1
|
Jerome JR, Wilson KL, Fialho J, Goodchild G, Prakash MD, McLeod C, Richmond PC, Apostolopoulos V, Flanagan KL, Plebanski M. Optimisation of the cultured ELISpot/Fluorospot technique for the selective investigation of SARS-CoV-2 reactive central memory T cells. Front Immunol 2025; 16:1547220. [PMID: 40303392 PMCID: PMC12037488 DOI: 10.3389/fimmu.2025.1547220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction This study presents an optimised cultured ELISpot protocol for detecting central memory T-cell interferon gamma (IFNγ) responses against SARS-CoV-2 peptides following an initial priming with either peptides, or whole spike protein. Methods Key variations optimised include the culture length, timing of exogenous survival signals (IL-2), and endpoint analysis modality and cell density to enhance assay sensitivity without compromising specificity for central memory T-cell IFNγ recall responses to cognate antigen. Results We noted a culture duration of 10 days, combined with a delayed IL-2 administration on day 5 to enhance assay sensitivity while maintaining response specificity towards cognate antigen when compared with shorter culture periods or earlier exogenous survival signal provision. With regards to lower-frequency T-cell interactions, as we observed with our donor SARS-CoV-2 epitope responses, our findings suggest Fluorospot to be preferable to the chromogenic ELISpot modality, and an immediate cell washing after culture collection to better facilitate cognate antigen responses. Fluorospot enabled a higher cell density while minimising the generation of visual artefacts, meanwhile immediate cell washing was critical for improving endpoint assay sensitivity. CCR7+ cell depletion was used to demonstrate our optimised protocol to selectively demonstrate central memory T-cell responses. Lastly, we provide evidence for the capacity of our assay to delineate individual responding peptides following peptide pool priming, and to explore cross-reactivity between viral variant peptides. Conclusion This work advances the methodology for investigating T-cell immunity, particularly in the context of SARS-CoV-2, and emphasises the balance between enhancing specific cognate central memory responses while limiting non-specific activation.
Collapse
Affiliation(s)
- Jack R. Jerome
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Kirsty L. Wilson
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Joshuah Fialho
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Georgia Goodchild
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Monica D. Prakash
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Charlie McLeod
- Wesfarmers Centre of Vaccines and Infectious Diseases, Kids Research Institute of Australia, Perth, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Infectious Diseases Department, Perth Children’s Hospital, Perth, WA, Australia
| | - Peter C. Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Kids Research Institute of Australia, Perth, WA, Australia
- Infectious Diseases Department, Perth Children’s Hospital, Perth, WA, Australia
- Division of Paediatrics, University of Western Australia School of Medicine, Perth, WA, Australia
- Department of Immunology, Perth Children’s Hospital, Perth, WA, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Katie L. Flanagan
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Ali MS, Stockdale L, Sagara I, Zongo I, Yerbanga RS, Mahamar A, Nikièma F, Tapily A, Sompougdou F, Diarra M, Bellamy D, Provstgaard-Morys S, Zoungrana C, Issiaka D, Haro A, Sanogo K, Sienou AA, Kaya M, Traore S, Dicko OM, Kone Y, Yalcouye H, Thera I, Diarra K, Snell P, Ofori-Anyinam O, Ockenhouse C, Lee C, Ewer K, Tinto H, Djimde A, Ouedraogo JB, Dicko A, Chandramohan D, Greenwood B. The anti-circumsporozoite antibody response to repeated, seasonal booster doses of the malaria vaccine RTS,S/AS01 E. NPJ Vaccines 2025; 10:26. [PMID: 39915506 PMCID: PMC11802723 DOI: 10.1038/s41541-025-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
The recently deployed RTS,S/AS01E malaria vaccine induces a strong antibody response to the circumsporozoite protein (CSP) on the surface of the Plasmodium falciparum sporozoite which is associated with protection. The anti-CSP antibody titre falls rapidly after primary vaccination, associated with a decline in efficacy, but the antibody titre and the protective response can be partially restored by a booster dose of vaccine, but this response is also transitory. In many malaria- endemic areas of Africa, children are at risk of malaria, including severe malaria, until they are five years of age or older and to sustain protection from malaria for this period by vaccination with RTS,S/AS01E, repeated booster doses of vaccine may be required. However, there is little information about the immune response to repeated booster doses of RTS,S/AS01E. In many malaria-endemic areas of Africa, the burden of malaria is largely restricted to the rainy season and, therefore, a recent trial conducted in Burkina Faso and Mali explored the impact of repeated annual booster doses of RTS,S/AS01E given immediately prior to the malaria transmission season until children reached the age of five years. Anti-CSP antibody titres were measured in sera obtained from a randomly selected subset of children enrolled in this trial collected before and one month after three priming and four annual booster doses of vaccine using the GSK ELISA developed at the University of Ghent and, in a subset of these samples, by a multiplex assay developed at the University of Oxford. Three priming doses of RTS,S/AS01E induced a strong anti-CSP antibody response (GMT 368.9 IU/mL). Subsequent annual, seasonal booster doses induced a strong, but lower, antibody response; the GMT after the fourth booster was 128.5 IU/mL. Children whose antibody response was in the upper and middle terciles post vaccination had a lower incidence of malaria during the following year than children in the lowest tercile. Results obtained with GSK ELISA and the Oxford Multiplex assay were strongly correlated (Pearson's correlation coefficient, r = 0.94; 95% CI, 0.93-0.95). Although anti-CSP antibody titres declined after repeated booster doses of RTS,S/AS01E a high, although declining, level of efficacy was sustained suggesting that there may have been changes in the characteristics of the anti-CSP antibody following repeated booster doses.Clinical Trials Registration. NCT03143218.
Collapse
Affiliation(s)
- M Sanni Ali
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Issaka Sagara
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé Serge Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Almahamoudou Mahamar
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Frédéric Nikièma
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Amadou Tapily
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Modibo Diarra
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | | | - Charles Zoungrana
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Djibrilla Issiaka
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Alassane Haro
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Koualy Sanogo
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoul Aziz Sienou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Mahamadou Kaya
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Seydou Traore
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Oumar M Dicko
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Kone
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Hama Yalcouye
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ismaila Thera
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kalifa Diarra
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Paul Snell
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | | | - Katie Ewer
- GSK Vaccines Institute for Global Health, Sienna, Italy
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Djimde
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Jean-Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Alassane Dicko
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Brian Greenwood
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| |
Collapse
|
3
|
Sagara I, Zongo I, Cairns M, Yerbanga RS, Mahamar A, Nikièma F, Tapily A, Sompougdou F, Diarra M, Zoungrana C, Issiaka D, Haro A, Sanogo K, Aziz Sienou A, Kaya M, Traore S, Thera I, Diarra K, Dolo A, Kuepfer I, Snell P, Milligan P, Ockenhouse C, Ofori-Anyinam O, Tinto H, Djimde A, Ouedraogo JB, Dicko A, Chandramohan D, Greenwood B. The Anti-Circumsporozoite Antibody Response of Children to Seasonal Vaccination With the RTS,S/AS01E Malaria Vaccine. Clin Infect Dis 2022; 75:613-622. [PMID: 34894221 PMCID: PMC9464075 DOI: 10.1093/cid/ciab1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION NCT03143218.
Collapse
Affiliation(s)
| | | | - Matthew Cairns
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Almahamoudou Mahamar
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Frédéric Nikièma
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Amadou Tapily
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Modibo Diarra
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Charles Zoungrana
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Djibrilla Issiaka
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Alassane Haro
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Koualy Sanogo
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoul Aziz Sienou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Mahamadou Kaya
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Seydou Traore
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ismaila Thera
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kalifa Diarra
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amagana Dolo
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Irene Kuepfer
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Paul Snell
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Paul Milligan
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Djimde
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Alassane Dicko
- The Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Brian Greenwood
- Correspondence: B. Greenwood, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St., London WC1E 7HT, UK ()
| |
Collapse
|
4
|
Pissarra J, Dorkeld F, Loire E, Bonhomme V, Sereno D, Lemesre JL, Holzmuller P. SILVI, an open-source pipeline for T-cell epitope selection. PLoS One 2022; 17:e0273494. [PMID: 36070252 PMCID: PMC9451077 DOI: 10.1371/journal.pone.0273494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
High-throughput screening of available genomic data and identification of potential antigenic candidates have promoted the development of epitope-based vaccines and therapeutics. Several immunoinformatic tools are available to predict potential epitopes and other immunogenicity-related features, yet it is still challenging and time-consuming to compare and integrate results from different algorithms. We developed the R script SILVI (short for: from in silico to in vivo), to assist in the selection of the potentially most immunogenic T-cell epitopes from Human Leukocyte Antigen (HLA)-binding prediction data. SILVI merges and compares data from available HLA-binding prediction servers, and integrates additional relevant information of predicted epitopes, namely BLASTp alignments with host proteins and physical-chemical properties. The two default criteria applied by SILVI and additional filtering allow the fast selection of the most conserved, promiscuous, strong binding T-cell epitopes. Users may adapt the script at their discretion as it is written in open-source R language. To demonstrate the workflow and present selection options, SILVI was used to integrate HLA-binding prediction results of three example proteins, from viral, bacterial and parasitic microorganisms, containing validated epitopes included in the Immune Epitope Database (IEDB), plus the Human Papillomavirus (HPV) proteome. Applying different filters on predicted IC50, hydrophobicity and mismatches with host proteins allows to significantly reduce the epitope lists with favourable sensitivity and specificity to select immunogenic epitopes. We contemplate SILVI will assist T-cell epitope selections and can be continuously refined in a community-driven manner, helping the improvement and design of peptide-based vaccines or immunotherapies. SILVI development version is available at: github.com/JoanaPissarra/SILVI2020 and https://doi.org/10.5281/zenodo.6865909.
