1
|
cPLA 2α Enzyme Inhibition Attenuates Inflammation and Keratinocyte Proliferation. Biomolecules 2020; 10:biom10101402. [PMID: 33023184 PMCID: PMC7600040 DOI: 10.3390/biom10101402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
As a regulator of cellular inflammation and proliferation, cytosolic phospholipase A2 α (cPLA2α) is a promising therapeutic target for psoriasis; indeed, the cPLA2α inhibitor AVX001 has shown efficacy against plaque psoriasis in a phase I/IIa clinical trial. To improve our understanding of the anti-psoriatic properties of AVX001, we sought to determine how the compound modulates inflammation and keratinocyte hyperproliferation, key characteristics of the psoriatic epidermis. We measured eicosanoid release from human peripheral blood mononuclear cells (PBMC) and immortalized keratinocytes (HaCaT) and studied proliferation in HaCaT grown as monolayers and stratified cultures. We demonstrated that inhibition of cPLA2α using AVX001 produced a balanced reduction of prostaglandins and leukotrienes; significantly limited prostaglandin E2 (PGE2) release from both PBMC and HaCaT in response to pro-inflammatory stimuli; attenuated growth factor-induced arachidonic acid and PGE2 release from HaCaT; and inhibited keratinocyte proliferation in the absence and presence of exogenous growth factors, as well as in stratified cultures. These data suggest that the anti-psoriatic properties of AVX001 could result from a combination of anti-inflammatory and anti-proliferative effects, probably due to reduced local eicosanoid availability.
Collapse
|
2
|
Varone A, Mariggiò S, Patheja M, Maione V, Varriale A, Vessichelli M, Spano D, Formiggini F, Lo Monte M, Brancati N, Frucci M, Del Vecchio P, D'Auria S, Flagiello A, Iannuzzi C, Luini A, Pucci P, Banci L, Valente C, Corda D. A signalling cascade involving receptor-activated phospholipase A 2, glycerophosphoinositol 4-phosphate, Shp1 and Src in the activation of cell motility. Cell Commun Signal 2019; 17:20. [PMID: 30823936 PMCID: PMC6396489 DOI: 10.1186/s12964-019-0329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background Shp1, a tyrosine-phosphatase-1 containing the Src-homology 2 (SH2) domain, is involved in inflammatory and immune reactions, where it regulates diverse signalling pathways, usually by limiting cell responses through dephosphorylation of target molecules. Moreover, Shp1 regulates actin dynamics. One Shp1 target is Src, which controls many cellular functions including actin dynamics. Src has been previously shown to be activated by a signalling cascade initiated by the cytosolic-phospholipase A2 (cPLA2) metabolite glycerophosphoinositol 4-phosphate (GroPIns4P), which enhances actin polymerisation and motility. While the signalling cascade downstream Src has been fully defined, the mechanism by which GroPIns4P activates Src remains unknown. Methods Affinity chromatography, mass spectrometry and co-immunoprecipitation studies were employed to identify the GroPIns4P-interactors; among these Shp1 was selected for further analysis. The specific Shp1 residues interacting with GroPIns4P were revealed by NMR and validated by site-directed mutagenesis and biophysical methods such as circular dichroism, isothermal calorimetry, fluorescence spectroscopy, surface plasmon resonance and computational modelling. Morphological and motility assays were performed in NIH3T3 fibroblasts. Results We find that Shp1 is the direct cellular target of GroPIns4P. GroPIns4P directly binds to the Shp1-SH2 domain region (with the crucial residues being Ser 118, Arg 138 and Ser 140) and thereby promotes the association between Shp1 and Src, and the dephosphorylation of the Src-inhibitory phosphotyrosine in position 530, resulting in Src activation. As a consequence, fibroblast cells exposed to GroPIns4P show significantly enhanced wound healing capability, indicating that GroPIns4P has a stimulatory role to activate fibroblast migration. GroPIns4P is produced by cPLA2 upon stimulation by diverse receptors, including the EGF receptor. Indeed, endogenously-produced GroPIns4P was shown to mediate the EGF-induced cell motility. Conclusions This study identifies a so-far undescribed mechanism of Shp1/Src modulation that promotes cell motility and that is dependent on the cPLA2 metabolite GroPIns4P. We show that GroPIns4P is required for EGF-induced fibroblast migration and that it is part of a cPLA2/GroPIns4P/Shp1/Src cascade that might have broad implications for studies of immune-inflammatory response and cancer. ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0329-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Manpreet Patheja
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Vincenzo Maione
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy
| | - Antonio Varriale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Institute of Food Science, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Mariangela Vessichelli
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Daniela Spano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Fabio Formiggini
- Italian Institute of Technology, Centre for Advanced Biomaterials for Health Care at CRIB, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Matteo Lo Monte
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Nadia Brancati
- Institute of High Performance Computing and Networking, National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Maria Frucci
- Institute of High Performance Computing and Networking, National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Sabato D'Auria
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Institute of Food Science, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Angela Flagiello
- CEINGE Advanced Biotechnology, Via G. Salvatore 486, 80145, Naples, Italy
| | - Clara Iannuzzi
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. de Crecchio 7, 80138, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.,CEINGE Advanced Biotechnology, Via G. Salvatore 486, 80145, Naples, Italy
| | - Lucia Banci
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
3
|
Brunner RM, Srikanchai T, Murani E, Wimmers K, Ponsuksili S. Genes with expression levels correlating to drip loss prove association of their polymorphism with water holding capacity of pork. Mol Biol Rep 2011; 39:97-107. [PMID: 21556776 DOI: 10.1007/s11033-011-0714-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/23/2011] [Indexed: 01/03/2023]
Abstract
Six genes that were known to exhibit expression levels that are correlated to drip loss BVES, SLC3A2, ZDHHC5, CS, COQ9, and EGFR have been for candidate gene analysis. Based on in silico analysis SNPs were detected, confirmed by sequencing, and used for genotyping. The SNPs were genotyped in about 1,800 animals from six pig populations including commercial herds of Pietrain (PI) and German Landrace (DL), different commercial herds of Pietrain×(German Large White×German Landrace) (PIF1(a/b/c)), and one experimental F2-population Duroc×Pietrain (DUPI). Comparative and genetic mapping established the location of BVES on SSC1, of SLC3A2 and ZDHHC5 on SSC2, of CS on SSC5, of COQ9 on SSC6 and of EGFR on SSC9, respectively, coinciding with QTL regions for carcass and meat quality traits. BVES, SLC3A2, and CS revealed association at least with drip loss and with several other measures of water holding capacity (WHC). Moreover, COQ9 and EGFR were associated with several meat quality traits such as meat color and/or thawing loss. This study reveals statistic evidence in addition to the functional relationship of these genes to WHC previously evidenced by expression analysis. This study reveals positional and genetic statistical evidence for a link of genetic variation at these loci or close to them and promotes those six candidate genes as functional and/or positional candidate genes for meat quality traits.
Collapse
Affiliation(s)
- R M Brunner
- Leibniz Institute for Farm Animal Biology, Research Unit Molecular Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
4
|
Hur S, Lee YS, Yoo H, Yang JH, Kim TY. Homoisoflavanone inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-kappaB nuclear localization. J Dermatol Sci 2010; 59:163-9. [PMID: 20724116 DOI: 10.1016/j.jdermsci.2010.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/11/2010] [Accepted: 07/06/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND Since the generation of reactive oxygen species (ROS) and release of inflammatory mediators play a major role in UVB-induced inflammation, vigorous attempts have been made for the pharmacological management of these molecules as well as for uncovering the molecular signaling pathways. Homoisoflavanone (5,7-dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-chroman-4-one, HIF) extracted from Cremastra appendiculata has anti-angiogenic activities, but its effect on inflammation was unknown. OBJECTIVE To investigate the anti-inflammatory effects of HIF on the skin and the underlying molecular mechanisms. METHODS HaCaT cells were irradiated by UVB (10 mJ/cm(2)) with or without HIF. Prostaglandin E(2) (PGE(2)) level was measured by enzyme immunoassay. Activation of MAPK and production of cyclooxygenase-2 (COX-2) were determined by Western blot analysis. Localization of nuclear factor kappa B (NF-kappaB) was assessed by immunofluorescence microscopy. Hairless mice were stimulated with UVB or chemical stimulants to induce inflammatory responses in skin. RESULTS Pretreatment with HIF inhibited the production of intracellular ROS induced by UVB irradiation in HaCaT cells. Further analysis revealed a decrease in the level of MAPK activation and down-regulation of COX-2 expression. In addition, HIF attenuated the nuclear localization of NF-kappaB, resulting in the suppression of inflammatory molecules such as IL-6, IL-8, and TNF-alpha. Finally, topical treatment with HIF inhibited ear edema induced by UVB, 12-O-tetradecanoylphorbol-13-acetate (TPA), arachidonic acid (AA), or croton oil. CONCLUSION HIF has a strong protective effect against proinflammatory responses, implying the possibility of preventive application for inflammatory skin diseases.
Collapse
Affiliation(s)
- Seulgi Hur
- Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137-040, South Korea
| | | | | | | | | |
Collapse
|
5
|
Novel role of cPLA(2)alpha in membrane and actin dynamics. Cell Mol Life Sci 2010; 67:1547-57. [PMID: 20112044 PMCID: PMC2856858 DOI: 10.1007/s00018-010-0267-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 12/17/2009] [Accepted: 01/11/2010] [Indexed: 01/07/2023]
Abstract
Actin-directed processes such as membrane ruffling and cell migration are regulated by specific signal transduction pathways that become activated by growth factor receptors. The same signaling pathways that lead to modifications in actin dynamics also activate cPLA(2)alpha. Moreover, arachidonic acid, the product of cPLA(2)alpha activity, is involved in regulation of actin dynamics. Therefore, it was investigated whether cPLA(2)alpha plays a role in actin dynamics, more specifically during growth factor-induced membrane ruffling and cell migration. Upon stimulation of ruffling and cell migration by growth factors, endogenous cPLA(2)alpha and its active phosphorylated form were shown to relocate at protrusions of the cell membrane involved in actin and membrane dynamics. Inhibition of cPLA(2)alpha activity with specific inhibitors blocked growth factor-induced membrane and actin dynamics, suggesting an important role for cPLA(2)alpha in these processes.
Collapse
|
6
|
Sánchez-González P, Jellali K, Villalobo A. Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 2009; 277:327-42. [PMID: 19951361 DOI: 10.1111/j.1742-4658.2009.07469.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we first describe the mechanisms by which the epidermal growth factor receptor generates a Ca(2+) signal and, subsequently, we compile the available experimental evidence regarding the role that the Ca(2+)/calmodulin complex, formed after the rise in cytosolic free Ca(2+) concentration, exerts on the receptor. We focus not only on the indirect action that Ca(2+)/calmodulin exerts on the epidermal growth factor receptor, as a result of the activation of distinct calmodulin-dependent kinases, but also, and more extensively, on the direct interaction of Ca(2+)/calmodulin with the receptor. We also describe several mechanistic models that could account for the Ca(2+)/calmodulin-mediated regulation of epidermal growth factor receptor activity. The control exerted by calmodulin on distinct epidermal growth factor receptor-mediated cellular functions is also discussed. Finally, the phosphorylation of this Ca(2+) sensor by the epidermal growth factor receptor is highlighted.
