1
|
Le-Trilling VTK, Maaßen F, Katschinski B, Hengel H, Trilling M. Deletion of the non-adjacent genes UL148 and UL148D impairs human cytomegalovirus-mediated TNF receptor 2 surface upregulation. Front Immunol 2023; 14:1170300. [PMID: 37600801 PMCID: PMC10437809 DOI: 10.3389/fimmu.2023.1170300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prototypical β-herpesvirus which frequently causes morbidity and mortality in individuals with immature, suppressed, or senescent immunity. HCMV is sensed by various pattern recognition receptors, leading to the secretion of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα). TNFα binds to two distinct trimeric receptors: TNF receptor (TNFR) 1 and TNFR2, which differ in regard to their expression profiles, affinities for soluble and membrane-bound TNFα, and down-stream signaling pathways. While both TNF receptors engage NFκB signaling, only the nearly ubiquitously expressed TNFR1 exhibits a death domain that mediates TRADD/FADD-dependent caspase activation. Under steady-state conditions, TNFR2 expression is mainly restricted to immune cells where it predominantly submits pro-survival, proliferation-stimulating, and immune-regulatory signals. Based on the observation that HCMV-infected cells show enhanced binding of TNFα, we explored the interplay between HCMV and TNFR2. As expected, uninfected fibroblasts did not show detectable levels of TNFR2 on the surface. Intriguingly, however, HCMV infection increased TNFR2 surface levels of fibroblasts. Using HCMV variants and BACmid-derived clones either harboring or lacking the ULb' region, an association between TNFR2 upregulation and the presence of the ULb' genome region became evident. Applying a comprehensive set of ULb' gene block and single gene deletion mutants, we observed that HCMV mutants in which the non-adjacent genes UL148 or UL148D had been deleted show an impaired ability to upregulate TNFR2, coinciding with an inverse regulation of TACE/ADAM17.
Collapse
Affiliation(s)
| | - Fabienne Maaßen
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| |
Collapse
|
2
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
3
|
Identification of Modulators of HIV-1 Proviral Transcription from a Library of FDA-Approved Pharmaceuticals. Viruses 2020; 12:v12101067. [PMID: 32977702 PMCID: PMC7598649 DOI: 10.3390/v12101067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) is the most prevalent human retrovirus. Recent data show that 34 million people are living with HIV-1 worldwide. HIV-1 infections can lead to AIDS which still causes nearly 20,000 deaths annually in the USA alone. As this retrovirus leads to high morbidity and mortality conditions, more effective therapeutic regimens must be developed to treat these viral infections. A key target for intervention for which there are no current FDA-approved modulators is at the point of proviral transcription. One successful method for identifying novel therapeutics for treating infectious diseases is the repurposing of pharmaceuticals that are approved by the FDA for alternate indications. Major benefits of using FDA-approved drugs include the fact that the compounds have well established toxicity profiles, approved manufacturing processes, and immediate commercial availability to the patients. Here, we demonstrate that pharmaceuticals previously approved for other indications can be utilized to either activate or inhibit HIV-1 proviral transcription. Specifically, we found febuxostat, eltrombopag, and resveratrol to be activators of HIV-1 transcription, while mycophenolate was our lead inhibitor of HIV-1 transcription. Additionally, we observed that the infected cells of lymphoid and myeloid lineage responded differently to our lead transcriptional modulators. Finally, we demonstrated that the use of a multi-dose regimen allowed for enhanced activation with our transcriptional activators.
Collapse
|
4
|
Activator protein-1 transactivation of the major immediate early locus is a determinant of cytomegalovirus reactivation from latency. Proc Natl Acad Sci U S A 2020; 117:20860-20867. [PMID: 32788362 DOI: 10.1073/pnas.2009420117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that latently infects hematopoietic cells and has the ability to reactivate when triggered by immunological stress. This reactivation causes significant morbidity and mortality in immune-deficient patients, who are unable to control viral dissemination. While a competent immune system helps prevent clinically detectable viremia, a portrait of the factors that induce reactivation following the proper cues remains incomplete. Our understanding of the complex molecular mechanisms underlying latency and reactivation continues to evolve. We previously showed the HCMV-encoded G protein-coupled receptor US28 is expressed during latency and facilitates latent infection by attenuating the activator protein-1 (AP-1) transcription factor subunit, c-fos, expression and activity. We now show AP-1 is a critical component for HCMV reactivation. Pharmacological inhibition of c-fos significantly attenuates viral reactivation. In agreement, infection with a virus in which we disrupted the proximal AP-1 binding site in the major immediate early (MIE) enhancer results in inefficient reactivation compared to WT. Concomitantly, AP-1 recruitment to the MIE enhancer is significantly decreased following reactivation of the mutant virus. Furthermore, AP-1 is critical for derepression of MIE-driven transcripts and downstream early and late genes, while immediate early genes from other loci remain unaffected. Our data also reveal MIE transcripts driven from the MIE promoter, the distal promoter, and the internal promoter, iP2, are dependent upon AP-1 recruitment, while iP1-driven transcripts are AP-1-independent. Collectively, our data demonstrate AP-1 binding to and activation of the MIE enhancer is a key molecular process controlling reactivation from latency.
Collapse
|
5
|
Neuronal Activation Stimulates Cytomegalovirus Promoter-Driven Transgene Expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:180-188. [PMID: 31380464 PMCID: PMC6661544 DOI: 10.1016/j.omtm.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/23/2019] [Indexed: 01/23/2023]
Abstract
The cytomegalovirus (CMV) immediate early promoter has been extensively developed and exploited for transgene expression in vitro and in vivo, including human clinical trials. The CMV promoter has long been considered a stable, constitutive, and ubiquitous promoter for transgene expression. Using two different CMV-based promoters, we found an increase in CMV-driven transgene expression in the rodent brain and in primary neuronal cultures in response to methamphetamine, glutamate, kainic acid, and activation of G protein-coupled receptor signaling using designer receptors exclusively activated by designer drugs (DREADDs). In contrast, promoters derived from human synapsin 1 (hSYN1) gene or elongation factor 1α (EF1α) did not exhibit altered transgene expression in response to the same neuronal stimulations. Overall, our results suggest that the long-standing assertion that the CMV promoter confers constitutive expression in neurons should be reevaluated, and future studies should empirically determine the activity of the CMV promoter in a given application.
Collapse
|
6
|
Nagala M, McKenzie E, Richards H, Sharma R, Thomson S, Mastroeni P, Crocker PR. Expression of Siglec-E Alters the Proteome of Lipopolysaccharide (LPS)-Activated Macrophages but Does Not Affect LPS-Driven Cytokine Production or Toll-Like Receptor 4 Endocytosis. Front Immunol 2018; 8:1926. [PMID: 29379501 PMCID: PMC5775731 DOI: 10.3389/fimmu.2017.01926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
Siglec-E is a murine CD33-related siglec that functions as an inhibitory receptor and is expressed mainly on neutrophils and macrophage populations. Recent studies have suggested that siglec-E is an important negative regulator of lipopolysaccharide (LPS)-toll-like receptor 4 (TLR4) signaling and one report (1) claimed that siglec-E is required for TLR4 endocytosis following uptake of Escherichia coli by macrophages and dendritic cells (DCs). Our attempts to reproduce these observations using cells from wild-type (WT) and siglec-E-deficient mice were unsuccessful. We used a variety of assays to determine if siglec-E expressed by different macrophage populations can regulate TLR4 signaling in response to LPS, but found no consistent differences in cytokine secretion in vitro and in vivo, comparing three different strains of siglec-E-deficient mice with matched WT controls. No evidence was found that the siglec-E deficiency was compensated by expression of siglecs-F and -G, the other murine inhibitory CD33-related siglecs. Quantitative proteomics was used as an unbiased approach and provided additional evidence that siglec-E does not suppress inflammatory TLR4 signaling. Interestingly, proteomics revealed a siglec-E-dependent alteration in macrophage protein composition that could be relevant to functional responses in host defense. In support of this, siglec-E-deficient mice exhibited enhanced growth of Salmonella enterica serovar Typhimurium in the liver following intravenous infection, but macrophages lacking siglec-E did not show altered uptake or killing of bacteria in vitro. Using various cell types including bone marrow-derived DCs (BMDCs), splenic DCs, and macrophages from WT and siglec-E-deficient mice, we showed that siglec-E is not required for TLR4 endocytosis following E. coli uptake or LPS challenge. We failed to see expression of siglec-E by BMDC even after LPS-induced maturation, but confirmed previous studies that splenic DCs express low levels of siglec-E. Taken together, our findings do not support a major role of siglec-E in regulation of TLR4 signaling functions or TLR4 endocytosis in macrophages or DCs. Instead, they reveal that induction of siglec-E by LPS can modulate the phenotype of macrophages, the functional significance of which is currently unclear.