Collapse
Affiliation(s)
- Joana Pissarra
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
- * E-mail:
| | - Franck Dorkeld
- UMR CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier (I-MUSE), Montpellier, France
| | - Etienne Loire
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Vincent Bonhomme
- ISEM, CNRS, EPHE, IRD, University of Montpellier (I-MUSE), Montpellier, France
| | - Denis Sereno
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
| | - Jean-Loup Lemesre
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
5
|
Wahl I, Obraztsova AS, Puchan J, Hundsdorfer R, Chakravarty S, Sim BKL, Hoffman SL, Kremsner PG, Mordmüller B, Wardemann H. Clonal evolution and TCR specificity of the human T FH cell response to Plasmodium falciparum CSP. Sci Immunol 2022; 7:eabm9644. [PMID: 35687696 DOI: 10.1126/sciimmunol.abm9644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T follicular helper (TFH) cells play a crucial role in the development of long-lived, high-quality B cell responses after infection and vaccination. However, little is known about how antigen-specific TFH cells clonally evolve in response to complex pathogens and what guides the targeting of different epitopes. Here, we assessed the cell phenotype, clonal dynamics, and T cell receptor (TCR) specificity of human circulating TFH (cTFH) cells during successive malaria immunizations with radiation-attenuated Plasmodium falciparum (Pf) sporozoites. Repeated parasite exposures induced a dynamic, polyclonal cTFH response with high frequency of cells specific to a small number of epitopes in Pf circumsporozoite protein (PfCSP), the primary sporozoite surface protein and well-defined vaccine target. Human leukocyte antigen (HLA) restrictions and differences in TCR generation probability were associated with differences in the epitope targeting frequency and indicated the potential of amino acids 311 to 333 in the Th2R/T* region as a T cell supertope. But most of vaccine-induced anti-amino acid 311 to 333 TCRs, including convergent TCRs with high sequence similarity, failed to tolerate natural polymorphisms in their target peptide sequence, thus demonstrating that the TFH cell response was limited to the vaccine strain. These data suggest that the high parasite diversity in endemic areas will limit boosting of the vaccine-induced TFH cell response by natural infections. Our findings may guide the further design of PfCSP-based malaria vaccines able to induce potent T helper cell responses for broad, long-lasting antibody responses.
Collapse
Affiliation(s)
- Ilka Wahl
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Anna S Obraztsova
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Julia Puchan
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Rebecca Hundsdorfer
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
6
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
7
|
Huang HY, Liang XY, Lin LY, Chen JT, Ehapo CS, Eyi UM, Li J, Jiang TT, Zheng YZ, Zha GC, Xie DD, He JQ, Chen WZ, Liu XZ, Mo HT, Chen XY, Lin M. Genetic polymorphism of Plasmodium falciparum circumsporozoite protein on Bioko Island, Equatorial Guinea and global comparative analysis. Malar J 2020; 19:245. [PMID: 32660484 PMCID: PMC7359586 DOI: 10.1186/s12936-020-03315-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/04/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various polymorphisms of the pfcsp gene among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of pfcsp in Bioko and the comparison among global P. falciparum population. METHODS From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analysed with 2200 global pfcsp sequences mined from MalariaGEN Pf3k Database and NCBI. RESULTS In Bioko, the N-terminus of pfcsp showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p > 0.05) and recombination occurred. The overall pattern of Bioko pfcsp gene had no obvious deviation from African mainland pfcsp (Fst = 0.00878, p < 0.05). The comparative analysis of Bioko and global pfcsp displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p < 0.05). The global pfcsp C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). CONCLUSIONS The genetic polymorphism phenomena of pfcsp were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.
Collapse
Affiliation(s)
- Hui-Ying Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Xue-Yan Liang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Jiang-Tao Chen
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People's Republic of China
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Ting-Ting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Yu-Zhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Guang-Cai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Dong-De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Jin-Quan He
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei-Zhong Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Huan-Tong Mo
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xin-Yao Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China.
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
8
|
Dinga JN, Perimbie SN, Gamua SD, Chuma FNG, Njimoh DL, Djikeng A, Pelle R, Titanji VPK. Analysis of the Role of TpUB05 Antigen from Theileria parva in Immune Responses to Malaria in Humans Compared to Its Homologue in Plasmodium falciparum the UB05 Antigen. Pathogens 2020; 9:pathogens9040271. [PMID: 32276308 PMCID: PMC7238281 DOI: 10.3390/pathogens9040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Despite the amount of resources deployed and the technological advancements in molecular biology, vaccinology, immunology, genetics, and biotechnology, there are still no effective vaccines against malaria. Immunity to malaria is usually seen to be species- and/or strain-specific. However, there is a growing body of evidence suggesting the possibility of the existence of cross-strain, cross-species, and cross-genus immune responses in apicomplexans. The principle of gene conservation indicates that homologues play a similar role in closely related organisms. The homologue of UB05 in Theileria parva is TpUB05 (XP_763711.1), which has been tested and shown to be associated with protective immunity in East Coast fever. In a bid to identify potent markers of protective immunity to aid malaria vaccine development, TpUB05 was tested in malaria caused by Plasmodium falciparum. It was observed that TpUB05 was better at detecting antigen-specific antibodies in plasma compared to UB05 when tested by ELISA. The total IgG raised against TpUB05 was able to block parasitic growth in vitro more effectively than that raised against UB05. However, there was no significant difference between the two study antigens in recalling peripheral blood mononuclear cell (PBMC) memory through IFN-γ production. This study suggests, for the first time, that TpUB05 from T. parva cross-reacts with UB05 from P. falciparum and is a marker of protective immunity in malaria. Hence, TpUB05 should be considered for possible development as a potential subunit vaccine candidate against malaria.
Collapse
Affiliation(s)
- Jerome Nyhalah Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, P O. Box 63 Buea, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
- Correspondence: ; Tel.: +237-233322134
| | - Stephanie Numenyi Perimbie
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
| | - Stanley Dobgima Gamua
- Biotechnology Unit, Faculty of Science, University of Buea, P O. Box 63 Buea, Cameroon
| | - Francis N. G. Chuma
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 Nairobi, Kenya
| | - Dieudonné Lemuh Njimoh
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Easter Bush Campus, EH25 9RG Edinburgh, UK
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 Nairobi, Kenya
| | - Vincent P. K. Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, P O. Box 63 Buea, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
- Faculty of Science, Engineering and Technology, Cameroon Christian University Institute, P.O. Box 5 Bali, Cameroon
| |
Collapse
|
9
|
Moris P, Jongert E, van der Most RG. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum Vaccin Immunother 2017; 14:17-27. [PMID: 28934066 PMCID: PMC5791571 DOI: 10.1080/21645515.2017.1381809] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP), which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the stage between mosquito bite and liver infection. Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies, associations between protection and various types of CMI (CSP-specific CD4+ T cells and INF-γ ELISPOTs) have been identified, but not consistently. It is plausible that certain CD4+ T cells support antibody responses or co-operate with other immune-cell types to potentially elicit protection. However, the identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can be informed by the results of controlled human malaria infection studies.
Collapse
|
10
|
van den Berg RA, Coccia M, Ballou WR, Kester KE, Ockenhouse CF, Vekemans J, Jongert E, Didierlaurent AM, van der Most RG. Predicting RTS,S Vaccine-Mediated Protection from Transcriptomes in a Malaria-Challenge Clinical Trial. Front Immunol 2017; 8:557. [PMID: 28588574 PMCID: PMC5440508 DOI: 10.3389/fimmu.2017.00557] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
The RTS,S candidate malaria vaccine can protect against controlled human malaria infection (CHMI), but how protection is achieved remains unclear. Here, we have analyzed longitudinal peripheral blood transcriptome and immunogenicity data from a clinical efficacy trial in which healthy adults received three RTS,S doses 4 weeks apart followed by CHMI 2 weeks later. Multiway partial least squares discriminant analysis (N-PLS-DA) of transcriptome data identified 110 genes that could be used in predictive models of protection. Among the 110 genes, 42 had known immune-related functions, including 29 that were related to the NF-κB-signaling pathway and 14 to the IFN-γ-signaling pathway. Post-dose 3 serum IFN-γ concentrations were also correlated with protection; and N-PLS-DA of IFN-γ-signaling pathway transcriptome data selected almost all (44/45) of the representative genes for predictive models of protection. Hence, the identification of the NF-κB and IFN-γ pathways provides further insight into how vaccine-mediated protection may be achieved.
Collapse
Affiliation(s)
| | | | | | - Kent E Kester
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | - Erik Jongert
- GSK Vaccines, Rue de l'Institut, Rixensart, Belgium
| | | | | |
Collapse
|
11
|
Espinosa DA, Christensen D, Muñoz C, Singh S, Locke E, Andersen P, Zavala F. Robust antibody and CD8 + T-cell responses induced by P. falciparum CSP adsorbed to cationic liposomal adjuvant CAF09 confer sterilizing immunity against experimental rodent malaria infection. NPJ Vaccines 2017; 2. [PMID: 28936360 PMCID: PMC5603302 DOI: 10.1038/s41541-017-0011-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite several decades of extensive research, the development of a highly efficacious malaria vaccine has yet to be accomplished. While the RTS,S malaria vaccine candidate shows the potential to prevent a substantial number of clinical malaria cases, significant improvements in protective efficacy are still needed. Multiple studies have shown that RTS,S induces protective antibody and CD4+ T-cell responses, but limited or negligible CD8+ T cells. In this study, we evaluated the immunogenicity and protective capacity of full-length recombinant Plasmodium falciparum circumsporozoite protein administered with the novel cationic liposomal adjuvant system CAF09. Using newly developed transgenic rodent malaria parasites expressing the full-length Plasmodium falciparum circumsporozoite protein, we demonstrate that this liposome-based protein-in-adjuvant formulation is capable of inducing robust antibody and CD8+ T-cell responses that strongly inhibit parasite infection and development of liver stages, conferring durable sterilizing immunity. These findings underscore the potential of liposome-based adjuvants for inducing robust humoral and CD8+ T-cell responses and warrant further studies toward the development of novel subunit vaccine formulations with this adjuvant system. A vaccine consisting of parasitic proteins enveloped by fatty molecules provides comprehensive protection against malaria in a rodent model, Previous and current malaria vaccines concentrate on priming antibodies to recognize malarial infection, despite evidence that, by activating ‘killer’ CD8+ T cells, greater protection is conferred against the disease. Fidel Zavala, of the Johns Hopkins University, United States, and an international group of researchers developed their vaccine by encapsulating proteins from the malaria-causing parasite Plasmodium falciparum in fat-based carriers called liposomes. In past experiments, killer T cells recruited via this vaccine-type have effectively protected against other diseases. In this study, the vaccine induced both CD8+ T cell and antibody responses and provided significant immunity against P. falciparum-instigated malaria. As a highly efficacious vaccine against malaria is not yet available, this research will likely prove invaluable in guiding further studies.
