colonies from edge, inside and outside of inhibition zone in disk diffusion assays. And we exposed C. glabrata strain to high concentrations of fluconazole and investigated the mutants for development of fluconazole resistance and tolerance. Results We found temperature modulated tolerance in the opposite way in C. albicans strain YJB-T1891 and C. glabrata strain CG4. Calcineurin and Hsp90 were required for maintenance of fluconazole tolerance in both species. Colonies from inside and outside of inhibition zones did not exhibited mutated phenotype, but colonies isolated from edge of inhibition zone exhibited diverse phenotype changes. Moreover, we discovered that high concentrations (16-128 μg/mL) of fluconazole induce the simultaneous but parallel development of tolerance and resistance in C. glabrata, unlike the sole development of tolerance in C. albicans. Conclusion This study highlights that while tolerance to fluconazole is a common response in Candida species, the specific molecular mechanisms and evolutionary pathways that lead to this response vary between species. Our findings emphasize the importance of understanding the regulation of fluconazole tolerance in different Candida species to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Yubo Dong
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Yoo SI, Moon S, Hong CP, Park SG, Shim D, Ryu H. Genome Sequencing of Lentinula edodes Revealed a Genomic Variant Block Associated with a Thermo-Tolerant Trait in Fruit Body Formation. J Fungi (Basel) 2024; 10:628. [PMID: 39330388 PMCID: PMC11432811 DOI: 10.3390/jof10090628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
The formation of multicellular fruiting bodies in basidiomycete mushrooms is a crucial developmental process for sexual reproduction and subsequent spore development. Temperature is one of the most critical factors influencing the phase transition for mushroom reproduction. During the domestication of mushrooms, traits related to fruiting bodies have significantly impacted agricultural adaptation and human preferences. Recent research has demonstrated that chromosomal variations, such as structural variants (SVs) and variant blocks (VBs), play crucial roles in agronomic traits and evolutionary processes. However, the lack of high-quality genomic information and important trait data have hindered comprehensive identification and characterization in Lentinula edodes breeding processes. In this study, the genomes of two monokaryotic L. edodes strains, characterized by thermo-tolerance and thermo-sensitivity during fruiting body formation, were reassembled at the chromosomal level. Comparative genomic studies of four thermo-tolerant and thermo-sensitive monokaryotic L. edodes strains identified a 0.56 Mbp variant block on chromosome 9. Genes associated with DNA repair or cellular response to DNA damage stimulus were enriched in this variant block. Finally, we developed eight CAPS markers from the variant block to discriminate the thermo-tolerant traits in L. edodes cultivars. Our findings show that the identified variant block is highly correlated with the thermo-tolerant trait for fruiting body formation and that alleles present in this block may have been artificially selected during L. edodes domestication.
Collapse
Affiliation(s)
- Seung-il Yoo
- Division of Bioinformatics, Invites Biocore, Seoul 08511, Republic of Korea; (S.-i.Y.); (S.-G.P.)
| | - Suyun Moon
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Chang Pyo Hong
- Department of Crop Science and Biotechnology, General Graduate School, Dankook University, Cheonan 31116, Republic of Korea;
| | - Sin-Gi Park
- Division of Bioinformatics, Invites Biocore, Seoul 08511, Republic of Korea; (S.-i.Y.); (S.-G.P.)
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| |
Collapse
|
16
|
Beardsley J, Kim HY, Dao A, Kidd S, Alastruey-Izquierdo A, Sorrell TC, Tacconelli E, Chakrabarti A, Harrison TS, Bongomin F, Gigante V, Galas M, Siswanto S, Dagne DA, Roitberg F, Sati H, Morrissey CO, Alffenaar JW. Candida glabrata (Nakaseomyces glabrata): A systematic review of clinical and microbiological data from 2011 to 2021 to inform the World Health Organization Fungal Priority Pathogens List. Med Mycol 2024; 62:myae041. [PMID: 38935913 PMCID: PMC11210615 DOI: 10.1093/mmy/myae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
Recognising the growing global burden of fungal infections, the World Health Organization (WHO) established an advisory group consisting of experts in fungal diseases to develop a Fungal Priority Pathogen List. Pathogens were ranked based on their research and development needs and perceived public health importance using a series of global surveys and pathogen characteristics derived from systematic reviews. This systematic review evaluates the features and global impact of invasive disease caused by Candida glabrata (Nakaseomyces glabrata). PubMed and Web of Science were searched for studies reporting on mortality, morbidity (hospitalization and disability), drug resistance (including isolates from sterile and non-sterile sites, since these reflect the same organisms causing invasive infections), preventability, yearly incidence, diagnostics, treatability, and distribution/emergence in the last 10 years. Candida glabrata (N. glabrata) causes difficult-to-treat invasive infections, particularly in patients with underlying conditions such as immunodeficiency, diabetes, or those who have received broad-spectrum antibiotics or chemotherapy. Beyond standard infection prevention and control measures, no specific preventative measures have been described. We found that infection is associated with high mortality rates and that there is a lack of data on complications and sequelae. Resistance to azoles is common and well described in echinocandins-in both cases, the resistance rates are increasing. Candida glabrata remains mostly susceptible to amphotericin and flucytosine. However, the incidence of the disease is increasing, both at the population level and as a proportion of all invasive yeast infections, and the increases appear related to the use of antifungal agents.
Collapse
Affiliation(s)
- Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- School of Pharmacy, University of Sydney, Sydney, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, Australia
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
| | | | - Tania C Sorrell
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | | | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Thomas S Harrison
- Institute of Infection and Immunity, St. George's, University of London, London, and MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Valeria Gigante
- Impact Initiatives and Research Coordination Unit, Global Coordination and Partnership Department, Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - Marcelo Galas
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Washington, DC, USA
| | - Siswanto Siswanto
- World Health Organization, South East Asia Region Office, New Delhi, India
| | - Daniel Argaw Dagne
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Felipe Roitberg
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- Impact Initiatives and Research Coordination Unit, Global Coordination and Partnership Department, Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - C Orla Morrissey
- Alfred Health/ Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- School of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Farhat G, Cheng L, Al-Dujaili EAS, Zubko M. Antimicrobial Potential of Pomegranate and Lemon Extracts Alone or in Combination with Antibiotics against Pathogens. Int J Mol Sci 2024; 25:6943. [PMID: 39000051 PMCID: PMC11241309 DOI: 10.3390/ijms25136943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Amidst the growing concern of antimicrobial resistance as a significant health challenge, research has emerged, focusing on elucidating the antimicrobial potential of polyphenol-rich extracts to reduce reliance on antibiotics. Previous studies explored the antifungal effects of extracts as potential alternatives to conventional therapeutic strategies. We aimed to assess the antibacterial and antifungal effects of standardised pomegranate extract (PE) and lemon extract (LE) using a range of Gram-negative and Gram-positive bacteria and two yeast species. Additionally, we assessed the antimicrobial activities of common antibiotics (Ciprofloxacin, Imipenem, Gentamicin, and Ceftazidime), either alone or in combination with extracts, against Staphylococcus aureus and Escherichia coli. PE displayed substantial antibacterial (primarily bactericidal) and antifungal effects against most pathogens, while LE exhibited antibacterial (mostly bacteriostatic) and antifungal properties to a lesser extent. When compared with antibiotics, PE showed a greater zone of inhibition (ZOI) than Ciprofloxacin and Ceftazidime (p < 0.01) and comparable ZOI to Gentamicin (p = 0.4) against Staphylococcus aureus. However, combinations of either PE or LE with antibiotics exhibited either neutral or antagonistic effects on antibiotic activity against Staphylococcus aureus and Escherichia coli. These findings contribute to the existing evidence regarding the antimicrobial effects of PE and LE. They add to the body of research suggesting that polyphenols exert both antagonistic and synergistic effects in antimicrobial activity. This highlights the importance of identifying optimal polyphenol concentrations that can enhance antibiotic activity and reduce antibiotic resistance. Further in vivo studies, starting with animal trials and progressing to human trials, may potentially lead to recommendation of these extracts for therapeutic use.