Collapse
Affiliation(s)
- Manjula Nagala
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Emma McKenzie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hannah Richards
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ritu Sharma
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah Thomson
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
7
|
Wang D, Dai W, Wu J, Wang J. Improving transcriptional activity of human cytomegalovirus major immediate-early promoter by mutating NF-κB binding sites. Protein Expr Purif 2017; 142:16-24. [PMID: 28941824 DOI: 10.1016/j.pep.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023]
Abstract
Many mammalian gene expression vectors express the transferred genes under the control of the cytomegalovirus (CMV) major immediate-early promoter (MIEP). The human MIEP has been known as the strongest promoter in mammalian cells and utilized widely in mammalian expression systems. There are four NF-κB binding sites (named as κBs) in the human MIEP. In this study, we have constructed multiple mutated MIEPs by changing the natural κBs in the human MIEP into the high-affinity artificial sequences that were in vitro selected by using systematic evolution of ligands by exponential enrichment (SELEX) and predicted by bioinformatics. With various transcriptional activity evaluations, we found three mutated MIEPs with the transcriptional activity higher than the wild-type MIEP, which should be useful and widely applicable in many mammalian transgene expression fields such as gene engineering, gene therapy and gene editing. This study provides a useful approach for promoter engineering in biotechnology. This study also produced a series of mutated MIEPs with various transcriptional activities, which may be used for the fine control of gene expression output in the future synthetic biology.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
8
|
Bae S, Kang SC, Song YJ. Inhibition of human cytomegalovirus immediate-early gene expression and replication by the ethyl acetate (EtOAc) fraction of Elaeocarpus sylvestris in vitro. Altern Ther Health Med 2017; 17:428. [PMID: 28851336 PMCID: PMC5576240 DOI: 10.1186/s12906-017-1941-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/21/2017] [Indexed: 11/10/2022]
Abstract
Background In immunocompromised patients, human cytomegalovirus (HCMV) infection can lead to severe, life-threatening diseases, such as pneumonitis, hepatitis, gastrointestinal tract disease, and retinitis. We previously reported that a 70% ethanol extract of Elaeocarpus sylvestris leaves (ESE) inhibits human cytomegalovirus (HCMV) replication in vitro. In the present study, we determined the solvent fraction of ESE that inhibits HCMV replication using activity-guided fractionation. Methods Activity-guided fractionation of ESE was performed to determine the solvent fraction that inhibits HCMV replication. Effects of solvent fractions on HCMV lytic gene expression and major immediate-early (MIE) enhancer/promoter activity were further investigated. Results Among the solvent fractions tested, the EtOAc fraction of ESE markedly reduced HCMV lytic gene expression and viral replication in vitro without exerting significant cytotoxic effects against human foreskin fibroblasts (HFF). Furthermore, the EtOAc fraction negatively affected HCMV MIE enhancer/promoter activity. Conclusion Our data collectively indicate that the EtOAc fraction of ESE contains active constituents that inhibit HCMV MIE enhancer/promoter activity and viral replication. The EtOAc fraction of ESE is a good source of novel drug candidates for treatment of HCMV-associated diseases.
Collapse
|
9
|
Duran A, Valero N, Mosquera J, Delgado L, Alvarez-Mon M, Torres M. Role of the myeloid differentiation primary response (MYD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways in dengue. Life Sci 2016; 162:33-40. [PMID: 27575706 DOI: 10.1016/j.lfs.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022]
Abstract
AIMS Dengue disease courses with high viremia titers and high cytokine production suggesting viral replication and active immune response that could be related to viral evasion. One of the main targets of dengue virus (DENV) is monocyte/macrophage cells; however, little information regarding viral evasive mechanisms and pathway activation in monocytes infected by DENV is available. The aim of this study was to determine the role of myeloid differentiation primary response (MyD88), TIR-domain-containing adapter- inducing interferon-β (TRIF) and NF-kB pathways in viral replication and cytokine production in human monocyte cultures infected by DENV2. MAIN METHODS In this regard Pepinh- TRIF, Pepinh- MYD and pyrrolidine dithiocarbamate (PDTC) were used to inhibit TRIF, MYD88 and NF-kB pathways. Cytokine production was measured by ELISA. KEY FINDINGS Increased DENV replication and IFNα/β, TNF-α, IL-12 and IL-18 in infected cultures at 24h were found. All of these parameters were significantly decreased after TRIF, MYD88 or NF-kB inhibition. Association analysis between viral replication and cytokine production showed high significant positive correlation in TRIF and MYD88 treated cultures. SIGNIFICANCE This study shows that DENV2 induces activation of innate-immune response and transcription factors to drive viral expression and replication in the face of pro-inflammatory antiviral responses in vitro.
Collapse
Affiliation(s)
- Anyelo Duran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Cátedra de Bioquímica General, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología
| | - Nereida Valero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología.
| | - Jesus Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Lineth Delgado
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Melchor Alvarez-Mon
- Servicio de Enfermedades del Sistema Inmune y Oncología, Hospital Universitario "Príncipe de Asturias", Universidad de Alcalá, Madrid, Spain
| | - Mariana Torres
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
10
|
Liu XF, Jie C, Zhang Z, Yan S, Wang JJ, Wang X, Kurian S, Salomon DR, Abecassis M, Hummel M. Transplant-induced reactivation of murine cytomegalovirus immediate early gene expression is associated with recruitment of NF-κB and AP-1 to the major immediate early promoter. J Gen Virol 2016; 97:941-954. [PMID: 26795571 DOI: 10.1099/jgv.0.000407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reactivation of latent human cytomegalovirus is a significant infectious complication of organ transplantation and current therapies target viral replication once reactivation of latent virus has already occurred. The specific molecular pathways that activate viral gene expression in response to transplantation are not well understood. Our studies aim to identify these factors, with the goal of developing novel therapies that prevent transcriptional reactivation in transplant recipients. Murine cytomegalovirus (MCMV) is a valuable model for studying latency and reactivation of CMV in vivo. We previously demonstrated that transplantation of MCMV-latently infected kidneys into allogeneic recipients induces reactivation of immediate early (IE) gene expression and epigenetic reprogramming of the major immediate early promoter (MIEP) within 48 h. We hypothesize that these events are mediated by activation of signalling pathways that lead to binding of transcription factors to the MIEP, including AP-1 and NF-κB. Here we show that transplantation induces rapid activation of several members of the AP-1 and NF-κB transcription factor family and we demonstrate that canonical NF-κB (p65/p50), the junD component of AP-1, and nucleosome remodelling complexes are recruited to the MIEP following transplantation. Proteomic analysis of recipient plasma and transcriptome analysis of kidney RNA identified five extracellular ligands, including TNF, IL-1β, IL-18, CD40L and IL-6, and three intracellular signalling pathways associated with reactivation of IE gene expression. Identification of the factors that mediate activation of these signalling pathways may eventually lead to new therapies to prevent reactivation of CMV and its sequelae.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunfa Jie
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zheng Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shixian Yan
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xueqiong Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunil Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, LaJolla, CA, USA
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, LaJolla, CA, USA
| | - Michael Abecassis
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Hummel
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Fucofuroeckol-A fromEisenia bicyclisInhibits Inflammation in Lipopolysaccharide-Induced Mouse Macrophages via Downregulation of the MAPK/NF-κB Signaling Pathway. J CHEM-NY 2016. [DOI: 10.1155/2016/6509212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fucofuroeckol-A (FF) isolated from an edible perennial brown seaweedEisenia bicycliswas shown to be potent anti-inflammatory agents. FF suppressed the production of nitric oxide (NO) and prostaglandin E2(PGE2) and the expression of inducible nitric oxide synthase and cyclooxygenase-2 dose dependently in lipopolysaccharide- (LPS-) induced RAW 264.7 mouse macrophages. An enzyme-linked immunosorbent assay and cytometric bead array assay demonstrated that FF significantly reduced the production of proinflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, and that of the monocyte chemoattractant protein-1. Moreover, FF reduced the activation of nuclear factorκB (NF-κB) and mitogen-activated protein kinases (MAPKs). These results strongly suggest that the inhibitory effects of fucofuroeckol-A fromE. bicyclison LPS-induced NO and PGE2production might be due to the suppression of the NF-κB and MAPK signaling pathway.
Collapse
|
12
|
Németh B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM, Horvath G, Tretter L, Mócsai A, Csépányi-Kömi R, Iordanov I, Adam-Vizi V, Chinopoulos C. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J 2015; 30:286-300. [PMID: 26358042 DOI: 10.1096/fj.15-279398] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/31/2015] [Indexed: 01/28/2023]
Abstract
Itaconate is a nonamino organic acid exhibiting antimicrobial effects. It has been recently identified in cells of macrophage lineage as a product of an enzyme encoded by immunoresponsive gene 1 (Irg1), acting on the citric acid cycle intermediate cis-aconitate. In mitochondria, itaconate can be converted by succinate-coenzyme A (CoA) ligase to itaconyl-CoA at the expense of ATP (or GTP), and is also a weak competitive inhibitor of complex II. Here, we investigated specific bioenergetic effects of increased itaconate production mediated by LPS-induced stimulation of Irg1 in murine bone marrow-derived macrophages (BMDM) and RAW-264.7 cells. In rotenone-treated macrophage cells, stimulation by LPS led to impairment in substrate-level phosphorylation (SLP) of in situ mitochondria, deduced by a reversal in the directionality of the adenine nucleotide translocase operation. In RAW-264.7 cells, the LPS-induced impairment in SLP was reversed by short-interfering RNA(siRNA)-but not scrambled siRNA-treatment directed against Irg1. LPS dose-dependently inhibited oxygen consumption rates (61-91%) and elevated glycolysis rates (>21%) in BMDM but not RAW-264.7 cells, studied under various metabolic conditions. In isolated mouse liver mitochondria treated with rotenone, itaconate dose-dependently (0.5-2 mM) reversed the operation of adenine nucleotide translocase, implying impairment in SLP, an effect that was partially mimicked by malonate. However, malonate yielded greater ADP-induced depolarizations (3-19%) than itaconate. We postulate that itaconate abolishes SLP due to 1) a "CoA trap" in the form of itaconyl-CoA that negatively affects the upstream supply of succinyl-CoA from the α-ketoglutarate dehydrogenase complex; 2) depletion of ATP (or GTP), which are required for the thioesterification by succinate-CoA ligase; and 3) inhibition of complex II leading to a buildup of succinate which shifts succinate-CoA ligase equilibrium toward ATP (or GTP) utilization. Our results support the notion that Irg1-expressing cells of macrophage lineage lose the capacity of mitochondrial SLP for producing itaconate during mounting of an immune defense.