Collapse
Affiliation(s)
- Diego A Espinosa
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Muñoz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Emily Locke
- PATH Malaria Vaccine Initiative, Washington DC, USA
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Dinga JN, Njimoh DL, Kiawa B, Djikeng A, Nyasa RB, Nkuo-Akenji T, Pellé R, Titanji VPK. Differential T-cell responses to a chimeric Plasmodium falciparum antigen; UB05-09, correlates with acquired immunity to malaria. Parasite Immunol 2017; 38:303-16. [PMID: 27012849 DOI: 10.1111/pim.12318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
The development of a sterilizing and cost-effective vaccine against malaria remains a major problem despite recent advances. In this study, it is demonstrated that two antigens of P. falciparum UB05, UB09 and their chimera UB05-09 can serve as protective immunity markers by eliciting higher T-cell responses in malaria semi-immune subjects (SIS) than in frequently sick subjects (FSS) and could be used to distinguish these two groups. UB05, UB09 and UB05-09 were cloned, expressed in E. coli, purified and used to stimulate PBMCs isolated from 63 subjects in a malaria endemic area, for IFN-γ production, which was measured by the ELISpot assay. The polymorphism of UB09 gene in the malaria infected population was also studied by PCR/sequencing of the gene in P. falciparum field isolates. All three antigens were preferentially recognized by PBMCs from SIS. IFN-γ production induced by these antigens correlated with the absence of fever and parasitaemia. UB09 was shown to be relatively well-conserved in nature. It is concluded that UB05, UB09 and the chimera UB05-09 posses T-cell epitopes that are associated with protection against malaria and could thus be used to distinguish SIS from FSS eventhough acute infection with malaria has been shown to reduce cytokine production in some studies. Further investigations of these antigens as potential diagnostic and/or vaccine candidates for malaria are indicated.
Collapse
Affiliation(s)
- J N Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - D L Njimoh
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - B Kiawa
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - A Djikeng
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - R B Nyasa
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - T Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - R Pellé
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - V P K Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon.,Cameroon Christian University Institute, Bali, Cameroon
| |
Collapse
|
13
|
Maggioli MF, Palmer MV, Thacker TC, Vordermeier HM, McGill JL, Whelan AO, Larsen MH, Jacobs WR, Waters WR. Increased TNF-α/IFN-γ/IL-2 and Decreased TNF-α/IFN-γ Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination. Front Immunol 2016; 7:421. [PMID: 27799930 PMCID: PMC5066095 DOI: 10.3389/fimmu.2016.00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Central memory T cell (Tcm) and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector/memory populations from bacille Calmette–Guerin (BCG) vaccinated and non-vaccinated calves by flow cytometry prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves, only differing in magnitude (i.e., infected > vaccinated). BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (3 weeks post-infection), non-vaccinates had greater antigen-specific interferon-γ (IFN-γ)/tumor necrosis factor-α (TNF-α) and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains) were detected in memory subsets, as well as in effector cells, as early as 3 weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden, while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.
Collapse
Affiliation(s)
- Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA; Imbio, Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| | - Tyler C Thacker
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| | | | - Jodi L McGill
- Department of Diagnostic Medicine and Pathology, College of Veterinary Medicine, Kansas State University , Manhattan, KS , USA
| | - Adam O Whelan
- Defense Science and Technology Laboratory, Porton Down , Wiltshire , UK
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| |
Collapse
|
14
|
Agnandji ST, Fernandes JF, Bache EB, Ramharter M. Clinical development of RTS,S/AS malaria vaccine: a systematic review of clinical Phase I-III trials. Future Microbiol 2015; 10:1553-78. [PMID: 26437872 DOI: 10.2217/fmb.15.90] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first clinical Phase III trial evaluating a malaria vaccine was completed in December 2013 at 11 sites from seven sub-Saharan African countries. This systematic review assesses data of Phase I-III trials including malaria-naive adults and adults, children and infants from malaria endemic settings in sub-Saharan Africa. The main endpoint of this systematic review was an analysis of the consistency of efficacy and immunogenicity data from respective Phase I-III trials. In addition, safety data from a pooled analysis of RTS/AS Phase II trials and RTS,S/AS01 Phase III trial were reviewed. The RTS,S/AS01 malaria vaccine may become available on the market in the coming year. If so, further strategies should address challenges on how to optimize vaccine efficacy and implementation of RTS,S/AS01 vaccine within the framework of established malaria control measures.
Collapse
Affiliation(s)
- Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - José F Fernandes
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Emmanuel B Bache
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany.,Department of Medicine I, Division of Infectious Diseases & Tropical Medicine, Medical University of Vienna, Austria, Währinger Gürtel 18-20, 1190 Vienna, Austria
| |
Collapse
|
15
|
Leroux-Roels G, Leroux-Roels I, Clement F, Ofori-Anyinam O, Lievens M, Jongert E, Moris P, Ballou WR, Cohen J. Evaluation of the immune response to RTS,S/AS01 and RTS,S/AS02 adjuvanted vaccines: randomized, double-blind study in malaria-naïve adults. Hum Vaccin Immunother 2015; 10:2211-9. [PMID: 25424924 DOI: 10.4161/hv.29375] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This phase II, randomized, double-blind study evaluated the immunogenicity of RTS,S vaccines containing Adjuvant System AS01 or AS02 as compared with non-adjuvanted RTS,S in healthy, malaria-naïve adults (NCT00443131). Thirty-six subjects were randomized (1:1:1) to receive RTS,S/AS01, RTS,S/AS02, or RTS,S/saline at months 0, 1, and 2. Antibody responses to Plasmodium falciparum circumsporozoite (CS) and hepatitis B surface (HBs) antigens were assessed and cell-mediated immune responses evaluated by flow cytometry using intracellular cytokine staining on peripheral blood mononuclear cells. Anti-CS antibody avidity was also characterized. Safety and reactogenicity after each vaccine dose were monitored. One month after the third vaccine dose, RTS,S/AS01 (160.3 EU/mL [95%CI: 114.1-225.4]) and RTS,S/AS02 (77.4 EU/mL (95%CI: 47.3-126.7)) recipients had significantly higher anti-CS antibody geometric mean titers (GMTs) than recipients of RTS,S/saline (12.2 EU/mL (95%CI: 4.8-30.7); P < 0.0001 and P = 0.0011, respectively). The anti-CS antibody GMT was significantly higher with RTS,S/AS01 than with RTS,S/AS02 (P = 0.0135). Anti-CS antibody avidity was in the same range in all groups. CS- and HBs-specific CD4(+) T cell responses were greater for both RTS,S/AS groups than for the RTS,S/saline group. Reactogenicity was in general higher for RTS,S/AS compared with RTS,S/saline. Most grade 3 solicited adverse events (AEs) were of short duration and grade 3 solicited general AEs were infrequent in the 3 groups. No serious adverse events were reported. In conclusion, in comparison with non-adjuvanted RTS,S, both RTS,S/AS vaccines exhibited better CS-specific immune responses. The anti-CS antibody response was significantly higher with RTS,S/AS01 than with RTS,S/AS02. The adjuvanted vaccines had acceptable safety profiles.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- a Centre for Vaccinology (CEVAC); Ghent University and Ghent University Hospital; Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ockenhouse CF, Regules J, Tosh D, Cowden J, Kathcart A, Cummings J, Paolino K, Moon J, Komisar J, Kamau E, Oliver T, Chhoeu A, Murphy J, Lyke K, Laurens M, Birkett A, Lee C, Weltzin R, Wille-Reece U, Sedegah M, Hendriks J, Versteege I, Pau MG, Sadoff J, Vanloubbeeck Y, Lievens M, Heerwegh D, Moris P, Guerra Mendoza Y, Jongert E, Cohen J, Voss G, Ballou WR, Vekemans J. Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naïve Adults. PLoS One 2015; 10:e0131571. [PMID: 26148007 PMCID: PMC4492580 DOI: 10.1371/journal.pone.0131571] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Methods In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. Results ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). Conclusions An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. Trial Registration ClinicalTrials.gov NCT01366534
Collapse
Affiliation(s)
- Christian F. Ockenhouse
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- * E-mail:
| | - Jason Regules
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Donna Tosh
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jessica Cowden
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - April Kathcart
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - James Cummings
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Kristopher Paolino
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - James Moon
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jack Komisar
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Edwin Kamau
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Thomas Oliver
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Austin Chhoeu
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jitta Murphy
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Kirsten Lyke
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Matthew Laurens
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | | - Cynthia Lee
- PATH-MVI, Washington, DC, United States of America
| | - Rich Weltzin
- PATH-MVI, Washington, DC, United States of America
| | | | - Martha Sedegah
- Naval Medical Research Center, Silver Spring, MD, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tanner R, Kakalacheva K, Miller E, Pathan AA, Chalk R, Sander CR, Scriba T, Tameris M, Hawkridge T, Mahomed H, Hussey G, Hanekom W, Checkley A, McShane H, Fletcher HA. Serum indoleamine 2,3-dioxygenase activity is associated with reduced immunogenicity following vaccination with MVA85A. BMC Infect Dis 2014; 14:660. [PMID: 25466778 PMCID: PMC4265419 DOI: 10.1186/s12879-014-0660-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is an urgent need for improved vaccines to protect against tuberculosis. The currently available vaccine Bacille Calmette-Guerin (BCG) has varying immunogenicity and efficacy across different populations for reasons not clearly understood. MVA85A is a modified vaccinia virus expressing antigen 85A from Mycobacterium tuberculosis which has been in clinical development since 2002 as a candidate vaccine to boost BCG-induced protection. A recent efficacy trial in South African infants failed to demonstrate enhancement of protection over BCG alone. The immunogenicity was lower than that seen in UK trials. The enzyme Indoleamine 2,3-dioxygenase (IDO) catalyses the first and rate-limiting step in the breakdown of the essential amino acid tryptophan. T cells are dependent on tryptophan and IDO activity suppresses T-cell proliferation and function. METHODS Using samples collected during phase I trials with MVA85A across the UK and South Africa we have investigated the relationship between vaccine immunogenicity and IDO using IFN-γ ELISPOT, qPCR and liquid chromatography mass spectrometry. RESULTS We demonstrate an IFN-γ dependent increase in IDO mRNA expression in peripheral blood mononuclear cells (PBMC) following MVA85A vaccination in UK subjects. IDO mRNA correlates positively with the IFN-γ ELISPOT response indicating that vaccine specific induction of IDO in PBMC is unlikely to limit the development of vaccine specific immunity. IDO activity in the serum of volunteers from the UK and South Africa was also assessed. There was no change in serum IDO activity following MVA85A vaccination. However, we observed higher baseline IDO activity in South African volunteers when compared to UK volunteers. In both UK and South African serum samples, baseline IDO activity negatively correlated with vaccine-specific IFN-γ responses, suggesting that IDO activity may impair the generation of a CD4+ T cell memory response. CONCLUSIONS Baseline IDO activity was higher in South African volunteers when compared to UK volunteers, which may represent a potential mechanism for the observed variation in vaccine immunogenicity in South African and UK populations and may have important implications for future vaccination strategies. TRIAL REGISTRATION Trials are registered at ClinicalTrials.gov; UK cohort NCT00427830, UK LTBI cohort NCT00456183, South African cohort NCT00460590, South African LTBI cohort NCT00480558.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Kristina Kakalacheva
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: Department of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Ellen Miller
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: Royal Sussex County Hospital, Eastern road, Brighton, UK.
