1
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
2
|
Adedibu PA, Noskova YA, Yugay YA, Ovsiannikova DM, Vasyutkina EA, Kudinova OD, Grigorchuk VP, Shkryl YN, Tekutyeva LA, Balabanova LA. Expression and Characterization of Alkaline Phosphatase from Cobetia amphilecti KMM 296 in Transiently Transformed Tobacco Leaves and Transgenic Calli. PLANTS (BASEL, SWITZERLAND) 2024; 13:3570. [PMID: 39771268 PMCID: PMC11679904 DOI: 10.3390/plants13243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders. This study aims to produce recombinant ALP from the marine bacterium Cobetia amphilecti KMM 296 (CmAP) in transformed leaves and calli of Nicotiana tabacum and to elucidate the influence of the plant host on its physical and chemical properties. N. tabacum has proven to be versatile and is extensively used as a heterologous host in molecular farming. The alp gene encoding for CmAP was cloned into the binary vectors pEff and pHREAC and transformed into N. tabacum leaves through agroinfiltration and the leaf disc method for callus induction using Agrobacterium tumefaciens strain EHA105. Transformed plants were screened for recombinant CmAP (rCmAP) production by its enzymatic activity and protein electrophoresis, corresponding to 55 kDa of mature CmAP. A higher rCmAP activity (14.6 U/mg) was detected in a homogenate of leaves bearing the pEFF-CmAP construct, which was further purified 150-fold using metal affinity, followed by anion exchange chromatography. Enzymatic activity and stability were assessed at different temperatures (15-75 °C) and exposure times (≤1 h), with different buffers, pHs, divalent metal ions, and salt concentrations. The results show that rCmAP is relatively thermostable, retaining its activity at 15-45 °C for up to 1 h. Its activity is highest in Tris HCl (pH 9.0-11.0) at 35 °C for 40 min. rCmAP shows higher salt-tolerance and divalent metal-dependence than obtained in Escherichia coli. This can be further explored for cost-effective and massively scalable production of LPS-free CmAP for possible biomedical and agricultural applications.
Collapse
Affiliation(s)
- Peter Adeolu Adedibu
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Yulia Aleksandrovna Noskova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Yulia Anatolievna Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Daria Mikhailovna Ovsiannikova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Elena Anatolievna Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Olesya Dmitrievna Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Valeria Petrovna Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Yury Nikolaevich Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Liudmila Aleksandrovna Tekutyeva
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Larissa Anatolievna Balabanova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| |
Collapse
|
3
|
Wagner N, Musiychuk K, Shoji Y, Tottey S, Streatfield SJ, Fischer R, Yusibov V. Basic leucine zipper transcription activators - tools to improve production and quality of human erythropoietin in Nicotiana benthamiana. Biotechnol J 2024; 19:e2300715. [PMID: 38797727 DOI: 10.1002/biot.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Human erythropoietin (hEPO) is one of the most in-demand biopharmaceuticals, however, its production is challenging. When produced in a plant expression system, hEPO results in extensive plant tissue damage and low expression. It is demonstrated that the modulation of the plant protein synthesis machinery enhances hEPO production. Co-expression of basic leucine zipper transcription factors with hEPO prevents plant tissue damage, boosts expression, and increases hEPO solubility. bZIP28 co-expression up-regulates genes associated with the unfolded protein response, indicating that the plant tissue damage caused by hEPO expression is due to the native protein folding machinery being overwhelmed and that this can be overcome by co-expressing bZIP28.
