1
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Yu R, Li J, Lin Z, Ouyang Z, Huang X, Reglodi D, Vaudry D. TAT-tagging of VIP exerts positive allosteric modulation of the PAC1 receptor and enhances VIP neuroprotective effect in the MPTP mouse model of Parkinson's disease. Biochim Biophys Acta Gen Subj 2020; 1864:129626. [PMID: 32335135 DOI: 10.1016/j.bbagen.2020.129626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment. METHODS To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it. RESULTS VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone. CONCLUSIONS The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP. GENERAL SIGNIFICANCE VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Junfeng Li
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhuochao Lin
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zehua Ouyang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoling Huang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Dora Reglodi
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death, Cell plasticity Team, Rouen, France
| |
Collapse
|
3
|
Shi L, Feng L, Zhu ML, Yang ZM, Wu TY, Xu J, Liu Y, Lin WP, Lo JHT, Zhang JF, Li G. Vasoactive Intestinal Peptide Stimulates Bone Marrow-Mesenchymal Stem Cells Osteogenesis Differentiation by Activating Wnt/β-Catenin Signaling Pathway and Promotes Rat Skull Defect Repair. Stem Cells Dev 2020; 29:655-666. [PMID: 32070222 DOI: 10.1089/scd.2019.0148] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone defect regeneration is a complex process that involves the coordination of a variety of different type of cells. As bone tissues are innervated and rich in nerve fibers, the neuropeptides released from various never fibers could regulate bone development, metabolism, and remodeling. Among all the neuropeptides, vasoactive intestinal peptide (VIP) could modulate the functions of both osteoblasts and osteoclasts, and may play a vital role in bone marrow mesenchymal stem cell (BMSC) osteogenesis during bone repair. In this study, we investigated the role of VIP in bone formation and the mechanisms of VIP in mediating BMSC osteogenic differentiation, and its possibility in clinical application of bone defect reconstruction. Our in vitro study results indicated that VIP promoted BMSC osteogenic differentiation by activating Wnt/β-catenin signaling pathway in BMSCs. VIP could also stimulate tube formation of EA.hy926 endothelial cell and increase vascular endothelial growth factor (VEGF) expression in BMSCs. Furthermore, in the rat skull defect model, VIP-conjugated functionalized hydrogel significantly enhanced cranial bone defect repair compared with the control group, with increased bone formation and angiogenesis. Taken together, as a member of neuropeptides, VIP could promote the BMSCs osteogenesis and angiogenesis differentiation in vitro and stimulate bone repair in vivo by activating Wnt/β-catenin signaling pathway. The knowledge obtained from this study emphasized the close association between innervation and bone repair process, and VIP may be a potential therapeutic agent for augmenting bone repair.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P.R. China.,School of Medicine, Southeast University, Nanjing, P.R. China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China
| | - Mei-Ling Zhu
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China
| | - Zheng-Meng Yang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China
| | - Tian-Yi Wu
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Jia Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China
| | - Yang Liu
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China
| | - Wei-Ping Lin
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China
| | - Jessica Hiu Tung Lo
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China
| | - Jin-Fang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China.,Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, P.R. China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| |
Collapse
|
4
|
Zhou Y, Luo GH. Porphyromonas gingivalis and digestive system cancers. World J Clin Cases 2019; 7:819-829. [PMID: 31024953 PMCID: PMC6473131 DOI: 10.12998/wjcc.v7.i7.819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is an anaerobic gram-negative bacterium that colonizes in the epithelium and has been strongly associated with periodontal disease. Recently, various degrees of associations between P. gingivalis and digestive system cancers, including oral squamous cell carcinoma in the oral cavity, oesophageal squamous carcinoma in the digestive tract, and pancreatic cancer in pancreatic tissues, have been displayed in multiple clinical and experimental studies. Since P. gingivalis has a strong association with periodontal diseases, not only the relationships between P. gingivalis and digestive system tumours but also the effects induced by periodontal diseases on cancers are well-illustrated in this review. In addition, the prevention and possible treatments for these digestive system tumours induced by P. gingivalis infection are also included in this review. At the end, we also highlighted the possible mechanisms of cancers caused by P. gingivalis. One important carcinogenic effect of P. gingivalis is inhibiting the apoptosis of epithelial cells, which also plays an intrinsic role in protecting cancerous cells. Some signalling pathways activated by P. gingivalis are involved in cell apoptosis, tumourigenesis, immune evasion and cell invasion of tumour cells. In addition, metabolism of potentially carcinogenic substances caused by P. gingivalis is also one of the connections between this bacterium and cancers.
Collapse
Affiliation(s)
- Ying Zhou
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
5
|
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signalling Enhances Osteogenesis in UMR-106 Cell Line. J Mol Neurosci 2014; 54:555-73. [DOI: 10.1007/s12031-014-0389-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/22/2014] [Indexed: 01/14/2023]
|
6
|
Winters SJ, Ghooray DT, Yang RQ, Holmes JB, O'Brien AR, Morgan J, Moore JP. Dopamine-2 receptor activation suppresses PACAP expression in gonadotrophs. Endocrinology 2014; 155:2647-57. [PMID: 24823390 PMCID: PMC4060190 DOI: 10.1210/en.2013-2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed at a high level in the fetal pituitary and decreases profoundly between embryonic day 19 and postnatal day 1 (PN1), with a further decrease from PN1 to PN4. In this series of experiments, we investigated the hypothesis that dopamine 2 receptor (Drd2) activation interrupts a cAMP-dependent feed-forward loop that maintains PACAP expression at a high level in the fetal pituitary. Using single-cell RT-PCR of pituitary cell cultures from newborn rats, Drd2 mRNA was identified in gonadotrophs that were also positive for PACAP mRNA. PACAP expression in pituitary cultures from embryonic day 19 rats was suppressed by the PACAP6-38 antagonist and by the Drd2 agonist bromocriptine. Increasing concentrations of bromocriptine inhibited cAMP production as well as cAMP signaling based on cAMP response element-luciferase activity, decreased PACAP promoter activity, and decreased PACAP mRNA levels in αT3-1 gonadotroph cells. Furthermore, blockade of dopamine receptors by injecting haloperidol into newborn rat pups partially reversed the developmental decline in pituitary PACAP mRNA that occurs between PN1 and PN4. These results provide evidence that dopamine receptor signaling regulates PACAP expression under physiological conditions and lend support to the hypothesis that a rise in hypothalamic dopamine at birth abrogates cAMP signaling in fetal gonadotrophs to interrupt a feed-forward mechanism that maintains PACAP expression at a high level in the fetal pituitary. We propose that this perinatal decline in pituitary PACAP reduces pituitary follistatin which permits GnRH receptors and FSH-β to increase to facilitate activation of the neonatal gonad.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism & Diabetes (S.J.W., D.T.G., J.B.H., A.R.W.O., J.M., J.P.M.), and Department of Anatomy and Neurobiology (R.Q.Y., J.P.M.), University of Louisville, Louisville, Kentucky 40202
| | | | | | | | | | | | | |
Collapse
|
7
|
Pituitary adenylate cyclase activating polypeptide (PACAP) signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target. PLoS One 2014; 9:e91541. [PMID: 24643018 PMCID: PMC3958376 DOI: 10.1371/journal.pone.0091541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 02/13/2014] [Indexed: 01/20/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage.