| | - Ansar A Pathan
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University, Middlesex, UK.
| | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Oxford, UK.
| | - Clare R Sander
- The Jenner Institute, University of Oxford, Oxford, UK. .,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Tom Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Michelle Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Tony Hawkridge
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa. .,Vaccines for Africa Initiative, Cape Town, South Africa.
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa. .,Division of Community Health, Stellenbosch University, Stellenbosch, South Africa. .,Metropolitan District Health Services, Western Cape, Government: Health, Cape Town, South Africa.
| | - Greg Hussey
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa. .,Vaccines for Africa Initiative, Cape Town, South Africa.
| | - Willem Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Anna Checkley
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Helen A Fletcher
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
18
|
Vaccine Adjuvant Systems containing monophosphoryl lipid A and QS-21 induce strong humoral and cellular immune responses against hepatitis B surface antigen which persist for at least 4 years after vaccination. Vaccine 2014; 33:1084-91. [PMID: 25444781 DOI: 10.1016/j.vaccine.2014.10.078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/27/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recombinant hepatitis B surface antigen (HBsAg) was used as a model antigen to evaluate persistence of cellular and humoral immune responses when formulated with three different Adjuvant Systems containing 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS-21, in an oil-in-water emulsion (AS02B and AS02V), or with liposomes (AS01B). METHODS This is an open, 4-year follow-up of a previous randomised, double-blind study. Healthy subjects aged 18-40 years received three vaccine doses on a month 0, 1, 10 schedule and were initially followed for 18 months. A total of 93 subjects (AS02B: n=30; AS02V: n=28; AS01B: n=35) were enrolled in this follow-up and had an additional blood sample taken at Year 4 (NCT02153320). The primary endpoint was the frequency of HBsAg-specific CD4(+) and CD8(+) T-cells expressing cytokines upon short-term in vitro stimulation of peripheral blood mononuclear cells with HBsAg-derived peptides. Secondary endpoints were anti-HBs antibody titres and frequency of HBsAg-specific memory B-cells. RESULTS A strong and persistent specific CD4(+) T-cell response was observed at Year 4 in all groups. HBsAg-specific CD4(+) T-cells expressed mainly CD40L and IL-2, and to a lesser extent TNF-α and IFN-γ. HBsAg-specific CD8(+) T-cells were not detected in any group. A high, persistent HBsAg-specific humoral immune response was observed in all groups, with all subjects seroprotected (antibody titre ≥10mIU/mL) at Year 4. The geometric mean antibody titre at Year 4 was above 100,000mIU/mL in all groups. A strong memory B-cell response was observed post-dose 2, which tended to increase post-dose 3 and persisted at Year 4 in all groups. CONCLUSION The MPL/QS-21/HBsAg vaccine formulations induced persistent immune responses up to 4 years after first vaccination. These Adjuvant Systems offer potential for combination with recombinant, synthetic or highly purified subunit vaccines, particularly for vaccination against challenging diseases, or in specific populations, although additional studies are needed.
Collapse
|
19
|
Chudley L, McCann KJ, Coleman A, Cazaly AM, Bidmon N, Britten CM, van der Burg SH, Gouttefangeas C, Jandus C, Laske K, Maurer D, Romero P, Schröder H, Stynenbosch LFM, Walter S, Welters MJP, Ottensmeier CH. Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8(+) T cells with detection by ELISPOT and HLA-multimer staining. Cancer Immunol Immunother 2014; 63:1199-211. [PMID: 25134947 PMCID: PMC4209099 DOI: 10.1007/s00262-014-1593-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/01/2014] [Indexed: 10/31/2022]
Abstract
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Collapse
Affiliation(s)
- Lindsey Chudley
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Katy J. McCann
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Adam Coleman
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Angelica M. Cazaly
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Nicole Bidmon
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | - Cedrik M. Britten
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cecile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | - Camilla Jandus
- Translational Tumour Immunology, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | | | - Pedro Romero
- Translational Tumour Immunology, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Helene Schröder
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | | | | | - Marij J. P. Welters
- Department of Clinical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christian H. Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- Somers Cancer Research Building (Mailpoint 824), Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| |
Collapse
|
20
|
Peptide Vaccine: Progress and Challenges. Vaccines (Basel) 2014; 2:515-36. [PMID: 26344743 PMCID: PMC4494216 DOI: 10.3390/vaccines2030515] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.
Collapse
|
21
|
Dinga JN, Kimbung Mbandi S, Cho-Ngwa F, Fon NP, Moliki J, Efeti RM, Nyasa BR, Anong DN, Jojic N, Heckerman D, Wang R, Titanji VPK. Differential T-cell responses of semi-immune and susceptible malaria subjects to in silico predicted and synthetic peptides of Plasmodium falciparum. Acta Trop 2014; 135:104-21. [PMID: 24681218 DOI: 10.1016/j.actatropica.2014.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 02/03/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
Abstract
Malaria remains a public health hazard in tropical countries as a consequence of the rise and spread of drug and insecticide resistances; hence the need for a vaccine with widespread application. Protective immunity to malaria is known to be mediated by both antibody and cellular immune responses, though characterization of the latter has been less extensive. The aim of the present investigation was to identify novel T-cell epitopes that may contribute to naturally acquired immune responses against malaria. Using the Microsoft software, Epitome™ T-cell peptide epitopes on 19 Plasmodium falciparum proteins in the Plasmodium Database (www.plasmodb.org.PlasmoDB 9.0) were predicted in-silico. The peptides were synthesized and used to stimulate peripheral blood mononuclear cells (PBMCs) in 14 semi-immune and 21 malaria susceptible subjects for interferon-gamma (IFN-γ) production ex-vivo. The level of IFN-γ production, a marker of T-cell responses, was measured by ELISPOT assay in semi-immune subjects (SIS) and frequently sick subjects (FSS) from an endemic zone with perennial malaria transmission. Of the 19 proteins studied, 17 yielded 27 pools (189 peptides), which were reactive with the subjects' PBMCs when tested for IFN-γ production, taking a stimulation index (SI) of ≥2 as a cutoff point for a positive response. There were 10 reactive peptide pools (constituting eight protein loci) with an SI of 10 or greater. Of the 19 proteins studied, two were known vaccine candidates (MSP-8 and SSP2/TRAP), which reacted both with SIS and FSS. Similarly the hypothetical proteins (PFF1030w, PFE0795c, PFD0880w, PFC0065c and PF10_0052) also reacted strongly with both SIS and FSS making them attractive for further characterization as mediators of protective immunity and/or pathogenesis.
Collapse
Affiliation(s)
- Jerome Nyhalah Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | | | - Fidelis Cho-Ngwa
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Nde Peter Fon
- Faculty of Health Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Johnson Moliki
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Rose Mary Efeti
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Babila Raymond Nyasa
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Damian Nota Anong
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | | | | | - Ruobing Wang
- Seattle Biomedical Research Institute, 307 Westlake Avenue N, Suite 500, Seattle, WA 98109-5219, USA.
| | - Vincent P K Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| |
Collapse
|
22
|
Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays. Clin Dev Immunol 2013; 2013:637649. [PMID: 24319467 PMCID: PMC3844203 DOI: 10.1155/2013/637649] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
Abstract
The enzyme-linked immunospot (ELISPOT) assay has advanced into a useful and widely applicable tool for the evaluation of T-cell responses in both humans and animal models of diseases and/or vaccine candidates. Using synthetic peptides (either individually or as overlapping peptide mixtures) or whole antigens, total lymphocyte or isolated T-cell subset responses can be assessed either after short-term stimulation (standard ELISPOT) or after their expansion during a 10-day culture (cultured ELISPOT). Both assays detect different antigen-specific immune responses allowing the analysis of effector memory T cells and central memory T cells. This paper describes the principle of ELISPOT assays and discusses their application in the evaluation of immune correlates of clinical interest with a focus on the vaccine field.