Collapse
Affiliation(s)
- Beáta Németh
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Doczi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dániel Csete
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kacso
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dora Ravasz
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniel Adams
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kiss
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Adam M Nagy
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergo Horvath
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Laszlo Tretter
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Mócsai
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roland Csépányi-Kömi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Iordan Iordanov
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vera Adam-Vizi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christos Chinopoulos
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Kropp KA, Hsieh WY, Isern E, Forster T, Krause E, Brune W, Angulo A, Ghazal P. A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection. PLoS Pathog 2015; 11:e1004737. [PMID: 25856589 PMCID: PMC4391941 DOI: 10.1371/journal.ppat.1004737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/09/2015] [Indexed: 12/27/2022] Open
Abstract
Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a series of pharmacologic, siRNA and genetic loss-of-function experiments we determined that signalling mediated by the TLR-adaptor protein MyD88 plays a vital role for governing the inflammatory activation of the CMV enhancer in macrophages. Downstream TLR-regulated transcription factor binding motif disruption for NFκB, AP1 and CREB/ATF in the CMV enhancer demonstrated the requirement of these inflammatory signal-regulated elements in driving viral gene expression and growth in cells as well as in primary infection of neonatal mice. Thus, this study shows that the prototypical CMV enhancer, in a restricted time-gated manner, co-opts through DNA regulatory mimicry elements, innate-immune transcription factors to drive viral expression and replication in the face of on-going pro-inflammatory antiviral responses in vitro and in vivo and; suggests an unexpected role for inflammation in promoting acute infection and has important future implications for regulating latency. Here we discover how inflammatory signalling may unintentionally promote infection, as a result of viruses evolving DNA sequences, known as enhancers, which act as a bait to prey on the infected cell transcription factors induced by inflammation. The major inflammatory transcription factors activated are part of the TLR-signalling pathway. We find the prototypical viral enhancer of cytomegalovirus can be paradoxically boosted by activation of inflammatory “anti-viral” TLR-signalling independent of viral structural proteins. This leads to an increase in viral gene expression and replication in cell-culture and upon infection of mice. We identify an axis of inflammatory transcription factors, acting downstream of TLR-signalling but upstream of interferon inhibition. Mechanistically, the central TLR-adapter protein MyD88 is shown to play a critical role in promoting viral enhancer activity in the first 6h of infection. The co-option of TLR-signalling exceeds the usage of NFκB, and we identify IRF3 and 5 as newly found viral-enhancer interacting inflammatory transcription factors. Taken together this study reveals how virus enhancers, employ a path of least resistance by directly harnessing within a short temporal window, the activation of anti-viral signalling in macrophages to drive viral gene expression and replication to an extent that has not been recognised before.
Collapse
Affiliation(s)
- Kai A. Kropp
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (KAK); (PG)
| | - Wei Yuan Hsieh
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Isern
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva Krause
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ana Angulo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- SynthSys, University of Edinburgh, The King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (KAK); (PG)
| |
Collapse
|
14
|
Affiliation(s)
- Kai A. Kropp
- Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (KAK); (PG)
| | - Ana Angulo
- Facultad de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- SynthSys (Synthetic and Systems Biology), University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (KAK); (PG)
| |
Collapse
|
15
|
Khong A, Forestieri R, Williams DE, Patrick BO, Olmstead A, Svinti V, Schaeffer E, Jean F, Roberge M, Andersen RJ, Jan E. A daphnane diterpenoid isolated from Wikstroemia polyantha induces an inflammatory response and modulates miRNA activity. PLoS One 2012; 7:e39621. [PMID: 22761847 PMCID: PMC3383676 DOI: 10.1371/journal.pone.0039621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/23/2012] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed single-stranded ∼21–23 nucleotide RNAs that inhibit gene expression post-transcriptionally by binding imperfectly to elements usually within the 3′untranslated region (3′UTR) of mRNAs. Small interfering RNAs (siRNAs) mediate site-specific cleavage by binding with perfect complementarity to RNA. Here, a cell-based miRNA reporter system was developed to screen for compounds from marine and plant extracts that inhibit miRNA or siRNA activity. The daphnane diterpenoid genkwanine M (GENK) isolated from the plant Wikstroemia polyantha induces an early inflammatory response and can moderately inhibit miR-122 activity in the liver Huh-7 cell line. GENK does not alter miR-122 levels nor does it directly inhibit siRNA activity in an in vitro cleavage assay. Finally, we demonstrate that GENK can inhibit HCV infection in Huh-7 cells. In summary, the development of the cell-based miRNA sensor system should prove useful in identifying compounds that affect miRNA/siRNA activity.
Collapse
Affiliation(s)
- Anthony Khong
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roberto Forestieri
- Department of Chemistry and Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David E. Williams
- Department of Chemistry and Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian O. Patrick
- Department of Chemistry and Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Olmstead
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Svinti
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Schaeffer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond J. Andersen
- Department of Chemistry and Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
16
|
Truman JP, Al Gadban MM, Smith KJ, Jenkins RW, Mayroo N, Virella G, Lopes-Virella MF, Bielawska A, Hannun YA, Hammad SM. Differential regulation of acid sphingomyelinase in macrophages stimulated with oxidized low-density lipoprotein (LDL) and oxidized LDL immune complexes: role in phagocytosis and cytokine release. Immunology 2012; 136:30-45. [PMID: 22236141 DOI: 10.1111/j.1365-2567.2012.03552.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to the formation of lipid-laden macrophages (foam cells). Fcγ receptors mediate uptake of oxLDL-IC, whereas scavenger receptors internalize oxLDL. We have previously reported that oxLDL-IC, but not free oxLDL, activate macrophages and prolong their survival. Sphingomyelin is a major constituent of cell membranes and lipoprotein particles and acid sphingomyelinase (ASMase) hydrolyses sphingomyelin to generate the bioactive lipid ceramide. ASMase exists in two forms: lysosomal (L-ASMase) and secretory (S-ASMase). In this study we examined whether oxLDL and oxLDL-IC regulate ASMase differently, and whether ASMase mediates monocyte/macrophage activation and cytokine release. The oxLDL-IC, but not oxLDL, induced early and consistent release of catalytically active S-ASMase. The oxLDL-IC also consistently stimulated L-ASMase activity, whereas oxLDL induced a rapid transient increase in L-ASMase activity before it steadily declined below baseline. Prolonged exposure to oxLDL increased L-ASMase activity; however, activity remained significantly lower than that induced by oxLDL-IC. Further studies were aimed at defining the function of the activated ASMase. In response to oxLDL-IC, heat-shock protein 70B' (HSP70B') was up-regulated and localized with redistributed ASMase in the endosomal compartment outside the lysosome. Treatment with oxLDL-IC induced the formation and release of HSP70-containing and IL-1β-containing exosomes via an ASMase-dependent mechanism. Taken together, the results suggest that oxLDL and oxLDL-IC differentially regulate ASMase activity, and the pro-inflammatory responses to oxLDL-IC are mediated by prolonged activation of ASMase. These findings may contribute to increased understanding of mechanisms mediating macrophage involvement in atherosclerosis.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li Z, Wang X, Yan S, Zhang Z, Jie C, Sustento-Reodica N, Hummel M, Abecassis M. A mouse model of CMV transmission following kidney transplantation. Am J Transplant 2012; 12:1024-8. [PMID: 22226173 DOI: 10.1111/j.1600-6143.2011.03892.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reactivation of latent CMV in transplant recipients remains a significant infectious complication of transplantation. Investigation of the cellular and molecular mechanisms by which reactivation occurs has been hampered by the lack of appropriate animal models. Here, we show that transplantation of kidneys latently infected with murine cytomegalovirus (MCMV) into NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /Szj mice results in reactivation of latent virus in the kidney, resulting in a disseminated primary infection of the recipient. This model will be useful in elucidating mechanisms of MCMV reactivation, including the roles of injury and of spontaneous reactivation, and in testing new therapies for treatment and prevention of CMV reactivation and disease.