Collapse
|
8
|
Tang B, Yong X, Xie R, Li QW, Yang SM. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (Review). Int J Oncol 2014; 44:1023-31. [PMID: 24481544 DOI: 10.3892/ijo.2014.2276] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/22/2013] [Indexed: 11/06/2022] Open
Abstract
Vasoactive intestinal peptide receptors (VIPRs) are members of the G-protein-coupled receptor superfamily. These receptors are overexpressed in many common malignant tumors and play a major role in the progression and angiogenesis of a number of malignancies. Therefore, VIPRs may be a valuable target for the molecular imaging of tumors and therapeutic interventions. The specific natural ligand or its analogs can be labeled with a radionuclide and used for tumor receptor imaging, which could be used to visualize VIPR-related surface protein expression in vivo and to monitor the in vivo effects of molecular drugs on tumors. Moreover, the involvement of VIPRs in malignant transformation and angiogenesis renders them potential therapeutic targets for cancer treatment. A variety of VIP antagonists and cytotoxic VIP conjugates have been synthesized and evaluated for VIPR-targeted molecular therapy. The importance of VIPRs in tumor biology and the ability to predict responses to targeted therapy and monitor drug interventions suggest that VIP receptor-based imaging and treatment will be critical for the early diagnosis and management of cancer. Here, we review the current literature regarding VIPRs and their natural ligands and the involvement of VIPRs in tumor growth and angiogenesis, with an emphasis on the present use of VIPRs for the molecular imaging of tumors and therapies targeting VIPRs.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qian-Wei Li
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
9
|
Ng SYL, Chow BKC, Kasamatsu J, Kasahara M, Lee LTO. Agnathan VIP, PACAP and their receptors: ancestral origins of today's highly diversified forms. PLoS One 2012; 7:e44691. [PMID: 22957100 PMCID: PMC3434177 DOI: 10.1371/journal.pone.0044691] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/06/2012] [Indexed: 01/04/2023] Open
Abstract
VIP and PACAP are pleiotropic peptides belonging to the secretin superfamily of brain-gut peptides and interact specifically with three receptors (VPAC1, PAC1 and VPAC2) from the class II B G protein-coupled receptor family. There is immense interest regarding their molecular evolution which is often described closely alongside gene and/or genome duplications. Despite the wide array of information available in various vertebrates and one invertebrate the tunicate, their evolutionary origins remain unresolved. Through searches of genome databases and molecular cloning techniques, the first lamprey VIP/PACAP ligands and VPAC receptors are identified from the Japanese lamprey. In addition, two VPAC receptors (VPACa/b) are identified from inshore hagfish and ligands predicted for sea lamprey. Phylogenetic analyses group these molecules into their respective PHI/VIP, PRP/PACAP and VPAC receptor families and show they resemble ancestral forms. Japanese lamprey VIP/PACAP peptides synthesized were tested with the hagfish VPAC receptors. hfVPACa transduces signal via both adenylyl cylase and phospholipase C pathways, whilst hfVPACb was only able to transduce through the calcium pathway. In contrast to the widespread distribution of VIP/PACAP ligands and receptors in many species, the agnathan PACAP and VPAC receptors were found almost exclusively in the brain. In situ hybridisation further showed their abundance throughout the brain. The range of VIP/PACAP ligands and receptors found are highly useful, providing a glimpse into the evolutionary events both at the structural and functional levels. Though representative of ancestral forms, the VIP/PACAP ligands in particular have retained high sequence conservation indicating the importance of their functions even early in vertebrate evolution. During these nascent stages, only two VPAC receptors are likely responsible for eliciting functions before evolving later into specific subtypes post-Agnatha. We also propose VIP and PACAP's first functions to predominate in the brain, evolving alongside the central nervous system, subsequently establishing peripheral functions.
Collapse
Affiliation(s)
- Stephanie Y. L. Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Jun Kasamatsu
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Masanori Kasahara
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- * E-mail:
| |
Collapse
|
10
|
Doan ND, Létourneau M, Vaudry D, Doucet N, Folch B, Vaudry H, Fournier A, Chatenet D. Design and characterization of novel cell-penetrating peptides from pituitary adenylate cyclase-activating polypeptide. J Control Release 2012; 163:256-65. [PMID: 22922050 DOI: 10.1016/j.jconrel.2012.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/11/2012] [Accepted: 08/17/2012] [Indexed: 10/28/2022]
Abstract
The discovery of cell-penetrating peptide opened up new promising avenues for the non-invasive delivery of non-permeable biomolecules within the intracellular compartment. However, some setbacks such as possible toxic effects or unexpected immunological responses have limited their use in clinic. To overcome these obstacles, we investigated the use of novel cell-penetrating peptides (CPPs) derived from the endogenous neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP). First, we demonstrated the propensity of native PACAP isoforms (PACAP27 and PACAP38) to efficiently deliver a large and non-permeable molecule, i.e. streptavidin, into cells. An inactive modified fragment of PACAP38, i.e. [Arg(17)]PACAP(11-38), with preserved cell-penetrating physico-chemical properties, was also synthesized and successfully use for the intracellular delivery of various cargoes such as small molecules, peptides, proteins, and polynucleotides. Especially, its effectiveness as a transfection agent was comparable to Lipofectamine 2000 while being non-toxic for cells. Uptake mechanism studies demonstrated that direct translocation, caveolae-dependent endocytosis and macropinocytosis were involved in the internalization of [Arg(17)]PACAP(11-38). This study not only opened up a new aspect in the usefulness of PACAP and its derivatives for therapeutic application but also contributed to the identification of new members of the CPP family. As such, inactive PACAP-related analogs could represent excellent vectors for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ngoc-Duc Doan
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Ville de Laval, Québec, Canada H7V 1B7
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Targeting VIP and PACAP receptor signalling: new therapeutic strategies in multiple sclerosis. ASN Neuro 2011; 3:AN20110024. [PMID: 21895607 PMCID: PMC3189630 DOI: 10.1042/an20110024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MS (multiple sclerosis) is a chronic autoimmune and neurodegenerative pathology of the CNS (central nervous system) affecting approx. 2.5 million people worldwide. Current and emerging DMDs (disease-modifying drugs) predominantly target the immune system. These therapeutic agents slow progression and reduce severity at early stages of MS, but show little activity on the neurodegenerative component of the disease. As the latter determines permanent disability, there is a critical need to pursue alternative modalities. VIP (vasoactive intestinal peptide) and PACAP (pituitary adenylate cyclase-activating peptide) have potent anti-inflammatory and neuroprotective actions, and have shown significant activity in animal inflammatory disease models including the EAE (experimental autoimmune encephalomyelitis) MS model. Thus, their receptors have become candidate targets for inflammatory diseases. Here, we will discuss the immunomodulatory and neuroprotective actions of VIP and PACAP and their signalling pathways, and then extensively review the structure–activity relationship data and biophysical interaction studies of these peptides with their cognate receptors.
Collapse
|
12
|
Lin Y, Hall RA, Kuhar MJ. CART peptide stimulation of G protein-mediated signaling in differentiated PC12 cells: identification of PACAP 6-38 as a CART receptor antagonist. Neuropeptides 2011; 45:351-8. [PMID: 21855138 PMCID: PMC3170513 DOI: 10.1016/j.npep.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
CART peptides are peptide neurotransmitters and hormones that are involved in many different physiological responses. While much is known about the peptides regarding their structure, processing and gene regulation, less is known about their postsynaptic actions and receptors. Using (125)I-CART 61-102 as a ligand and unlabeled CART 61-102 or CART 55-102 as displacers, high-affinity specific binding was detected in PC12 cells. Differentiation of the PC12 cells increased specific binding several-fold. The increase in specific binding found after differentiation was inhibited by actinomycin D and cycloheximide, suggesting that the increase in specific binding was dependent on RNA and protein synthesis. CART 1-27, a peptide that has never been shown to elicit responses, did not displace (125)I-CART 61-102 binding, nor did more than 20 other peptides that were examined. Surprisingly, however, PACAP 1-38 and PACAP 6-38 were found to be low-affinity inhibitors of CART binding. CART treatment increased binding of (35)S-GTPgamma-S to PC12 cell membranes. Moreover, CART treatment of intact PC12 cells elicited robust increases in phospho-ERK in a manner that was increased with differentiation, blocked by pertussis toxin and antagonized by PACAP 6-38. These findings extend previous research and suggest that the CART binding site in PC12 cells reflects a G protein-coupled receptor linked with Gi/o, and also demonstrate that PACAP 6-38 may be useful as a CART receptor antagonist.