Collapse
|
23
|
Gilchuk P, Spencer CT, Conant SB, Hill T, Gray JJ, Niu X, Zheng M, Erickson JJ, Boyd KL, McAfee KJ, Oseroff C, Hadrup SR, Bennink JR, Hildebrand W, Edwards KM, Crowe JE, Williams JV, Buus S, Sette A, Schumacher TNM, Link AJ, Joyce S. Discovering naturally processed antigenic determinants that confer protective T cell immunity. J Clin Invest 2013; 123:1976-87. [PMID: 23543059 DOI: 10.1172/jci67388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/07/2013] [Indexed: 12/15/2022] Open
Abstract
CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection - information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I-transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Richie TL. Malaria vaccines for travelers. Travel Med Infect Dis 2012; 2:193-210. [PMID: 17291981 DOI: 10.1016/j.tmaid.2004.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Thomas L Richie
- Naval Medical Research Center Malaria Program, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| |
Collapse
|
25
|
Horowitz A, Hafalla JCR, King E, Lusingu J, Dekker D, Leach A, Moris P, Cohen J, Vekemans J, Villafana T, Corran PH, Bejon P, Drakeley CJ, von Seidlein L, Riley EM. Antigen-specific IL-2 secretion correlates with NK cell responses after immunization of Tanzanian children with the RTS,S/AS01 malaria vaccine. THE JOURNAL OF IMMUNOLOGY 2012; 188:5054-62. [PMID: 22504653 DOI: 10.4049/jimmunol.1102710] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RTS,S/AS01, a vaccine targeting pre-erythrocytic stages of Plasmodium falciparum, is undergoing clinical trials. We report an analysis of cellular immune response to component Ags of RTS,S-hepatitis B surface Ag (HBs) and P. falciparum circumsporozoite (CS) protein-among Tanzanian children in a phase IIb RTS,S/AS01(E) trial. RTS,S/AS01 (E) vaccinees make stronger T cell IFN-γ, CD69, and CD25 responses to HBs peptides than do controls, indicating that RTS,S boosts pre-existing HBs responses. T cell CD69 and CD25 responses to CS and CS-specific secreted IL-2 were augmented by RTS,S vaccination. Importantly, more than 50% of peptide-induced IFN-γ(+) lymphocytes were NK cells, and the magnitude of the NK cell CD69 response to HBs peptides correlated with secreted IL-2 concentration. CD69 and CD25 expression and IL-2 secretion may represent sensitive markers of RTS,S-induced, CS-specific T cells. The potential for T cell-derived IL-2 to augment NK cell activation in RTS,S-vaccinated individuals, and the relevance of this for protection, needs to be explored further.
Collapse
Affiliation(s)
- Amir Horowitz
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Olotu A, Moris P, Mwacharo J, Vekemans J, Kimani D, Janssens M, Kai O, Jongert E, Lievens M, Leach A, Villafana T, Savarese B, Marsh K, Cohen J, Bejon P. Circumsporozoite-specific T cell responses in children vaccinated with RTS,S/AS01E and protection against P falciparum clinical malaria. PLoS One 2011; 6:e25786. [PMID: 21998698 PMCID: PMC3188575 DOI: 10.1371/journal.pone.0025786] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RTS,S/AS01(E) is the lead candidate pre-erythrocytic malaria vaccine. In Phase IIb field trials the safety profile was acceptable and the efficacy was 53% (95%CI 31%-72%) for protecting children against clinical malaria caused by P. falciparum. We studied CS-specific T cell responses in order to identify correlates of protection. METHODS AND FINDINGS We used intracellular cytokine staining (for IL2, IFNγ, and TNFα), ex-vivo ELISPOTs (IFNγ and IL2) and IFNγ cultured ELISPOT assays to characterize the CS-specific cellular responses in 407 children (5-17 months of age) in a phase IIb randomized controlled trial of RTS,S/AS01(E) (NCT00380393). RTS,S/ AS01(E) vaccinees had higher frequencies of CS-specific CD4+ T cells producing IFNγ, TNFα or IL2 compared to control vaccinees. In a multivariable analysis TNFα(+) CD4(+) T cells were independently associated with a reduced risk for clinical malaria among RTS,S/AS01(E) vaccinees (HR = 0.64, 95%CI 0.49-0.86, p = 0.002). There was a non-significant tendency towards reduced risk among control vaccinees (HR = 0.80, 95%CI 0.62-1.03, p = 0.084), albeit with lower CS-specific T cell frequencies and higher rates of clinical malaria. When data from both RTS,S/AS01(E) vaccinees and control vaccinees were combined (with adjusting for vaccination group), the HR was 0.74 (95%CI 0.62-0.89, p = 0.001). After a Bonferroni correction for multiple comparisons (n-18), the finding was still significant at p = 0.018. There was no significant correlation between cultured or ex vivo ELISPOT data and protection from clinical malaria. The combination of TNFα(+) CD4(+) T cells and anti-CS antibody statistically accounted for the protective effect of vaccination in a Cox regression model. CONCLUSIONS RTS,S/AS01(E) induces CS-specific Th1 T cell responses in young children living in a malaria endemic area. The combination of anti-CS antibody concentrations titers and CS-specific TNFα(+) CD4(+) T cells could account for the level of protection conferred by RTS,S/AS01(E). The correlation between CS-specific TNFα(+) CD4(+) T cells and protection needs confirmation in other datasets.
Collapse
Affiliation(s)
- Ally Olotu
- Kenya Medical Research Institute/ Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | | | - Jedidah Mwacharo
- Kenya Medical Research Institute/ Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | | | - Domtila Kimani
- Kenya Medical Research Institute/ Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | | | - Oscar Kai
- Kenya Medical Research Institute/ Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | | | | | | | - Tonya Villafana
- PATH Malaria Vaccine Initiative (MVI), Bethesda, Maryland, United States of America
- MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Barbara Savarese
- PATH Malaria Vaccine Initiative (MVI), Bethesda, Maryland, United States of America
| | - Kevin Marsh
- Kenya Medical Research Institute/ Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joe Cohen
- GlaxoSmithKline Biologicals, Rixensart, Belgium
| | - Philip Bejon
- Kenya Medical Research Institute/ Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Baras B, de Waal L, Stittelaar KJ, Jacob V, Giannini S, Kroeze EJBV, van den Brand JMA, van Amerongen G, Simon JH, Hanon E, Mossman SP, Osterhaus ADME. Pandemic H1N1 vaccine requires the use of an adjuvant to protect against challenge in naïve ferrets. Vaccine 2011; 29:2120-6. [PMID: 21238573 DOI: 10.1016/j.vaccine.2010.12.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
In the context of an A/H1N1 influenza pandemic situation, this study demonstrates that heterologous vaccination with an AS03-adjuvanted 2008/2009 seasonal trivalent and pandemic H5N1 monovalent split vaccine conferred partial protection in influenza-naïve ferrets after challenge with the influenza pandemic H1N1 A/The Netherlands/602/09 virus. Further, unlike saline control and non-adjuvanted vaccine, it was shown that immunization of naïve ferrets with an AS03-adjuvanted pandemic H1N1 A/California/7/09 influenza split vaccine induced increased antibody response and enhanced protection against the challenge strain, including significant reduction in viral shedding in the upper respiratory tract and reduced lung pathology post-challenge. These results show the need for vaccination with the adjuvanted vaccine to fully protect against viral replication and influenza disease in unprimed ferrets.
Collapse
Affiliation(s)
- Benoît Baras
- GlaxoSmithKline Biologicals, Rixensart, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hedayat M, Takeda K, Rezaei N. Prophylactic and therapeutic implications of toll-like receptor ligands. Med Res Rev 2010; 32:294-325. [DOI: 10.1002/med.20214] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mona Hedayat
- Molecular Immunology Research Center; Department of Immunology; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | | | | |
Collapse
|
29
|
Daubenberger CA. Gene-expression analysis for prediction of RTS,S-induced protection in humans. Expert Rev Vaccines 2010; 9:465-9. [PMID: 20450320 DOI: 10.1586/erv.10.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland and University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Vekemans J, Leach A, Cohen J. Development of the RTS,S/AS malaria candidate vaccine. Vaccine 2009; 27 Suppl 6:G67-71. [DOI: 10.1016/j.vaccine.2009.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/25/2009] [Accepted: 10/02/2009] [Indexed: 01/01/2023]
|
31
|
Nguyen TV, Sacci JB, de la Vega P, John CC, James AA, Kang AS. Characterization of immunoglobulin G antibodies to Plasmodium falciparum sporozoite surface antigen MB2 in malaria exposed individuals. Malar J 2009; 8:235. [PMID: 19852802 PMCID: PMC2772840 DOI: 10.1186/1475-2875-8-235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/23/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND MB2 protein is a sporozoite surface antigen on the human malaria parasite Plasmodium falciparum. MB2 was identified by screening a P. falciparum sporozoite cDNA expression library using immune sera from a protected donor immunized via the bites of P. falciparum-infected irradiated mosquitoes. It is not known whether natural exposure to P. falciparum also induces the anti-MB2 response and if this response differs from that in protected individuals immunized via the bites of P. falciparum infected irradiated mosquitoes. The anti-MB2 antibody response may be part of a robust protective response against the sporozoite. METHODS Fragments of polypeptide regions of MB2 were constructed as recombinant fusions sandwiched between glutathione S-transferase and a hexa histidine tag for bacterial expression. The hexa histidine tag affinity purified proteins were used to immunize rabbits and the polyclonal sera evaluated in an in vitro inhibition of sporozoite invasion assay. The proteins were also used in immunoblots with sera from a limited number of donors immunized via the bites of P. falciparum infected irradiated mosquitoes and plasma and serum obtained from naturally exposed individuals in Kenya. RESULTS Rabbit polyclonal antibodies targeting the non-repeat region of the basic domain of MB2 inhibited sporozoites entry into HepG2-A16 cells in vitro. Analysis of serum from five human volunteers that were immunized via the bites of P. falciparum infected irradiated mosquitoes that developed immunity and were completely protected against subsequent challenge with non-irradiated parasite also had detectable levels of antibody against MB2 basic domain. In contrast, in three volunteers not protected, anti-MB2 antibodies were below the level of detection. Sera from protected volunteers preferentially recognized a non-repeat region of the basic domain of MB2, whereas plasma from naturally-infected individuals also had antibodies that recognize regions of MB2 that contain a repeat motif in immunoblots. Sequence analysis of eleven field isolates and four laboratory strains showed that these antigenic regions of the basic domain of the MB2 gene are highly conserved in parasites obtained from different parts of the world. Moreover, anti-MB2 antibodies also were detected in the plasma of 83% of the individuals living in a malaria endemic area of Kenya (n = 41). CONCLUSION A preliminary analysis of the human humoral response against MB2 indicates that it may be an additional highly conserved target for immune intervention at the pre-erythrocytic stage of P. falciparum life cycle.