Collapse
Affiliation(s)
- Pablo Sánchez-González
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
7
|
Stanisçuaski F, Te Brugge V, Carlini CR, Orchard I. Invitro effect of Canavalia ensiformis urease and the derived peptide Jaburetox-2Ec on Rhodnius prolixus Malpighian tubules. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:255-263. [PMID: 19121321 DOI: 10.1016/j.jinsphys.2008.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 05/27/2023]
Abstract
Ureases are metalloenzymes that are widespread among plants, fungi and bacteria. Urease isoforms (jack bean urease-JBU and canatoxin) from Canavalia ensiformis seeds are toxic to insects and fungi, suggesting a role in plant defense. The entomotoxic effect is due to the release of a 10-kDa peptide by cathepsin-like enzymes in the insect's midgut. Urease causes a decrease in post-feeding weight loss in Rhodnius prolixus, suggesting an effect on water balance. To investigate how this impairment occurs, we have evaluated the action of JBU and the urease-derivated peptide Jaburetox-2Ec on R. prolixus Malpighian tubules and also investigated the involvement of second messengers. JBU and Jaburetox-2Ec affect serotonin-induced secretion from Malpighian tubules. This effect is not cAMP-dependent, but the Jaburetox-2Ec effect is cGMP-dependent. Eicosanoid metabolites and calcium ions appear to be involved in JBU effect on diuresis, but are not involved in the action of Jaburetox-2Ec. Jaburetox-2Ec, but not JBU, causes a change in the transepithelial potential of the tubules. Canatoxin has a similar effect on tubules secretion, decreasing the secretion rate, but the urease from Helicobacter pylori has no significant effect. These data are helpful in our understanding of the actions of ureases and derived peptides on insects, and also reinforces the potential use of these proteins as biopesticides.
Collapse
Affiliation(s)
- Fernanda Stanisçuaski
- Department of Biophysics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| | | | | | | |
Collapse
|
8
|
Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T, Walz C, Schwerin M, Schellander K, Wimmers K. Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics 2008; 9:367. [PMID: 18671879 PMCID: PMC2529315 DOI: 10.1186/1471-2164-9-367] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 07/31/2008] [Indexed: 11/30/2022] Open
Abstract
Background Leakage of water and ions and soluble proteins from muscle cells occurs during prolonged exercise due to ischemia causing muscle damage. Also post mortem anoxia during conversion of muscle to meat is marked by loss of water and soluble components from the muscle cell. There is considerable variation in the water holding capacity of meat affecting economy of meat production. Water holding capacity depends on numerous genetic and environmental factors relevant to structural and biochemical muscle fibre properties a well as ante and post slaughter metabolic processes. Results Expression microarray analysis of M. longissimus dorsi RNAs of 74 F2 animals of a resource population showed 1,279 transcripts with trait correlated expression to water holding capacity. Negatively correlated transcripts were enriched in functional categories and pathways like extracellular matrix receptor interaction and calcium signalling. Transcripts with positive correlation dominantly represented biochemical processes including oxidative phosphorylation, mitochondrial pathways, as well as transporter activity. A linkage analysis of abundance of trait correlated transcripts revealed 897 expression QTL (eQTL) with 104 eQTL coinciding with QTL regions for water holding capacity; 96 transcripts had trans acting and 8 had cis acting regulation. Conclusion The complex relationships between biological processes taking place in live skeletal muscle and meat quality are driven on the one hand by the energy reserves and their utilisation in the muscle and on the other hand by the muscle structure itself and calcium signalling. Holistic expression profiling was integrated with QTL analysis for the trait of interest and for gene expression levels for creation of a priority list of genes out of the orchestra of genes of biological networks relevant to the liability to develop elevated drip loss.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for the Biology of Farm Animals (FBN), Research Group Functional Genomics, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ding Y, Brackenbury WJ, Onganer PU, Montano X, Porter LM, Bates LF, Djamgoz MBA. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity. J Cell Physiol 2008; 215:77-81. [PMID: 17960590 PMCID: PMC4122813 DOI: 10.1002/jcp.21289] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The main aim of this investigation was to determine whether a functional relationship existed between epidermal growth factor (EGF) and voltage-gated sodium channel (VGSC) upregulation, both associated with strongly metastatic prostate cancer cells. Incubation with EGF for 24 h more than doubled VGSC current density. Similar treatment with EGF significantly and dose-dependently enhanced the cells' migration through Transwell filters. Both the patch clamp recordings and the migration assay suggested that endogenous EGF played a similar role. Importantly, co-application of EGF and tetrodotoxin, a highly selective VGSC blocker, abolished 65% of the potentiating effect of EGF. It is suggested that a significant portion of the EGF-induced enhancement of migration occurred via VGSC activity.
Collapse
Affiliation(s)
- Yanning Ding
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
- Institute of Cancer Research, Cell and Molecular Biology, 237 Fulham Road, London, SW3 6JB, U.K
| | - William J. Brackenbury
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Pinar U. Onganer
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
- Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Imperial College London, Hammersmith Hospital, London, W12 0NN, U.K
| | - Ximena Montano
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
- Molecular Signalling Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Louise M. Porter
- Coombe Girls School, Clarence Avenue, New Malden, Surrey, KT3 3TU, U.K
| | - Lucy F. Bates
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 5SY, U.K
| | - Mustafa B. A. Djamgoz
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| |
Collapse
|
10
|
Xie Y, Liu L, Huang X, Guo Y, Lou L. Scalaradial inhibition of epidermal growth factor receptor-mediated Akt phosphorylation is independent of secretory phospholipase A2. J Pharmacol Exp Ther 2005; 314:1210-7. [PMID: 15923342 DOI: 10.1124/jpet.105.086520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The marine natural product 12-epi-scalaradial (SLD) is a specific secretory phospholipase A(2) (sPLA(2)) inhibitor. However, little is known about whether this compound has other pharmacological effects. Here, we revealed a novel effect of SLD on epidermal growth factor receptor (EGFR)-mediated Akt phosphorylation. SLD dose- and time-dependently inhibited epidermal growth factor (EGF)-stimulated Akt phosphorylation, which is required for Akt activation. SLD also blocked the EGF-stimulated membrane translocation of 3-phosphoinositide-dependent protein kinase 1 and inhibited phosphatidylinositol 3-kinase activity. This inhibition is specific for SLD because other phospholipase inhibitors, including sPLA(2) inhibitor thioetheramide-phosphatidylcholine, cytosolic PLA(2) inhibitor arachidonyl trifluoromethyl ketone, cytosolic PLA(2) and Ca(2+)-independent PLA(2) inhibitor methyl arachidonyl fluorophosphonate, phospholipase C inhibitor U73122, and cyclooxygenases inhibitor indomethacin, failed to inhibit EGF-stimulated Akt phosphorylation. Furthermore, arachidonic acid, the main sPLA(2)-catalyzed metabolite, was not able to rescue SLD inhibition of EGF-stimulated Akt phosphorylation. Overexpression of group IIA or group X sPLA(2) did not reverse the inhibitory effect of SLD on Akt phosphorylation, either. Our results demonstrate that SLD inhibits EGFR-mediated Akt phosphorylation, and this novel effect of SLD is independent of sPLA(2).
Collapse
Affiliation(s)
- Yili Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences
| | | | | | | | | |
Collapse
|
11
|
Lupo G, Nicotra A, Giurdanella G, Anfuso CD, Romeo L, Biondi G, Tirolo C, Marchetti B, Ragusa N, Alberghina M. Activation of phospholipase A2 and MAP kinases by oxidized low-density lipoproteins in immortalized GP8.39 endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:135-50. [PMID: 15979399 DOI: 10.1016/j.bbalip.2005.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/11/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
In immortalized rat brain endothelial cells (GP8.39), we have previously shown that oxidized LDL (oxLDL), after 24-h treatment, stimulates arachidonic acid release and phosphatidylcholine hydrolysis by activation of cytosolic phospholipase A(2) (cPLA(2)). A putative role for MAPKs in this process has emerged. Here, we studied the contribution of Ca(2+)-independent phospholipase A(2) (iPLA(2)), and the role of the MAP kinase family as well as both cPLA(2) and iPLA(2) mRNA expression by RT-PCR in oxLDL toxicity to GP8.39 cells in vitro. The activation of extracellular signal-regulated kinases ERK1/2, p38 and c-Jun NH(2)-terminal kinase (JNK) was assessed with Western blotting and kinase activity assays. iPLA(2) activity, which was found as a membrane-associated enzyme, was more stimulated by oxLDL compared with native LDL. The phosphorylation of ERK1/2, p38 and JNKs was also significantly enhanced in a dose-dependent manner. PD98059, an ERK inhibitor, SB203580, a p38 inhibitor, and SP600125, an JNK inhibitor, abolished the stimulation of all three members of the MAPK family by oxLDL. Confocal microscopy analysis and subcellular fractionation confirmed either an increase in phosphorylated form of ERKs, p38 and JNKs, or their nuclear translocation upon activation. A strong inhibition of MAPK activation was also observed when endothelial cells were treated with GF109203X, a PKC inhibitor, indicating the important role of both PKC and all three MAPKs in mediating the maximal oxLDL response. Finally, compared with samples untreated or treated with native LDL, treatment with oxLDL (100 muM hydroperoxides) for 24 h significantly increased the levels of constitutively expressed iPLA(2) protein (by 5.1-fold) and mRNA (by 3.1-fold), as well as cPLA(2) protein (by 4.4-fold) and mRNA (by 1.5-fold). Together, these data link the stimulation of PKC-ERK-p38-JNK pathways and PLA(2) activity by oxLDL to the prooxidant mechanism of the lipoprotein complex, which may initially stimulate the endothelial cell reaction against noxious stimuli as well as metabolic repair, such as during inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biochemistry, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nicotra A, Lupo G, Giurdanella G, Anfuso CD, Ragusa N, Tirolo C, Marchetti B, Alberghina M. MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β(25–35) peptide in bovine retina pericytes. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:172-86. [PMID: 15863364 DOI: 10.1016/j.bbalip.2004.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/15/2004] [Accepted: 12/28/2004] [Indexed: 10/25/2022]
Abstract
We have previously shown that, in bovine retina pericytes, amyloid beta(1-42) and its truncated form containing amino acids 25-35, after 24 h treatment, stimulate arachidonic acid (AA) release and phosphatidylcholine hydrolysis, by activation of both cytosolic (cPLA(2)) and Ca(2+)-independent (iPLA(2)) phospholipase A(2). A putative role for MAP kinases in this process emerged. Here we studied the role of the MAP-kinase family as well as both cPLA(2) and iPLA(2) mRNA expression by a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in the same sublethal model of amyloid-beta (Abeta) damage to pericytes in vitro. Abeta(25-35) peptide evoked AA release as well as stimulated phosphorylation of ERK1/2, p38 MAPKs and cPLA(2), but not c-Jun N-terminal kinase (JNK/SAPK). PD98059, an inhibitor of ERK-activating kinase MEK-1, and SB203580, an inhibitor of p38 protein kinase, abolished the stimulation of AA release and MAPK activities. In cells stimulated by Abeta(25-35) peptide, Western blotting and confocal microscopy analyses confirmed either an increase in the phosphorylated form of ERKs and p38 or their nuclear translocation. A complete inhibition of MAPK activation and AA release was also observed when pericytes were treated with GF109203X, a general PKC inhibitor, indicating the important role of both PKC and the two MAPKs in mediating the Abeta peptide response. Compared with samples untreated or treated with reverse Abeta(35-25) peptide, pretreatment with 50 microM Abeta(25-35) for 24 h significantly increased the level of constitutively expressed iPLA(2) mRNA by 25%, which seems to depend on the activation of kinases. By contrast, the level of cPLA(2) mRNA remained unchanged. Together, these data link either the stimulation of PKC-ERK-p38 cascades or PLA(2) activity by Abeta peptide to prooxidant mechanism induced by amyloid, which may initially stimulate the cell reaction as well as metabolic repair, such as during inflammation.