Collapse
Affiliation(s)
- Yiming Lin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
13
|
Possible involvement of PACAP and PACAP type 1 receptor in GnRH-induced FSH β-subunit gene expression. ACTA ACUST UNITED AC 2011; 167:227-32. [PMID: 21329727 DOI: 10.1016/j.regpep.2011.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/04/2011] [Accepted: 02/08/2011] [Indexed: 11/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor, PACAP type 1 receptor (PAC1-R) play an important role in the induction of pituitary gonadotropins. In this present study, we examined whether the PAC1-R was involved in the action of gonadotropin-releasing hormone (GnRH) on gonadotropin FSHβ subunit expression. In a static culture, GnRH stimulation significantly increased PAC1-R expression as well as PACAP gene expression in the gonadotroph cell line, LβT2. Stimulation with low frequency GnRH pulses, which preferentially increase FSHβ, increased the expression of both the PAC1-R and the PACAP genes to a greater extent than did high frequency pulses. In the determination of transcriptional activity, the GnRH antagonist, cetrotide inhibited GnRH-induced FSHβ promoter activity completely, but PACAP6-38, a PACAP antagonist, had no effect on GnRH-induced FSHβ promoter activity. As expected, PACAP-induced FSHβ promoter activity was significantly prevented by PACAP6-38, but was not affected by cetrotide. PACAP6-38, however, significantly prevented GnRH-increased FSHβ mRNA expression. These observations suggest that GnRH-induced FSHβ gene expression is stimulated partially through PAC1-R by gonadotrophs producing PACAP or PAC1-R.
Collapse
|
14
|
Yu R, Wang J, Li J, Wang Y, Zhang H, Chen J, Huang L, Liu X. A novel cyclopeptide from the cyclization of PACAP(1-5) with potent activity towards PAC1 attenuates STZ-induced diabetes. Peptides 2010; 31:1062-7. [PMID: 20307608 DOI: 10.1016/j.peptides.2010.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 11/23/2022]
Abstract
The N-terminal deletion of pituitary adenylate cyclase-activating polypeptide (PACAP)(1-5) generates its own antagonist. The cyclopeptide C*HSDGIC*, which results from the cyclization of PACAP(1-5) with disulfide, was designed and synthesized. CHO cells expressing a PAC1 N/R splice variant (PAC1-CHO) were used to detect the potent activation of PAC1 by C*HSDGIC*. In vitro cell assays showed that C*HSDGIC* stimulated cAMP production and increased the viability of PAC1-CHO cells at micromolar concentrations, about 1000 fold that of PACAP. PACAP(6-38) blocked the effects of PACAP on the proliferation of PAC1-CHO cells but did not interfere with the effects of C*HSDGIC*, suggesting that the activation of PAC1 by C*HSDGIC* was independent of the binding of PAC1 to the C-terminus of PACAP. In experiments in vivo, 10mumol/kg C*HSDGIC* decreased the plasma glucose level, increased the plasma insulin level and improved glucose tolerance significantly (P<0.01) when co-injected with STZ for 5 days. The results of these in vitro and in vivo studies of the biological characteristics of C*HSDGIC* reveal that it is a potent activator of PAC1.
Collapse
Affiliation(s)
- Rongjie Yu
- Engineering Institute of Jinan University, Jinan University, Guangzhou 510630, PR China. rongjie
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ushiyama M, Ikeda R, Yoshida M, Mori K, Kangawa K, Sugawara H, Inoue K, Yamada K, Miyata A. Alternative splicing of the pituitary adenylate cyclase-activating polypetide (PACAP) receptor contributes to function of PACAP-27. J Mol Neurosci 2010; 42:341-8. [PMID: 20473586 DOI: 10.1007/s12031-010-9385-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/23/2010] [Indexed: 11/25/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP)-27 and PACAP-38 are neuropeptides performing a variety of physiological functions. The PACAP-specific receptor PAC1 has several variants that result mainly from alternative splicing in the mRNA region encoding the first extracellular (EC1) domain and the third intracellular cytoplasmic (IC3) loop. To characterize the molecular forms of alternative splicing variants of PAC1, we examined the binding affinity and activation of two major second messenger pathways (cAMP production and changes in [Ca(2+)]( i )) by PACAP-27. Activation of cAMP was influenced by the variant in both of the EC1 domain and IC3 loops. In the N form in the EC1 domain, the suppressive effect of the HOP1 form in the IC3 loop was enhanced. Regarding the intracellular calcium mobilization assay, the rank order of the potency of PACAP-27 for the different PAC1 isoforms was S/HOP1>>N/R~S/R>>N/HOP1. In particular, PACAP-27 exhibited remarkable potency of calcium mobilization in the S/HOP1-expressing cells at sub-picomolar concentrations even though the affinities of PACAP-27 to the four PAC1 isoforms were not significantly different. This suggests the specific functions of PACAP-27 due to PACAP-27 preferring PAC1 activation, and leads in clarification of the pleiotoropic function of PACAP.
Collapse
Affiliation(s)
- Mina Ushiyama
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moore JP, Villafuerte BC, Unick CA, Winters SJ. Developmental changes in pituitary adenylate cyclase activating polypeptide expression during the perinatal period: possible role in fetal gonadotroph regulation. Endocrinology 2009; 150:4802-9. [PMID: 19574403 PMCID: PMC2754687 DOI: 10.1210/en.2008-1649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Normal reproductive functioning may require secretion of LH independently of FSH. Variation in GnRH pulse frequency and inhibin negative feedback are mechanisms for differential gonadotropin regulation; however, the first instance of differential regulation in rats is during fetal development, prior to the establishment of GnRH connections, when LH accumulates appreciably 2-4 d prior to FSH. Pituitary adenylate cyclase activating polypeptide (PACAP) can differentially regulate the gonadotropins in vitro by stimulating alpha-subunit transcription, lengthening LHbeta transcripts and decreasing FSHbeta mRNA levels, probably through stimulation of follistatin transcription. These experiments are the first to examine whether PACAP influences gonadotroph function in perinatal pituitaries. In vivo, pituitary PACAP mRNA and peptide levels were high at embryonic d 19 and declined by 94 and 85%, respectively, after parturition. This was accompanied by a decrease of 65 and 96% in total follistatin and follistatin-288 mRNAs. These changes were temporally associated with a 20- and 6.5-fold rise in FSHbeta and GnRH receptor mRNAs, respectively, with no significant increase in LHbeta mRNA. In pituitary cell cultures from fetal and postnatal male rats, PACAP mRNA levels were likewise highest in fetal cultures in which the PACAP 6-38 antagonist decreased alpha-subunit and increased FSHbeta mRNA. PACAP 6-38 also reduced basal and GnRH-stimulated LH secretion with little effect on FSH. These data support the hypothesis that PACAP expressed at high levels in the fetal pituitary stimulates alpha-subunit expression and LH secretion and restrains FSH synthesis relative to LH and that a decline in PACAP allows for the neonatal rise in FSH and GnRH receptor because follistatin is decreased.
Collapse
Affiliation(s)
- Joseph P Moore
- Department of Anatomical Sciences, ivision of Endocrinology and Metabolism, University of Louisville, School of Medicine, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
17
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 862] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
TOHEI A, IKEDA M, HOKAO R, SHINODA M. The Different Effects of I.c.v. Injection of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) on Prolactin Secretion in Adult Male and Lactating Rats. Exp Anim 2009; 58:489-95. [DOI: 10.1538/expanim.58.489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Atsushi TOHEI
- Laboratory Animal Research Center, Dokkyo Medical University
| | - Masashi IKEDA
- Institute of International Education and Research, Dokkyo Medical University
| | | | - Motoo SHINODA
- Laboratory Animal Research Center, Dokkyo Medical University
| |
Collapse
|
19
|
Bourgault S, Vaudry D, Guilhaudis L, Raoult E, Couvineau A, Laburthe M, Ségalas-Milazzo I, Vaudry H, Fournier A. Biological and structural analysis of truncated analogs of PACAP27. J Mol Neurosci 2008; 36:260-269. [PMID: 18473187 DOI: 10.1007/s12031-008-9081-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/28/2008] [Indexed: 02/08/2023]
Abstract
The affinity toward the PAC1 receptor, the biological activity, and the alpha-helical content of several truncated PACAP27 analogs were measured. We first evaluated the pharmacological and structural parameters of C-terminal shortened PACAP fragments, from PACAP(1-23) to PACAP(1-19). All carboxy-truncated derivatives demonstrated circular dichroism spectra typical of a helical conformation. On the other hand, progressive shortening of the C-terminal domain gradually decreases the potency of PACAP to bind and to activate the PAC1 receptor. This decrease in biological activity was mainly attributed to the removal of residues that seem to interact directly with the receptor rather than to a destabilization of the C-terminal helical conformation. We also investigated the pharmacological and conformational characteristics of several hybrid PACAP27 derivatives containing an aliphatic molecular spacer connecting the N-terminal domain to the C-terminal region. However, this strategy revealed that none of these discontinuous analogs showed any significant affinity toward the PAC1 receptor, even if some of them exhibited circular dichroism spectra corresponding to an alpha-helical structure. This study suggests that several domains of PACAP27 are involved in the interaction with the PAC1 receptor and that the presence of the helical conformation is not a sufficient feature for receptor activation.