Collapse
Affiliation(s)
- Thanh V Nguyen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- NeoGenomics California, 6 Morgan, Suite 150, Irvine, CA 92618, USA
| | - John B Sacci
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Room 324 660 W Redwood Street, Baltimore, MD 21201, USA
| | - Patricia de la Vega
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Room 324 660 W Redwood Street, Baltimore, MD 21201, USA
- Department of Cell Mediated Immunity, Division of Malaria Vaccine Development, US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, USA
| | - Chandy C John
- Global Pediatrics Program and Division of Pediatric Infectious Diseases, University of MN Medical School, 420 Delaware Street, SE, MMC #296, 850-Mayo, Minneapolis, MN 55455, USA
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-3900, USA
| | - Angray S Kang
- The School of Life Sciences, Department of Molecular and Applied Biosciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
32
|
House BL, Hollingdale MR, Sacci JB, Richie TL. Functional immunoassays using an in-vitro malaria liver-stage infection model: where do we go from here? Trends Parasitol 2009; 25:525-33. [PMID: 19747878 DOI: 10.1016/j.pt.2009.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/26/2009] [Accepted: 08/07/2009] [Indexed: 01/23/2023]
Abstract
For more than 25 years, the ISI assay and ILSDA have been used to study the development of the malaria parasite in the liver, to discover and characterize sporozoite and liver-stage antigens, to support the development of malaria vaccine candidates, and to search for immunological correlates of protection in animals and in humans. Although both assays have been limited by low sporozoite invasion rates, significant biological variability, and the subjective nature of manually counting hepatocytes containing parasites as the read-out, they have nevertheless been useful tools for exploring parasite biology. This review describes the origin, application and current status of these assays, critically discusses the need for improvements, and explores the roles of these assays in supporting the development of an effective vaccine against Plasmodium falciparum malaria.
Collapse
Affiliation(s)
- Brent L House
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD 21737, USA
| | | | | | | |
Collapse
|
33
|
Plasmodium falciparum-specific cellular immune responses after immunization with the RTS,S/AS02D candidate malaria vaccine in infants living in an area of high endemicity in Mozambique. Infect Immun 2009; 77:4502-9. [PMID: 19651872 DOI: 10.1128/iai.00442-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Results from clinical trials in areas where malaria is endemic have shown that immunization with RTS,S/AS02A malaria vaccine candidate induces partial protection in adults and children and cellular effector and memory responses in adults. For the first time in a malaria vaccine trial, we sought to assess the cell-mediated immune responses to RTS,S antigen components in infants under 1 year of age participating in a clinical phase I/IIb trial of RTS,S/AS02D in Mozambique. Circumsporozoite protein (CSP)-specific responses were detected in approximately half of RTS,S-immunized infants and included gamma interferon (IFN-gamma), interleukin-2 (IL-2), and combined IL-2/IL-4 responses. The median stimulation indices of cytokine-producing CD4(+) and CD8(+) cells were very low but significantly higher in RTS,S-immunized infants than in infants that received the comparator vaccine. Protection against subsequent malarial infection tended to be associated with a higher percentage of individuals with CSP-specific IL-2 in the supernatant (P = 0.053) and with higher CSP-specific IFN-gamma-producing CD8(+) T-cell responses (P = 0.07). These results report for the first time the detection of malaria-specific cellular immune responses after vaccination of infants less than 1 year of age and pave the way for future field studies of cellular immunity to malaria vaccine candidates.
Collapse
|
34
|
Polhemus ME, Remich SA, Ogutu BR, Waitumbi JN, Otieno L, Apollo S, Cummings JF, Kester KE, Ockenhouse CF, Stewart A, Ofori-Anyinam O, Ramboer I, Cahill CP, Lievens M, Dubois MC, Demoitie MA, Leach A, Cohen J, Ballou WR, Heppner DG. Evaluation of RTS,S/AS02A and RTS,S/AS01B in adults in a high malaria transmission area. PLoS One 2009; 4:e6465. [PMID: 19649245 PMCID: PMC2714466 DOI: 10.1371/journal.pone.0006465] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 04/21/2009] [Indexed: 11/18/2022] Open
Abstract
Background This study advances the clinical development of the RTS,S/AS01B candidate malaria vaccine to malaria endemic populations. As a primary objective it compares the safety and reactogenicity of RTS,S/AS01B to the more extensively evaluated RTS,S/AS02A vaccine. Methodology A Phase IIb, single centre, double-blind, controlled trial of 6 months duration with a subsequent 6 month single-blind follow-up conducted in Kisumu West District, Kenya between August 2005 and August 2006. 255 healthy adults aged 18 to 35 years were randomized (1∶1∶1) to receive 3 doses of RTS,S/AS02A, RTS,S/AS01B or rabies vaccine (Rabipur®; Chiron Behring GmbH) at months 0, 1, 2. The primary objective was the occurrence of severe (grade 3) solicited or unsolicited general (i.e. systemic) adverse events (AEs) during 7 days follow up after each vaccination. Principal Findings Both candidate vaccines had a good safety profile and were well tolerated. One grade 3 systemic AE occurred within 7 days of vaccination (RTS,S/AS01B group). No unsolicited AEs or SAEs were related to vaccine. A marked increase in anti-CS antibody GMTs was observed post Dose 2 of both RTS,S/AS01B (31.6 EU/mL [95% CI: 23.9 to 41.6]) and RTS,S/AS02A (16.7 EU/mL [95% CI: 12.9 to 21.7]). A further increase was observed post Dose 3 in both the RTS,S/AS01B (41.4 EU/mL [95% CI: 31.7 to 54.2]) and RTS,S/AS02A (21.4 EU/mL [95% CI: 16.0 to 28.7]) groups. Anti-CS antibody GMTs were significantly greater with RTS,S/AS01B compared to RTS,S/AS02A at all time points post Dose 2 and Dose 3. Both candidate vaccines produced strong anti-HBs responses. Vaccine efficacy in the RTS,S/AS01B group was 29.5% (95% CI: −15.4 to 56.9, p = 0.164) and in the RTS,S/AS02A group 31.7% (95% CI: −11.6 to 58.2, p = 0.128). Conclusions Both candidate malaria vaccines were well tolerated over a 12 month surveillance period. A more favorable immunogenicity profile was observed with RTS,S/AS01B than with RTS,S/AS02A. Trial Registration Clinicaltrials.gov NCT00197054
Collapse
|
35
|
Jalloh A, Jalloh M, Matsuoka H. T-cell epitope polymorphisms of the Plasmodium falciparum circumsporozoite protein among field isolates from Sierra Leone: age-dependent haplotype distribution? Malar J 2009; 8:120. [PMID: 19500348 PMCID: PMC2698914 DOI: 10.1186/1475-2875-8-120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/05/2009] [Indexed: 11/23/2022] Open
Abstract
Background In the context of the development of a successful malaria vaccine, understanding the polymorphisms exhibited by malaria antigens in natural parasite populations is crucial for proper vaccine design. Recent observations have indicated that sequence polymorphisms in the C-terminal T-cell epitopes of the Plasmodium falciparum circumsporozoite protein (Pfcsp) are rather low and apparently stable in low endemic areas. This study sought to assess the pattern in a malaria endemic setting in Africa, using samples from Freetown, Sierra Leone. Methods Filter-paper blood samples were collected from subjects at a teaching hospital in Freetown during September–October 2006 and in April–May 2007. The C-terminal portion of the Pfcsp gene spanning the Th2R and Th3R epitopes was amplified and directly sequenced; sequences were analysed with subject parameters and polymorphism patterns in Freetown were compared to that in other malaria endemic areas. Results and Discussion Overall, the genetic diversity in Freetown was high. From a total of 99 sequences, 42 haplotypes were identified with at least three accounting for 44.4% (44/99): the 3D7-type (19.2%), a novel type, P-01 (17.2%), and E12 (8.1%). Interestingly, all were unique to the African sub-region and there appeared to be predilection for certain haplotypes to distribute in certain age-groups: the 3D7 type was detected mainly in hospitalized children under 15 years of age, while the P-01 type was common in adult antenatal females (Pearson Chi-square = 48.750, degrees of freedom = 34, P = 0.049). In contrast, the single-haplotype predominance (proportion > 50%) pattern previously identified in Asia was not detected in Freetown. Conclusion Haplotype distribution of the T-cell epitopes of Pfcsp in Freetown appeared to vary with age in the study population, and the polymorphism patterns were similar to that observed in neighbouring Gambia, but differed significantly at the sequence level from that observed in Asia. The findings further emphasize the role of local factors in generating polymorphisms in the T-cell epitopes of the P. falciparum circumsporozoite protein.
Collapse
Affiliation(s)
- Amadu Jalloh
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | | | | |
Collapse
|
36
|
Bermúdez A, Vanegas M, Patarroyo ME. Structural and immunological analysis of circumsporozoite protein peptides: A further step in the identification of potential components of a minimal subunit-based, chemically synthesised antimalarial vaccine. Vaccine 2008; 26:6908-18. [DOI: 10.1016/j.vaccine.2008.09.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/16/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
37
|
Berthoud TK, Dunachie SJ, Todryk S, Hill AVS, Fletcher HA. MIG (CXCL9) is a more sensitive measure than IFN-gamma of vaccine induced T-cell responses in volunteers receiving investigated malaria vaccines. J Immunol Methods 2008; 340:33-41. [PMID: 18952093 PMCID: PMC2648876 DOI: 10.1016/j.jim.2008.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/10/2008] [Accepted: 09/24/2008] [Indexed: 12/03/2022]
Abstract
For many years the IFN-γ ex vivo ELISPOT has been a major assay for assessing human T-cell responses generated by malaria vaccines. The ELISPOT assay is a sensitive assay, but an imperfect correlate of protection against malaria. Monokine induced by gamma (MIG), or CXCL9, is a chemokine induced by IFN-γ and has the potential to provide amplification of the IFN-γ signal. MIG secretion could provide a measure of bio-active IFN-γ and a functional IFN-γ signalling pathway. We report that detecting MIG by flow cytometry and by RT-PCR can be more sensitive than the detection of IFN-γ using these methods. We also find that there is little inter-individual variability in MIG secretion when detected by flow cytometry and that the MIG assay may be used to estimate the amount of bio-active IFN-γ present. Measurement of MIG alongside IFN-γ may provide a fuller picture of Th1 type responses post-vaccination.