Collapse
Affiliation(s)
- Grace Farhat
- Faculty of Health and Education, Manchester Metropolitan University, Manchester M15 6BG, UK
| | - Lewis Cheng
- Faculty of Health and Education, Manchester Metropolitan University, Manchester M15 6BG, UK
| | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Faculty of Medicine and Veterinary Medicine, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mikhajlo Zubko
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
18
|
Saha D, Gregor JB, Hoda S, Eastman KE, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two Hap1 homologs, Zcf27 and Zcf4, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599910. [PMID: 38979343 PMCID: PMC11230168 DOI: 10.1101/2024.06.20.599910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the three major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. In this study, we determined the function of two zinc cluster transcription factors, Zcf27 and Zcf4, as direct but distinct regulators of ERG genes. Our phylogenetic analysis revealed C. glabrata Zcf27 and Zcf4 as the closest homologs to Saccharomyces cerevisiae Hap1. Hap1 is a known zinc cluster transcription factor in S. cerevisiae in controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, when we deleted HAP1 or ZCF27 in either S. cerevisiae or C. glabrata, respectively, both deletion strains showed altered susceptibility to azole drugs, whereas the strain deleted for ZCF4 did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a zcf27Δ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Zcf4 protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions. However, under hypoxic conditions, Zcf4 but not Zcf27 was directly required for the repression of ERG genes. This study provides the first demonstration that Zcf27 and Zcf4 have evolved to serve distinct roles allowing C. glabrata to adapt to specific host and environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott D Briggs
- Department of Biochemistry
- Purdue University Institute for Cancer Research
| |
Collapse
|
19
|
Chow EWL, Song Y, Wang H, Xu X, Gao J, Wang Y. Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F 1F 0 ATPase complex causes fluconazole resistance in Candida glabrata. Mol Microbiol 2024; 121:781-797. [PMID: 38242855 DOI: 10.1111/mmi.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.
Collapse
Affiliation(s)
- Eve W L Chow
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Yabing Song
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haitao Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Xiaoli Xu
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Schutz K, Melie T, Smith SD, Quandt CA. Patterns recovered in phylogenomic analysis of Candida auris and close relatives implicate broad environmental flexibility in Candida/Clavispora clade yeasts. Microb Genom 2024; 10. [PMID: 38630608 DOI: 10.1099/mgen.0.001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Fungal pathogens commonly originate from benign or non-pathogenic strains living in the natural environment. The recently emerged human pathogen, Candida auris, is one example of a fungus believed to have originated in the environment and recently transitioned into a clinical setting. To date, however, there is limited evidence about the origins of this species in the natural environment and when it began associating with humans. One approach to overcome this gap is to reconstruct phylogenetic relationships between (1) strains isolated from clinical and non-clinical environments and (2) between species known to cause disease in humans and benign environmental saprobes. C. auris belongs to the Candida/Clavispora clade, a diverse group of 45 yeast species including human pathogens and environmental saprobes. We present a phylogenomic analysis of the Candida/Clavispora clade aimed at understanding the ecological breadth and evolutionary relationships between an expanded sample of environmentally and clinically isolated yeasts. To build a robust framework for investigating these relationships, we developed a whole-genome sequence dataset of 108 isolates representing 18 species, including four newly sequenced species and 18 environmentally isolated strains. Our phylogeny, based on 619 orthologous genes, shows environmentally isolated species and strains interspersed with clinically isolated counterparts, suggesting that there have been many transitions between humans and the natural environment in this clade. Our findings highlight the breadth of environments these yeasts inhabit and imply that many clinically isolated yeasts in this clade could just as easily live outside the human body in diverse natural environments and vice versa.
Collapse
Affiliation(s)
- Kyle Schutz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Tina Melie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| |
Collapse
|
21
|
Bednarek A, Satala D, Zawrotniak M, Nobbs AH, Rapala-Kozik M, Kozik A. Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of Candida albicans and Nakaseomyces glabratus Cells-A Moonlighting Protein That Binds Human Vitronectin and Plasminogen and Can Adsorb to Pathogenic Fungal Cells via Major Adhesins Als3 and Epa6. Int J Mol Sci 2024; 25:1013. [PMID: 38256088 PMCID: PMC10815899 DOI: 10.3390/ijms25021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Angela H. Nobbs
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| |
Collapse
|
22
|
Acuna E, Ndlovu E, Molaeitabari A, Shahina Z, Dahms TES. Carvacrol-Induced Vacuole Dysfunction and Morphological Consequences in Nakaseomyces glabratus and Candida albicans. Microorganisms 2023; 11:2915. [PMID: 38138059 PMCID: PMC10745442 DOI: 10.3390/microorganisms11122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
With the prevalence of systemic fungal infections caused by Candida albicans and non-albicans species and their resistance to classical antifungals, there is an urgent need to explore alternatives. Herein, we evaluate the impact of the monoterpene carvacrol, a major component of oregano and thyme oils, on clinical and laboratory strains of C. albicans and Nakaseomyces glabratus. Carvacrol induces a wide range of antifungal effects, including the inhibition of growth and hyphal and biofilm formation. Using biochemical and microscopic approaches, we elucidate carvacrol-induced hyphal inhibition. The significantly reduced survival rates following exposure to carvacrol were accompanied by dose-dependent vacuolar acidification, disrupted membrane integrity, and aberrant morphology. Germ tube assays, used to elucidate the relationship between vacuolar dysfunction and hyphal inhibition, showed that carvacrol significantly reduced hyphal formation, which was accompanied by a defective C. albicans morphology. Thus, we show a link between vacuolar acidification/disrupted vacuole membrane integrity and compromised candidal morphology/morphogenesis, demonstrating that carvacrol exerts its anti-hyphal activity by altering vacuole integrity.
Collapse
Affiliation(s)
| | | | | | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (E.A.)
| | | |
Collapse
|
23
|
de Souto Medeiros MR, da Silva Barros CC, de Macedo Andrade AC, de Lima KC, da Silveira ÉJD. Antimicrobial photodynamic therapy in the treatment of oral erythematous candidiasis: a controlled and randomized clinical trial. Clin Oral Investig 2023; 27:6471-6482. [PMID: 37718381 DOI: 10.1007/s00784-023-05252-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE To analyze the clinical and microbiological efficacy of antimicrobial photodynamic therapy (aPDT) in patients with erythematous candidiasis (EC). METHODS This study was a controlled and randomized clinical trial in patients diagnosed with EC, who were allocated into a control group (CG) and experimental group (EG) treated with nystatin oral suspension and aPDT with methylene blue 0.1%, respectively. A clinical index was used to classify the EC lesions from mild to severe and assess the treatment efficacy. Microbiological samples were collected before and after aPDT session and analyzed by counting colony-forming units (CFUs) of Candida and Staphylococcus sp. RESULTS A total of 41 patients (CG (n = 18); EG (n = 23)) were analyzed in our research. Of these, 16 (94.1%) of the CG and 16 (84.2%) of the EG exhibited complete remission of the lesions. Regarding the degree of the lesion, it was observed that the severe lesions were more difficult to present remission, while all the mild and moderate lesions showed complete regression (p = 0.001). The microbiological analysis showed that Candida albicans and Staphylococcus sp. were the most prevalent microorganisms, and the aPDT group showed a decrease in CFUs of these microorganisms after the first aPDT session (p < 0.05). CONCLUSIONS aPDT proved to be a clinically and microbiologically effective therapy for treating EC. TRIAL REGISTRATION Registered at ClinicalTrials.gov; Set 12th, 2019; No. RBR-8w8599. CLINICAL RELEVANCE aPDT is a promising alternative treatment since it presents satisfactory results and does not cause damage to oral tissues or develop resistance to the treatment.