Collapse
Affiliation(s)
- Steve Bourgault
- INRS - Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531 boul. des Prairies, Laval, QC, Canada, H7V 1B7
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Agonistic Behavior of PACAP6-38 on Sensory Nerve Terminals and Cytotrophoblast Cells. J Mol Neurosci 2008; 36:270-8. [DOI: 10.1007/s12031-008-9089-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
|
21
|
Sze KH, Zhou H, Yang Y, He M, Jiang Y, Wong AOL. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology 2007; 148:5042-59. [PMID: 17615143 DOI: 10.1210/en.2007-0576] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been proposed to be the ancestral GHRH. Recently, using grass carp as a model for modern-day bony fish, we demonstrated that PACAP nerve fibers are present in close proximity to carp somatotrophs, and mammalian PACAPs can induce GH secretion in carp pituitary cells. To further examine the role of PACAP as a GH-releasing factor in fish, the structural identity of grass carp PACAP was established by molecular cloning. The newly cloned PACAP was found to be a single-copy gene and expressed in the brain but not other tissues. The mature peptides of PACAP, namely PACAP(27) and PACAP(38), were synthesized. As revealed by nuclear magnetic resonance spectroscopies, carp PACAP(38) is composed of a flexible N terminal from His(1) to Ile(5), an extended central helix from Phe(6) to Val(26), and a short helical tail in the C terminal from Arg(29) to Arg(34). The C-terminal helix is located after a hinge region at Leu(27) to Gly(28) and is absent in the solution structures of PACAP(27). The two forms of PACAPs were effective in elevating GH release and GH transcript expression in grass carp pituitary cells. These stimulatory effects occurred with parallel rises in cAMP and Ca(2+) entry via voltage-sensitive Ca(2+) channels in carp somatotrophs. The present study represents the first report for solution structures of nonmammalian PACAPs and provides evidence that a brain-specific isoform of PACAP in fish can stimulate GH synthesis and release at the pituitary level, presumably by activating the appropriate postreceptor signaling mechanisms.
Collapse
Affiliation(s)
- Kong Hung Sze
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China
| | | | | | | | | | | |
Collapse
|
22
|
Cardoso JCR, Vieira FA, Gomes AS, Power DM. PACAP, VIP and their receptors in the metazoa: insights about the origin and evolution of the ligand-receptor pair. Peptides 2007; 28:1902-19. [PMID: 17826180 DOI: 10.1016/j.peptides.2007.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 11/23/2022]
Abstract
The evolution, function and interaction of ligand-receptor pairs are of major pharmaceutical interest. Comparative sequence analysis approaches using data from phylogenetically distant organisms can provide insights into their origin and possible physiological roles. The present review focuses on the pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP) and their receptors in the metazoa. A PACAP-like peptide is present in tunicates and chordates while VIP- and PACAP/VIP-specific receptors have only been isolated in the latter phyla. The apparently disparate evolution of the ligands and their specific receptors raises questions about their evolution during the metazoan radiation and also about how the ligands may have acquired new functions.
Collapse
Affiliation(s)
- João C R Cardoso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | | | | | | |
Collapse
|
23
|
Sun C, Song D, Davis-Taber RA, Barrett LW, Scott VE, Richardson PL, Pereda-Lopez A, Uchic ME, Solomon LR, Lake MR, Walter KA, Hajduk PJ, Olejniczak ET. Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci U S A 2007; 104:7875-80. [PMID: 17470806 PMCID: PMC1876540 DOI: 10.1073/pnas.0611397104] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Indexed: 11/18/2022] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) receptor is a class II G protein-coupled receptor that contributes to many different cellular functions including neurotransmission, neuronal survival, and synaptic plasticity. The solution structure of the potent antagonist PACAP (residues 6'-38') complexed to the N-terminal extracellular (EC) domain of the human splice variant hPAC1-R-short (hPAC1-R(S)) was determined by NMR. The PACAP peptide adopts a helical conformation when bound to hPAC1-R(S) with a bend at residue A18' and makes extensive hydrophobic and electrostatic interactions along the exposed beta-sheet and interconnecting loops of the N-terminal EC domain. Mutagenesis data on both the peptide and the receptor delineate the critical interactions between the C terminus of the peptide and the C terminus of the EC domain that define the high affinity and specificity of hormone binding to hPAC1-R(S). These results present a structural basis for hPAC1-R(S) selectivity for PACAP versus the vasoactive intestinal peptide and also differentiate PACAP residues involved in binding to the N-terminal extracellular domain versus other parts of the full-length hPAC1-R(S) receptor. The structural, mutational, and binding data are consistent with a model for peptide binding in which the C terminus of the peptide hormone interacts almost exclusively with the N-terminal EC domain, whereas the central region makes contacts to both the N-terminal and other extracellular parts of the receptor, ultimately positioning the N terminus of the peptide to contact the transmembrane region and result in receptor activation.
Collapse
Affiliation(s)
- Chaohong Sun
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Danying Song
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Rachel A. Davis-Taber
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Leo W. Barrett
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Victoria E. Scott
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Paul L. Richardson
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Ana Pereda-Lopez
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Marie E. Uchic
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Larry R. Solomon
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Marc R. Lake
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Karl A. Walter
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Philip J. Hajduk
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| | - Edward T. Olejniczak
- Global Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064
| |
Collapse
|
24
|
Wei M, Fujiki K, Ando E, Zhang S, Ozaki T, Ishiguro H, Kondo T, Nokihara K, Wray V, Naruse S. Identification of key residues that cause differential gallbladder response to PACAP and VIP in the guinea pig. Am J Physiol Gastrointest Liver Physiol 2007; 292:G76-83. [PMID: 16901992 DOI: 10.1152/ajpgi.00279.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) have opposite actions on the gallbladder; PACAP induces contraction, whereas VIP induces relaxation. Here, we have attempted to identify key residues responsible for their interactions with PACAP (PAC1) and VIP (VPAC) receptors in the guinea pig gallbladder. We synthesized PACAP-27/VIP hybrid peptides and compared their actions on isolated guinea pig gallbladder smooth muscle strips using isotonic transducers. [Ala4]- and [Val5]PACAP-27 were more potent than PACAP-27 in stimulating the gallbladder. In contrast, [Ala4, Val5]- and [Ala4, Val5, Asn9]PACAP-27 induced relaxation similarly to VIP. [Asn9]-, [Thr11]-, or [Leu13]PACAP-27 had 20-70% contractile activity of PACAP-27, whereas [Asn24,Ser25,Ile26]PACAP-27 showed no change in the activity. All VIP analogs, including [Gly4,Ile5,Ser9]VIP, induced relaxation. In the presence of a PAC1 receptor antagonist, PACAP(6-38), the contractile response to PACAP-27 was inhibited and relaxation became evident. RT-PCR analysis revealed abundant expressions of PAC1 receptor, "hop" splice variant, and VPAC1 and VPAC2 receptor mRNAs in the guinea pig gallbladder. In conclusion, PACAP-27 induces contraction of the gallbladder via PAC1/hop receptors. Gly4 and Ile5 are the key NH2-terminal residues of PACAP-27 that distinguish PAC1/hop receptors from VPAC1/VPAC2 receptors. However, both the NH2-terminal and alpha-helical regions of PACAP-27 are required for initiating gallbladder contraction.