Collapse
Affiliation(s)
- Ambra Nicotra
- Department of Biochemistry, University of Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Boonstra J, Verkleij AJ. Regulation of enzyme activity in vivo is determined by its cellular localization. ACTA ACUST UNITED AC 2005; 44:61-73. [PMID: 15581483 DOI: 10.1016/j.advenzreg.2003.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Johannes Boonstra
- Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, CH 3584 Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Anfuso CD, Assero G, Lupo G, Nicotra A, Cannavò G, Strosznajder RP, Rapisarda P, Pluta R, Alberghina M. Amyloid β(1–42) and its β(25–35) fragment induce activation and membrane translocation of cytosolic phospholipase A2 in bovine retina capillary pericytes. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1686:125-38. [PMID: 15522829 DOI: 10.1016/j.bbalip.2004.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/07/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
We investigated changes in cytosolic phospholipase A(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) activities in bovine retina capillary pericytes after stimulation with 50 microM amyloid-beta (Abeta) (1-42) and its (25-35) fragment, over 24 h (mild, sublethal model of cell damage). In the presence of Abeta peptides, we found that cPLA(2) activity was increased and translocated from the cytosolic fraction to the membrane system, particularly in the nuclear region. Reversed-sequence Abeta(35-25) peptide did not stimulate or induce cPLA(2) translocation. Exposure to both Abeta peptides had no significant effect on cPLA(2) protein content as tested by Western immunoblot analysis. The addition of Abetas to quiescent pericytes was followed by phosphorylation of cPLA(2) and arachidonic acid release. Treatment with inhibitors (AACOCF(3), staurosporine and cycloheximide) resulted in a sharp decrease in basal and stimulated cPLA(2) activity. Inactivating effects of bromoenol lactone (BEL), inhibitor of iPLA(2), demonstrated that the stimulation of total PLA(2) activity by Abetas was mediated by both PLA(2) enzymes. Taken together with our previous observations that both Abeta peptides may induce hydrolysis of phosphatidylcholine, the present results provide evidence that this process is cooperatively mediated by cPLA(2) activation/translocation and iPLA(2) activation. The effect is very likely triggered by a mild prooxidant mechanism which was not able to divert the cell to degeneration. The data confirm the hypothesis that pericytes could be a target of potential vascular damage and reactivity during processes involving amyloid accumulation.
Collapse
Affiliation(s)
- Carmelina Daniela Anfuso
- Department of Biochemistry, Faculty of Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Moran AE, Hunt DH, Javid SH, Redston M, Carothers AM, Bertagnolli MM. Apc deficiency is associated with increased Egfr activity in the intestinal enterocytes and adenomas of C57BL/6J-Min/+ mice. J Biol Chem 2004; 279:43261-72. [PMID: 15294912 DOI: 10.1074/jbc.m404276200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) and its increased tyrosine kinase activity are implicated in colorectal cancer (CRC) development and malignant progression. The C57BL/6J-Min/+ (Min/+) mouse is a model for CRC and develops numerous intestinal adenomas. We analyzed the normal mucosa of Min/+ and Apc+/+ (WT) littermate mice together with Apc-null adenomas to gain insight into the roles of Egfr in these intestinal tissues. Protein analyses showed that Egfr activity was highest in the tumors, and also up-regulated in Min/+ relative to WT enterocytes. Expression of ubiquitylated Egfr (Egfr-Ub) was increased in Min/+ enterocytes and tumors. Tumors exhibited increased association of Egfr with clathrin heavy chain (CHC), Gab1, and p85alpha, the regulatory subunit of phosphoinositide 3-kinase (PI3K), and tumors also overexpressed c-Src, PDK1, and Akt. Immunohistochemistry for Akt-p-Ser473 revealed a low level of this active kinase in Min/+ and WT enterocytes and its strong presence in tumors. Prostaglandin E2 (PGE2) is a product of cyclooxygenase-2 (Cox-2) activity that is up-regulated in Min/+ tumors and transactivates Egfr. PGE2 expression was significantly higher in untreated Min/+ tumors and reduced by treatment with the Cox-2 inhibitor, celecoxib. Dietary administration of this NSAID also inhibited Egfr activity in tumors. Increased activation of the EGFR-PI3K-Akt signaling pathway in tumors relative to Apc+/+ and ApcMin/+ enterocytes provides potential opportunities for therapeutic interventions to differentially suppress tumor formation, promotion, progression, and/or recurrence.
Collapse
Affiliation(s)
- Amy E Moran
- Department of Surgery, Weill College of Medicine of Cornell University, and Strang Cancer Prevention Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
16
|
Tanaka S, Sato T, Akimoto N, Yano M, Ito A. Prevention of UVB-induced photoinflammation and photoaging by a polymethoxy flavonoid, nobiletin, in human keratinocytes in vivo and in vitro. Biochem Pharmacol 2004; 68:433-9. [PMID: 15242810 DOI: 10.1016/j.bcp.2004.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 04/15/2004] [Indexed: 10/26/2022]
Abstract
Exposure to ultraviolet B (UVB) irradiation induces acute skin inflammation such as erythema (sunburn) and edema, and prostaglandin (PG)E2 in the epidermis plays an important role as its prominent mediator. In the present study, we investigated the effect of nobiletin (5,6,7,8,3',4'-hexamethoxy flavone) from Citrus depressa, on the production of PGE2 in UVB-irradiated human keratinocytes. When keratinocytes were irradiated with 60mJ of UVB/cm2, the production and gene expression of cyclooxygenase (COX)-2, but not COX-1, were augmented along with an increase in PGE2 levels. The augmented COX-2 production was transcriptionally suppressed by nobiletin. In addition, neither the release of [14C]arachidonic acid from membrane phospholipids nor the gene expression of cytosolic phospholipase A2 (cPLA2) was altered in UVB-irradiated human keratinocytes. However, nobiletin was found to inhibit the release of [14C]arachidonic acid by decreasing the Ca2+ -dependent activity of cPLA2. Furthermore, topical treatment of nobiletin on the skin of the back prevented the UVB-induced increase of transepidermal water loss and hyperplasia of the epidermis in hairless mice. Therefore, these results suggest that nobiletin inhibits the UVB-induced production of PGE2 not only by suppressing the expression of COX-2 but also by decreasing the activity of cPLA2 in human keratinocytes. Furthermore, nobiletin may be useful as a novel sunscreen reagent to be applied for protection against photoinflammation and photoaging.
Collapse
Affiliation(s)
- Sachiko Tanaka
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
17
|
Dunn CL, Kelly RW, Critchley HOD. Decidualization of the human endometrial stromal cell: an enigmatic transformation. Reprod Biomed Online 2004; 7:151-61. [PMID: 14567882 DOI: 10.1016/s1472-6483(10)61745-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in human endometrium are essential to allow the establishment of pregnancy. These changes are induced in vivo by progesterone, and include appearance within the tissue of a specific uterine natural killer cell, characterized by an abundant expression of CD56. Changes also occur in the stromal cells, which undergo a characteristic decidualization reaction. Decidualized stromal cells are derived from the fibroblast-like cells within the endometrium, which maintain their progesterone receptors in the presence of progesterone. Prolonged exposure to progesterone induces a rounded cell characterized by release of prolactin and insulin-like growth factor binding protein-1 (IGFBP-1), and expression of tissue factor. Additional changes include the secretion of interleukin (IL)-15, vascular endothelial growth factor, and surface expression of zinc dependent metalloproteinases such as CD10 and CD13. In vitro, elevated intracellular cAMP as well as progesterone is necessary for decidualization. In vivo, these conditions may be provided by progesterone from the corpus luteum, by prostaglandin E, a stimulator of adenyl cyclase, and relaxin, which has recently been shown to be a phosphodiesterase inhibitor. Given the co-distribution of uterine natural killer cells and decidualized stromal cells, a mutual interaction might provide the correct regulatory environment for successful implantation, and penetration of the maternal blood vessels by trophoblastic cells.
Collapse
Affiliation(s)
- Carolyn L Dunn
- Medical Research Council, Human Reproductive Sciences Unit, University of Edinburgh Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | | | |
Collapse
|
18
|
Li H, Ruano MJ, Villalobo A. Endogenous calmodulin interacts with the epidermal growth factor receptor in living cells. FEBS Lett 2004; 559:175-80. [PMID: 14960328 DOI: 10.1016/s0014-5793(04)00067-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 01/13/2004] [Accepted: 01/19/2004] [Indexed: 11/25/2022]
Abstract
We have previously shown that exogenous calmodulin (CaM) binds to the epidermal growth factor receptor (EGFR) at its cytosolic juxtamembrane region inhibiting its tyrosine kinase activity. We demonstrate in this report that endogenous CaM binds to EGFR in intact cells as CaM co-immunoprecipitates with EGF-activated and non-activated receptors. We also show in living cells that cell-permeable CaM inhibitors prevent the full transphosphorylation of wild type EGFR but not the transphosphorylation of an insertional EGFR mutant in which the CaM-binding domain was divided into two parts. Overall these results suggest that CaM interacts with EGFR in vivo.
Collapse
Affiliation(s)
- Hongbing Li
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | |
Collapse
|
19
|
van Rossum GSAT, Drummen GPC, Verkleij AJ, Post JA, Boonstra J. Activation of cytosolic phospholipase A2 in Her14 fibroblasts by hydrogen peroxide: a p42/44MAPK-dependent and phosphorylation-independent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:183-95. [PMID: 15164766 DOI: 10.1016/j.bbalip.2003.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 12/03/2003] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of diseases as well as various normal cellular processes. It has been suggested that ROS function as mediators of signal transduction, given that they can mimic growth factor-induced signaling. The ROS H2O2 has been reported to activate phospholipase A2 (PLA2) and, therefore, we investigated if and through which pathway ROS activate cytosolic PLA2 (cPLA2) in Her14 fibroblasts. cPLA2 was activated concentration-dependently by H2O2 in a transient manner. In addition, the lipophilic cumene hydroperoxide was shown to induce cPLA2 activity in the same manner. H2O2-induced cPLA2 activity in Her14 cells was partially phosphorylation-dependent, which was mediated through the Raf-MEK-p42/44(MAPK) pathway and occurred partially through a phosphorylation-independent mechanism. ROS can lead to changes in the (micro) viscosity of membranes due to the presence oxidized lipids, thereby increasing the substrate availability for cPLA2. In support of this, treatment of Her14 cells with H2O2 induced lipid peroxidation time-dependently as determined from degradation of lipid arachidonate and linoleate and the formation of aldehydic degradation products. Furthermore, H2O2 induced translocation of cPLA2 to the membrane fraction in a calcium-independent fashion, with a concomitant increase in cPLA2 activity. Collectively, the results suggest that oxidative stress-induced cPLA2 activity is partially phosphorylation-dependent and is further increased due to increased substrate availability by the action of ROS on membranes.