Collapse
Affiliation(s)
- Maurília Raquel de Souto Medeiros
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Caio César da Silva Barros
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Ana Cláudia de Macedo Andrade
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Kenio Costa de Lima
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Éricka Janine Dantas da Silveira
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil.
| |
Collapse
|
24
|
Liang J, Tang H, Snyder LF, Youngstrom CE, He BZ. Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast. PLoS Pathog 2023; 19:e1011748. [PMID: 37871123 PMCID: PMC10621968 DOI: 10.1371/journal.ppat.1011748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
Collapse
Affiliation(s)
- Jinye Liang
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hanxi Tang
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| | | | - Bin Z. He
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
25
|
Liang J, Tang H, Snyder LF, Youngstrom CE, He BZ. Divergence of TORC1-mediated Stress Response Leads to Novel Acquired Stress Resistance in a Pathogenic Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545716. [PMID: 37781605 PMCID: PMC10541095 DOI: 10.1101/2023.06.20.545716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
Collapse
Affiliation(s)
- Jinye Liang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Hanxi Tang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242
| | | | - Bin Z. He
- Biology Department, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
26
|
Divyashree S, Shruthi B, Vanitha P, Sreenivasa M. Probiotics and their postbiotics for the control of opportunistic fungal pathogens: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00800. [PMID: 37215743 PMCID: PMC10196798 DOI: 10.1016/j.btre.2023.e00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to Aspergillus, Mucor, Rhizopus, Candida, Fusarium, Penicillium, Dermatophytes and others cause severe opportunistic fungal infections. Among these Aspergillus and Candida spp cause majority of the diseases. The continuum of fungal infections will prolong to progress in the surroundings of the growing inhabitants of immunocompromised individuals. Presently many chemical-based drugs were used as prophylactic and therapeutic agents. Prolonged usage of antibiotics may lead to some severe effect on the human health. Also, one of the major threats is that the fungal pathogens are becoming the drug resistant. There are many physical, chemical, and mechanical methods to prevent the contamination or to control the disease. Owing to the limitations that are observed in such methods, biological methods are gaining more interest because of the use of natural products which have comparatively less side effects and environment friendly. In recent years, research on the possible use of natural products such as probiotics for clinical use is gaining importance. Probiotics, one of the well studied biological products, are safe upon consumption and are explored to treat various fungal infections. The antifungal potency of major groups of probiotic cultures such as Lactobacillus spp, Leuconostoc spp, Saccharomyces etc. and their metabolic byproducts which act as postbiotics like organic acids, short chain fatty acids, bacteriocin like metabolites, Hydrogen peroxide, cyclic dipeptides etc. to inhibit these opportunistic fungal pathogens have been discussed here.
Collapse
|
27
|
Fernandes L, Costa R, Silva S, Henriques M, Costa-de-Oliveira S, Rodrigues ME. Effect of Vapor-Phase Oregano Essential Oil on Resistant Candida Species Biofilms: Mechanisms of Action. Microbiol Spectr 2023; 11:e0512422. [PMID: 36971589 PMCID: PMC10100680 DOI: 10.1128/spectrum.05124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most prevalent vaginal infectious diseases. The increasing incidence of drug-resistant Candida strains and the limited therapeutic options make the discovery of effective alternative therapies fundamental. Essential oils (EOs) have been suggested as a promising alternative, and interestingly, vapor-phase essential oils (VP-EOs) present more advantages than their direct application. Thus, this study aims to evaluate the effect of oregano VP-EO (VP-OEO) on biofilms of antifungal-resistant vaginal isolates of Candida species (Candida albicans and Candida glabrata) and determine its mode of action. CFU, membrane integrity, and metabolic activity were evaluated. Furthermore, a reconstituted vaginal epithelium was used to mimic vaginal conditions and evaluate the effect of VP-OEO on Candida species infection, analyzed by DNA quantification, microscopy, and lactate dehydrogenase activity. The results revealed high VP-OEO antifungal activity. There was a significant reduction (>4 log CFU) in Candida species biofilms. Furthermore, the results show that the mechanisms of action of VP-OEO are related to membrane integrity and metabolic activity. The epithelium model confirms the effectiveness of VP-OEO. This study suggests that VP-EO can be considered a first approach for the development of an alternative form of VVC treatment. IMPORTANCE This work presents a new approach to the application of essential oils, exposure to the vapor phase, which can be considered a first approach for the development of a complementary or alternative form of vulvovaginal candidiasis (VVC) treatment. VVC is a significant infection caused by Candida species and remains a common disease that affects millions of women every year. The great difficulty in treating VVC and the extremely limited effective therapeutic options make the development of alternative treatments crucial. In this scope, this study aims to contribute to the development of effective, inexpensive, and nontoxic strategies for the prevention and treatment of this infectious disease, based on natural products. Moreover, this new approach has several advantages for women, such as lower costs, easy access, an easier mode of application, avoidance of skin contact, and, therefore, fewer negative impacts on women's health.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa
- Aromas Aqua Spa—Clínica Saúde, Vila Verde, Braga, Portugal
| | - Sónia Silva
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria E. Rodrigues
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
28
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
29
|
Okamoto M, Nakano K, Takahashi-Nakaguchi A, Sasamoto K, Yamaguchi M, Teixeira MC, Chibana H. In Candida glabrata, ERMES Component GEM1 Controls Mitochondrial Morphology, mtROS, and Drug Efflux Pump Expression, Resulting in Azole Susceptibility. J Fungi (Basel) 2023; 9:jof9020240. [PMID: 36836353 PMCID: PMC9965728 DOI: 10.3390/jof9020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondrial dysfunction or morphological abnormalities in human pathogenic fungi are known to contribute to azole resistance; however, the underlying molecular mechanisms are unknown. In this study, we investigated the link between mitochondrial morphology and azole resistance in Candida glabrata, which is the second most common cause of human candidiasis worldwide. The ER-mitochondrial encounter structure (ERMES) complex is thought to play an important role in the mitochondrial dynamics necessary for mitochondria to maintain their function. Of the five components of the ERMES complex, deletion of GEM1 increased azole resistance. Gem1 is a GTPase that regulates the ERMES complex activity. Point mutations in GEM1 GTPase domains were sufficient to confer azole resistance. The cells lacking GEM1 displayed abnormalities in mitochondrial morphology, increased mtROS levels, and increased expression of azole drug efflux pumps encoded by CDR1 and CDR2. Interestingly, treatment with N-acetylcysteine (NAC), an antioxidant, reduced ROS production and the expression of CDR1 in Δgem1 cells. Altogether, the absence of Gem1 activity caused an increase in mitochondrial ROS concentration, leading to Pdr1-dependent upregulation of the drug efflux pump Cdr1, resulting in azole resistance.