Collapse
Affiliation(s)
- Tamara K Berthoud
- University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, OX3 7LJ, UK
| | | | | | | | | |
Collapse
|
38
|
Brookes RH, Hill PC, Owiafe PK, Ibanga HB, Jeffries DJ, Donkor SA, Fletcher HA, Hammond AS, Lienhardt C, Adegbola RA, McShane H, Hill AVS. Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa. PLoS One 2008; 3:e2921. [PMID: 18698342 PMCID: PMC2488375 DOI: 10.1371/journal.pone.0002921] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022] Open
Abstract
Background Vaccination with a recombinant modified vaccinia Ankara expressing antigen 85A from Mycobacterium tuberculosis, MVA85A, induces high levels of cellular immune responses in UK volunteers. We assessed the safety and immunogenicity of this new vaccine in West African volunteers. Methods and Findings We vaccinated 21 healthy adult male subjects (11 BCG scar negative and 10 BCG scar positive) with MVA85A after screening for evidence of prior exposure to mycobacteria. We monitored them over six months, observing for clinical, haematological and biochemical adverse events, together with assessment of the vaccine induced cellular immune response using ELISPOT and flow cytometry. MVA85A was well tolerated with no significant adverse events. Mild local and systemic adverse events were consistent with previous UK trials. Marked immunogenicity was found whether individuals had a previous BCG scar or not. There was not enhanced immunogenicity in those with a BCG scar, and induced T cell responses were better maintained in apparently BCG-naïve Gambians than previously studied BCG-naïve UK vaccinees. Although responses were predominantly attributable to CD4+ T cells, we also identified antigen specific CD8+ T cell responses, in subjects who were HLA B-35 and in whom enough blood was available for more detailed immunological analysis. Conclusions These data on the safety and immunogenicity of MVA85A in West Africa support its accelerated development as a promising booster vaccine for tuberculosis. Trial Registration ClinicalTrials.gov NCT00423839
Collapse
Affiliation(s)
- Roger H. Brookes
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Philip C. Hill
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Patrick K. Owiafe
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Hannah B. Ibanga
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - David J. Jeffries
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Simon A. Donkor
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Helen A. Fletcher
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Abdulrahman S. Hammond
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | | | - Richard A. Adegbola
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- * E-mail:
| | - Adrian V. S. Hill
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Calarota SA, Foli A, Maserati R, Baldanti F, Paolucci S, Young MA, Tsoukas CM, Lisziewicz J, Lori F. HIV-1-specific T cell precursors with high proliferative capacity correlate with low viremia and high CD4 counts in untreated individuals. THE JOURNAL OF IMMUNOLOGY 2008; 180:5907-15. [PMID: 18424710 DOI: 10.4049/jimmunol.180.9.5907] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Evidences have recently suggested that the preservation of vaccine-induced memory rather than effector T cells is essential for better outcome and survival following pathogenic SIV challenge in macaques. However, an equivalent demonstration in humans is missing, and the immune correlates of HIV-1 control have been only partially characterized. We focused on the quantification of Ag-specific T cell precursors with high proliferative capacity (PHPC) using a peptide-based cultured IFN-gamma ELISPOT assay (PHPC assay), which has been shown to identify expandable memory T cells. To determine which responses correlate with viral suppression and positive immunologic outcome, PBMC from 32 chronically untreated HIV-1-infected individuals were evaluated in response to peptide pools, representing the complete HIV-1 Gag, Nef, and Rev proteins, by PHPC and IFN-gamma ELISPOT assay, which instead identifies effector T cells with low proliferative capacity. High magnitude of Gag-specific PHPC, but not ELISPOT, responses significantly correlated with low plasma viremia, due to responses directed toward p17 and p15 subunits. Only Gag p17-specific PHPC response significantly correlated with high CD4 counts. Analysis of 20 additional PBMC samples from an independent cohort of chronically untreated HIV-1-infected individuals confirmed the correlation between Gag p17-specific PHPC response and either plasma viremia (inverse correlation) or CD4 counts (direct correlation). Our results indicate that the PHPC assay is quantitatively and qualitatively different from the ELISPOT assay, supporting that different T cell populations are being evaluated. The PHPC assay might be an attractive option for individual patient management and for the design and testing of therapeutic and prophylactic vaccines.
Collapse
Affiliation(s)
- Sandra A Calarota
- Research Institute for Genetic and Human Therapy, Fondazione Istituto de Ricovero e Cura a Carattere Scientifico, Policlinoco San Matteo, Piazzale Golgi 2, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Improved T cell responses to Plasmodium falciparum circumsporozoite protein in mice and monkeys induced by a novel formulation of RTS,S vaccine antigen. Vaccine 2008; 26:1072-82. [DOI: 10.1016/j.vaccine.2007.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/07/2007] [Accepted: 12/16/2007] [Indexed: 11/20/2022]
|
41
|
Abstract
In this Commentary, McKee et al. highlight the properties of extrinsic vaccine adjuvants that must be considered to achieve the most protective immune response, as occurs naturally with many intrinsic pathogen-derived adjuvants.
Collapse
|
42
|
Vandepapelière P, Horsmans Y, Moris P, Van Mechelen M, Janssens M, Koutsoukos M, Van Belle P, Clement F, Hanon E, Wettendorff M, Garçon N, Leroux-Roels G. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine 2008; 26:1375-86. [PMID: 18272264 DOI: 10.1016/j.vaccine.2007.12.038] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/30/2007] [Accepted: 12/16/2007] [Indexed: 12/24/2022]
Abstract
A randomised, double-blind study assessing the potential of four adjuvants in combination with recombinant hepatitis B surface antigen has been conducted to evaluate humoral and cell-mediated immune responses in healthy adults after three vaccine doses at months 0, 1 and 10. Three Adjuvant Systems (AS) contained 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21, formulated either with an oil-in-water emulsion (AS02B and AS02V) or with liposomes (AS01B). The fourth adjuvant was CpG oligonucleotide. High levels of antibodies were induced by all adjuvants, whereas cell-mediated immune responses, including cytolytic T cells and strong and persistent CD4(+) T cell response were mainly observed with the three MPL/QS21-containing Adjuvant Systems. The CD4(+) T cell response was characterised in vitro by vigorous lymphoproliferation, high IFN-gamma and moderate IL-5 production. Antigen-specific T cell immune response was further confirmed ex vivo by detection of IL-2- and IFN-gamma-producing CD4(+) T cells, and in vivo by measuring increased levels of IFN-gamma in the serum and delayed-type hypersensitivity (DTH) responses. The CpG adjuvanted vaccine induced consistently lower immune responses for all parameters. All vaccine adjuvants were shown to be safe with acceptable reactogenicity profiles. The majority of subjects reported local reactions at the injection site after vaccination while general reactions were recorded less frequently. No vaccine-related serious adverse event was reported. Importantly, no increase in markers of auto-immunity and allergy was detected over the whole study course. In conclusion, the Adjuvant Systems containing MPL/QS21, in combination with hepatitis B surface antigen, induced very strong humoral and cellular immune responses in healthy adults. The AS01B-adjuvanted vaccine induced the strongest and most durable specific cellular immune responses after two doses. These Adjuvant Systems, when added to recombinant protein antigens, can be fundamental to develop effective prophylactic vaccines against complex pathogens, e.g. malaria, HIV infection and tuberculosis, and for special target populations such as subjects with an impaired immune response, due to age or medical conditions.
Collapse
|
43
|
Baras B, Stittelaar KJ, Simon JH, Thoolen RJMM, Mossman SP, Pistoor FHM, van Amerongen G, Wettendorff MA, Hanon E, Osterhaus ADME. Cross-protection against lethal H5N1 challenge in ferrets with an adjuvanted pandemic influenza vaccine. PLoS One 2008; 3:e1401. [PMID: 18167560 PMCID: PMC2151135 DOI: 10.1371/journal.pone.0001401] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/07/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be produced rapidly and in sufficient quantities. Potential pandemic inactivated vaccines will ideally induce substantial intra-subtypic cross-protection in humans to warrant the option of use, either prior to or just after the start of a pandemic outbreak. In the present study, we evaluated a split H5N1 A/H5N1/Vietnam/1194/04, clade 1 candidate vaccine, adjuvanted with a proprietary oil-in- water emulsion based Adjuvant System proven to be well-tolerated and highly immunogenic in the human (Leroux-Roels et al. (2007) The Lancet 370:580-589), for its ability to induce intra-subtypic cross-protection against clade 2 H5N1/A/Indonesia/5/05 challenge in ferrets. METHODOLOGY AND PRINCIPAL FINDINGS All ferrets in control groups receiving non-adjuvanted vaccine or adjuvant alone failed to develop specific or cross-reactive neutralizing antibodies and all died or had to be euthanized within four days of virus challenge. Two doses of adjuvanted split H5N1 vaccine containing >or=1.7 microg HA induced neutralizing antibodies in the majority of ferrets to both clade 1 (17/23 (74%) responders) and clade 2 viruses (14/23 (61%) responders), and 96% (22/23) of vaccinees survived the lethal challenge. Furthermore lung virus loads and viral shedding in the upper respiratory tract were reduced in vaccinated animals relative to controls suggesting that vaccination might also confer a reduced risk of viral transmission. CONCLUSION These protection data in a stringent challenge model in association with an excellent clinical profile highlight the potential of this adjuvanted H5N1 candidate vaccine as an effective tool in pandemic preparedness.