Collapse
Affiliation(s)
- Z Li
- Comprehensive Transplant Center, Department of Surgery, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Irradiation, cisplatin, and 5-azacytidine upregulate cytomegalovirus promoter in tumors and muscles: implementation of non-invasive fluorescence imaging. Mol Imaging Biol 2011; 13:43-52. [PMID: 20396957 PMCID: PMC3023030 DOI: 10.1007/s11307-010-0300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose The cytomegalovirus (CMV) promoter is one of the most commonly used promoters for expression of transgenes in mammalian cells. The aim of our study was to evaluate the role of methylation and upregulation of the CMV promoter by irradiation and the chemotherapeutic agent cisplatin in vivo using non-invasive fluorescence in vivo imaging. Procedures Murine fibrosarcoma LPB and mammary carcinoma TS/A cells were stably transfected with plasmids encoding CMV and p21 promoter-driven green fluorescent protein (GFP) gene. Solid TS/A tumors were induced by subcutaneous injection of fluorescent tumor cells, while leg muscles were transiently transfected with plasmid encoding GFP under the control of the CMV promoter. Cells, tumors, and legs were treated either by DNA methylation inhibitor 5-azacytidine, irradiation, or cisplatin. GFP expression was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging in vivo. Results Treatment of cells, tumors, and legs with 5-azacytidine (re)activated the CMV promoter. Furthermore, treatment with irradiation or cisplatin resulted in significant upregulation of GFP expression both in vitro and in vivo. Conclusions Observed alterations in the activity of the CMV promoter limit the usefulness of this widely used promoter as a constitutive promoter. On the other hand, inducibility of CMV promoters can be beneficially used in gene therapy when combined with standard cancer treatment, such as radiotherapy and chemotherapy.
Collapse
|
19
|
Pshenichkin S, Surin A, Surina E, Klauzińska M, Grajkowska E, Luchenko V, Dolińska M, Wroblewska B, Wroblewski JT. Heat shock enhances CMV-IE promoter-driven metabotropic glutamate receptor expression and toxicity in transfected cells. Neuropharmacology 2011; 60:1292-300. [PMID: 21241715 PMCID: PMC3380641 DOI: 10.1016/j.neuropharm.2011.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/18/2010] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
Abstract
In CHO-K1 cells, heat shock strongly activated reporter-gene expression driven by the cytomegalovirus immediate-early (CMV-IE) promoter from adenoviral and plasmid vectors. Heat shock treatment (2h at 42.5 °C) significantly enhanced the promoter DNA-binding activity in nuclear extracts. In CHO cells expressing mGluR1a and mGluR5a receptors under the control of the CMV promoter, heat shock increased receptor protein expression, mRNA levels and receptor function estimated by measurement of PI hydrolysis, intracellular Ca²+ and cAMP. Hyperthermia increased average amplitudes of Ca²+ responses, the number of responding cells, and revealed the toxic properties of mGluR1a receptor. Heat shock also effectively increased the expression of EGFP. Hence, heat shock effects on mGluR expression and function in CHO cells may be attributed to the activation of the CMV promoter. Moreover, this effect was not limited to CHO cells as heat shock also increased EGFP expression in PC-12 and HEK293 cells. Heat shock treatment may be a useful tool to study the function of proteins expressed in heterologous systems under control of the CMV promoter. It may be especially valuable for increasing protein expression in transient transfections, for enhancing receptor expression in drug screening applications and to control the expression of proteins endowed with toxic properties. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Sergey Pshenichkin
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, Dyson OF, Arce S, Akula SM. Virus reactivation: a panoramic view in human infections. Future Virol 2011; 6:451-463. [PMID: 21799704 DOI: 10.2217/fvl.11.21] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is 'quiescent' (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein-Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi's sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus.
Collapse
Affiliation(s)
- Christopher M Traylen
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Isern E, Gustems M, Messerle M, Borst E, Ghazal P, Angulo A. The activator protein 1 binding motifs within the human cytomegalovirus major immediate-early enhancer are functionally redundant and act in a cooperative manner with the NF-{kappa}B sites during acute infection. J Virol 2011; 85:1732-46. [PMID: 21106746 PMCID: PMC3028895 DOI: 10.1128/jvi.01713-10] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/10/2010] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection causes a rapid induction of c-Fos and c-Jun, the major subunits of activator protein 1 (AP-1), which in turn have been postulated to activate the viral immediate-early (IE) genes. Accordingly, the major IE promoter (MIEP) enhancer, a critical control region for initiating lytic HCMV infection and reactivation from the latent state, contains one well-characterized AP-1 site and a second candidate interaction site. In this study we explored the role of these AP-1 elements in the context of the infection. We first show that the distal candidate AP-1 motif binds c-Fos/c-Jun heterodimers (AP-1 complex) and confers c-Fos/c-Jun-mediated activity to a core promoter. Site-directed mutagenesis studies indicate that both AP-1 response elements are critical for 12-O-tetradecanoylphorbol-13-acetate (TPA)-enhanced MIEP activity in transient-transfection assays. In marked contrast to the results obtained with the isolated promoter, disruption of the AP-1 recognition sites of the MIEP in the context of the infectious HCMV genome has no significant influence on the expression of the MIE protein IE1 or viral replication in different cell types. Moreover, a chimeric murine CMV driven by the HCMV MIEP (hMCMV-ES) with the two AP-1 binding sites mutated is not compromised in virulence, is able to grow and disseminate to different organs of the newborn mice as efficiently as the parental virus, and is competent in reactivation. We show, however, that combined inactivation of the enhancer AP-1 and NF-κB recognition sites leads to an attenuation of the hMCMV-ES in the neonatal murine infection model, not observed when each single element is abolished. Altogether, these results underline the functional redundancy of the MIEP elements, highlighting the plasticity of this region, which probably evolved to ensure maximal transcriptional performance across many diverse environments.
Collapse
Affiliation(s)
- Elena Isern
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Montse Gustems
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Martin Messerle
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Eva Borst
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Peter Ghazal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
22
|
Hitti E, Al-Yahya S, Al-Saif M, Mohideen P, Mahmoud L, Polyak SJ, Khabar KSA. A versatile ribosomal protein promoter-based reporter system for selective assessment of RNA stability and post-transcriptional control. RNA (NEW YORK, N.Y.) 2010; 16:1245-55. [PMID: 20418359 PMCID: PMC2874176 DOI: 10.1261/rna.2026310] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Assessment of post-transcriptional control relies on use of transcriptional inhibitors and is masked by copious and cryptic transcriptional induction. We screened several cellular promoters that are constitutively active yet noninducible to external stimuli. The ribosomal protein RPS30 promoter was chosen; its TATA signal and sp1 site location were optimized. The modified promoter (RPS30M) is selective to post-transcriptional effects of AU-rich elements (ARE) in the 3'UTR, while it is not transcriptionally responsive to a wide variety of agents including pro-inflammatory cytokines and RNA-binding proteins. Specific cis-acting elements can be appended to RPS30M by a cloning-free approach to allow coupled transcriptional/post-transcriptional assessment, as demonstrated with NF-kappaB and beta-catenin/wnt signaling experiments. Moreover, efficient tetracycline-regulated RPS30M was created for quantitative assessment of the half-lives of mRNAs containing AREs. The described approach provides enhanced versatility and suitability for selective post-transcriptional assessment with or without transcriptional induction.
Collapse
Affiliation(s)
- Edward Hitti
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 11211
| | | | | | | | | | | | | |
Collapse
|
23
|
Onimaru M, Ohuchida K, Egami T, Mizumoto K, Nagai E, Cui L, Toma H, Matsumoto K, Hashizume M, Tanaka M. Gemcitabine synergistically enhances the effect of adenovirus gene therapy through activation of the CMV promoter in pancreatic cancer cells. Cancer Gene Ther 2010; 17:541-9. [DOI: 10.1038/cgt.2010.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Appledorn DM, Aldhamen YA, DePas W, Seregin SS, Liu CJJ, Schuldt N, Quach D, Quiroga D, Godbehere S, Zlatkin I, Kim S, McCormick JJ, Amalfitano A. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target. PLoS One 2010; 5:e9579. [PMID: 20221448 PMCID: PMC2833191 DOI: 10.1371/journal.pone.0009579] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/14/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+) and CD8(-) T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.