Collapse
Affiliation(s)
- Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Keiko Nakano
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | | | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Miguel Cacho Teixeira
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Correspondence:
| |
Collapse
|
30
|
Pech-Puch D, Grilo D, Calva-Pérez SE, Pedras A, Villegas-Hernández H, Guillén-Hernández S, Díaz-Gamboa R, Tunjano MF, Rodríguez J, Lenis-Rojas OA, Jiménez C, Pimentel C. Antifungal Potential of Marine Organisms of the Yucatan Peninsula (Mexico) against Medically Important Candida spp. Molecules 2023; 28:molecules28020606. [PMID: 36677663 PMCID: PMC9863849 DOI: 10.3390/molecules28020606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Invasive fungal infections represent a global health threat. They are associated with high mortality and morbidity rates, partly due to the ineffectiveness of the available antifungal agents. The rampant increase in infections recalcitrant to the current antifungals has worsened this scenario and made the discovery of new and more effective antifungals a pressing health issue. In this study, 65 extracts from marine organisms of the Yucatan Peninsula, Mexico, were screened for antifungal activity against Candida albicans and Candida glabrata, two of the most prevalent fungal species that cause nosocomial invasive fungal infections worldwide. A total of 51 sponges, 13 ascidians and 1 gorgonian were collected from the coral reef and mangrove forest in the Yucatan Peninsula (Mexico) and extracted with organic solvents. Nine crude extracts showed potent antifungal activity, of which four extracts from the sponge species Aiolochroia crassa, Amphimedon compressa, Monanchora arbuscula and Agelas citrina had promising activity against Candida spp. Bioassay-guided fractionation of the M. arbuscula extract revealed the remarkable fungicidal activity of some fractions. Analysis of the chemical composition of one of the most active fractions by UHPLC-HRMS and NMR indicated the presence of mirabilin B and penaresidin B, and their contribution to the observed antifungal activity is discussed. Overall, this work highlights marine organisms of the Yucatan Peninsula as important reservoirs of natural products with promising fungicidal activity, which may greatly advance the treatment of invasive fungal infections, especially those afflicting immunosuppressed patients.
Collapse
Affiliation(s)
- Dawrin Pech-Puch
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida CP 97100, Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida (ENES Mérida), Universidad Nacional Autónoma de México (UNAM), Carretera Mérida-Tetiz km 4.5, Tablaje, Catastral No. 6998, Municipio de Ucú, Ucú CP 97357, Mexico
| | - Diana Grilo
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, 1070-312 Lisbon, Portugal
| | - Susana Eunice Calva-Pérez
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida CP 97100, Mexico
| | - Andreia Pedras
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, 1070-312 Lisbon, Portugal
| | - Harold Villegas-Hernández
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida CP 97100, Mexico
| | - Sergio Guillén-Hernández
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida CP 97100, Mexico
| | - Raúl Díaz-Gamboa
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida CP 97100, Mexico
| | - Mateo Forero Tunjano
- Centro de Interdisciplinar de Química e Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Jaime Rodríguez
- Centro de Interdisciplinar de Química e Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Oscar A. Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, 1070-312 Lisbon, Portugal
- Correspondence: (O.A.L.-R.); (C.J.); (C.P.)
| | - Carlos Jiménez
- Centro de Interdisciplinar de Química e Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
- Correspondence: (O.A.L.-R.); (C.J.); (C.P.)
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, 1070-312 Lisbon, Portugal
- Correspondence: (O.A.L.-R.); (C.J.); (C.P.)
| |
Collapse
|
31
|
Khan A, Moni SS, Ali M, Mohan S, Jan H, Rasool S, Kamal MA, Alshahrani S, Halawi M, Alhazmi HA. Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review. Curr Mol Pharmacol 2023; 16:15-42. [PMID: 35249516 DOI: 10.2174/1874467215666220304143332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of "Green Medicines" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Huma Jan
- Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar -190006, J&K, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001 J&K, India
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589. Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
32
|
Donders G, Sziller IO, Paavonen J, Hay P, de Seta F, Bohbot JM, Kotarski J, Vives JA, Szabo B, Cepuliené R, Mendling W. Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel opinion. Front Cell Infect Microbiol 2022; 12:934353. [PMID: 36159646 PMCID: PMC9504472 DOI: 10.3389/fcimb.2022.934353] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Recurrent vulvovaginal candidosis (RVVC) is a chronic, difficult to treat vaginal infection, caused by Candida species, which affects women of all ages and ethnic and social background. A long-term prophylactic maintenance regimen with antifungals is often necessary. In most clinical practice guidelines, oral fluconazole is recommended as the first-line treatment. Although clinical resistance to antifungal agents remains rare, overexposure to azoles may increase the development of fluconazole-resistant C. albicans strains. In addition, non-albicans Candida species are frequently dose-dependent susceptible or resistant to fluconazole and other azoles, and their prevalence is rising. Available therapeutic options to treat such fluconazole-resistant C. albicans and low susceptibility non-albicans strains are limited. Ten experts from different European countries discussed problematic issues of current RVVC diagnosis and treatment in two audiotaped online sessions and two electronic follow-up rounds. A total of 340 statements were transcribed, summarized, and compared with published evidence. The profile of patients with RVVC, their care pathways, current therapeutic needs, and potential value of novel drugs were addressed. Correct diagnosis, right treatment choice, and patient education to obtain adherence to therapy regimens are crucial for successful RVVC treatment. As therapeutic options are limited, innovative strategies are required. Well- tolerated and effective new drugs with an optimized mechanism of action are desirable and are discussed. Research into the impact of RVVC and treatments on health-related quality of life and sex life is also needed.