Collapse
Affiliation(s)
- Gerda S A T van Rossum
- Department of Molecular Cell Biology, Institute and Graduate School of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Vance DE, Spener F. Henk van den Bosch: chemist and biochemist. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:77-81. [PMID: 15164754 DOI: 10.1016/j.bbalip.2003.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 12/05/2003] [Indexed: 11/19/2022]
Abstract
Henk van den Bosch is a native of The Netherlands and recently retired from his position as Professor at Utrecht University. This article summarizes the many scientific achievements of Dr. van den Bosch. He enjoys an international reputation for his research on phospholipases A, cardiolipin biosynthesis in eukaryotes, lysophospholipases, phosphatidylcholine biosynthesis for lung surfactant, plasmalogen biosynthesis in peroxisomes, diagnosis of peroxisomal disorders and most recently his work on alkyl-dihydroxyacetone phosphate synthase. During his research career Henk van den Bosch published approximately 280 articles and presented 110 invited lectures.
Collapse
Affiliation(s)
- Dennis E Vance
- Department of Biochemistry, Canadian Institutes of Health Research Group on Molecular and Cell Biology of Lipids, Faculty of Medicine, University of Alberta, 328 Heritage Medical Research Centre, Edmonton, Alberta, Canada T6H 5S3.
| | | |
Collapse
|
21
|
Shmelzer Z, Haddad N, Admon E, Pessach I, Leto TL, Eitan-Hazan Z, Hershfinkel M, Levy R. Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J Cell Biol 2003; 162:683-92. [PMID: 12913107 PMCID: PMC2173789 DOI: 10.1083/jcb.200211056] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cytosolic phospholipase A2 (cPLA2)-generated arachidonic acid (AA) has been shown to be an essential requirement for the activation of NADPH oxidase, in addition to its being the major enzyme involved in the formation of eicosanoid at the nuclear membranes. The mechanism by which cPLA2 regulates NADPH oxidase activity is not known, particularly since the NADPH oxidase complex is localized in the plasma membranes of stimulated cells. The present study is the first to demonstrate that upon stimulation cPLA2 is transiently recruited to the plasma membranes by a functional NADPH oxidase in neutrophils and in granulocyte-like PLB-985 cells. Coimmunoprecipitation experiments and double labeling immunofluorescence analysis demonstrated the unique colocalization of cPLA2 and the NADPH oxidase in plasma membranes of stimulated cells, in correlation with the kinetic burst of superoxide production. A specific affinity in vitro binding was detected between GST-p47phox or GST-p67phox and cPLA2 in lysates of stimulated cells. The association between these two enzymes provides the molecular basis for AA released by cPLA2 to activate the assembled NADPH oxidase. The ability of cPLA2 to regulate two different functions in the same cells (superoxide generation and eicosanoid production) is achieved by a novel dual subcellular localization of cPLA2 to different targets.
Collapse
Affiliation(s)
- Zeev Shmelzer
- Infectious Diseases Laboratory, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fatima S, Yaghini FA, Ahmed A, Khandekar Z, Malik KU. CaM kinase IIalpha mediates norepinephrine-induced translocation of cytosolic phospholipase A2 to the nuclear envelope. J Cell Sci 2003; 116:353-65. [PMID: 12482921 DOI: 10.1242/jcs.00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several growth factors, hormones and neurotransmitters, including norepinephrine, increase cellular calcium levels, promoting the translocation of cytosolic phospholipase A(2) to the nuclear envelope. This study was conducted to investigate the contributions of the calcium-binding protein calmodulin and of calcium-calmodulin-dependent protein kinase II to cytosolic phospholipase A(2) translocation to the nuclear envelope elicited by norepinephrine in rabbit aortic smooth-muscle cells. Norepinephrine caused cytosolic phospholipase A(2) accumulation around the nuclear envelope as determined from its immunofluorescence; cytosolic phospholipase A(2) translocation was blocked by inhibitors of calmodulin and calcium-calmodulin-dependent protein kinase II or calcium-calmodulin-dependent protein kinase IIalpha antisense oligonucleotide. Calmodulin and calcium-calmodulin-dependent protein kinase II inhibitors did not prevent cytosolic calcium increase but attenuated cytosolic phospholipase A(2) phosphorylation caused by norepinephrine or ionomycin. In vascular smooth-muscle cells reversibly permeabilized with beta-escin and treated with alkaline phosphatase, norepinephrine failed to cause cytosolic phospholipase A(2) phosphorylation and translocation to the nuclear envelope; these effects of norepinephrine were minimized by the phosphatase inhibitor okadaic acid. Recombinant cytosolic phospholipase A(2) phosphorylated by purified calcium-calmodulin-dependent protein kinase II, but not unphosphorylated or dephosphorylated cytosolic phospholipase A(2), introduced into permeabilized vascular smooth-muscle cells in the absence of calcium accumulated around the nuclear envelope. These data suggest that norepinephrine-induced translocation of cytosolic phospholipase A(2) to the nuclear envelope is mediated by its phosphorylation by calcium-calmodulin-dependent protein kinase II and that calcium alone is insufficient for cytosolic phospholipase A(2) translocation to the nuclear envelope in rabbit vascular smooth-muscle cells.
Collapse
Affiliation(s)
- Soghra Fatima
- Department of Pharmacology and Centers for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Center for Health Sciences, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
23
|
Grewal S, Morrison EE, Ponnambalam S, Walker JH. Nuclear localisation of cytosolic phospholipase A2-alpha in the EA.hy.926 human endothelial cell line is proliferation dependent and modulated by phosphorylation. J Cell Sci 2002; 115:4533-43. [PMID: 12414998 DOI: 10.1242/jcs.00146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytosolic phospholipase A(2)-alpha (cPLA(2)-alpha) is a calcium-sensitive enzyme involved in receptor-mediated eicosanoid production. In resting cells, cPLA(2)-alpha is present in the cytosol and nucleus and translocates to membranes via its calcium-dependent lipid-binding (CaLB) domain following stimulation. cPLA(2)-alpha is also regulated by phosphorylation on several residues, which results in enhanced arachidonic acid release. Little is known about the factors controlling the nuclear localisation of cPLA(2)-alpha. Here the nuclear localisation of cPLA(2)-alpha in the EA.hy.926 human endothelial cell line was investigated. Nuclear localisation was dependent on proliferation, with subconfluent cells containing higher levels of nuclear cPLA(2)-alpha than contact-inhibited confluent or serum-starved cells. The broad-range protein kinase inhibitor staurosporine caused a decrease in the nuclear level of cPLA(2)-alpha, whereas the protein phosphatase inhibitor okadaic acid increased the level of nuclear cPLA(2)-alpha. Using inhibitors for specific mitogen-activated protein (MAP) kinases, both p42/44(MAPK) and p38(MAPK) were shown to be important in modulating nuclear localisation. Finally, inhibition of nuclear import and export using Agaricus bisporus lectin and leptomycin B, respectively, demonstrated that cPLA(2)-alpha contains functional nuclear localisation and export signals. Thus we have identified a novel mode of regulation of cPLA(2)-alpha. This, together with the increasing body of evidence supporting the role of nuclear lipid second messengers in gene expression and proliferation, may have important implications for controlling the growth of endothelial cells in angiogenesis and tumour progression.
Collapse
Affiliation(s)
- Seema Grewal
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
24
|
Lupo G, Assero G, Anfuso CD, Nicotra A, Palumbo M, Cannavò G, Renis M, Ragusa N, Alberghina M. Cytosolic phospholipase A2 mediates arachidonoyl phospholipid hydrolysis in immortalized rat brain endothelial cells stimulated by oxidized LDL. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:19-29. [PMID: 12457711 DOI: 10.1016/s1388-1981(02)00303-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We tested the hypothesis that oxidized low-density lipoprotein (oxLDL), administered in sublethal doses to the culture medium of immortalized rat brain endothelial cells (ECs, GP8.39), acts as a prooxidant signal to stimulate peroxidation processes and membrane phospholipid hydrolysis. ECs were grown at confluence in a medium with or without native LDL (nLDL) or oxLDL (1.5 mg/dish; up to 350-450 nmol hydroperoxides/mg protein) for two temporally distinct phases (short incubation period up to 1 h, or long incubation period spanning 24 h). Peroxidation parameters (conjugated dienes, MDA, hydroperoxides and LDH release) and arachidonic acid (AA) release were determined. Cell lysates and subcellular fractions were assayed for cPLA(2) while the cytotoxic effect and apoptosis were monitored by morphological changes, trypan blue dye exclusion, MTT reduction test, caspase-3 activity, COMET and laser confocal fluorescence microscopy (LCFM) analyses. Effects of alpha-tocopherol and 85-kDa PLA(2) inhibitor (AACOCF(3)), alone or in combination, were also tested. Immunoblot analysis of cPLA(2) was carried out on cell fraction proteins. After incubation for 1 or 24 h, oxLDL (100-200 microM hydroperoxides), but not nLDL, markedly increased lipid peroxidation, cPLA(2) activity and AA release in a dose-dependent manner. AACOCF(3) and antioxidant alpha-tocopherol (1 mM) strongly inhibited the prooxidant-stimulated AA release. Long-term exposure (24 h) to oxLDL (100 microM) had no effect on the cPLA(2) protein content as tested by Western immunoblot analysis, while showing a sharp cytotoxic effect on the cells. Caspase-3 activity and LCFM analysis indicated that oxLDL (100/200 microM) were able to trigger an apoptotic process. The results suggest that (i) ECs may be the target of extensive oxidative damage caused by oxLDL; (ii) activation of cPLA(2) mediates liberation of AA; (iii) cPLA(2) expression was not stimulated by long-term exposure to oxLDL; (iv) oxidized specific constituents of oxLDL, acting as regulatory signals, increase the ability of ECs to degrade membrane phospholipids, end products of which are linked to the development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biochemistry, Faculty of Medicine, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao S, Du XY, Chen JS, Zhou YC, Song JG. Secretory Phospholipase A2 Inhibits Epidermal Growth Factor-Induced Receptor Activation. Exp Cell Res 2002; 279:354-64. [PMID: 12243760 DOI: 10.1006/excr.2002.5622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) plays important roles in mediating various cellular processes, including cell proliferation, differentiation, apoptosis, and inflammatory response. In this study, we demonstrated that a basic sPLA(2) inhibits epidermal growth factor (EGF)-induced EGF receptor activation, as determined by autophosphorylation of EGF receptor, EGF-activated phospholipase D (PLD) activity, and phospholipase C-gamma(1) (PLC-gamma(1)) tyrosine phosphorylation in a human epidermoid carcinoma cell line, A-431. Treatment of cells with exogenous neutral sphingomyelinase (SMase) or a cell permeable ceramide analog, C(2)-ceramide, also caused similar inhibitory effects on EGF-induced activation of EGF receptor, tyrosine phosphorylation of PLC-gamma(1), and the activation of PLD. sPLA(2)-induced inhibition of EGF receptor was associated with arachidonic acid release, which was followed by an increase in intracellular ceramide formation. Both sPLA(2) and exogenous C(2)-ceramide are able to inhibit the proliferation of A-431. The data presented indicate for the first time that sPLA(2) downregulates the EGF receptor-mediated intracellular signal transduction that may be mediated by arachidonic acid and/or ceramide.