Collapse
Affiliation(s)
- Daniel M. Appledorn
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - William DePas
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Chyong-Jy J. Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Nathan Schuldt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Darin Quach
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Dionisia Quiroga
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Igor Zlatkin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Sungjin Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - J. Justin McCormick
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
25
|
A novel plasmid DNA electroporation method allows transfection of murine DC. J Immunol Methods 2009; 343:13-20. [DOI: 10.1016/j.jim.2009.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/28/2008] [Accepted: 01/06/2009] [Indexed: 11/21/2022]
|
26
|
Kim YE, Kang HB, Park JA, Nam KH, Kwon HJ, Lee Y. Upregulation of NF-kappaB upon differentiation of mouse embryonic stem cells. BMB Rep 2009; 41:705-9. [PMID: 18959816 DOI: 10.5483/bmbrep.2008.41.10.705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NF-kappaB is a transcriptional regulator involved in many biological processes including proliferation, survival, and differentiation. Recently, we reported that expression and activity of NF-kappaB is comparatively low in undifferentiated human embryonic stem (ES) cells, but increases during differentiation. Here, we found a lower expression of NF-kappaB p65 protein in mouse ES cells when compared with mouse embryonic fibroblast cells. Protein levels of NF-kappaB p65 and relB were clearly enhanced during retinoic acid-induced differentiation. Furthermore, increased DNA binding activity of NF-kappaB in response to TNF-alpha, an agonist of NF-kappaB signaling, was seen in differentiated but not undifferentiated mouse ES cells. Taken together with our previous data in human ES cells, it is likely that NF-kappaB expression and activity of the NF-kappaB signaling pathway is comparatively low in undifferentiated ES cells, but increases during differentiation of ES cells in general.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Le VTK, Trilling M, Zimmermann A, Hengel H. Mouse cytomegalovirus inhibits beta interferon (IFN-beta) gene expression and controls activation pathways of the IFN-beta enhanceosome. J Gen Virol 2008; 89:1131-1141. [PMID: 18420790 DOI: 10.1099/vir.0.83538-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have investigated beta interferon (IFN-beta) and IFN-alpha4 gene expression and activation of related transcription factors in mouse cytomegalovirus (MCMV)-infected fibroblasts. mRNA analysis demonstrated an initial phase of IFN gene induction upon MCMV infection, which was followed by a sustained MCMV-mediated simultaneous downregulation of IFN-beta and IFN-alpha4 gene expression. The induction of IFN transcription resulted from the activation of the components of the IFN-beta enhanceosome, i.e. IFN regulatory factor (IRF) 3, nuclear factor (NF)-kappaB, activating transcription factor (ATF)-2 and c-Jun. Activation of the transcription factors occurred rapidly and in a sequential order upon infection, but only lasted a while. As a consequence, IFN-alpha/beta gene expression became undetectable 6 h post-infection and throughout the MCMV replication cycle. This effect is based on an active interference since restimulation of IFN gene induction by further external stimuli (e.g. Sendai virus infection) was completely abolished. This inhibition required MCMV gene expression and was not observed in cells infected with UV-inactivated MCMV virions. The efficiency of inhibition is achieved by a concerted blockade of IkappaBalpha degradation and a lack of nuclear accumulation of IRF3 and ATF-2/c-Jun. Using an MCMV mutant lacking pM27, a signal transducer and activator of transcription (STAT) 2-specific inhibitor of Jak/STAT signalling, we found that the initial phase of IFN induction and the subsequent inhibition does not depend on the positive-IFN feedback loop. Our findings indicate that the MCMV-mediated downregulation of IFN transcription in fibroblasts relies on a large arsenal of inhibitory mechanisms targeting each pathway that contributes to the multiprotein enhanceosome complex.
Collapse
Affiliation(s)
- Vu Thuy Khanh Le
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| | - Mirko Trilling
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| | - Albert Zimmermann
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| | - Hartmut Hengel
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
TNF Receptor Independent Activation of the Cytomegalovirus Major Immediate Early Enhancer in Response to Transplantation. Transplantation 2008; 85:1039-45. [DOI: 10.1097/tp.0b013e318168449c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Phosphorothioate-modified oligodeoxynucleotides inhibit human cytomegalovirus replication by blocking virus entry. Antimicrob Agents Chemother 2008; 52:1111-20. [PMID: 18180342 DOI: 10.1128/aac.00987-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies in animal models have provided evidence that Toll-like receptor 9 (TLR9) agonists, such as synthetic oligodeoxynucleotides (ODNs) that contain immunostimulatory deoxycytidyl-deoxyguanosine (CpG) motifs (CpG ODNs), protect against a wide range of viral pathogens. This antiviral activity has been suggested to be indirect and secondary to CpG-induced cytokines and inflammatory responses triggered through TLR9 activation. However, few studies have addressed the potential of CpG ODNs as direct antiviral agents. Here, we report on the ability of some CpG ODNs to directly suppress, almost completely, human cytomegalovirus (HCMV) replication in both primary fibroblasts and endothelial cells. Murine CMV replication was inhibited as well, whereas no inhibition was observed for herpes simplex virus type 1, adenovirus, or vesicular stomatitis virus. The antiviral activity of these ODNs was significantly reduced when they were added after virus adsorption, indicating that their action may be primarily targeted to the very early phases of the HCMV cycle. In fact, the B-class prototype CpG ODN 2006 effectively prevented the nuclear localization of pp65 and input viral DNA, which suggests that it inhibits HCMV entry. Moreover, a CpG 2006 control, ODN 2137 without CpG motifs, also showed a potent inhibitory activity on the HCMV entry phase, indicating that the anticytomegaloviral activity is independent of the CpG motif. In contrast, a phosphodiester version of CpG 2006 showed reduced antiviral activity, indicating that the inhibitory activity is dependent on the phosphorothioate backbone of the ODN. These results suggest that this yet-unrecognized activity of CpG ODNs may be of interest in the development of novel anticytomegaloviral molecules.
Collapse
|
30
|
Wu J, Yu P, Hu Z, Zheng S. Statins can be the potential therapeutic agents for reducing infection evoked cholangiopathy after liver transplantation? Med Hypotheses 2007; 70:277-280. [PMID: 17681704 DOI: 10.1016/j.mehy.2007.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 06/06/2007] [Indexed: 11/23/2022]
Abstract
Biliary infection, including bacteria and cytomegalovirus (CMV), can induce inflammatory response and lead to bile duct damage after liver transplantation. This process may involve a major class of pattern recognition receptors-TLRs (Toll-like receptors). Stimulation of these receptors by pathogens (CMV, bacteria, etc.) in bile duct can induce the secretion of a series of cytokines/chemokines mainly via a TLR-2/4-MyD88-dependent pathway. Strategies for prevention and treatment of biliary infection, such as selective digestive decontamination (SDD) and preemptive therapy with gancyclovir and antibiotics are not so satisfactory. Statin, a HMG-CoA reductase inhibitor, have special anti-inflammatory abilities. They can inhibit the expression of TLR-4 and TLR-2, and block the signaling pathways of LPS (TLR-2/4), virus-encoded envelope proteins (TLR-2) and HSP70 (TLR-2/4), This process can lead to a reduction of effector cytokines/chemokines. In addition, statins can suppress the replication of CMV by reducing NF-kappaB binding activity. We hypothesized that statins can be useful for reducing infection evoked cholangiopathy after liver transplantation. We provide reliable evidence supporting the hypothesis and offer proposals for future application.
Collapse
Affiliation(s)
- Jian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | | | | | | |
Collapse
|
31
|
Kwon S, Kim MS, Kim D, Lee KW, Choi SY, Park J, Kim YH, Lee Y, Kwon HJ. Identification of a functionally relevant signal peptide of mouse ficolin A. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 40:532-8. [PMID: 17669269 DOI: 10.5483/bmbrep.2007.40.4.532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse ficolin A is a plasma protein with lectin activity, and plays a role in host defense by binding carbohydrates, especially GlcNAc, on microorganisms. The ficolin A subunit consists of an N-terminal signal peptide, a collagen-like domain, and a C-terminal fibrinogen-like domain. In this study, we show that ficolin A can be synthesized and oligomerized in a cell and secreted into culture medium. We also identify a functionally relevant signal peptide of ficolin A by using MS/MS analysis to determine the N-terminal sequence of secreted ficolin A. When the signal peptide of mouse ficolin A was fused with enhanced green fluorescent protein (EGFP), EGFP was released into HEK 293 cell medium, suggesting that the signal peptide can efficiently direct ficolin A secretion. Moreover, our results suggest that the signal peptide of ficolin A has potential application for the production of useful secretory proteins.
Collapse
Affiliation(s)
- Sanghoon Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kimura T, Koya RC, Anselmi L, Sternini C, Wang HJ, Comin-Anduix B, Prins RM, Faure-Kumar E, Rozengurt N, Cui Y, Kasahara N, Stripecke R. Lentiviral Vectors with CMV or MHCII Promoters Administered In Vivo: Immune Reactivity Versus Persistence of Expression. Mol Ther 2007; 15:1390-9. [PMID: 17505480 DOI: 10.1038/sj.mt.6300180] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lentiviral vectors (LVs) are potential tools for genetic vaccination. To improve the safety of LV vaccines, we evaluated the selectivity, bio-distribution, persistence of expression, and immune potency of vesicular stomatitis virus G (VSV-G)-pseudotyped vectors transcriptionally targeted to antigen presenting cells (APCs) through a major histocompatibility complex class II (MHCII) promoter. Control vectors contained the ubiquitous cytomegalovirus (CMV) promoter. Bio-distribution studies after intravenous injections of LVs expressing green fluorescent protein (GFP) or luciferase were conducted by a combination of flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (RT-Q-PCR) and whole-body bioluminescence analyses. GFP-expressing vectors showed selective expression in MHCII(+) cells of spleen and LV-CMV-GFP administration produced noticeable spleen inflammation, whereas LV-MHCII-GFP did not. Long-term optical imaging analyses of C57BL/6 mice injected with LV-CMV-LUC showed diminishing luciferase expression in the liver and spleen over time. Vaccination/boost with LV-CMV expressing the melanoma antigen tyrosinase-related protein 2 (TRP2) yielded dose-dependent antigen-specific CD8(+) T-cell reactivity and high protection against B16 melanoma challenge. Unexpectedly, administration of LVs containing the MHCII promoter resulted in persistence of luciferase expression and viral integration in MHCII(+) splenocytes and virtually no CD8(+) T-cell responses against TRP2. These studies reveal that APC transduction by LVs could lead to immune reactivity (LV-CMV) or persistence of transgene expression (LV-MHCII), providing a relevant paradigm for vaccination and gene replacement approaches.