Collapse
Affiliation(s)
- Gilbert Donders
- Femicare VZW, Clinical Research for Women, Tienen, Belgium
- Department of Obstetrics and Gynecology, University Hospital Antwerp, Antwerp, Belgium
- Department of Obstetrics and Gynecology, Regional Hospital Tienen, Tienen, Belgium
| | - István Oszkár Sziller
- Dél-budai Centrumkórház, Szent Imre Egyetemi Oktatókórház, Szülészet és Nőgyógyászati Osztály, Budapest, Hungary
| | - Jorma Paavonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Phillip Hay
- Guys and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Francesco de Seta
- Department of Medical, Surgical and Health Sciences, Institute for Maternal and Child Health, University of Trieste, IRCCS Burlo Garofolo, Trieste, Italy
| | - Jean Marc Bohbot
- Department of Sexually Transmitted Infections, Institut Alfred Fournier, Paris, France
| | - Jan Kotarski
- Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jordi Antoni Vives
- Department of Gynecology and Obstetrics, Hospital CIMA, Barcelona, Spain
| | - Bela Szabo
- Department of Obstetrics-Gynecology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | | | - Werner Mendling
- Deutsches Zentrum für Infektionen in Gynäkologie und Geburtshilfe, Helios Universitätsklinikum Wuppertal, Wuppertal, Germany
| |
Collapse
|
33
|
Kamli MR, Sabir JSM, Malik MA, Ahmad A. Human β defensins-1, an antimicrobial peptide, kills Candida glabrata by generating oxidative stress and arresting the cell cycle in G0/G1 phase. Biomed Pharmacother 2022; 154:113569. [PMID: 35988423 DOI: 10.1016/j.biopha.2022.113569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Candida glabrata is the most frequently isolated non-albicans Candida species in clinical samples and is known to develop resistance to commonly used antifungal drugs. Human β defensins (hBDs) are antimicrobial peptides of immune systems and are active against a broad range of pathogens including Candida species. Herein, the antifungal effect of hBD-1 and its mechanism of action in C. glabrata was studied. The antifungal susceptibility of hBD-1 against C. glabrata was calculated by broth microdilution assay. To study the mechanism of antifungal action, the impact of hBD-1 on cell cycle, expression of oxidative stress enzymes, and membrane disintegration were assessed. The susceptibility results confirmed that hBD-1 possessed the minimum inhibitory concentration of 3.12 µg/mL and prevented the growth and caused yeast cell death to various extents. The peptide at subinhibitory and inhibitory concentrations blocked the cell cycle in C. glabrata in G0/G1 phase and disturbed the activity of primary and secondary antioxidant enzymes. Furthermore, at higher concentrations disruption of membrane integrity was observed. Altogether, hBD-1 showed candidicidal activity against C. glabrata and was able to induce oxidative stress and arrested cell cycle in C. auris and therefore has a potential to be developed as an antifungal drug against C. glabrata.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Aijaz Ahmad
- Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
34
|
Inhibitory Effects and Mechanism of Action of Elsinochrome A on Candida albicans and Its Biofilm. J Fungi (Basel) 2022; 8:jof8080841. [PMID: 36012829 PMCID: PMC9409654 DOI: 10.3390/jof8080841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Biofilm-associated Candida albicans infections, the leading cause of invasive candidiasis, can cause high mortality rates in immunocompromised patients. Photodynamic antimicrobial chemotherapy (PACT) is a promising approach for controlling infections caused by biofilm-associated C. albicans. This study shows the effect of Elsinochrome A (EA) against different stages of C. albicans biofilms in vitro by XTT reduction assay and crystal violet staining. The mechanism of action of EA on C. albicans biofilm was analyzed with flow cytometry, confocal laser microscopy, and the Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). EA-mediated PACT significantly reduced the viability of C. albicans, with an inhibition rate on biofilm of 89.38% under a concentration of 32 μg/mL EA. We found that EA could not only inhibit the adhesion of C. albicans in the early stage of biofilm formation, but that it also had good effects on pre-formed mature biofilms with a clearance rate of 35.16%. It was observed that EA-mediated PACT promotes the production of a large amount of reactive oxygen species (ROS) in C. albicans and down-regulates the intracellular expression of oxidative-stress-related genes, which further disrupted the permeability of cell membranes, leading to mitochondrial and nuclear damage. These results indicate that EA has good photodynamic antagonizing activity against the C. albicans biofilm, and potential clinical value.
Collapse
|
35
|
Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:789-802. [PMID: 35829973 DOI: 10.1007/s10123-022-00264-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
Eukaryotic cells respond to environmental cues through mitogen activated protein kinase (MAPK) signaling pathways. Each MAPK cascade is specific to particular stimuli and mediates specialized responses through activation of transcription factors. In the budding yeast, Saccharomyces cerevisiae, the pheromone-induced mating pathway and the starvation-responsive invasive growth/filamentation pathway generate their distinct outputs through the transcription factors Ste12 and Tec1, respectively. In this study, we report the functional characterization of these transcription factors in the closely related human opportunistic pathogenic yeast Candida glabrata. Two homologues each for S. cerevisiae TEC1 and STE12 were identified in C. glabrata. Both C. glabrata Tec1 proteins contain the N-terminal TEA DNA-binding domain characteristic of the TEA/ATTS transcription factor family. Similarly, the DNA-binding homeodomain shared by members of the highly conserved fungal Ste12 transcription factor family is present in N-terminus of both C. glabrata Ste12 transcription factors. We show that both C. glabrata STE12 genes are at least partial functional orthologues of S. cerevisiae STE12 as they can rescue the mating defect of haploid S. cerevisiae ste12 null mutant. Knockout of one of the STE12 genes (ORF CAGL0H02145g) leads to decreased biofilm development; a stronger biofilm-impaired phenotype results from loss of both CgSTE12 genes in the double deletion mutant (Cgste12ΔΔ). The transcript levels of one of the TEC1 genes (ORF CAGL0M01716g) were found to be upregulated upon exposure to low pH; its deletion causes slightly increased sensitivity to higher concentrations of acetic acid. Heat shock leads to increase in mRNA levels of one of the STE12 genes (ORF CAGL0M01254g). These findings suggest a role of Tec1 and Ste12 transcription factors in the regulation of some traits (biofilm formation, response to low pH stress and elevated temperature) that contribute to C. glabrata's ability to colonize various host niches and to occasionally cause disease.
Collapse
|
36
|
Unique roles of aminophospholipid translocase Drs2p in governing efflux pump activity, ergosterol level, virulence traits, and host-pathogen interaction in Candida albicans. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:769-779. [PMID: 35788922 DOI: 10.1007/s10123-022-00262-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Infections caused by Candida albicans are rising due to increment in drug resistance and a limited arsenal of conventional antifungal drugs. Thus, elucidating the novel antifungal targets still represent an alternative that could overcome the problem of multidrug resistance (MDR). In this study, we have uncovered the distinctive effect of aminophospholipid translocase (Drs2p) deletion on major MDR mechanisms of C. albicans. We determined that efflux activity was diminished in Δdrs2 mutant as revealed by extracellular rhodamine 6G (R6G) efflux and flow cytometry. Moreover, we further unveiled that Δdrs2 mutant displayed decreased ergosterol content and increased membrane fluidity. Furthermore, Drs2p deletion affects the virulence attributes and led to inhibited hyphal growth and reduced biofilm formation. Additionally, THP-1 cell lines' mediated host-pathogen interaction studies revealed that Δdrs2 mutant displayed enhanced phagocytosis and altered cytokine production leading to increased IL-6 and decreased IL-10 production. Taken together, the present study demonstrates the relevance of Drs2p in C. albicans and consequently disrupting pathways known for mediating drug resistance and immune recognition. Comprehensive studies are further required to authenticate Drs2p as a novel antifungal drug target.
Collapse
|
37
|
Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W, Henni A, Bouras HD, Dizge N. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. NANOMATERIALS 2022; 12:nano12122013. [PMID: 35745352 PMCID: PMC9227472 DOI: 10.3390/nano12122013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The current work concentrated on the green synthesis of silver nanoparticles (AgNPs) through the use of aqueous Citruslimon zest extract, optimizing the different experimental factors required for the formation and stability of AgNPs. The preparation of nanoparticles was confirmed by the observation of the color change of the mixture of silver nitrate, after the addition of the plant extract, from yellow to a reddish-brown colloidal suspension and was established by detecting the surface plasmon resonance band at 535.5 nm, utilizing UV-Visible analysis. The optimum conditions were found to be 1 mM of silver nitrate concentration, a 1:9 ratio extract of the mixture, and a 4 h incubation period. Fourier transform infrared spectroscopy spectrum indicated that the phytochemicals compounds present in Citrus limon zest extract had a fundamental effect on the production of AgNPs as a bio-reducing agent. The morphology, size, and elemental composition of AgNPs were investigated by zeta potential (ZP), dynamic light scattering (DLS), SEM, EDX, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis, which showed crystalline spherical silver nanoparticles. In addition, the antimicrobial and antioxidant properties of this bioactive silver nanoparticle were also investigated. The AgNPs showed excellent antibacterial activity against one Gram-negative pathogens bacteria, Escherichia coli, and one Gram-positive bacteria, Staphylococcus aureus, as well as antifungal activity against Candida albicans. The obtained results indicate that the antioxidant activity of this nanoparticle is significant. This bioactive silver nanoparticle can be used in biomedical and pharmacological fields.