Collapse
Affiliation(s)
- Benoît Baras
- Preclinical Virology, GlaxoSmithKline Biologicals, Rixensart, Belgium
| | | | | | | | - Sally P. Mossman
- Preclinical Virology, GlaxoSmithKline Biologicals, Rixensart, Belgium
| | | | | | | | - Emmanuel Hanon
- Preclinical Virology, GlaxoSmithKline Biologicals, Rixensart, Belgium
| | - Albert D. M. E. Osterhaus
- ViroClinics BV, Rotterdam, The Netherlands
- Department of Virology, Erasmus Medical Center (MC), Rotterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 2007; 6:723-39. [PMID: 17931153 DOI: 10.1586/14760584.6.5.723] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The need for potentiating immune responses to recombinant or subunit antigens has prompted GlaxoSmithKline (GSK) Biologicals to develop various Adjuvant Systems for the design of prophylactic and therapeutic vaccines. Adjuvant Systems are formulations of classical adjuvants mixed with immunomodulators, specifically adapted to the antigen and the target population. They can activate the appropriate innate immune system and subsequently impact on adaptive immune responses. AS04 is an Adjuvant System that has demonstrated significant achievements in several vaccines against viral diseases. AS02, another Adjuvant System, is being evaluated in various contexts, where a strong T-cell response is needed to afford protection. Likewise, AS01 has been developed for vaccines where the induction of a yet stronger T-cell-mediated immune response is required. Altogether, the promising clinical results strongly support the concept of Adjuvant Systems and allow for further development of new vaccines, best adapted to the target population and the immune mechanisms of protection.
Collapse
Affiliation(s)
- Nathalie Garçon
- GlaxoSmithKline Biologicals, Research & Development, 1330 Rixensart, Belgium.
| | | | | |
Collapse
|
45
|
Stewart VA, McGrath SM, Dubois PM, Pau MG, Mettens P, Shott J, Cobb M, Burge JR, Larson D, Ware LA, Demoitie MA, Weverling GJ, Bayat B, Custers JHHV, Dubois MC, Cohen J, Goudsmit J, Heppner DG. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone. Infect Immun 2007; 75:2283-90. [PMID: 17307942 PMCID: PMC1865796 DOI: 10.1128/iai.01879-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RTS,S/AS02A protein-based vaccine consistently demonstrates significant protection against infection with Plasmodium falciparum malaria and also against clinical malaria and severe disease in children in areas of endemicity. Here we demonstrate with rhesus macaques that priming with a replication-defective human adenovirus serotype 35 (Ad35) vector encoding circumsporozoite protein (CS) (Ad35.CS), followed by boosting with RTS,S in an improved MPL- and QS21-based adjuvant formulation, AS01B, maintains antibody responses and dramatically increases levels of T cells producing gamma interferon and other Th1 cytokines in response to CS peptides. The increased T-cell responses induced by the combination of Ad35.CS and RTS,S/AS01B are sustained for at least 6 months postvaccination and may translate to improved and more durable protection against P. falciparum infection in humans.
Collapse
Affiliation(s)
- V Ann Stewart
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Giersing BK, Dubovsky F, Saul A, Denamur F, Minor P, Meade B. Potency assay design for adjuvanted recombinant proteins as malaria vaccines. Vaccine 2006; 24:4264-70. [PMID: 16767804 DOI: 10.1016/j.vaccine.2006.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.
Collapse
|
47
|
Stewart VA, Walsh DS, McGrath SM, Kester KE, Cummings JF, Voss G, Delchambre M, Garçon N, Cohen JD, Heppner DG. Cutaneous delayed-type hypersensitivity (DTH) in a multi-formulation comparator trial of the anti-falciparum malaria vaccine candidate RTS,S in rhesus macaques. Vaccine 2006; 24:6493-502. [PMID: 16911849 DOI: 10.1016/j.vaccine.2006.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 06/02/2006] [Accepted: 06/14/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies are underway to identify more immunogenic formulations of the existing anti-falciparum malaria vaccine RTS,S/AS02A. To supplement in vitro immunogenicity assays, cutaneous delayed-type hypersensitivity (DTH) may be a useful indicator of functional, cell-mediated immunogenicity. METHODS Adult rhesus monkeys were immunized with saline or one of four RTS,S/adjuvant formulations: RTS,S/AS01B, RTS,S/AS02A-standard (current formulation), RTS,S/AS05 or RTS,S/AS06 at 0, 4, and 12 weeks. An additional cohort received RTS,S/AS02A-accelerated, at 0, 1, and 4 weeks. Six months after completing immunizations, five vaccine-relevant antigens (high and low doses) and two controls were administered intradermally. DTH reactivity (induration) was measured at 48 and 72h, and selected sites were biopsied for histological confirmation. RESULTS In comparison with RTS,S/AS02A-standard, RTS,S/AS01B and RTS,S/AS05 each had larger mean reactions (induration) at 5 of 10 (p<0.01, at each site) and 1 of 10 (p<0.05, at the single site) vaccine relevant test sites, respectively. Histologically, perivascular mononuclear cell infiltrates, a cardinal feature of DTH, were largest in the RTS,S/AS01B monkeys. INTERPRETATION In DTH testing, with histological confirmation, RTS,S/AS01B was immunogenically superior to RTS,S/AS02A-standard and two other novel RTS,S formulations. The DTH outcomes paralleled conventional in vitro cellular immunogenicity assessments in distinguishing among similar RTS,S formulations, even at 6 months after final vaccination.
Collapse
Affiliation(s)
- V Ann Stewart
- Department of Immunology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Walther M. Advances in vaccine development against the pre-erythrocytic stage of Plasmodium falciparum malaria. Expert Rev Vaccines 2006; 5:81-93. [PMID: 16451110 DOI: 10.1586/14760584.5.1.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With approximately 2.4 billion people at risk, Plasmodium falciparum malaria infection caused by an infectious bite of an Anopheles mosquito continues to be a major cause of mortality and morbidity, mainly in the tropics and subtropics. Measures to control the mosquito vector on a broad scale are expensive and need to be maintained continuously. The rapid emergence of parasite strains that are resistant to affordable drugs highlights the urgent need for a cheap and effective vaccine. Candidate vaccines that have been developed to date target different stages of the parasite life cycle. This review describes the recent advances in the development of a vaccine that aims to terminate the infection at its first stage in the liver. The candidate vaccines that are currently under clinical evaluation are introduced and the results from recent trials discussed. The review aims to explain the immunologic challenges a successful vaccine has to meet, as well as the different strategies that are currently employed in an attempt to induce a protective immune response. Furthermore, an outline of available options to be tested in the near future will be presented.
Collapse
Affiliation(s)
- Michael Walther
- MRC Laboratories, Fajara PO Box 273, Banjul, West Africa, The Gambia.
| |
Collapse
|
49
|
Imoukhuede EB, Berthoud T, Milligan P, Bojang K, Ismaili J, Keating S, Nwakanma D, Keita S, Njie F, Sowe M, Todryk S, Laidlaw SM, Skinner MA, Lang T, Gilbert S, Greenwood BM, Hill AVS. Safety and immunogenicity of the malaria candidate vaccines FP9 CS and MVA CS in adult Gambian men. Vaccine 2006; 24:6526-33. [PMID: 16842888 DOI: 10.1016/j.vaccine.2006.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/06/2006] [Accepted: 06/14/2006] [Indexed: 11/26/2022]
Abstract
We assessed the safety and immunogenicity of prime-boost vectors encoding the Plasmodium falciparum circumsporozoite (CS) protein expressed either in the attenuated fowl-pox virus (FP9) or modified vaccinia virus Ankara (MVA). Thirty-two adult Gambians in groups of four to eight received one, two or three doses of FP9 CS and/or MVA CS. No serious adverse event was observed following vaccination. The most immunogenic regimen was two doses of FP9 followed by a single dose of MVA 4 weeks later (an average of 1000 IFN-gamma spot forming units/million PBMCs). This level of effector T-cell responses appears higher than that seen in previously reported studies of CS-based candidate malaria vaccines.
Collapse
|
50
|
Allen JS, Skowera A, Rubin GJ, Wessely S, Peakman M. Long-lasting T cell responses to biological warfare vaccines in human vaccinees. Clin Infect Dis 2006; 43:1-7. [PMID: 16758411 DOI: 10.1086/504806] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 02/23/2006] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Medical countermeasures against biological warfare include the use of vaccines for anthrax and plague, which require repeated dosing and adjuvant to achieve adequate protection from threats such as inhalational anthrax and pneumonic plague. Despite the widespread use of these measures in preparation for recent military deployments, little is known about the cell-mediated immune response that is induced by these vaccines, in comparison with conventional vaccines, such as pertussis or tetanus-diphtheria vaccines. METHODS To examine this question, we used cytokine enzyme-linked immunospot assays to measure interferon-gamma, interleukin (IL)-2, IL-4, and IL-13-producing cells in military service personnel vaccinated during the Gulf War of 1990-1991. RESULTS Our data indicate that 12-15 years after vaccination against anthrax and plague, antigen-specific T cell recall responses are present in the circulation and are comparable in magnitude to those for tetanus-diphtheria toxoids. Recall responses to anthrax were an approximately equal mixture of type 1 T helper cell (interferon-gamma and IL-2) and type 2 T helper cell (predominantly IL-13) responses, whereas plague cellular immunity was more polarized toward type 1 T helper cell responses. Responder cell frequency and type were similar to that against conventional tetanus-diphtheria (mixed type 1 and type 2 T helper cells) vaccine. When veterans were divided according to whether or not they reported multisymptom illness, there was no difference in the frequency or type of cellular response, although the number of cases in each group was small, and these data should be interpreted as preliminary. CONCLUSIONS This study shows that, despite any putative limitations of vaccines for anthrax and plague in terms of achieving protective host immunity, long-lasting cell-mediated responses are generated with these agents.
Collapse
Affiliation(s)
- Jennifer S Allen
- Department of Immunobiology, School of Medicine, King's College London School of Medicine, London, United Kingdom
| | | | | | | | | |
Collapse
|