Collapse
Affiliation(s)
- Muxin Wei
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang S, Yang J, Yang Z, Chen P, Fraser A, Zhang W, Pang H, Gao X, Wilson B, Hong JS, Block ML. Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J Pharmacol Exp Ther 2006; 319:595-603. [PMID: 16891616 DOI: 10.1124/jpet.106.102236] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglial activation is implicated in the progressive nature of numerous neurodegenerative diseases, including Parkinson's disease. Using primary rat mesencephalic neuron-glia cultures, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) 38, PACAP27, and its internal peptide, Gly-Ile-Phe (GIF; PACAP4-6), are neuroprotective at 10(-13) M against lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity, as determined by [(3)H]DA uptake and the number of tyrosine hydroxylase-immunoreactive neurons. PACAP38 and GIF also protected against 1-methyl-4-phenylpyridinium(+)-induced neurotoxicity but only in cultures containing microglia. PACAP38 and GIF ameliorated the production of microglia-derived reactive oxygen species (ROS), where both LPS- and phorbol 12-myristate 13-acetate-induced superoxide and intracellular ROS were inhibited. The critical role of NADPH oxidase for GIF and PACAP38 neuroprotection against LPS-induced DA neurotoxicity was demonstrated using neuron-glia cultures from mice deficient in NADPH oxidase (PHOX(-/-)), where PACAP38 and GIF reduced tumor necrosis factor alpha production and were neuroprotective only in PHOX(+/+) cultures and not in PHOX(-/-) cultures. Pretreatment with PACAP6-38 (3 microM; PACAP-specific receptor antagonist) was unable to attenuate PACAP38, PACAP27, or GIF (10(-13) M) neuroprotection. PACAP38 and GIF (10(-13) M) failed to induce cAMP in neuronglia cultures, supporting that the neuroprotective effect was independent of traditional high-affinity PACAP receptors. Pharmacophore analysis revealed that GIF shares common chemical properties (hydrogen bond acceptor, positive ionizable, and hydrophobic regions) with other subpicomolar-acting compounds known to inhibit NADPH oxidase: naloxone, dextromethorphan, and Gly-Gly-Phe. These results indicate a common high-affinity site of action across numerous diverse peptides and compounds, revealing a basic neuropeptide regulatory mechanism that inhibits microglia-derived oxidative stress and promotes neuron survival.
Collapse
Affiliation(s)
- Sufen Yang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, MD F1-01, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Green BD, Irwin N, Cassidy RS, Gault VA, Flatt PR. Long-term administration of PACAP receptor antagonist, PACAP(6-27), impairs glucose tolerance and insulin sensitivity in obese diabetic ob/ob mice. Peptides 2006; 27:2343-9. [PMID: 16730098 DOI: 10.1016/j.peptides.2006.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a ubiquitous peptide of the glucagon superfamily that is involved in glucose homeostasis and regulation of insulin secretion. This study employed the PACAP receptor antagonist, PACAP(6-27) to evaluate the role of endogenous PACAP in genetic obesity-related diabetes and related metabolic abnormalities using ob/ob mice. Acute in vivo antagonistic potency of PACAP(6-27) was confirmed in ob/ob mice by blockade of the insulin-releasing action but not hyperglycaemia. In longer-term studies, ob/ob mice were given once daily injections of PACAP(6-27) or vehicle for 14 days. Feeding activity, body weight, basal plasma glucose and plasma insulin concentrations were not significantly affected by chronic PACAP(6-27) treatment. However, PACAP(6-27) treatment impaired glucose tolerance, insulin sensitivity and the glycaemic response to feeding. Plasma glucagon and lipids were unchanged. These observations indicate a role of endogenous PACAP for normal glucose homeostasis, but indicate a minor involvement in the regulation of insulin secretion in ob/ob mice.
Collapse
Affiliation(s)
- Brian D Green
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Green BD, Irwin N, Flatt PR. Pituitary adenylate cyclase-activating peptide (PACAP): assessment of dipeptidyl peptidase IV degradation, insulin-releasing activity and antidiabetic potential. Peptides 2006; 27:1349-58. [PMID: 16406202 DOI: 10.1016/j.peptides.2005.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 11/14/2005] [Accepted: 11/14/2005] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a member of the glucagon family of peptides. Like other members, most notably glucagon-like peptide-1 (GLP-1), PACAP is rapidly degraded by dipeptidylpeptidase IV (DPP IV). This study investigated how degradation by DPP IV affected the insulinotropic activity of PACAP, and whether PACAP exerted acute antihyperglycemic properties in normal or ob/ob mice. DPP IV degradation of PACAP(1-27) over 18 h led to the formation of PACAP(3-27), PACAP(5-27) and ultimately PACAP(6-27). In contrast to 1.4-1.8-fold concentration-dependent stimulation of insulin secretion by PACAP(1-27), these peptide fragments lacked insulinotropic activity. While PACAP(1-27) and PACAP(1-38) generated significant insulin responses when given alone or together with glucose in ob/ob and normal mice, they also elevated plasma glucose. These actions were eliminated following degradation of the peptide by incubation with DPP IV. The hyperglycemic effects may be explained at least partly by a potent glucagon-releasing action in ob/ob and normal mice. In conclusion, PACAP is inactivated by DPP IV and despite insulin-releasing effects, its actions on glucagon secretion and glucose homeostasis do not make it a good therapeutic tool for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- B D Green
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
28
|
Onoue S, Matsumoto A, Nagano Y, Ohshima K, Ohmori Y, Yamada S, Kimura R, Yajima T, Kashimoto K. Alpha-helical structure in the C-terminus of vasoactive intestinal peptide: functional and structural consequences. Eur J Pharmacol 2004; 485:307-16. [PMID: 14757155 DOI: 10.1016/j.ejphar.2003.11.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The conformational properties of vasoactive intestinal peptide (VIP) include the N-terminal randomized structure and the C-terminal long alpha-helical structure. We have previously observed that the N-terminal random coil structure plays a crucial role in the receptor-selectivity. Here, to clarify how the formation of the alpha-helix plays a role in its biological functions, we chemically synthesized VIP analogues modified at the C-terminus, mid-chain, and N-terminus of the alpha-helical region, and evaluated the relationship between their alpha-helical contents and their biological activities including relaxant effects on murine stomach and receptor-binding activities. VIP and VIP-(1-27) showed equipotent biological activities with 48% and 50% alpha-helical content, respectively, each of which corresponds to 14 amino acid residues. VIP-(1-26) was 10% and threefold less potent in relaxant and binding activities, respectively, compared with VIP, and its 49% alpha-helical content resulted in 13 residues involved in the alpha-helix. Further truncation from 25 to 21 resulted in decrease in the alpha-helical content from 43% to 29%, corresponding residues from 11 to 6, the relaxant activity from 72% to 4%, and the affinity to the membrane from 60-fold to over 10(4)-fold less potency. In addition, disruption of the mid-chain and the N-terminus in the alpha-helical stretch by oxidation of Met(17) and deletion of Thr(11) also inhibited biological activities. These findings suggest that the presence of alpha-helical structure forming in 14 amino acid residues between position 10 and 23 in VIP is essential to its biological functions and the C-terminal amino acid residues between position 24 and 27 are requisite for this alpha-helical formation.