Collapse
Affiliation(s)
- Yasmina Khane
- Université de Ghardaia, BP455, Ghardaia 47000, Algeria
- Laboratory of Applied Chemistry (LAC), DGRSDT, Ctr. Univ. Bouchaib Belhadj, Ain Temouchent 46000, Algeria
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Khedidja Benouis
- Laboratory of Process Engineering, Materials and Environment, Department of Energy and Process Engineering, Faculty of Technology, University of Sidi Bel-Abbes, Sidi Bel Abbes 22000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Djaber Aouf
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Fares Fenniche
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Sofiane Khane
- Department of Energy and Process Engineering, Faculty of Technology, University of Djillali Liabes, Sidi Bel Abbes 22000, Algeria;
| | - Wahiba Chaibi
- Scientific and Technical Research Center in Chemistry and Physics Analysis, Bousmail RP 42415, Algeria;
| | - Abdallah Henni
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Hadj Daoud Bouras
- Département de Physique, Ecole Normale Supérieure de Laghouat, RP Rue des Martyrs, Laghouat BP 4033, Algeria;
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey;
| |
Collapse
|
38
|
Kinetic, Thermodynamic and Bio-applicable Studies on Aspergillus niger Mk981235 Chitinase. Catal Letters 2022. [DOI: 10.1007/s10562-022-04045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractChitinases have many applications in food, agricultural, medical, and pharmaceutical fields. This study succeeded in investigating Aspergillus niger MK981235 chitinase in the spot of its physiochemical, kinetic, thermodynamic, and application. The optimum temperature, pH and p-nitrophenyl-β-d-N-acetyl glucosaminide (PNP-β-GlcNAc) concentration to obtain the highest chitinase activity of 2334.79 U ml−1 were at 60 °C, 5 and 0.25%, respectively. The kinetic parameters, including Km and Vmax were determined to be 0.78 mg ml−1 and 2222.22 µmol ml−1 min−1, respectively. Furthermore, the thermodynamic parameters T1/2, D-values, ΔH, ΔG and ΔS at 40, 50 and 60 °C were determined to be (864.10, 349.45, 222.34 min), (2870.99, 1161.07, 738.74 min), (126.40, 126.36, 126.32 kJ mol−1), (101.59, 100.62, 100.86 kJ mol−1), (74.50, 76.17, 47.24 J mol−1 K−1), respectively. A. niger chitinase showed, insecticidal activity on Galleria mellonella by feeding and spraying treatments (72 and 52%, respectively), anti-lytic activity against Candida albicans, and effectiveness in improving the dye removal in the presence of crab shell powder as bio-absorbant. A. niger chitinase can be used in the pharmaceutical field for the bio-control of diseases caused by C. albicans and for the pretreatment of wastewater from the textile industry.
Graphical Abstract
Collapse
|
39
|
Pezzotti G, Kobara M, Nakaya T, Imamura H, Miyamoto N, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Nishimura I, Mazda O, Nakata T, Makimura K. Raman Spectroscopy of Oral Candida Species: Molecular-Scale Analyses, Chemometrics, and Barcode Identification. Int J Mol Sci 2022; 23:5359. [PMID: 35628169 PMCID: PMC9141024 DOI: 10.3390/ijms23105359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/19/2023] Open
Abstract
Oral candidiasis, a common opportunistic infection of the oral cavity, is mainly caused by the following four Candida species (in decreasing incidence rate): Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei. This study offers in-depth Raman spectroscopy analyses of these species and proposes procedures for an accurate and rapid identification of oral yeast species. We first obtained average spectra for different Candida species and systematically analyzed them in order to decode structural differences among species at the molecular scale. Then, we searched for a statistical validation through a chemometric method based on principal component analysis (PCA). This method was found only partially capable to mechanistically distinguish among Candida species. We thus proposed a new Raman barcoding approach based on an algorithm that converts spectrally deconvoluted Raman sub-bands into barcodes. Barcode-assisted Raman analyses could enable on-site identification in nearly real-time, thus implementing preventive oral control, enabling prompt selection of the most effective drug, and increasing the probability to interrupt disease transmission.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita 565-0854, Japan
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (M.K.); (T.N.)
| | - Tamaki Nakaya
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (M.K.); (T.N.)
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| |
Collapse
|
40
|
Helmstetter N, Chybowska AD, Delaney C, Da Silva Dantas A, Gifford H, Wacker T, Munro C, Warris A, Jones B, Cuomo CA, Wilson D, Ramage G, Farrer RA. Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets. Genetics 2022; 221:iyac031. [PMID: 35199143 PMCID: PMC9071574 DOI: 10.1093/genetics/iyac031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Candida glabrata is the second most common etiological cause of worldwide systemic candidiasis in adult patients. Genome analysis of 68 isolates from 8 hospitals across Scotland, together with 83 global isolates, revealed insights into the population genetics and evolution of C. glabrata. Clinical isolates of C. glabrata from across Scotland are highly genetically diverse, including at least 19 separate sequence types that have been recovered previously in globally diverse locations, and 1 newly discovered sequence type. Several sequence types had evidence for ancestral recombination, suggesting transmission between distinct geographical regions has coincided with genetic exchange arising in new clades. Three isolates were missing MATα1, potentially representing a second mating type. Signatures of positive selection were identified in every sequence type including enrichment for epithelial adhesins thought to facilitate fungal adhesin to human epithelial cells. In patent microevolution was identified from 7 sets of recurrent cases of candidiasis, revealing an enrichment for nonsynonymous and frameshift indels in cell surface proteins. Microevolution within patients also affected epithelial adhesins genes, and several genes involved in drug resistance including the ergosterol synthesis gene ERG4 and the echinocandin target FKS1/2, the latter coinciding with a marked drop in fluconazole minimum inhibitory concentration. In addition to nuclear genome diversity, the C. glabrata mitochondrial genome was particularly diverse, with reduced conserved sequence and conserved protein-encoding genes in all nonreference ST15 isolates. Together, this study highlights the genetic diversity within the C. glabrata population that may impact virulence and drug resistance, and 2 major mechanisms generating this diversity: microevolution and genetic exchange/recombination.