Collapse
Affiliation(s)
- Sheng Zhao
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Box 25, 320 Yue-Yang Road, Shanghai, 200031, Peoples' Republic of China
| | | | | | | | | |
Collapse
|
26
|
Sun D, Steele JE. Control of phospholipase A(2) activity in cockroach (Periplaneta americana) fat body trophocytes by hypertrehalosemic hormone: the role of calcium. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1133-1142. [PMID: 12213248 DOI: 10.1016/s0965-1748(02)00049-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recently, synthetic HTH-I and HTH-II have been shown to increase the formation of free fatty acids in cockroach (Periplaneta americana) fat body. In this study we show that HTH-II increases PLA(2) activity in dispersed trophocytes, thus implying that phospholipid is a potential source of the fatty acids. The increase in HTH-induced PLA(2) activity is triggered by an increase in [Ca(2+)](i) but extracellular Ca(2+) is also required for a maximal Ca(2+) signal: an effect that can be blocked by the introduction of BAPTA into the trophocytes. Treating trophocytes with ryanodine blocks the increase in PLA(2) activity that follows treatment of the cells with HTH-II. This indicates that the Ca(2+) release channels are distinct from those that respond to inositol trisphosphate. Thapsigargin, which releases Ca(2+) to the cytosol from an intracellular store, increases PLA(2) activity. The data show that the enzyme is translocated from the cytosol to the plasma membrane.
Collapse
Affiliation(s)
- D Sun
- Department of Zoology, The University of Western Ontario, London, ON, Canada N6A 5B7
| | | |
Collapse
|
27
|
Sauvant C, Holzinger H, Gekle M. Short-term regulation of basolateral organic anion uptake in proximal tubular OK cells: EGF acts via MAPK, PLA(2), and COX1. J Am Soc Nephrol 2002; 13:1981-91. [PMID: 12138128 DOI: 10.1097/01.asn.0000024437.62046.af] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The organic anion transport system of the kidney is of major importance for the excretion of a variety of endogenous compounds, drugs, and potentially toxic substances. The basolateral uptake into proximal tubular cells is mediated by a tertiary active transport system. Epidermal growth factor (EGF) leads to an increase in the basolateral uptake rate of the model substrate para-aminohippuric acid (PAH) in opossum kidney (OK) cells. This stimulation is mediated by successive activation of the mitogen-activated protein kinases,mitogen-activated/extracellular signal-regulated kinase kinase (MEK) and extracellular regulated kinase isoforms 1 and 2 (ERK1/2). This study investigates the regulatory network of EGF action on PAH uptake downstream ERK1/2 in more detail. EGF stimulation of the basolateral uptake rate of [(14)C]PAH was abolished by the phospholipase A(2) inhibitor AACOCF3.[(14)C]PAH uptake was enhanced by arachidonic acid. Furthermore, EGF led to an increase in arachidonic acid release and to the generation of prostaglandins. AACOCF3 did not influence EGF-induced ERK1/2 activation, indicating that ERK1/2 is upstream of PLA(2). In addition, EGF stimulated the influx of extracellular Ca(2+). However, Ca(2+)-influx was not required for the stimulatory action of EGF on [(14)C]PAH uptake. Inhibitors of COX and lipoxygenases reduced [(14)C]PAH uptake dose-dependently, whereas inhibition of cytochrome P450 did not. In the presence of indomethacin, EGF had no stimulatory effect on [(14)C]PAH uptake. The inhibitory effect of indomethacin was not due to competitive action on PAH uptake. Furthermore, prostaglandin E(2) (PGE(2)) increased basolateral [(14)C]PAH uptake rate dose-dependently, and this increase was also observed in the presence of indomethacin. Selective inhibition of COX2 by indomethacin amid or indomethacin n-heptyl ester did not inhibit [(14)C]PAH uptake, whereas selective inhibition of COX1 dose-dependently inhibited [(14)C]PAH uptake. This and previous data lead to the conclusion that EGF successively activates MEK, ERK1/2, and PLA(2), leading to an increased release of arachidonic acid. Subsequently, arachidonic acid is metabolized to prostaglandins via COX1, which then mediate EGF-induced stimulation of basolateral organic anion uptake rate.
Collapse
Affiliation(s)
- Christoph Sauvant
- Physiologisches Institut der Universität Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
28
|
Sano A, Zhu X, Sano H, Muñoz NM, Boetticher E, Leff AR. Regulation of eosinophil function by phosphatidylinositol-specific PLC and cytosolic PLA(2). Am J Physiol Lung Cell Mol Physiol 2001; 281:L844-51. [PMID: 11557588 DOI: 10.1152/ajplung.2001.281.4.l844] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the regulatory role of cytosolic phospholipase A(2) (cPLA(2)) and phosphatidylinositol (PI)-specific phospholipase C (PLC) in the degranulation of human eosinophils and leukotriene (LT) C(4) synthesis. Activation with formyl-Met-Leu-Phe + cytochalasin B (fMLP/B) caused a time-dependent release of eosinophil peroxidase (EPO) and LTC(4), which was inhibited by pertussis toxin. By immunoblotting, eosinophil PLC-beta2 and -gamma2 isoforms were identified, and PLC activation was measured as a function of inositol 1,4,5-trisphosphate concentration. Stimulated release of EPO and intracellular Ca(2+) concentration was inhibited by ET-18-OCH(3), a PI-PLC inhibitor, whereas trifluoromethylketone (TFMK), a cPLA(2) blocker, had no inhibitory effect. Both TFMK and ET-18-OCH(3) attenuated stimulated arachidonate release and LTC(4) secretion, suggesting that activation of both PLC and cPLA(2) is essential for LTC(4) synthesis caused by fMLP/B. The structurally unrelated protein kinase C inhibitors bisindolylmaleimide, Ro-31-8220, and Go-6976 all blocked fMLP/B-induced EPO release but not LTC(4) secretion. 1,2-bis(2-Aminophenoxy)ethane-N,N,N',N'- tetraacetic acid acetoxymethyl ester, an intracellular Ca(2+) chelator, suppressed both EPO release and LTC(4) secretion. We found that fMLP/B-induced LTC(4) secretion from human eosinophils is regulated by PI-PLC through calcium-mediated activation of cPLA(2). However, cPLA(2) does not regulate eosinophil degranulation.
Collapse
Affiliation(s)
- A Sano
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
29
|
van Rossum GS, Vlug AS, van den Bosch H, Verkleij AJ, Boonstra J. Cytosolic phospholipase A(2) activity during the ongoing cell cycle. J Cell Physiol 2001; 188:321-8. [PMID: 11473358 DOI: 10.1002/jcp.1123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) is of special interest because it selectively releases arachidonic acid from membrane phospholipids. Arachidonic acid has been implicated to play an important role in various cellular responses. Recently arachidonic acid release and prostaglandin synthesis have been shown to be cell cycle dependent and therefore the activity of cPLA(2) during the ongoing cell cycle was investigated, using the mitotic shake off method for cell synchronisation. cPLA(2) activity was high in mitotic cells and decreased rapidly in the early G1 phase. A strong increase in activity was measured following the G1/S transition in both neuroblastoma and Chinese hamster ovary cells. The changes in activity were not due to a difference in cPLA(2) expression but due to phosphorylation of cPLA(2). Phosphorylation of cPLA(2) occurs through MAPK since the use of a specific MAPK kinase inhibitor and serum depletion of synchronised cells inhibited cPLA(2) activity.
Collapse
Affiliation(s)
- G S van Rossum
- Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
van Rossum GS, Klooster R, van den Bosch H, Verkleij AJ, Boonstra J. Phosphorylation of p42/44(MAPK) by various signal transduction pathways activates cytosolic phospholipase A(2) to variable degrees. J Biol Chem 2001; 276:28976-83. [PMID: 11390384 DOI: 10.1074/jbc.m101361200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arachidonic acid has been implicated to play a role in physiological and pathophysiological processes and is selectively released by the 85-kDa cytosolic phospholipase A(2) (cPLA(2)). The activity of cPLA(2) is regulated by calcium, translocating the enzyme to its substrate, and by phosphorylation by a mitogen-activated protein kinase (MAPK) family member and a MAPK-activated protein kinase. In this study, the signal transduction pathways in growth factor-induced phosphorylation of p42/44(MAPK) and cPLA(2) activation were investigated in Her14 fibroblasts. p42/44(MAPK) in response to epidermal growth factor was not only phosphorylated via the Raf-MEK pathway but mainly through protein kinase C (PKC) or a related or unrelated kinase in which the phosphorylated p42/44(MAPK) corresponded with cPLA(2) activity. Serum-induced phosphorylation of p42/44(MAPK) also corresponded with cPLA(2) activity but is predominantly mediated via Raf-MEK and partly through PKC or a related or unrelated kinase. In contrast, activation of PKC by phorbol ester did not result in increased cPLA(2) activity, while p42/44(MAPK) is phosphorylated, mainly via Raf-MEK and through MEK. Moreover, p42/44(MAPK) phosphorylation is present in quiescent and proliferating cells, and p42/44(MAPK) is entirely phosphorylated via Raf-MEK, but it only corresponds to cPLA(2) activity in the former cells. Collectively, these data show that p42/44(MAPK) in proliferating, quiescent, and stimulated cells is phosphorylated by various signal transduction pathways, suggesting the activation of different populations of p42/44(MAPK) and cPLA(2).
Collapse
Affiliation(s)
- G S van Rossum
- Department of Molecular Cell Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Fernandes D, Vlahos R, Stewart AG. Thrombin-stimulated DNA synthesis in human cultured airway smooth muscle occurs independently of products of cyclo-oxygenase or 5-lipoxygenase. Pulm Pharmacol Ther 2001; 13:241-8. [PMID: 11001867 DOI: 10.1006/pupt.2000.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Arachidonic acid (AA) liberation and metabolism via cyclo-oxygenase or lipoxygenases may be an important regulatory pathway for mitogenic signalling in human cultured airway smooth muscle (ASM) cells. In cytokine-treated cells, thrombin markedly enhances production of the anti-mitogenic arachidonic acid metabolite, PGE(2). In this study, in the absence of cytokines, we examined the role of endogenous AA metabolism in thrombin-stimulated ASM DNA synthesis. Selective inhibitors of cyclo-oxygenase of 5-lipoxygenase metabolism had no significant effect on 0.3 U/ml thrombin-stimulated DNA synthesis. However, the non-selective, redox-active lipoxygenase inhibitors NDGA and BWA4C inhibited thrombin-stimulated DNA synthesis. Under basal conditions, and following stimulation by thrombin, the levels of the AA metabolites PGE(2), TxA(2), and LTC(4), remained below assay detection limits. Exogenous addition of AA, LTD(4), or 5-, 12-, and 15-HETE and HpETE metabolites had no consistent or substantial stimulatory effect on either basal or thrombin-stimulated DNA synthesis. These data suggest that the non-selective lipoxygenase inhibitors influence DNA synthesis via effects unrelated to lipoxygenase inhibition. The lack of detection of AA metabolites, the lack of influence of selective antagonists/inhibitors of the AA pathway, and the failure of selected AA metabolites to either enhance or directly stimulate DNA synthesis suggest that in the absence of cytokines, cyclo-oxygenase and lipoxygenase metabolism has little role in signalling of human ASM DNA synthesis by thrombin.