Collapse
Affiliation(s)
- Satomi Onoue
- Health Science Division, Itoham Foods Inc., 1-2-1 Kubogaoka, Moriya, Ibaraki 302-0104, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Molecular Pharmacology and Structure-Function Analysis of PACAP/Vip Receptors. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Arakawa Y, Takao E, Hirotani Y, Kato I, Li J, Yanaihara N, Yanaihara C, Iwanaga T, Kurokawa N. Immunochemical characterization and measurement of neuronal type nitric oxide synthase in human neuroblastoma NB-OK-1 cell using novel anti-synthetic peptide antibody and specific immunoassay system. REGULATORY PEPTIDES 2002; 106:115-23. [PMID: 12047918 DOI: 10.1016/s0167-0115(02)00059-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We developed a sensitive and specific immunoassay system for human neuronal nitric oxide synthase (hnNOS) using synthetic hnNOS(998-1024) peptide and anti-hnNOS(998-1024) antibody. The novel antibody and radioimmunoassay system revealed a typical nNOS protein in human neuroblastoma NB-OK-1 cell (160 kDa, 180 fmol/10(6) cells). The kinetic parameters of the enzyme were K(m)=4.88 microM and V(max)=4.34 pmol/min/mg protein for L-arginine. On incubation of NB-OK-1 cell for 24 h, betamethasone phosphate decreased both nNOS-immunoreactivity (nNOS-IR) and enzymatic activity in the cell dose-dependently. On the other hand, pituitary adenylate cyclase activating polypeptide(1-38) (PACAP38) increased both nNOS-IR and enzymatic activity at concentrations of 10(-10) and 10(-9) M, but inversely decreased both at 10(-7) M. These suggest the positive and negative implications of endogenous NO in proliferation and differentiation of the cell, which support mitogenic activity of NO generated by nNOS in the cell. The present findings also provided evidence that the quantitative change of nNOS protein controls the integrated activity of the enzyme in the cell and, in turn, substantiate the validity and reliability of the present immunoassay system for hnNOS and its practical usefulness.
Collapse
Affiliation(s)
- Yukio Arakawa
- Laboratory of Pharmaceutical Sciences, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
González-Muñiz R, Martín-Martínez M, Granata C, de Oliveira E, Santiveri CM, González C, Frechilla D, Herranz R, García-López MT, Del Río J, Angeles Jiménez M, Andreu D. Conformationally restricted PACAP27 analogues incorporating type II/II' IBTM beta-turn mimetics. Synthesis, NMR structure determination, and binding affinity. Bioorg Med Chem 2001; 9:3173-83. [PMID: 11711293 DOI: 10.1016/s0968-0896(01)00190-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To probe the importance of a proposed beta-turn within residues S9-R12 of PACAP for recognition by VIP/PACAP receptors, compounds 1 and 2, two conformationally restricted analogues of PACAP27 incorporating respectively (S)- or (R)-IBTM as type II or II' beta-turn dipeptide mimetic at the Y10-S11 position, were synthesized. According to 1H NMR conformational analyses in aqueous solution and 30% TFE, both PACAP27 and the [S-IBTM(10,11)]PACAP27 analogue 1 adopt similar ordered structures. PACAP27 shows an N-terminal disordered region (residues H1-F6) and an alpha-helical conformation within segment T7-L27. For residues S9-R12, our data seem more compatible with a segment of the alpha-helix than with the beta-turn previously proposed for this fragment. In compound 1 the alpha-helix, also spanning T7-L27 residues, appears slightly distorted at the N-terminus relative to the native peptide. Although this distortion could lead to the marked decrease in binding affinity of this compound at the VIP/PACAP receptors, the lack of the Y10 side chain in analogues 1 and 2 could also significantly affect the binding of these compounds.
Collapse
Affiliation(s)
- R González-Muñiz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Filipsson K, Kvist-Reimer M, Ahrén B. The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet function. Diabetes 2001; 50:1959-69. [PMID: 11522660 DOI: 10.2337/diabetes.50.9.1959] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is ubiquitously distributed in both the central and peripheral nervous systems and exerts a variety of effects. PACAP is a neuropeptide in pancreatic islets, where it has been suggested as a parasympathetic and sensory neurotransmitter. PACAP stimulates insulin secretion in a glucose-dependent manner, by an effect executed mainly through augmenting the formation of cAMP and stimulating the uptake of calcium. Accumulating evidence in animal studies points to a physiological importance of PACAP in the regulation of the insulin response to feeding. This review summarizes the current knowledge of islet actions and mechanisms and the function of PACAP.
Collapse
Affiliation(s)
- K Filipsson
- Department of Medicine, Lund University, Lund, Sweden
| | | | | |
Collapse
|
33
|
Zhou CJ, Yada T, Kohno D, Kikuyama S, Suzuki R, Mizushima H, Shioda S. PACAP activates PKA, PKC and Ca(2+) signaling cascades in rat neuroepithelial cells. Peptides 2001; 22:1111-7. [PMID: 11445242 DOI: 10.1016/s0196-9781(01)00437-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several studies have reported that the PAC(1) receptor (PAC1-R), the specific receptor for PACAP, is expressed at early developmental stages. Here, we describe that the cytosolic Ca(2+) concentration ([Ca(2+)](i)) was increased by PACAP, but not VIP, in a concentration range from 10(-12) to 10(-8) M via the PAC(1)-R in isolated single cells from the rat neural fold. This activation of the cells by PACAP was mimicked by agonists and inhibited by antagonists of the cAMP/PKA and PLC/PKC cascades. These data indicate that PACAP/PAC(1)-R is linked to [Ca(2+)](i) signaling via two G-protein-coupled protein kinase pathways and may thereby play an important role in early neurodevelopment.
Collapse
Affiliation(s)
- C J Zhou
- Department of Biology, School of Education, Waseda University, Nishi-Waseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Erhardt NM, Fradinger EA, Cervini LA, Rivier JE, Sherwood NM. Early expression of pituitary adenylate cyclase-activating polypeptide and activation of its receptor in chick neuroblasts. Endocrinology 2001; 142:1616-25. [PMID: 11250943 DOI: 10.1210/endo.142.4.8105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the involvement of pituitary adenylate cyclase- activating polypeptide (PACAP) and GH-releasing factor (GRF) during early chick brain development, we established neuroblast- enriched primary cell cultures derived from embryonic day 3.5 chick brain. We measured increases in cAMP generated by several species-specific forms of the peptides. Dose-dependent increases up to 5-fold of control values were measured in response to physiological concentrations of human/salmon, chicken, and tunicate PACAP27. Responses to PACAP38 were more variable, ranging from 5-fold for human PACAP38 to 4-fold for chicken PACAP38, to no significant response for salmon PACAP38, compared with control values. The responses to PACAP38 may reflect a greater difference in peptide structure compared with PACAP27 among species. Increases in cAMP generated by human, chicken, and salmon/carp GRF were not statistically significant, whereas increases in response to lower-range doses of tunicate GRF27-like peptide were significant, but small. We also used immunocytochemistry and Western blot to show synthesis of the PACAP38 peptide. RT-PCR was used to demonstrate that messenger RNAs for PACAP and GRF and a PACAP-specific receptor were present in the cells. This is a first report suggesting an autocrine/paracrine system for PACAP in early chick brain development, based on the presence of the ligand, messages for the ligand and receptor, and activation of the receptor in neuroblast-enriched cultures.
Collapse
Affiliation(s)
- N M Erhardt
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| | | | | | | | | |
Collapse
|
35
|
Yoshida M, Aizawa H, Takahashi N, Shigyo M, Hara N. Pituitary adenylate cyclase activating peptide mediates inhibitory nonadrenergic noncholinergic relaxation. Eur J Pharmacol 2000; 395:77-83. [PMID: 10781677 DOI: 10.1016/s0014-2999(00)00167-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the contribution of pituitary adenylate cyclase activating peptide (PACAP) to inhibitory nonadrenergic noncholinergic (inhibitory-NANC) relaxation of tracheal smooth muscle in cats. We also investigated the roles of vasoactive intestinal peptide (VIP) and nitric oxide (NO) on this function. Smooth muscle strips prepared from feline trachea were precontracted with 1 microM serotonin, and inhibitory-NANC relaxation was induced by electrical-field stimulation in the presence of atropine and propranolol. PACAP-(6-38) (a selective antagonist of PACAP; 1, 3 and 10 microM), VIP-(10-28) (a selective antagonist of VIP; 1, 3 and 10 microM) and N(omega)-nitro-L-arginine methyl ester (L-NAME, a selective NO synthase inhibitor; 3, 10 and 30 microM) each partially but significantly attenuated the amplitude of inhibitory-NANC relaxation. The effects of PACAP-(6-38) and VIP-(10-28) were additive. Addition of PACAP-(6-38) and/or VIP-(10-28) further attenuated relaxation in the presence of L-NAME. These results suggest that PACAP, VIP and NO contribute to the relaxation induced by inhibitory-NANC in tracheal smooth muscle in cats, and that they mediate this relaxation via different pathways.