Collapse
Affiliation(s)
- Nicolas Helmstetter
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | | | - Christopher Delaney
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Hugh Gifford
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Theresa Wacker
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Carol Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Adilia Warris
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Brian Jones
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Gordon Ramage
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rhys A Farrer
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
41
|
Tsouris A, Schacherer J, Ishchuk OP. RNA Interference (RNAi ) as a Tool for High-Resolution Phenotypic Screening of the Pathogenic Yeast Candida glabrata. Methods Mol Biol 2022; 2477:313-330. [PMID: 35524125 DOI: 10.1007/978-1-0716-2257-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
After its discovery RNA interference (RNAi) has become a powerful tool to study gene functions in different organisms. RNAi has been applied at genome-wide scale and can be nowadays performed using high-throughput automated systems (robotics). The simplest RNAi process requires the expression of two genes (Dicer and Argonaute) to function. To initiate the silencing, constructs generating either double-strand RNA or antisense RNA are required. Recently, RNAi was reconstituted by expressing Saccharomyces castellii genes in the human pathogenic yeast Candida glabrata and was used to identify new genes related to the virulence of this pathogen.In this chapter, we describe a method to make the C. glabrata pathogenic yeast competent for RNAi and to use RNA silencing as a tool for low- or high-resolution phenotypic screening in this species.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
42
|
Skłodowski K, Chmielewska SJ, Depciuch J, Deptuła P, Piktel E, Daniluk T, Zakrzewska M, Czarnowski M, Cieśluk M, Durnaś B, Parlińska-Wojtan M, Savage PB, Bucki R. Ceragenin-Coated Non-Spherical Gold Nanoparticles as Novel Candidacidal Agents. Pharmaceutics 2021; 13:pharmaceutics13111940. [PMID: 34834355 PMCID: PMC8619546 DOI: 10.3390/pharmaceutics13111940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Infections caused by Candida spp. have become one of the major causes of morbidity and mortality in immunocompromised patients. Therefore, new effective fungicides are urgently needed, especially due to an escalating resistance crisis. METHODS A set of nanosystems with rod- (AuR), peanut- (AuP), and star-shaped (AuS) metal cores were synthesized. These gold nanoparticles were conjugated with ceragenins CSA-13, CSA-44, and CSA-131, and their activity was evaluated against Candida strains (n = 21) through the assessment of MICs (minimum inhibitory concentrations)/MFCs (minimum fungicidal concentrations). Moreover, in order to determine the potential for resistance development, serial passages of Candida cells with tested nanosystems were performed. The principal mechanism of action of Au NPs was evaluated via ROS (reactive oxygen species) generation assessment, plasma membrane permeabilization, and release of the protein content. Finally, to evaluate the potential toxicity of Au NPs, the measurement of hemoglobin release from red blood cells (RBCs) was carried out. RESULTS All of the tested nanosystems exerted a potent candidacidal activity, regardless of the species or susceptibility to other antifungal agents. Significantly, no resistance development after 25 passages of Candida cells with AuR@CSA-13, AuR@CSA-44, and AuR@CSA-131 nanosystems was observed. Moreover, the fungicidal mechanism of action of the investigated nanosystems involved the generation of ROS, damage of the fungal cell membrane, and leakage of intracellular contents. Notably, no significant RBCs hemolysis at candidacidal doses of tested nanosystems was detected. CONCLUSIONS The results provide rationale for the development of gold nanoparticles of rod-, peanut-, and star-shaped conjugated with CSA-13, CSA-44, and CSA-131 as effective candidacidal agents.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Sylwia Joanna Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Bonita Durnaś
- The Faculty of Medicine and Health Sciences, Collegium Modicum of the Jan Kochanowski University in Kielce, 25-734 Kielce, Poland
| | | | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
43
|
Battu A, Purushotham R, Kaur R. An Assay to Determine NAD(P)H: Quinone Oxidoreductase Activity in Cell Extracts from Candida glabrata. Bio Protoc 2021; 11:e4210. [PMID: 34859125 DOI: 10.21769/bioprotoc.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/02/2022] Open
Abstract
Flavodoxin-like proteins (Fld-LPs) are an important constituent of the oxidative stress defense system in several organisms and highly conserved from bacteria to humans. These proteins possess NAD(P)H:quinone oxidoreductase activity and convert quinones to hydroquinones through two-electron reduction, using NAD(P)H and quinone as electron donor and acceptor, respectively. Purified yeast and bacterial Fld-LPs exhibit NAD(P)H:quinone oxidoreductase activity in vitro. Here, we describe a protocol to measure oxidoreductase activity of Fld-LPs that are present in extracts of whole cells. We have recently shown that the assembly and activity of a Fld-LP, CgPst2, is regulated by an aspartyl protease-mediated cleavage of its C-terminus in the pathogenic yeast Candida glabrata. Mutant yeast where the CgPST2 gene was deleted lacked cellular NAD(P)H:quinone oxidoreductase activity and displayed elevated susceptibility to menadione stress. The protocol described herein is based on the measurement of NADH oxidation (conversion of NADH to NAD+) by endogenous Fld-LPs in the presence of quinone menadione. This assay can be performed with whole cell lysates prepared by the mechanical lysis of C. glabrata cells and does not require expression and purification of Fld-LPs from a heterogeneous system, thereby allowing researchers to study the effect of different posttranslational modifications and varied structural states of Fld-LPs on their enzymatic activities. Since many FLP-LPs are known to exist in dimeric and tetrameric states possessing differential activities, our efficient and easy-to-use assay can reliably detect and validate their quinone reductase activities. Although we have used menadione with CgPst2 enzyme in our study, the protocol can easily be modified to examine the presence of Fld-LPs with specificity for other quinones. As this assay does not require many expensive chemicals, it can readily be scaled up and adapted for other medically important fungi and potentially be a useful tool to characterize fungal oxidative stress response systems and screen inhibitors specific for fungal Fld-LPs, thereby contributing to our understanding of fungal pathogenesis mechanisms.
Collapse
Affiliation(s)
- Anamika Battu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, India
| | - Rajaram Purushotham
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, India
| |
Collapse
|
44
|
Pekmezovic M, Kaune AK, Austermeier S, Hitzler SUJ, Mogavero S, Hovhannisyan H, Gabaldón T, Gresnigt MS, Hube B. Human albumin enhances the pathogenic potential of Candida glabrata on vaginal epithelial cells. PLoS Pathog 2021; 17:e1010037. [PMID: 34710198 PMCID: PMC8577789 DOI: 10.1371/journal.ppat.1010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
The opportunistic pathogen Candida glabrata is the second most frequent causative agent of vulvovaginal candidiasis (VVC), a disease that affects 70–75% of women at least once during their life. However, C. glabrata is almost avirulent in mice and normally incapable of inflicting damage to vaginal epithelial cells in vitro. We thus proposed that host factors present in vivo may influence C. glabrata pathogenicity. We, therefore, analyzed the impact of albumin, one of the most abundant proteins of the vaginal fluid. The presence of human, but not murine, albumin dramatically increased the potential of C. glabrata to damage vaginal epithelial cells. This effect depended on macropinocytosis-mediated epithelial uptake of albumin and subsequent proteolytic processing. The enhanced pathogenicity of C. glabrata can be explained by a combination of beneficial effects for the fungus, which includes an increased access to iron, accelerated growth, and increased adhesion. Screening of C. glabrata deletion mutants revealed that Hap5, a key regulator of iron homeostasis, is essential for the albumin-augmented damage potential. The albumin-augmented pathogenicity was reversed by the addition of iron chelators and a similar increase in pathogenicity was shown by increasing the iron availability, confirming a key role of iron. Accelerated growth not only led to higher cell numbers, but also to increased fungal metabolic activity and oxidative stress resistance. Finally, the albumin-driven enhanced damage potential was associated with the expression of distinct C. glabrata virulence genes. Transcriptional responses of the epithelial cells suggested an unfolded protein response (UPR) and ER-stress responses combined with glucose starvation induced by fast growing C. glabrata cells as potential mechanisms by which cytotoxicity is mediated.Collectively, we demonstrate that albumin augments the pathogenic potential of C. glabrata during interaction with vaginal epithelial cells. This suggests a role for albumin as a key player in the pathogenesis of VVC. Candida glabrata is the overall second causative species of candidiasis in humans, but little is known about the pathogenicity mechanisms of this yeast. C. glabrata is capable of causing lethal systemic candidiasis mostly in elderly immunocompromised patients, but is also a frequent cause of vulvovaginal candidiasis. These clinical insights suggest that C. glabrata has a high virulence potential, yet little pathogenicity is observed in both in vitro and in vivo infection models. The finding that human albumin, the most abundant protein in the human body, is boosting C. glabrata pathogenicity in vitro provides novel insights into C. glabrata pathogenicity mechanisms and shows that the presence of distinct human factors can have a significant influence on the virulence potential of a pathogenic microbe.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ann-Kristin Kaune