Collapse
Affiliation(s)
- Takahiro Kimura
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rosa GT, Gillet L, Smith CM, de Lima BD, Stevenson PG. IgG fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2007; 2:e560. [PMID: 17593961 PMCID: PMC1891442 DOI: 10.1371/journal.pone.0000560] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 05/30/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Herpesviruses can be neutralized in vitro but remain infectious in immune hosts. One difference between these settings is the availability of immunoglobulin Fc receptors. The question therefore arises whether a herpesvirus exposed to apparently neutralizing antibody can still infect Fc receptor(+) cells. PRINCIPAL FINDINGS Immune sera blocked murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts, but failed to block and even enhanced its infection of macrophages and dendritic cells. Viral glycoprotein-specific monoclonal antibodies also enhanced infection. MHV-68 appeared to be predominantly latent in macrophages regardless of whether Fc receptors were engaged, but the infection was not abortive and new virus production soon overwhelmed infected cultures. Lytically infected macrophages down-regulated MHC class I-restricted antigen presentation, endocytosis and their response to LPS. CONCLUSIONS IgG Fc receptors limit the neutralization of gamma-herpesviruses such as MHV-68.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antigen Presentation
- Cells, Cultured
- Cytomegalovirus/genetics
- DNA, Viral/genetics
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Flow Cytometry
- Fluorescent Antibody Technique
- Glycoproteins/immunology
- Green Fluorescent Proteins/metabolism
- Herpesviridae Infections/immunology
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/pathology
- Immediate-Early Proteins/genetics
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutralization Tests
- Promoter Regions, Genetic/genetics
- Receptors, Fc/immunology
- Receptors, IgG/immunology
- Rhadinovirus/immunology
- Tumor Virus Infections/immunology
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/pathology
- Virion/immunology
- Virus Replication
Collapse
Affiliation(s)
- Gustavo T. Rosa
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Laurent Gillet
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Christopher M. Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Brigitte D. de Lima
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Vischer HF, Vink C, Smit MJ. A viral conspiracy: hijacking the chemokine system through virally encoded pirated chemokine receptors. Curr Top Microbiol Immunol 2007; 303:121-54. [PMID: 16570859 DOI: 10.1007/978-3-540-33397-5_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several herpesviruses and poxviruses contain genes encoding for G protein-coupled receptor (GPCR) proteins that are expressed on the surface of infected host cells and/or the viral envelope. Most of these membrane-associated proteins display highest homology to the subfamily of chemokine receptors known to play a key role in the immune system. Virally encoded chemokine receptors have been modified through evolutionary selection both in chemokine binding profile and signaling capacity, ultimately resulting in immune evasion and cellular reprogramming in favor of viral survival and replication. Insight in the role of virally encoded GPCRs during the viral lifecycle may reveal their potential as future drug targets.
Collapse
Affiliation(s)
- H F Vischer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Rhee JW, Lee KW, Kim D, Lee Y, Jeon OH, Kwon HJ, Kim DS. NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. BMB Rep 2007; 40:88-94. [PMID: 17244487 DOI: 10.5483/bmbrep.2007.40.1.088] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-kappaB binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-kappaB binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of IkappaBalpha, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-kappaB and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-kappaB contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.
Collapse
Affiliation(s)
- Jae Won Rhee
- Department of Biochemistry and Institute of Life Science and Biotechnology, College of Science, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Sohn WJ, Kim D, Lee KW, Kim MS, Kwon S, Lee Y, Kim DS, Kwon HJ. Novel transcriptional regulation of the schlafen-2 gene in macrophages in response to TLR-triggered stimulation. Mol Immunol 2007; 44:3273-82. [PMID: 17434208 DOI: 10.1016/j.molimm.2007.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/27/2022]
Abstract
Schlafen-2 (slfn-2) is a member of slfn family, regulators of T cell development and its expression is altered during infection by microbial pathogens. However, the molecular mechanism involved in slfn expression is still to be determined. In this study, we isolated slfn-2 as a LPS-induced differentially expressed genes (DEGs) in RAW 264.7 cells and examined expression and regulation of slfn-2 in CpG-DNA-treated and LPS-treated macrophages. We defined a transcriptional start site in the slfn-2 gene. To examine the promoter organization of the slfn-2 gene, we cloned a approximately 1.8 kb region upstream of the transcription start site. Sequence analysis indicates consensus sites for AP-1 and NF-kappaB. Comprehensive mutant analyses, ELISA-based transcription factor activation assay, and ChIP assays reveal that functional interaction of AP-1 and NF-kappaB with the promoter element is necessary for the Toll-like receptor (TLR)-mediated slfn-2 gene expression by CpG-DNA and LPS treatment in macrophages. In summary, we identified a slfn-2 promoter for the first time and demonstrated that CpG-DNA and LPS triggers slfn-2 gene expression by activating NF-kappaB and AP-1 pathways in macrophages.
Collapse
Affiliation(s)
- Wern-Joo Sohn
- Center for Medical Science Research, Hallym University, Chuncheon Gangwon-do 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nogalski MT, Podduturi JP, DeMeritt IB, Milford LE, Yurochko AD. The human cytomegalovirus virion possesses an activated casein kinase II that allows for the rapid phosphorylation of the inhibitor of NF-kappaB, IkappaBalpha. J Virol 2007; 81:5305-14. [PMID: 17344282 PMCID: PMC1900216 DOI: 10.1128/jvi.02382-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We documented that the NF-kappaB signaling pathway was rapidly induced following human cytomegalovirus (HCMV) infection of human fibroblasts and that this induced NF-kappaB activity promoted efficient transactivation of the major immediate-early promoter (MIEP). Previously, we showed that the major HCMV envelope glycoproteins, gB and gH, initiated this NF-kappaB signaling event. However, we also hypothesized that there were additional mechanisms utilized by the virus to rapidly upregulate NF-kappaB. In this light, we specifically hypothesized that the HCMV virion contained IkappaBalpha kinase activity, allowing for direct phosphorylation of IkappaBalpha following virion entry into infected cells. In vitro kinase assays performed on purified HCMV virion extract identified bona fide IkappaBalpha kinase activity in the virion. The enzyme responsible for this kinase activity was identified as casein kinase II (CKII), a cellular serine-threonine protein kinase. CKII activity was necessary for efficient transactivation of the MIEP and IE gene expression. CKII is generally considered to be a constitutively active kinase. We suggest that this molecular characteristic of CKII represents the biologic rationale for the viral capture and utilization of this kinase early after infection. The packaging of CKII into the HCMV virion identifies that diverse molecular mechanisms are utilized by HCMV for rapid NF-kappaB activation. We propose that HCMV possesses multiple pathways to increase NF-kappaB activity to ensure that the correct temporal regulation of NF-kappaB occurs following infection and that sufficient threshold levels of NF-kappaB are reached in the diverse array of cells, including monocytes and endothelial cells, infected in vivo.
Collapse
Affiliation(s)
- Maciej T Nogalski
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
38
|
Ramanathan M, Haskó G, Leibovich SJ. Analysis of signal transduction pathways in macrophages using expression vectors with CMV promoters: a cautionary tale. Inflammation 2007; 29:94-102. [PMID: 16865543 DOI: 10.1007/s10753-006-9005-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cytomegalovirus (CMV) major immediate-early promoter is a strong promoter used for both in vitro and in vivo expression of proteins in signal transduction and gene therapy studies. CMV activity is induced by external stimuli such as endotoxin from Gram-negative bacteria (LPS), TNF-alpha and phorbol esters. This inducibility poses problems when this promoter is used to drive the expression of either wild type or dominant negative mutated proteins as tools in signal transduction studies. This report draws attention to the problem associated with this widely used approach. The role of NF-kappaB and Hypoxia Inducible Factor-1alpha (HIF-1alpha) in the transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) in macrophages was investigated using CMV-promoter-driven expression of either wild type or dominant negative proteins involved in these pathways. Difficulties encountered while interpreting the data due to the inducibility of the CMV promoter by LPS are highlighted in this report and provide a cautionary note for the evaluation of data acquired using this approach.
Collapse
Affiliation(s)
- Madhuri Ramanathan
- Department of Cell Biology and Molecular Medicine & The Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
39
|
El Andaloussi A, Sonabend AM, Han Y, Lesniak MS. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 2006; 54:526-35. [PMID: 16906541 DOI: 10.1002/glia.20401] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) recognize a set of conserved molecular structures, so called pathogen-associated molecular patterns, which allow them to sense and initiate innate and adaptive immune responses. In this study, we examined the expression of TLRs in both human and murine glioma. We then analyzed the change in TLR expression after treatment with synthetic phosphorothioate oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides (CpG ODNs), strong activators of both innate and adaptive immunity. In addition, we investigated the in vivo effect of CpG injection into C57BL/6 mice implanted with syngeneic GL261 glioma. Our results indicate that TLR9 is overexpressed in human and murine glioma cell lines and CpG stimulation prolongs the survival of mice with experimental brain tumors. CpGs induce TLR9 down-regulation, followed by apoptosis of GL261 cells in vitro as well as in vivo. Furthermore, the effects of CpG stimulation appear to enhance the antigen presenting capacity of microglia, shift the immune response toward CD8(+) T cells, and decrease the number of CD4(+)CD25(+) regulatory T cells. Taken together, our data support the role of CpG in glioma immunotherapy and provide a rationale for further clinical development of CpG therapy in patients with malignant glioma.