Collapse
Affiliation(s)
- M Yoshida
- Faculty of Medicine, Research Institute for Diseases of the Chest, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
36
|
Shoge K, Mishima HK, Saitoh T, Ishihara K, Tamura Y, Shiomi H, Sasa M. Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res 1999; 839:66-73. [PMID: 10482800 DOI: 10.1016/s0006-8993(99)01690-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of pituitary adenylate cyclase activating polypeptides (PACAPs: PACAP27, PACAP38) on glutamate-induced neurotoxicity were examined using cultured retinal neurons obtained from 3- to 5-day old Wistar rats. Cell viability was evaluated by double staining with fluorescein diacetate and propidium iodide. Effects of PACAPs on the increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in retinal neurons was investigated using the Ca(2+) image analyzing system with fura-2. The cAMP contents and the mitogen-activated protein (MAP) kinase activity in retinal cultures were measured by radioimmunoassay. Concomitant application of PACAPs (10 nM-1 microM) with glutamate (1 mM) for 10 min inhibited the delayed death of retinal neurons, which was observed 24 h after glutamate (1 mM) treatment in a dose-dependent manner. Protection by PACAPs (100 nM) against glutamate-induced neurotoxicity was antagonized by PACAP6-38 (1 microM), a PACAP antagonist, and H-89 (1 microM), a protein kinase A (PKA) inhibitor. However, PACAPs did not affect the glutamate-induced increase in [Ca(2+)](i), but PACAPs (1-100 nM) increased the cAMP levels in a dose-dependent manner. In addition, activation of MAP kinase by PACAP38 (1 microM) was inhibited by simultaneous application with H-89 (1 microM). These findings suggest that PACAPs attenuate glutamate-induced delayed neurotoxicity in cultured retinal neurons by activating MAP kinase through the activation of cAMP-stimulated PKA.
Collapse
Affiliation(s)
- K Shoge
- Department of Ophthalmology, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Moro O, Wakita K, Ohnuma M, Denda S, Lerner EA, Tajima M. Functional characterization of structural alterations in the sequence of the vasodilatory peptide maxadilan yields a pituitary adenylate cyclase-activating peptide type 1 receptor-specific antagonist. J Biol Chem 1999; 274:23103-10. [PMID: 10438479 DOI: 10.1074/jbc.274.33.23103] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maxadilan is a vasodilatory peptide derived from sand flies that is an agonist at the pituitary adenylate cyclase-activating peptide (PACAP) type 1 receptor. Surprisingly, maxadilan does not share significant sequence homology with PACAP. To examine the relationship between structure and activity of maxadilan, several amino acid substitutions and deletions were made in the peptide. These peptides were examined in vitro for binding to crude membranes derived from rabbit brain, a tissue that expresses PACAP type 1 receptors; and induction of cAMP was determined in PC12 cells, a line that expresses these receptors. The peptides were examined in vivo for their ability to induce erythema in rabbit skin. Substitution of the individual cysteines at positions 1 and 5 or deletion of this ring structure had little effect on activity. Substitution of either cysteine at position 14 or 51 eliminated activity. Deletion of the 19 amino acids between positions 24 and 42 resulted in a peptide with binding, but no functional activity. The capacity of this deletion mutant to interact with COS cells transfected with the PACAP type 1 receptor revealed that this peptide was a specific antagonist to the PACAP type 1 receptor.
Collapse
Affiliation(s)
- O Moro
- Shiseido Research Center, Yokohama, Kanagawa 223-8553, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Kong LY, Maderdrut JL, Jeohn GH, Hong JS. Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience 1999; 91:493-500. [PMID: 10366006 DOI: 10.1016/s0306-4522(98)00606-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stimulation of murine primary mixed cortical neuron/glia cultures with lipopolysaccharide, an endotoxin, was used as a model for inflammatory disorders of the central nervous system. Lipopolysaccharide (20 microg/ml) increased the secretion of lactate dehydrogenase, a marker for cell injury, and nitric oxide into the culture medium. The lipopolysaccharide-induced release of lactate dehydrogenase into the culture medium was reduced by pituitary adenylate cyclase-activating polypeptide (PACAP) at 10(-14)-10(-12) M. The 27- and 38-amino-acid forms of PACAP were equipotent and their dose-response curves were U-shaped. PACAP6-38, a specific type I PACAP receptor antagonist, blocked the reduction by PACAP38 of the lipopolysaccharide-induced release of lactate dehydrogenase. The lipopolysaccharide-induced secretion of nitric oxide into the culture medium was reduced by PACAP at 10(-14)-10(-12) M and 10(-8)-10(-6) M. The 27- and 38-amino-acid forms of PACAP were equipotent. PACAP6-38 blocked the reduction of the lipopolysaccharide-induced secretion of nitric oxide by PACAP38 at 10(-12) M, but not at 10(-8) M. Vasoactive intestinal polypeptide reduced the lipopolysaccharide-induced release of lactate dehydrogenase into the culture medium at 10(-14)-10(-12) M, but these concentrations of vasoactive intestinal polypeptide had no effect on the lipopolysaccharide-induced secretion of nitric oxide. PACAP6-38 did not effect the reduction of the lipopolysaccharide-induced release of lactate dehydrogenase into the culture medium by 10(-12) M vasoactive intestinal polypeptide. These results indicate that stimulation of type I PACAP receptors by femtomolar concentrations of PACAP can prevent neuron death in a model for inflammatory disorders of the CNS. These results suggest that PACAP is also an extraordinarily potent inhibitor of some microglial functions.
Collapse
Affiliation(s)
- L Y Kong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
39
|
Cao YJ, Kojro E, Jasionowski M, Lankiewicz L, Grzonka Z, Fahrenholz F. Identification of binding domains of pituitary adenylate cyclase activating polypeptide (PACAP) for its type 1 receptor by photoaffinity labeling. Ann N Y Acad Sci 1998; 865:82-91. [PMID: 9928000 DOI: 10.1111/j.1749-6632.1998.tb11166.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure-function studies and photoaffinity labeling experiments were performed to identify residues and domains of PACAP involved in the interaction with PACAP receptors. For this purpose, a series of photoreactive analogues of PACAP(1-27) containing a photoreactive benzophenone (BP) residue in different peptide structural domains were utilized to analyze the interaction of PACAP(1-27) with pig PACAP type 1 receptors. Five PACAP derivatives were created with a photoreactive amino acid in the following peptide domains: either the disordered N-terminal or the helical C-terminal domain or a short loop region within the C-terminal helical domain of the peptide. Their receptor binding properties and efficiencies were tested on pig brain PACAP receptors. The results indicate the importance of the helical C-terminal domain of PACAP(1-27) for receptor binding affinity. Monoiodination of the photoreactive analogues did not change their binding affinities. Experiments with pig brain membranes demonstrated that the 125I-labeled photoreactive analogues specifically label a protein band of M(r) 66,000. The efficiency of photoreactive labeling differed for the various analogues. These findings suggest that Tyr22 and Lys15 in PACAP (1-27) are located in or close to the hormone binding site of the PACAP type 1 receptor. The results provide evidence that the alpha-helical C-terminal region of PACAP is directly involved in receptor binding.
Collapse
Affiliation(s)
- Y J Cao
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Healey ZV, Bliss P, Edwards J, Arebi N, Beales IL, Calam J. Effect of PACAP-27 on 14C-aminopyrine accumulation in isolated rabbit parietal cells. Peptides 1998; 19:1111-1114. [PMID: 9700763 DOI: 10.1016/s0196-9781(98)00051-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in gastric mucosa, but its direct effect on parietal cells is unknown. We examined this using 14C-aminopyrine uptake in elutriated rabbit cells. PACAP-27 had no effect on basal cells but significantly increased the response to histamine (10(-4) M) at 10(-9) M and to carbachol (10(-4) M) in the presence of ranitidine (10(-4) M) at 10(-7) M and 10(-8) M. PACAP (6-38), an antagonist of PACAP, inhibited the effect of PACAP-27 on carbachol-stimulated cells. Vasoactive intestinal peptide had no significant effect. In conclusion, PACAP-27 has a direct additive effect on stimulated rabbit parietal cells in vitro.