Collapse
Affiliation(s)
- D Fernandes
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | |
Collapse
|
32
|
Xiao YF, Zeind AJ, Kaushik V, Perreault-Micale CL, Morgan JP. Mechanism of suppression of cardiac L-type Ca(2+) currents by the phospholipase A(2) inhibitor mepacrine. Eur J Pharmacol 2000; 399:107-16. [PMID: 10884509 DOI: 10.1016/s0014-2999(00)00366-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipase A(2) plays a crucial role in the release of arachidonic acid (AA) from membrane phospholipids and in myocardial injury during ischemia and reperfusion. Mepacrine, a phospholipase A(2) inhibitor, has been shown to protect the heart from ischemic injury. In order to examine the mechanism of this protection, we investigated the effects of mepacrine on the L-type Ca(2+) current (I(Ca,L)) in rat single ventricular myocytes. Extracellular application of mepacrine significantly inhibited I(Ca,L) in a tonic- and use-dependent manner. The inhibition was also concentration-dependent with an IC(50) of 5.2 microM. Neither the activation nor the steady-state inactivation of I(Ca,L) was altered by mepacrine. The mepacrine-induced inhibition of I(Ca,L) was reversible after washout of the inhibitor. Addition of 1 microM AA partially reversed the mepacrine-induced inhibition of I(Ca,L). Intracellular dialysis, with 2 mM cAMP, significantly increased I(Ca, L), but did not prevent the mepacrine-induced inhibition of I(Ca,L). In addition, extracellular application of isoproterenol or membrane permeable db-cAMP did not reverse the mepacrine-induced inhibition of I(Ca,L). Biochemical measurement revealed that incubation of ventricular myocytes with mepacrine significantly reduced intracellular cAMP levels. The mepacrine-induced reduction of cAMP production was abolished by addition of AA. Our results demonstrate that mepacrine strongly inhibits cardiac I(Ca,L). While mepacrine is a phospholipase A(2) inhibitor and reduces cAMP production, its inhibitory effect on I(Ca,L) mainly results from a direct block of the channel. Therefore, we speculate that the protective effect of mepacrine during myocardial ischemia and reperfusion mostly relates to its blockade of Ca(2+) channels.
Collapse
Affiliation(s)
- Y F Xiao
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, 330 Brookline Avenue, Boston MA 02215, USA
| | | | | | | | | |
Collapse
|
33
|
Geijsen N, Dijkers PF, Lammers JJ, Koenderman L, Coffer PJ. Cytokine-mediated cPLA(2) phosphorylation is regulated by multiple MAPK family members. FEBS Lett 2000; 471:83-8. [PMID: 10760518 DOI: 10.1016/s0014-5793(00)01373-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) plays a critical role in various neutrophil functions including the generation of leukotrienes and platelet-activating factor release. Enzyme activity is regulated both by translocation to the membrane in a Ca(2+)-dependent manner and serine phosphorylation by members of the mitogen-activated protein kinase (MAPK) family. In this report, we have investigated the role of granulocyte/macrophage colony-stimulating factor (GM-CSF)-mediated signalling pathways in the regulation of cPLA(2). GM-CSF-induced cPLA(2) phosphorylation was not affected by pharmacological inhibition of p38 MAPK, phosphatidylinositol 3-kinase or Src. However, inhibition of extracellular signal-regulated kinase (ERK) MAPK activation resulted in a partial inhibition of cPLA(2) phosphorylation, revealed in a slower onset of phosphorylation. A cell line stably transfected with the GM-CSF receptor was used to further analyze GM-CSF-mediated cPLA(2) phosphorylation. Mutation of tyrosine residues 577 and 612 resulted in a delayed cPLA(2) phosphorylation similar to the pharmacological ERK inhibition. Furthermore, inhibition of p38 MAPK in cells bearing the double mutant betac577/612 completely abrogated GM-CSF-induced cPLA(2) phosphorylation. We conclude that GM-CSF can mediate cPLA(2) phosphorylation through the redundant activation of both p38 and ERK MAP kinases.
Collapse
Affiliation(s)
- N Geijsen
- Department of Pulmonary Diseases, G03.550, University Medical Centre, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Osterhout JL, Shuttleworth TJ. A Ca(2+)-independent activation of a type IV cytosolic phospholipase A(2) underlies the receptor stimulation of arachidonic acid-dependent noncapacitative calcium entry. J Biol Chem 2000; 275:8248-54. [PMID: 10713151 DOI: 10.1074/jbc.275.11.8248] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oscillatory [Ca(2+)](i) signals typically seen following physiologically relevant stimulation of phospholipase C-linked receptors are associated with a receptor-activated entry of Ca(2+), which plays a critical role in driving the oscillations and influencing their frequency. We have recently shown that this receptor-activated entry of Ca(2+) does not conform to the widely accepted "capacitative" model and, instead, reflects the activity of a distinct, novel Ca(2+) entry pathway regulated by arachidonic acid (Shuttleworth, T. J., and Thompson, J. L. (1998) J. Biol. Chem. 273, 32636-32643). We now show that the generation of arachidonic acid under these conditions results from the activity of a type IV cytosolic phospholipase A(2) (cPLA(2)). Although cPLA(2) activation commonly involves a Ca(2+)-dependent translocation to the membrane, at these low agonist concentrations cPLA(2) activation was independent of increases in [Ca(2+)](i), and no detectable translocation to the membrane occurs. Nevertheless, stimulation of cPLA(2) activity was confined to the membrane fraction, where an increase in phosphorylation of the enzyme was observed. We suggest that, at the low agonist concentrations associated with oscillatory [Ca(2+)](i) signals, cPLA(2) activation involves an increased phosphorylation of a discrete pool of the total cellular cPLA(2) that is already localized within the membrane fraction at resting [Ca(2+)](i).
Collapse
Affiliation(s)
- J L Osterhout
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
35
|
Tzima E, Trotter PJ, Hastings AD, Orchard MA, Walker JH. Investigation of the relocation of cytosolic phospholipase A2 and annexin V in activated platelets. Thromb Res 2000; 97:421-9. [PMID: 10704651 DOI: 10.1016/s0049-3848(99)00215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cytosolic phospholipase A(2) is a Ca(2+)-dependent enzyme that acts on membrane phospholipids to release arachidonic acid, which in platelets is converted to thromboxane A(2). Annexin V is a Ca(2+)-dependent, phospholipid-binding protein, which is proposed to regulate inflammation by inhibiting cytosolic phospholipase A(2). Here, we have studied the association of cytosolic phospholipase A(2) and annexin V with platelet membranes after thrombin stimulation. In a time-dependent manner, an exact correlation was found between the membrane association of cytosolic phospholipase A(2) and annexin V. Calcium from the intracellular stores was sufficient for the relocation of intracellular annexin V and cytosolic phospholipase A(2) to platelet membranes. Activation in the presence of arginyl-glycyl-aspartyl-serine (RGDS), which inhibits binding of fibrinogen to its adhesive ligand, does not alter the amount of cytosolic phospholipase A(2) or annexin V that binds to membranes. When activation-induced actin polymerisation was prevented by cytochalasin E, the recovery of both annexin V and cytosolic phospholipase A(2) remained unchanged. However, complete depolymerisation of the cytoskeleton with DNase I almost abolished the association of cytosolic phospholipase A(2) with the membranes, and it completely abolished the relocation of annexin V to platelet membranes. Finally, we show that cytosolic phospholipase A(2) can be specifically purified from platelet membranes by affinity chromatography on GST-annexin V and that immunoprecipitation using antibodies against cytosolic phospholipase A(2) copurify annexin V and cytosolic phospholipase A(2) from activated platelets. These findings suggest that following platelet activation with thrombin, both cytosolic phospholipase A(2) and annexin V, relocate to platelet membranes where they interact. An intact cytoskeleton seems to be a prerequisite for the interaction of cytosolic phospholipase A(2) and annexin V with platelet membranes. The incorporation of cytosolic phospholipase A(2) into the membrane fraction of thrombin-activated platelets parallels that of annexin V, which suggests an interaction between the two proteins.
Collapse
Affiliation(s)
- E Tzima
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Ding XZ, Iversen P, Cluck MW, Knezetic JA, Adrian TE. Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem Biophys Res Commun 1999; 261:218-23. [PMID: 10405349 DOI: 10.1006/bbrc.1999.1012] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiologic and animal studies have linked pancreatic cancer growth with fat intake, especially unsaturated fats. Arachidonic acid release from membrane phospholipids is essential for tumor cell proliferation. Lipoxygenases (LOX) constitute one pathway for arachidonate metabolism, but their role in pancreatic cancer growth is unknown. The expression of 5-LOX and 12-LOX as well as their effects on cell proliferation was investigated in four human pancreatic cancer cell lines (PANC-1, MiaPaca2, Capan2, and ASPC-1). Expression of 5-LOX and 12-LOX mRNA was measured by nested RT-PCR. Effects of LOX inhibitors and specific LOX antisense oligonucleotides on pancreatic cancer cell proliferation were measured by (3)H-thymidine incorporation. Our results showed that (1) 5-LOX and 12-LOX were expressed in all pancreatic cancer cell lines tested, while they were not detectable in normal human pancreatic ductal cells; (2) both LOX inhibitors and LOX antisense markedly inhibited cell proliferation in a concentration-dependent and time-dependent manner; (3) the 5-LOX and 12-LOX metabolites 5-HETE and 12-HETE as well as arachidonic and linoleic acids directly stimulated pancreatic cancer cell proliferation; (4) LOX inhibitor-induced growth inhibition was reversed by 5-HETE and 12-HETE. The current studies indicate that both 5-LOX and 12-LOX expression is upregulated in human pancreatic cancer cells and LOX plays a critical role in pancreatic cancer cell proliferation. LOX inhibitors may be valuable for the treatment of pancreatic cancer.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 5-Lipoxygenase/genetics
- Arachidonic Acid/pharmacology
- Cell Division/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- Humans
- Hydroxyeicosatetraenoic Acids/pharmacology
- Linoleic Acid/pharmacology
- Lipoxygenase Inhibitors/pharmacology
- Lipoxygenase Inhibitors/therapeutic use
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Time Factors
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- X Z Ding
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|
37
|
Sansom SC, Mehta P, Hall DA. Potentiating effects of hyper-osmolality and epidermal growth factor on the release of arachidonic acid in human glomerular mesangial cells. Diabetes Res Clin Pract 1999; 43:21-31. [PMID: 10199585 DOI: 10.1016/s0168-8227(98)00122-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Studies were performed to determine the interactive effects of high concentrations of glucose (HG) and epidermal growth factor (EGF) on the release of arachidonic acid (3H-AA) in human glomerular mesangial cells (MC) in culture. Since high glucose has been reported to increase the mass of diacylglycerol (DAG) in MC, the HG-induced release of 3H-AA was compared to that initiated by the phorbol ester, PMA. It was found that when media contained high levels (25 mM) of glucose, the release of 3H-AA was increased significantly by 8.4% (change from control) after 1 h of exposure and was maintained at values not significantly different from this level for the next 2 h. After 3-h exposure, there was no significant difference between 25 and 50 mM glucose, suggesting that the effects of glucose are saturating at 25 mM. After 1-h exposure, 3H-AA release was also increased by PMA; however, the increase was larger and the peak increase was delayed until after 1 h. 3H-AA release was significantly increased by epidermal growth factor (EGF) by 8.5% after 1 h and was maintained at this level after 2 and 3 h of exposure. In the presence of HG, EGF increased 3H-AA release by 24.6% after the 1st hour and by 20.4 and 19.4%, after the 2nd and 3rd hours, respectively. Mannitol (20 mM), added as an osmotic control, increased 3H-AA release by 6.2% and also significantly enhanced the effects of EGF after 3 h. The experimental values (19.0%) for the release of 3H-AA after 3-h exposure to EGF in combination with either high glucose or mannitol were significantly greater than the expected (added) values (12.1%). These results demonstrate that as a result of an elevated solution osmolality, high glucose acts synergistically with EGF to increase the release of 3H-AA in human mesangial cells.