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophia U. J. Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hrant Hovhannisyan
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- * E-mail: (MSG); (BH)
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- * E-mail: (MSG); (BH)
| |
Collapse
|
45
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
46
|
Thrombin-Derived C-Terminal Peptide Reduces Candida-Induced Inflammation and Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:e0103221. [PMID: 34424043 PMCID: PMC8522777 DOI: 10.1128/aac.01032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infections due to the opportunistic fungus Candida have been on the rise in the last decades, especially in immunocompromised individuals and hospital settings. Unfortunately, the treatments available today are limited. Thrombin-derived C-terminal peptide (TCP-25) is an antimicrobial peptide (AMP) with antibacterial and immunomodulatory effects. In this work, we, for the first time, demonstrate the ability of TCP-25 ability to counteract Candidain vitro and in vivo. Using a combination of viable count assay (VCA), radial diffusion assay (RDA), and fluorescence and transmission electron microscopy analyses, TCP-25 was found to exert a direct fungicidal activity. An inhibitory activity of TCP-25 on NF-κB activation induced by both zymosan alone and heat-killed C. albicans was demonstrated in vitro using THP-1 cells, and in vivo using NF-κB reporter mice. Moreover, the immunomodulatory property of TCP-25 was further substantiated in vitro by analyzing cytokine responses in human blood stimulated with zymosan, and in vivo employing a zymosan-induced peritonitis model in C57BL/6 mice. The therapeutic potential of TCP-25 was demonstrated in mice infected with luminescent C. albicans. Finally, the binding between TCP-25 and zymosan was investigated using circular dichroism spectroscopy and intrinsic fluorescence analysis. Taken together, our results show that TCP-25 has a dual function by inhibiting Candida as well as the associated zymosan-induced inflammation. The latter function is accompanied by a change in secondary structure upon binding to zymosan. TCP-25, therefore, shows promise as a novel drug candidate against Candida infections.
Collapse
|
47
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:1529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
| |
Collapse
|
48
|
Huang XW, Xu MN, Zheng HX, Wang ML, Li L, Zeng K, Li DD. Pre-exposure to Candida glabrata protects Galleria mellonella against subsequent lethal fungal infections. Virulence 2021; 11:1674-1684. [PMID: 33200667 PMCID: PMC7714416 DOI: 10.1080/21505594.2020.1848107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Commensal fungi are an important part of human microbial community, among which Candida albicans and Candida glabrata are two common opportunistic pathogens. Unlike the high pathogenicity of C. albicans, C. glabrata is reported to show low pathogenicity to the host. Here, by using a Galleria mellonella infection model, we were able to confirm the much lower virulence of C. glabrata than C. albicans. Interestingly, pre-exposure to live C. glabrata (LCG) protects the larvae against subsequent various lethal fungal infections, including C. albicans, Candida tropicalis, and Cryptococcus neoformans. Inconsistently, heat-inactivated C. glabrata (HICG) pre-exposure can only protect against C. albicans or C. tropicalis re-infection, but not C. neoformans. Mechanistically, LCG or HICG pre-exposure enhanced the fungicidal activity of hemocytes against C. albicans or C. tropicalis. Meanwhile, LCG pre-exposure enhanced the humoral immunity by modulating the expression of fungal defending proteins in the cell-free hemolymph, which may contribute to the protection against C. neoformans. Together, this study suggests the important role of C. glabrata in enhancing host immunity, and demonstrates the great potential of G. mellonella model in studying the innate immune responses against infections.
Collapse
Affiliation(s)
- Xiao-Wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Mei-Nian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Huan-Xin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Meng-Lei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - De-Dong Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh , Pittsburgh, PA, USA.,Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
49
|
Li Q, Liu J, Chen M, Ma K, Wang T, Wu D, Yan G, Wang C, Shao J. Abundance interaction in Candida albicans and Candida glabrata mixed biofilms under diverse conditions. Med Mycol 2021; 59:158-167. [PMID: 32453815 DOI: 10.1093/mmy/myaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Candida albicans and Candida glabrata are frequently coisolated from the oral cavity in immunosuppressive or immunocompromised individuals. Their relationship is usually defined as competition as C. glabrata can inhibit growth of C. albicans in cohabitation. In this study, eight C. albicans isolates as well as two C. glabrata strains were used to investigate the effects of culture medium (Roswell Park Memorial Institute [RPMI]-1640, YPD, YND), incubation time (24 h, 48 h, 72 h, 96 h), initial inoculum (C. glabrata: C. albicans = 2:1, 1:1, 1:2), and medium state (static and dynamic states) on viable cell enumeration and relative abundance in both Candida SB and MB. The results showed that in most cases, C. glabrata and C. albicans SB and MB flourished in RPMI-1640 at 24 h under dynamic state compared with other conditions. Except YPD medium, there were high proportions of preponderance of C. albicans over C. glabrata in MB compared with SB. High initial inoculum promoted corresponding Candida number in both SB and MB and its abundance in MB relative to SB. This study revealed an impact of several environmental conditions on the formation of C. albicans and C. glabrata SB and MB and their abundance in MB in comparison with SB, deepening our understanding of both Candida interaction and their resistance mechanism in MB. LAY SUMMARY This study described the effects of diverse experimental conditions on the numbers of Candida albicans and Candida glabrata single biofilms and mixed biofilms and their abundance.
Collapse
Affiliation(s)
- Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Juanjuan Liu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Mengli Chen
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Kelong Ma
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Guiming Yan
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
50
|
Nguyen GT, Xu S, Adams W, Leong JM, Bunnell SC, Mansour MK, Sykes DB, Mecsas J. Neutrophils require SKAP2 for reactive oxygen species production following C-type lectin and Candida stimulation. iScience 2021; 24:102871. [PMID: 34386732 PMCID: PMC8346660 DOI: 10.1016/j.isci.2021.102871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling cascades converting the recognition of pathogens to efficient inflammatory responses by neutrophils are critical for host survival. SKAP2, an adaptor protein, is required for reactive oxygen species (ROS) generation following neutrophil stimulation by integrins, formyl peptide receptors, and for host defense against the Gram-negative bacterial pathogens, Klebsiella pneumoniae and Yersinia pseudotuberculosis. Using neutrophils from murine HoxB8-immortalized progenitors, we show that SKAP2 in neutrophils is crucial for maximal ROS response to purified C-type lectin receptor agonists and to the fungal pathogens, Candida glabrata and Candida albicans, and for robust killing of C. glabrata. Inside-out signaling to integrin and Syk phosphorylation occurred independently of SKAP2 after Candida infection. However, Pyk2, ERK1/2, and p38 phosphorylation were significantly reduced after infection with C. glabrata and K. pneumoniae in Skap2-/- neutrophils. These data demonstrate the importance of SKAP2 in ROS generation and host defense beyond antibacterial immunity to include CLRs and Candida species.
Collapse
Affiliation(s)
- Giang T. Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Walter Adams
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - John M. Leong
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Stephen C. Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - David B. Sykes
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02115, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|