Collapse
|
40
|
Gustems M, Borst E, Benedict CA, Pérez C, Messerle M, Ghazal P, Angulo A. Regulation of the transcription and replication cycle of human cytomegalovirus is insensitive to genetic elimination of the cognate NF-kappaB binding sites in the enhancer. J Virol 2006; 80:9899-904. [PMID: 16973595 PMCID: PMC1617225 DOI: 10.1128/jvi.00640-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of NF-kappaB in regulating human cytomegalovirus (HCMV) replication and gene transcription remains controversial. Multiple, functional NF-kappaB response elements exist in the major immediate-early promoter (MIEP) enhancer of HCMV, suggesting a possible requirement for this transcription factor in lytic viral replication. Here we demonstrate by generating and analyzing HCMVs with alterations in the MIEP-enhancer that, although this region is essential for HCMV growth, none of the four NF-kappaB response elements contained within the enhancer are required for MIE gene expression or HCMV replication in multiple cell types. These data reveal the robustness of the regulatory network controlling the MIEP enhancer.
Collapse
Affiliation(s)
- Montse Gustems
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, C/ Villarroel 170, Barcelona 08036, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Cook CH, Trgovcich J, Zimmerman PD, Zhang Y, Sedmak DD. Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1beta triggers reactivation of latent cytomegalovirus in immunocompetent mice. J Virol 2006; 80:9151-8. [PMID: 16940526 PMCID: PMC1563908 DOI: 10.1128/jvi.00216-06] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously shown that cytomegalovirus (CMV) can reactivate in lungs of nonimmunosuppressed patients during critical illness. Our recent work has shown that polymicrobial bacterial sepsis can trigger reactivation of latent murine CMV (MCMV). We hypothesize that MCMV reactivation following bacterial sepsis may be caused by inflammatory mediators. To test this hypothesis, BALB/c mice latently infected with Smith strain MCMV received sublethal intraperitoneal doses of lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), or saline. Lung tissue homogenates were evaluated for viral reactivation 3 weeks after mediator injection. Because LPS is known to signal via Toll-like receptor 4 (TLR-4) in mice, further studies blocking this signaling mechanism were performed using monoclonal MTS510. Finally, mice were tested with intravenous TNF-alpha to determine whether this would cause reactivation. All mice receiving sublethal intraperitoneal doses of LPS, TNF-alpha, or IL-1beta had pulmonary reactivation of latent MCMV 3 weeks following injection, and LPS caused MCMV reactivation with kinetics similar to those for sepsis. When TLR-4 signaling was blocked, exogenous LPS did not reactivate latent MCMV. Intravenous TNF-alpha administration at near-lethal doses did not reactivate MCMV. Exogenous intraperitoneal LPS, TNF-alpha, and IL-1beta are all capable of reactivating CMV from latency in lungs of previously healthy mice. LPS reactivation of MCMV appears dependent on TLR-4 signaling. Interestingly, intravenous TNF-alpha did not trigger reactivation, suggesting possible mechanistic differences that are discussed. We conclude that inflammatory disease states besides sepsis may be capable of reactivating CMV from latency.
Collapse
Affiliation(s)
- Charles H Cook
- Department of Surgery, The Ohio State University, 410 West Tenth Ave., Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
42
|
Rhee JW, Lee KW, Sohn WJ, Lee Y, Jeon OH, Kwon HJ, Kim DS. Regulation of matrix metalloproteinase-9 gene expression and cell migration by NF-kappa B in response to CpG-oligodeoxynucleotides in RAW 264.7 cells. Mol Immunol 2006; 44:1393-400. [PMID: 16780951 DOI: 10.1016/j.molimm.2006.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/01/2006] [Accepted: 05/02/2006] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted type IV collagenase that plays an important role in the remodeling of the extracellular matrix (ECM) and the migration of normal and tumor cells. We have shown that CpG-ODN-induced migration of RAW 264.7 cell is regulated by MMP-9 activity by using tissue inhibitors of MMP-1 (TIMP-1). The MMP-9 gene expression was transcriptionally induced by CpG-ODN in a time-dependent manner. An MMP-9 promoter-reporter was activated by the stimulation of CpG-ODN and ectopical expression of NF-kappaB transcription factor. Inhibition of NF-kappaB nuclear localization by co-expression of a mutant IkappaBalpha protein blocked the CpG-ODN-induced MMP-9 promoter activation. BMS-345541, an IKK-2 inhibitor also inhibited the expression of MMP-9 gene induced by CpG-ODN. Direct binding of NF-kappaB protein to the promoter region of the MMP-9 was confirmed by chromatin immunoprecipitation using NF-kappaB antibody. These results lead us to a conclusion that NF-kappaB activation is required for MMP-9 gene expression. In summary, our data suggest that NF-kappaB-dependent expression of MMP-9 in response to CpG-ODN plays an important role in the recruitment of immune cells.
Collapse
Affiliation(s)
- Jae Won Rhee
- Department of Biochemistry and Institute of Life Science and Biotechnology, College of Science, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Narbonnet S, Mariamé B. The Epstein-Barr virus oncoprotein LMP1 inhibits the activity of viral or cellular promoters without inducing cytostasis. Virology 2006; 350:381-93. [PMID: 16533516 DOI: 10.1016/j.virol.2006.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/10/2006] [Accepted: 02/08/2006] [Indexed: 11/22/2022]
Abstract
The Latent Membrane Protein 1 of the Epstein-Barr virus is required for human B lymphocyte immortalization and functions as a constitutively activated member of the TNF-receptor family, through recruitment of TRAFs and TRADD molecules on its Carboxy-terminal domain, leading to the activation of NF-kappaB and AP1 transcription factors. The formation of the signaling complexes requires LMP1 oligomerization, a role assigned to the membrane-spanning domains of the molecule. There is, however, increasing evidence that these membrane-spanning domains are not only confined to oligomerization but play a direct role in downregulation of promoter activity and cytostasis. Here, we describe a new inhibitory activity which is effective on viral or cellular promoters (even the endogenous ones), requires only membrane-spanning domains 3-4 or 5-6 and is neither associated with cytostasis nor with apoptosis.
Collapse
Affiliation(s)
- Stéphane Narbonnet
- Centre de Physiopathologie Toulouse Purpan, U563 INSERM, CHU Purpan, BP 3028, 31024 Toulouse Cedex 3, France
| | | |
Collapse
|
44
|
Husebye H, Halaas Ø, Stenmark H, Tunheim G, Sandanger Ø, Bogen B, Brech A, Latz E, Espevik T. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 2006; 25:683-92. [PMID: 16467847 PMCID: PMC1383569 DOI: 10.1038/sj.emboj.7600991] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 01/13/2006] [Indexed: 12/12/2022] Open
Abstract
Immune responses are initiated when molecules of microbial origin are sensed by the Toll-like receptors (TLRs). We now report the identification of essential molecular components for the trafficking of the lipopolysaccharide (LPS) receptor complex. LPS was endocytosed by a receptor-mediated mechanism dependent on dynamin and clathrin and colocalized with TLR4 on early/sorting endosomes. TLR4 was ubiquitinated and associated with the ubiquitin-binding endosomal sorting protein hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs. Inhibition of endocytosis and endosomal sorting increased LPS signaling. Finally, the LPS receptor complex was sorted to late endosomes/lysosomes for degradation and loading of associated antigens onto HLA class II molecules for presentation to CD4+ T cells. Our results show that endosomal trafficking of the LPS receptor complex is essential for signal termination and LPS-associated antigen presentation, thus controlling both innate and adaptive immunity through TLR4.
Collapse
Affiliation(s)
- Harald Husebye
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Halaas
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Harald Stenmark
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biochemistry, The Norwegian Radiumhospital, Oslo, Norway
| | - Gro Tunheim
- Institute of Immunology, Rikshospitalet University Hospital, Oslo, Norway
| | - Øystein Sandanger
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne Bogen
- Institute of Immunology, Rikshospitalet University Hospital, Oslo, Norway
| | - Andreas Brech
- Department of Biochemistry, The Norwegian Radiumhospital, Oslo, Norway
| | - Eicke Latz
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terje Espevik
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway. Tel.: +47 7359 8668; Fax: +47 7359 8801; E-mail:
| |
Collapse
|
45
|
Lee KW, Jung J, Lee Y, Kim TY, Choi SY, Park J, Kim DS, Kwon HJ. Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol Immunol 2006; 43:2107-18. [PMID: 16442622 DOI: 10.1016/j.molimm.2005.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/05/2005] [Accepted: 12/05/2005] [Indexed: 12/16/2022]
Abstract
Bacterial DNA has a variety of immunostimulatory activities, such as the activation of B cells and natural killer cells, the induction of interferon-gamma, and the induction of Th1-type immune responses. In contrast, mammalian DNA does not have these activities. To evaluate the genomic DNA sequences of Mycobacterium bovis that have immunostimulatory activity, we used a computer to analyze the M. bovis genome and we designed a series of synthetic, 20 base length, phosphodiester backbone oligodeoxynucleotides (ODNs) that contain CpG motifs (MB-ODNs). We screened the immunostimulatory MB-ODNs that induce the activation of the NF-kappaB-responsive IL-8 promoter in RAW 264.7 cells. Our experimental analyses demonstrate that the potent CpG DNA in the M. bovis genome has functional effects as a Th1-responsive adjuvant, and that it activates the transcription factor NF-kappaB. Moreover, we found that both the CpG motifs and the context of the sequence surrounding the CpG motif are important for the immunostimulatory activities. The identification of the potent immunostimulatory DNA sequence in a native bacterial genome may give insights to the optimal sequence for well-controlled immune responses.