Collapse
Affiliation(s)
- Z V Healey
- Department of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Cao YJ, Kojro E, Gimpl G, Jasionowski M, Kasprzykowski F, Lankiewicz L, Fahrenholz F. Photoaffinity labeling analysis of the interaction of pituitary adenylate-cyclase-activating polypeptide (PACAP) with the PACAP type I receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:400-6. [PMID: 9119005 DOI: 10.1111/j.1432-1033.1997.00400.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To identify residues and domains of the peptide hormone pituitary adenylate-cyclase-activating polypeptide (PACAP) that interact with the type I receptor, two photoreactive analogues of PACAP-(1-27)-peptide were synthesized using solid-phase peptide synthesis. Phe6 or Tyr22 within the PACAP sequence were replaced by p-benzoyl-L-phenylalanine (Bz-Phe) thus creating two PACAP derivatives with a photoreactive amino acid in either the disordered N-terminal or the helical C-terminal part of the peptide. The ligand-binding properties and the efficiencies of these peptide analogues as photolabels were tested for pig brain PACAP receptors. [Bz-Phe6]-PACAP-(1-27)-peptide (Kd 1.3 nM) retained the high binding affinity of PACAP-(1-27)-peptide (Kd 0.5 nM), wheras Bz-Phe substitution of Tyr22 reduced the affinity about tenfold (Kd 4.4 nM) thus demonstrating the importance of Tyr22 for receptor binding. Monoiodination of the photoreactive analogues did not change the binding affinity of the photoreactive analogues. Photoaffinity labeling using pig brain membrane demonstrated that the 125I-labeled photoreactive analogues specifically label a 66000-Mr protein band. Photoaffinity labeling of the rat brain PACAP receptor expressed in COS cells resulted in two specifically photolabeled proteins: a major band of Mr 58000 and a minor band of Mr 78000. By treatment of photolabeled membranes with N-glycosidase F, both of the polypeptide bands were converted to a single polypeptide band of Mr 54000, which corresponds to the deglycosylated PACAP receptor. Despite its lower receptor affinity, [Bz-Phe22]-PACAP-(1-27)-peptide labeled the PACAP type I receptor in pig brain membranes and the rat receptor expressed in COS cells with much higher efficiency (20-fold for the pig receptor) than [Bz-Phe6]-PACAP-(1-27)-peptide. These findings suggest that Tyr22 in PACAP-(1-27)-peptide is located in or close to the hormone-binding site of the PACAP type I receptor. The results provide evidence that the alpha-helical C-terminal region of PACAP is directly involved in receptor binding.
Collapse
Affiliation(s)
- Y J Cao
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Hou X, Vandermeers A, Gourlet P, Vandermeers-Piret MC, Robberecht P. Structural requirements for the occupancy of rat brain PACAP receptors and adenylate cyclase activation. Neuropharmacology 1994; 33:1189-95. [PMID: 7862254 DOI: 10.1016/s0028-3908(05)80009-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N-terminally shortened analogues of PACAP(1-27) and PACAP(1-38), and analogues modified in position 1,2 or 3 were compared for their ability to interact with PACAP receptors and to activate or inhibit adenylate cyclase in rat brain hippocampus membranes. In the PACAP(1-27) series, deletion of the first two amino acids decreased the potency 3000-fold. PACAP fragments (3-27) to (9-27) were inactive on the enzyme. N-terminally shortened PACAP(1-38) analogues showed a similar profile but were 70 to 300-fold more potent than their PACAP(1-27) equivalents. PACAP(6-27) and PACAP(6-38) were competitive inhibitors of the PACAP(1-27) stimulated enzyme. The Kd values of PACAP(6-27) and PACAP(6-38) were of 1000 and 2 nM respectively. Surprisingly, the Kd values of PACAP(6-31) and (6-35), that were also unable to stimulate adenylate cyclase activity, were of 3 and 300 nM respectively. Replacement of His1 by Phe1 in PACAP(1-27) reduced the potency 600-fold. Replacement of Ser2 by Ala2 in PACAP(1-27) and PACAP(1-38) was of little consequence. Substitution of Ser2 by Phe2, DPhe2, Arg2 or DArg2 reduced 60 to 1000-fold the PACAP(1-27) potency but only 7 to 30-fold the PACAP(1-38) potency. Phe2 derivatives were inactive on the enzyme. Replacement of Asp3 by Asn reduced 4000-fold the PACAP(1-27) potency.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- X Hou
- Department of Biochemistry and Nutrition, Medical School, Université Libre de Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
43
|
Fishbein VA, Coy DH, Hocart SJ, Jiang NY, Mrozinski JE, Mantey SA, Jensen RT. A chimeric VIP-PACAP analogue but not VIP pseudopeptides function as VIP receptor antagonists. Peptides 1994; 15:95-100. [PMID: 7912431 DOI: 10.1016/0196-9781(94)90176-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ability to assess the importance of VIP in different physiological processes is limited by the lack of specific potent antagonists. In the present study, we have adopted two different approaches used successfully with other peptides in an attempt to identify new VIP receptor antagonists. One involves the formation of pseudopeptides by insertion of reduced peptide bonds in the NH2-terminus from position 2 to 8 of VIP. The other methodology involves the formation of a COOH-terminal chimeric analogue by combining VIP(6-28) and PACAP(28-38). The ability of each of these peptides to function as an antagonist was compared with reported VIP antagonists. All of the peptides inhibited [125I]VIP binding to VIP receptors on guinea pig pancreatic acini. For the pseudopeptides the affinities were: [psi 3-4]VIP (0.2 microM) = 4 x [psi 4-5]VIP = 8 x [psi 8-9]VIP = 14 x [psi 6-7]VIP, [psi 2-3]VIP = 25 x [psi 5-6]VIP. Each nonpseudopeptide analogue also inhibited VIP binding with relative potencies of VIP(6-28)-PACAP(28-38) (1 microM) = 2.5 x [4-Cl-D-Phe6,Leu17]VIP, VIP(10-28), neurotensin(6-11)-VIP(7-28) = 6 x [Ac-Tyr1,D-Phe2]GRF. All pseudopeptides were agonists with relative potencies: [psi 3-4]VIP > [psi 6-7], [psi 4-5]VIP > [psi 5-6] > [psi 8- 9]VIP > [psi 2-3]VIP. The reported VIP receptor antagonist, neurotensin(6-11)-VIP(7-28), was also an agonist.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V A Fishbein
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The binding of ovine pituitary adenylate cyclase-activating peptide (PACAP-38) to rat lung membranes was investigated using [125I]PACAP-38 as radioligand. Binding was rapid at 37 degrees C, reversible, saturable, and time, concentration, and temperature dependent. Kinetic parameters derived from saturation experiments revealed a Kd = 100 +/- 15 pM, Bmax = 310 +/- 36 fmol/mg protein, and a Hill slope factor (nH) of 1.17 +/- 0.12. Various chemically synthesized analogues of PACAP-38, as well as related peptides, were tested for their ability to displace [125I]PACAP-38. Of those that had an IC50 < 0.2 microM, the following order of potency was determined: PACAP-38 (IC50 = 25 nM) > or = [Ile2]PACAP-38 (IC50 = 31 nM) > PACAP-27 (IC50 = 54 nM) > [Tyr1]PACAP-38 (IC50 = 104 nM) > GHRH(1-29)NH2 (IC50 = 108 nM) > PHI (IC50 = 181 nM) > [Ser2]PACAP(2-38) (IC50 = 198 nM). Glucagon, PHM, secretin, and GIP exhibited little affinity in the same binding assay. Vasoactive intestinal peptide (VIP) had an IC50 in excess of 1 microM. When [125I]VIP was used as radioligand, PACAP-27 had an IC50 = 0.2 nM > PACAP-38 (IC50 = 0.5 nM) > VIP (IC50 = 16 nM). A novel analog of PACAP-38, [4-Cl-D-Phe6,Leu17]PACAP-38, was able to displace [125I]VIP very efficiently (IC50 = 1 nM), but had little potency in displacing [125I]PACAP-38 (IC50 = 320 nM).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K G Bitar
- Department of Medicine, Tulane University Medical Center, New Orleans, LA 70112
| | | |
Collapse
|