Collapse
Affiliation(s)
- S C Sansom
- Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha 68198-4575, USA
| | | | | |
Collapse
|
38
|
Crawford JR, Jacobson BS. Extracellular calcium regulates HeLa cell morphology during adhesion to gelatin: role of translocation and phosphorylation of cytosolic phospholipase A2. Mol Biol Cell 1998; 9:3429-43. [PMID: 9843579 PMCID: PMC25651 DOI: 10.1091/mbc.9.12.3429] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Attachment of HeLa cells to gelatin induces the release of arachidonic acid (AA), which is essential for cell spreading. HeLa cells spreading in the presence of extracellular Ca2+ released more AA and formed more distinctive lamellipodia and filopodia than cells spreading in the absence of Ca2+. Addition of exogenous AA to cells spreading in the absence of extracellular Ca2+ restored the formation of lamellipodia and filopodia. To investigate the role of cytosolic phospholipase A2 (cPLA2) in regulating the differential release of AA and subsequent formation of lamellipodia and filopodia during HeLa cell adhesion, cPLA2 phosphorylation and translocation from the cytosol to the membrane were evaluated. During HeLa cell attachment and spreading in the presence of Ca2+, all cPLA2 became phosphorylated within 2 min, which is the earliest time cell attachment could be measured. In the absence of extracellular Ca2+, the time for complete cPLA2 phosphorylation was lengthened to <4 min. Maximal translocation of cPLA2 from cytosol to membrane during adhesion of cells to gelatin was similar in the presence or absence of extracellular Ca2+ and remained membrane associated throughout the duration of cell spreading. The amount of total cellular cPLA2 translocated to the membrane in the presence of extracellular Ca2+ went from <20% for unspread cells to >95% for spread cells. In the absence of Ca2+ only 55-65% of the total cPLA2 was translocated to the membrane during cell spreading. The decrease in the amount translocated could account for the comparable decrease in the amount of AA released by cells during spreading without extracellular Ca2+. Although translocation of cPLA2 from cytosol to membrane was Ca2+ dependent, phosphorylation of cPLA2 was attachment dependent and could occur both on the membrane and in the cytosol. To elucidate potential activators of cPLA2, the extracellular signal-related protein kinase 2 (ERK2) and protein kinase C (PKC) were investigated. ERK2 underwent a rapid phosphorylation upon early attachment followed by a dephosphorylation. Both rates were enhanced during cell spreading in the presence of extracellular Ca2+. Treatment of cells with the ERK kinase inhibitor PD98059 completely inhibited the attachment-dependent ERK2 phosphorylation but did not inhibit cell spreading, cPLA2 phosphorylation, translocation, or AA release. Activation of PKC by phorbol ester (12-O-tetradecanoylphorbol-13-acetate) induced and attachment-dependent phosphorylation of both cPLA2 and ERK2 in suspension cells. However, in cells treated with the PKC inhibitor Calphostin C before attachment, ERK2 phosphorylation was inhibited, whereas cPLA2 translocation and phosphorylation remained unaffected. In conclusion, although cPLA2-mediated release of AA during HeLa cell attachment to a gelatin substrate was essential for cell spreading, neither ERK2 nor PKC appeared to be responsible for the attachment-induced cPLA2 phosphorylation and the release of AA.
Collapse
Affiliation(s)
- J R Crawford
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
39
|
Abstract
Transfected Chinese hamster ovary cells expressing the rat neurotensin receptor (CHO-NTR cells) were used to study the 'Ca2+ stores depletion-Ca2+ entry' coupling which follows stimulation with neurotensin and liberation of inositol 1,4,5-trisphosphate. This coupling could be dissociated in time: the stores were emptied by stimulation with neurotensin in the absence of extracellular Ca2+; thereafter, readmission of extracellular Ca2+ produced a transient entry of Ca2+ that was progressively restored in the endoplasmic reticulum. We showed previously that the rise of [Ca2+]i during Ca2+ stores depletion controls the subsequent entry of Ca2+ and that unknown protein kinases and phosphatases may also be involved in this coupling. Here we show that: 1. W-7 (25 microM), KN-62 (10 microM) and a myristoylated autocamtide-2 related inhibitory peptide (20 microM), three inhibitors of the calcium-calmodulin-dependent protein kinase II (CaM kinase II) inhibit the entry of Ca2+ induced by emptying the stores of Ca2+ with neurotensin and thapsigargin. 2. Ca2+ stores depletion-Ca2+ entry coupling is also greatly diminished by 10 microM ONO-RS-082, an inhibitor of the phospholipase A2 (PLA2). 3. Arachidonic acid (5-100 microM) produces an entry of Ca2+; the same result is obtained by use of 5, 8, 11, 14-eicosatetraynoic acid, a non-metabolizable analog of arachidonic acid. 4. NTR-CHO cells are labeled with [3H] arachidonic acid for 24 h (progressively incorporated in membrane phospholipids). Upon neurotensin (1 nM) and thapsigargin (1 microM) stimulation, these cells produce a release of arachidonic acid which lasts for as long as the stores are empty and stops when they are reloaded with Ca2+. This production of arachidonic acid is significantly diminished by suppressing the [Ca2+]i transient during stores depletion (with cell permeant EGTA), by the PLA2 inhibitor ONO-RS-082 (10 microM) and by the CaM kinase II inhibitor KN-62 (10 microM). 5. The rise of [Ca2+]i by itself (induced by flash photolysis of nitrophenyl-EGTA), i.e. without depletion of the stores, is not sufficient to trigger an entry of Ca2+. 6. The reloading process of Ca2+ into the endoplasmic reticulum is inhibited by 10 microM chelerythrine, 100 nM GF 109203X, two inhibitors of protein kinases C (PKC) or by their downregulation by a prolonged treatment of the cells with 1 microM phorbol-12, 13-dibutyrate. We therefore suggest the involvement of CaM kinase II and PLA2 in the 'Ca2+ stores depletion-Ca2+ entry' coupling in these transfected CHO cells.
Collapse
Affiliation(s)
- P Gailly
- Department of Physiology and Pharmacology, Catholic University of Louvain, Brussels, Belgium.
| |
Collapse
|
40
|
McNicol A, Shibou TS. Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb Res 1998; 92:19-26. [PMID: 9783670 DOI: 10.1016/s0049-3848(98)00097-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The release of arachidonic acid, and its subsequent conversion to thromboxane A2, is an important component of platelet activation. The precise mechanism of arachidonic acid release is unknown although cytosolic phospholipase A2 (cPLA2) has been implicated. In the present study the effects of three agonists, the serine protease thrombin, the protein kinase C stimulant PMA and the calcium ionophore A23187 have been examined on the translocation and phosphorylation of cPLA2 and these have been correlated with arachidonic acid release. Thrombin, but neither PMA nor A23187, caused the release of [14C]-arachidonic acid from unstirred, prelabeled platelets. Immunoblot analysis was carried out on cytosolic and membrane fractions from control and activated platelets using an anti-cPLA2 antibody. In platelets stimulated by thrombin or A23187, but not by PMA, there was a translocation of cPLA2 to the membrane fraction. Immunoprecipitation of cPLA2 from [32P]-ortho-phosphate-prelabeled platelets, indicated enhanced phosphorylation on serine residues of cPLA2 from thrombin- or PMA-stimulated platelets. These results are consistent with two synergistic pathways mediating cPLA2 activity. Increased cytosolic calcium causes the translocation of cPLA2 to the membrane, and protein kinase either directly, or indirectly, phosphorylates the enzyme. Activation of both pathways, as occurs in response to thrombin, is required for arachidonic acid liberation.
Collapse
Affiliation(s)
- A McNicol
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
41
|
Pruzanski W, Stefanski E, Vadas P, Kennedy BP, van den Bosch H. Regulation of the cellular expression of secretory and cytosolic phospholipases A2, and cyclooxygenase-2 by peptide growth factors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:47-56. [PMID: 9622592 DOI: 10.1016/s0167-4889(98)00029-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Secretory group II (sPLA2) and cytosolic (cPLA2) phospholipases A2 and cyclooxygenase-2 (Cox-2) play a pivotal role in release of proinflammatory eicosanoids. Excessive activity of sPLA2 per se can also propagate inflammation. Endogenous control of the above enzymes has not been completely elucidated. We investigated the combined impact of promoting cytokines and inhibitory peptide growth factors on the expression of mRNA of the above enzymes, on protein content and extracellular release of sPLA2 and on PGE2 production in osteoblasts (FRCO). The synthesis and release of sPLA2 were enhanced by about 20-fold by 0.5 ng/ml IL-1beta or by 50 ng/ml of TNFalpha. Coaddition of both cytokines resulted in synergistic 150-fold increase in the release of sPLA2 implying the existence of two paths of induction. IL-1beta and TNFalpha markedly enhanced the transcription of sPLA2 mRNA. Kinetic study showed that IL-1/TNF initiated sPLA2 release after 12 h, reaching maximum at 48 h. IL-1alpha was a weak stimulator of sPLA2 release, whereas IL-6, IL-8, IGF, IFN-gamma, growth hormone, insulin and GM-CSF were not stimulatory. Peptide growth hormones TGFbeta, PDGF-BB, EGF and bFGF markedly inhibited the extracellular release of sPLA2. TGFbeta and PDGF-BB significantly reduced the level of sPLA2 mRNA, thus acting upon transcription whereas EGF and bFGF were not inhibitory, acting rather upon the translational or posttranslational steps. IL-1/TNF and growth factors had no significant effect on cPLA2 mRNA expression. Cox-2 mRNA expression was markedly enhanced by IL-1/TNF and suppressed by all growth factors tested. Cytokines enhanced the extracellular release of PGE2 and further enhancement was induced by growth factors with the exception of TGFbeta. Cycloheximide abolished completely the release of sPLA2 and markedly reduced the release of PGE2 from cytokine-stimulated FRCO, regardless of whether growth factors were present or not. NS-398, a specific inhibitor of Cox-2 abolished almost completely the release of PGE2 from cytokine-stimulated cells, regardless of the presence of growth factors. Thus, different signalling mechanisms are involved in the impact of growth factors on mRNA expression of sPLA2, cPLA2 and Cox-2. The differences between the impact on FRCO sPLA2 and that reported in other cells, imply that endogenous control of arachidonic acid cascade is cell-specific.