Collapse
Affiliation(s)
- Keun-Wook Lee
- Research Institute for Bioscience & Biotechnology, College of Medicine, Hallym University, Gangwon 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Guimaraes-Sternberg C, Meerson A, Shaked I, Soreq H. MicroRNA modulation of megakaryoblast fate involves cholinergic signaling. Leuk Res 2005; 30:583-95. [PMID: 16249029 DOI: 10.1016/j.leukres.2005.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/04/2005] [Accepted: 09/08/2005] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are abundant small regulatory RNAs with multiple roles in cell fate determination. The processes regulating cellular miRNA levels are still unclear and experimental oligonucleotide tools to readily mimic their effects are not yet available. Here, we report that thapsigargin-induced intracellular Ca(++) release suppressed pre-miR-181a levels in human promegakaryotic Meg-01 cells, induced differentiation-associated nuclear endoreduplication and caspase-3 activation and replaced the acetylcholinesterase 3' splice variant AChE-S with AChE-R. AChE, PKC and PKA inhibitors all attenuated the pre-miR-181a decline and the induced differentiation. AChmiON, a synthetic 23-mer 2'-oxymethylated oligonucleotide mimicking the miR-181a sequence, blocked the calcium-induced differentiation while elevating cellular pre-miR-181a levels and inducing DNA fragmentation and cell death. Moreover, when added to RW 264.7 macrophages, AChmiON at 100 nM induced nitric oxide production with efficiency close to that of bacterial endotoxin, demonstrating physiologically relevant activities also in blood-born monocytes/macrophages. The stress-induced modulation of hematopoietic miR-181a levels through AChE, PKC and PKA cascade(s) suggests using miRNA mimics for diverting the fate of hematopoietic tumor cells towards differentiation and/or apoptosis.
Collapse
Affiliation(s)
- Cinthya Guimaraes-Sternberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Edmond Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
47
|
Sohn WJ, Lee KW, Choi SY, Chung E, Lee Y, Kim TY, Lee SK, Choe YK, Lee JH, Kim DS, Kwon HJ. CpG-oligodeoxynucleotide protects immune cells from gamma-irradiation-induced cell death. Mol Immunol 2005; 43:1163-71. [PMID: 16122803 DOI: 10.1016/j.molimm.2005.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Indexed: 01/01/2023]
Abstract
Synthetic oligodeoxynucleotides (CpG-ODNs) and bacterial DNA containing unmethylated CpG dinucleotides in the context of particular base sequences (CpG motifs) are known to inhibit anti-IgM-induced growth arrest and apoptosis of WHEI 231 B lymphocytes, and spontaneous apoptosis of mature spleen B cells in a sequence-specific fashion of the CpG-ODN. Here we report that CpG-ODN protects from the cell death induced by gamma-irradiation of primary mouse spleen cells as well as mouse RAW 264.7 macrophage cells and human RPMI 8226 B cells. Experimental results showed that CpG-ODN promotes growth of the cells, and protects the cells from gamma-irradiation-induced cell death accompanying Bcl-xS/L and Bcl-2 upregulation. Furthermore, survival of macrophages was enhanced when splenocytes were pretreated with CpG-ODN. Our results suggest the potential application of CpG-ODNs for more efficient cancer radiotherapy by enhancing survival of normal immune cells after radiation damage.
Collapse
Affiliation(s)
- Wern-Joo Sohn
- Department of Microbiology, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim SJ, Varghese TK, Zhang Z, Zhao LC, Thomas G, Hummel M, Abecassis M. Renal ischemia/reperfusion injury activates the enhancer domain of the human cytomegalovirus major immediate early promoter. Am J Transplant 2005; 5:1606-13. [PMID: 15943618 DOI: 10.1111/j.1600-6143.2005.00912.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reactivation of latent human cytomegalovirus is of significant concern in immunocompromised transplant patients and is likely to occur through transcriptional activation of immediate early (ie) gene expression through mechanisms that are not well understood. TNF-mediated activation of NF-kappaB has been proposed to be one pathway leading to transcriptional activation of CMV ie gene expression. Using transgenic mice carrying a lacZ reporter gene under the control of the HCMV major ie promoter/enhancer (MIEP-lacZ mice) and MIEP-lacZ mice deficient in TNF receptor 1 and TNF receptor 2 (MIEP-lac Z TNFR DKO mice), we demonstrate that renal ischemia/reperfusion (I/R) injury activates the HCMV enhancer independently of TNF. Induction of MIEP-lacZ expression was preceded by TNFR-independent formation of reactive oxygen species (ROS), weak and transient activation of NF-kappaB and strong and sustained activation of AP-1. Our studies show that, in addition to TNF-mediated signaling, TNF-independent signaling induced by I/R injury can contribute to the activation of the HCMV enhancer. This likely occurs through ROS-mediated activation of AP-1. Targeting MAP kinase signaling pathways as well as NF-kappaB may be of therapeutic value in patients with CMV infection.
Collapse
Affiliation(s)
- Soo Jung Kim
- Department of Surgery, Transplant Lab, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Sohn WJ, Lee KW, Lee Y, Han JH, Choe YK, Kim DS, Kwon HJ. Pyrrolidine dithiocarbamate-induced macrophage inflammatory protein-2 gene expression is NF-kappaB-independent but c-Jun-dependent in macrophage cell line RAW 264.7. Mol Immunol 2005; 42:1165-75. [PMID: 15829306 DOI: 10.1016/j.molimm.2004.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Pyrrolidine dithiocarbamate (PDTC) is a stable compound that acts as antioxidant or prooxidant, and is widely used to inhibit the activation of NF-kappaB. PDTC was also reported to activate NF-kappaB depending on its dose and metal ions in PC12 cells. In this work, we demonstrated a working mechanism of PDTC and its effects on the proinflammatory cytokine gene expression in a mouse macrophage cell line, RAW 264.7. PDTC alone induced NF-kappaB-independent MIP-2 promoter activation that can be assessed by transient transfection and confocal image analysis. The involvement of AP-1 transcription factor was noticed by promoter deletion/site-specific mutation analysis and electrophoretic mobility shift assay (EMSA). Among three different mitogen-activated protein kinase (MAPK) pathways tested, only the stress-activated protein kinase (SAPK)/Jun N-terminal kinase (JNK) pathway was significantly activated in RAW 264.7 cells after the stimulation with PDTC. Using pathway-specific inhibitors, we found that the SAPK/JNK pathway is clearly associated with PDTC-induced MIP-2 gene expression. Our experimental results indicate that PDTC-induced proinflammatory cytokine expressions are mediated by SAPK/JNK pathway, which activates AP-1.
Collapse
Affiliation(s)
- Wern-Joo Sohn
- Institute of Life Science and Biotechnology, College of Science, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, Tanaka J. Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 2005; 16:135-46. [PMID: 15889536 DOI: 10.1177/095632020501600206] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of geldanamycin (GA), a specific inhibitor of heat shock protein 90 (Hsp90), on gene expression and replication of human cytomegalovirus (HCMV) was studied in human embryonic lung (HEL) fibroblasts. Kinetic analysis indicated that GA delayed synthesis of major immediate early (MIE), early and late viral proteins, and blocked a second tier of the synthesis of these proteins that occurred in untreated cells after 48 h post-infection (pi). Moreover, when HCMV-infected HEL cells were maintained with medium containing 40 nM GA for 6 days, with medium changes at 2-day intervals, the virus yield was reduced to an undetectable level. On a molecular level, the cellular kinase Akt and the transcription factor NFkappaB were activated in HCMV-infected cells within 30 min pi. NFkappaB was shown to be essential for MIE gene expression. However, in GA-treated cells, activation of both Akt and NFkappaB was greatly inhibited. Because LY294002, an inhibitor of cellular phosphatidylinositol 3-kinase (PI3-K), also prohibited HCMV-mediated activation of Akt and NFkappaB and synthesis of the MIE proteins, PI3-K signalling was necessary for expressing the MIE genes. These results suggest that the inhibitory effect of GA on HCMV replication is primarily caused by the disruption of the PI3-K signalling pathway, leading to the activation of NFkappaB, which plays a crucial role in expression of the critical MIE genes.
Collapse
Affiliation(s)
- Walid Basha
- Department of Laboratory Science, School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|