Collapse
Affiliation(s)
- W Pruzanski
- Inflammation Research Group, The Wellesley Central Hospital, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
42
|
Coutant KD, Wolff-Winiski B, Ryder NS. Fluvastatin enhances receptor-stimulated intracellular Ca2+ release in human keratinocytes. Biochem Biophys Res Commun 1998; 245:307-12. [PMID: 9571146 DOI: 10.1006/bbrc.1998.8429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed the effect of isoprenoid depletion by fluvastatin on bradykinin (BK)- and epidermal growth factor (EGF)-mediated Ca2+ mobilization and prostaglandin E2 production, in the human keratinocyte cell line HaCaT. BK and EGF stimulated Ca2+ mobilization in an agonist-dependent manner. The synthesis of prostaglandin E2 paralleled the level of Ca2+ mobilization induced by BK and EGF. Treatment with fluvastatin increased the EGF-promoted but not the BK-promoted Ca2+ mobilization and prostaglandin E2 production in Ca(2+)-containing medium. In the absence of extracellular Ca2+, fluvastatin treatment led to an increase in intracellular Ca2+ release by both agonists. This effect was abolished by depleting the intracellular pool of Ca2+ with thapsigargin. Our findings showed that the intracellular Ca2+ release was dependent on the metabolism of mevalonate and that the Ca2+ mobilization modulated prostaglandin E2 synthesis in human keratinocytes.
Collapse
Affiliation(s)
- K D Coutant
- Department of General Dermatology, Novartis Research Institute, Vienna, Austria.
| | | | | |
Collapse
|
43
|
Goldman R, Moshonov S, Zor U. Generation of reactive oxygen species in a human keratinocyte cell line: role of calcium. Arch Biochem Biophys 1998; 350:10-8. [PMID: 9466814 DOI: 10.1006/abbi.1997.0478] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the human keratinocyte cell line HaCaT, reactive oxygen species (ROS) were generated in a dose- and time-dependent manner in response to epidermal growth factor (EGF), bradykinin, thapsigargin, and the Ca(2+)-ionophore A23187, agonists that interact with different primary cell targets. ROS formation was assessed by both chemiluminescence- and fluorescence-based methods. The ROS evoked by EGF and bradykinin decayed within 8 and 4 min, respectively, this transient effect resulting probably from down-regulation of the specific agonist receptors or dissipation of the secondary signals. In contrast, the response to thapsigargin and A23187 was sustained for at least 15 min. Extracellular Ca2+ and a rise in intracellular Ca2+ concentration ([Ca2+]i) proved essential for ROS production. Chelation by BAPTA suppressed ROS formation. Direct measurement of [Ca2+]i using fura fluorescence revealed that EGF and bradykinin evoked a modest, transient [Ca2+]i elevation of less than twofold, whereas with thapsigargin and A23187 there was a sustained two- to fourfold elevation. For each agonist, the kinetics of the rise and decay of [Ca2+]i were similar to those of ROS. The enzyme(s) involved in ROS formation were inhibited by diphenyleneiodonium, indicating dependence on FAD. Our results suggest a close link between ROS and changes in [Ca2+]i generated by growth factors and hormones. This is a particularly interesting connection because elevation of ROS and/ or [Ca2+]i has been linked to cell proliferation, differentiation, and apoptosis.
Collapse
Affiliation(s)
- R Goldman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
44
|
Post JA, Wang SY, Langer GA. pHe, [Ca2+]e, and cell death during metabolic inhibition: role of phospholipase A2 and sarcolemmal phospholipids. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H18-26. [PMID: 9458847 DOI: 10.1152/ajpheart.1998.274.1.h18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study measures cellular lactate dehydrogenase (LDH) release during metabolic inhibition as a monitor of sarcolemmal integrity as affected by variation of external pH (pHe) and Ca2+ concentration ([Ca2+]e). The sigmoidal relationship between pHe and LDH release and pHe and net Ca2+ uptake was essentially identical with the 50% maximal value occurring at pH 7.0 for both. This suggests that a process(es) sensitive to both pHe and [Ca2+]e plays a role in cell lysis during the course of metabolic inhibition. Variation of pHe during metabolic inhibition did not alter the decline in cellular ATP, nor did it affect changes in sarcolemmal phospholipid topology. Intracellular pH followed changes of pHe with a few minutes lag. Cell lysis increased in a graded manner as pHe and [Ca2+]e were increased, but pHe was the sole determinant of lysis, i.e., [Ca2+]e level had no effect, at the lowest (6.2) and the highest (8.0) pHe levels. pHe variation did not affect the release of radiolabeled arachidonic acid, nor did inhibitors of phospholipase A2 (PLA2) affect cell lysis at varying pHe. Therefore, cellular PLA2 activation could not be implicated for a role in cell lysis in the present model of metabolic inhibition. Alternatively, we propose that Ca2+ binding to the cytoplasmic leaflet, in combination with membrane alterations secondary to the metabolic insult, combine to destabilize the sarcolemma (20). This Ca2+ binding to the negatively charged phosphatidylserine results in the expression of the bilayer destabilizing effect of phosphatidylethanolamine. This Ca2+ binding is greatly diminished by lowered pH, resulting in an attenuation of cell lysis.
Collapse
Affiliation(s)
- J A Post
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
45
|
Sato T, Nakajima H, Fujio K, Mori Y. Enhancement of Prostaglandin E2 Production by Epidermal Growth Factor Requires the Coordinate Activation of Cytosolic Phospholipase A2 and Cyclooxygenase 2 in Human Squamous Carcinoma A431 Cells. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0090-6980(97)00036-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Zhu X, Muñoz NM, Rubio N, Herrnreiter A, Mayer D, Douglas I, Leff AR. Quantitation of the cytosolic phospholipase A2 (type IV) in isolated human peripheral blood eosinophils by sandwich-ELISA. J Immunol Methods 1996; 199:119-26. [PMID: 8982353 DOI: 10.1016/s0022-1759(96)00166-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sandwich enzyme-linked immunosorbent assay (sELISA) was developed for precise quantitation of cytosolic phospholipase A2 (cPLA2 type IV) concentration in isolated human peripheral blood eosinophils as an alternative to semiquantitative chemiluminescent assay employing immunoprecipitation/Western blot analysis. In this assay, monoclonal mouse anti-human cPLA2 antiserum was used as the capture antibody, polyclonal rabbit anti-human cPLA2 antiserum as the secondary antibody, and alkaline phosphatase-conjugated goat anti-rabbit IgG as the tertiary, reporter antibody. Purified human cPLA2 (0-1000 ng/ml) dissolved in Tris-HCl buffered saline was used as the standard protein. The detection limit for cPLA2 in 10(6) eosinophils was 0.109 ng/ml, and coefficients of inter- and intra-assay variation were 4.23% and 7.07%, respectively. There was no cross-reactivity with other (secretory) isoforms of PLA2 (sPLA2 types I-III) either from porcine pancreas, human synovial fluid, or bee venom. In separate studies, the recovery of cPLA2 was > 83% when eosinophil lysate was supplemented exogenously with two different concentrations of cPLA2. From a total protein content of 22.3 +/- 1.7 micrograms/10(6) cells, the baseline concentration of cPLA2 was 0.38 +/- 0.18 ng/10(6) cells in eosinophils obtained from mildly atopic donors. Immunoblotting studies confirmed the complete specificity for the type IV isoform as detected by sELISA. This sELISA method permits the precise quantitative assessment of cPLA2 in nanogram quantities per million cells, which has not previously been possible by immunoblotting analysis.
Collapse
Affiliation(s)
- X Zhu
- Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Maccarrone M, Nieuwenhuizen WE, Dullens HF, Catani MV, Melino G, Veldink GA, Vliegenthart JF, Finazzo Agrò A. Membrane modifications in human erythroleukemia K562 cells during induction of programmed cell death by transforming growth factor beta 1 or cisplatin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:297-302. [PMID: 8898920 DOI: 10.1111/j.1432-1033.1996.0297t.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transforming growth factor beta 1 (TGF beta 1) and cisplatin induce apoptosis (programmed cell death, PCD) in human erythroleukemia K562 cells in an additive manner. After PCD was induced in K562 cells, analysis of phospholipid composition, fatty acids and cholesterol content in their membranes showed a decrease in phosphatidylethanolamine and an increase in phosphatidylserine, cardiolipin and phosphatidic acid. Moreover, cisplatin but not TGF beta 1 enhanced sphingomyeline levels in apoptotic cells, whereas TGF beta 1 increased the amount of linoleic acid and, more remarkably, of cholesterol. The combination TGF beta 1 + cisplatin produced membrane changes similar to those provoked by each inducer individually. Furthermore, the specific activities of 5-lipoxygenase and cytosolic phospholipase A2, both modulating the physical properties of membranes and membrane-lipid-mediated intracellular signalling, were enhanced by treatment with TGF beta 1 or TGF beta 1 + cisplatin. These findings highlight the profound changes in cell membranes during the biochemical events of the apoptotic pathway.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Schalkwijk CG, van der Heijden MA, Bunt G, Maas R, Tertoolen LG, van Bergen en Henegouwen PM, Verkleij AJ, van den Bosch H, Boonstra J. Maximal epidermal growth-factor-induced cytosolic phospholipase A2 activation in vivo requires phosphorylation followed by an increased intracellular calcium concentration. Biochem J 1996; 313 ( Pt 1):91-6. [PMID: 8546715 PMCID: PMC1216914 DOI: 10.1042/bj3130091] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 85 kDa cytosolic phospholipase A2 (cPLA2) preferentially catalyses the hydrolysis of arachidonic acid from the sn-2 position of phospholipids. cPLA2 can be activated by extracellular stimuli such as thrombin, platelet-derived growth factor and epidermal growth factor (EGF): A full activation of cPLA2 requires an increase of intracellular Ca2+ concentration and phosphorylation on Ser-505 by mitogen-activated protein (MAP) kinase. Because EGF can provoke an increase in intracellular [Ca2+] ([Ca2+]i) and activation of MAP kinase, we investigated the role of these pathways in EGF-induced activation of cPLA2. Characterization of two cell lines expressing different numbers of EGF receptors (HERc13 and HER14) revealed that both were activating MAP kinase in response to EGF, but only HER14 responded with an increase in [Ca2+]i. In this study we used both cell lines as a tool to clarify the role of each pathway in cPLA2 activation. We show that EGF stimulates cPLA2 activity in both cell lines in vitro as measured in cytosolic fractions, but only in HER14 in vivo as measured by 3H release from cells prelabelled with [3H]arachidonic acid. This latter activation can be restored in HERc13 cells by the addition of the ionophore A23187. Interestingly, this effect is only observed when EGF stimulation precedes A23187 addition. The phosphorylation of MAP kinase, however, was identical under identical conditions. We conclude that a maximal cPLA2 activation by EGF requires both, and in this order: MAP kinase activation followed by a rise in [Ca2+]i concentration.
Collapse
Affiliation(s)
- C G Schalkwijk
- Centre for Biomembranes and Lipid Enzymology, Department of Molecular Cell Biology, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|