Collapse
Affiliation(s)
- Nazgul Wagner
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Konstantin Musiychuk
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Yoko Shoji
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Stephen Tottey
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Stephen J Streatfield
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Vidadi Yusibov
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| |
Collapse
|
4
|
Bamogo P, Tiendrébéogo F, Brugidou C, Sérémé D, Djigma FW, Simporé J, Lacombe S. Rice yellow mottle virus is a suitable amplicon vector for an efficient production of an anti-leishmianiasis vaccine in Nicotiana benthamiana leaves. BMC Biotechnol 2024; 24:21. [PMID: 38658899 PMCID: PMC11044499 DOI: 10.1186/s12896-024-00851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Since the 2000's, plants have been used as bioreactors for the transient production of molecules of interest such as vaccines. To improve protein yield, "amplicon" vectors based on plant viruses are used. These viral constructs, engineered to carry the gene of interest replicate strongly once introduced into the plant cell, allowing significant accumulation of the protein. Here, we evaluated the suitability of the monocot-infecting RNA virus Rice yellow mottle virus (RYMV) as an amplicon vector. The promastigote surface antigen (PSA) of the protozoan Leishmania was considered as a protein of interest due to its vaccine properties against canine leishmaniasis. RESULTS Since P1 (ORF1) and CP (ORF3) proteins are not strictly necessary for viral replication, ORF1 was deleted and the PSA gene was substituted to ORF3 in the RYMV-based vector. We evaluated its expression in the best described plant bioreactor system, Nicotiana benthamiana which, unlike rice, allows transient transformation by Agrobacterium. Despite not being its natural host, we demonstrated a low level of RYMV-based vector replication in N. benthamiana leaves. Under optimized ratio, we showed that the P19 silencing suppressor in combination with the missing viral CP ORF significantly enhanced RYMV amplicon replication in N. benthamiana. Under these optimized CP/P19 conditions, we showed that the RYMV amplicon replicated autonomously in the infiltrated N. benthamiana cells, but was unable to move out of the infiltrated zones. Finally, we showed that when the RYMV amplicon was expressed under the optimized conditions we set up, it allowed enhanced PSA protein accumulation in N. benthamiana compared to the PSA coding sequence driven by the 35S promoter without amplicon background. CONCLUSION This work demonstrates that a non-dicot-infecting virus can be used as an amplicon vector for the efficient production of proteins of interest such as PSA in N. benthamiana leaves.
Collapse
Affiliation(s)
- Pka Bamogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso.
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso.
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - F Tiendrébéogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - C Brugidou
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - D Sérémé
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - F W Djigma
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - J Simporé
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - S Lacombe
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Phan TV, Oo Y, Rodboon T, Nguyen TT, Sariya L, Chaisuparat R, Phoolcharoen W, Yodmuang S, Ferreira JN. Plant molecular farming-derived epidermal growth factor revolutionizes hydrogels for improving glandular epithelial organoid biofabrication. SLAS Technol 2023; 28:278-291. [PMID: 36966988 DOI: 10.1016/j.slast.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Epidermal growth factor (EGF) is a known signaling cue essential towards the development and organoid biofabrication particularly for exocrine glands. This study developed an in vitro EGF delivery platform with Nicotiana benthamiana plant-produced EGF (P-EGF) encapsulated on hyaluronic acid/alginate (HA/Alg) hydrogel to improve the effectiveness of glandular organoid biofabrication in short-term culture systems. Primary submandibular gland epithelial cells were treated with 5 - 20 ng/mL of P-EGF and commercially available bacteria-derived EGF (B-EGF). Cell proliferation and metabolic activity were measured by MTT and luciferase-based ATP assays. P-EGF and B-EGF 5 - 20 ng/mL promoted glandular epithelial cell proliferation during 6 culture days on a comparable fashion. Organoid forming efficiency and cellular viability, ATP-dependent activity and expansion were evaluated using two EGF delivery systems, HA/Alg-based encapsulation and media supplementation. Phosphate buffered saline (PBS) was used as a control vehicle. Epithelial organoids fabricated from PBS-, B-EGF-, and P-EGF-encapsulated hydrogels were characterized genotypically, phenotypically and by functional assays. P-EGF-encapsulated hydrogel enhanced organoid formation efficiency and cellular viability and metabolism relative to P-EGF supplementation. At culture day 3, epithelial organoids developed from P-EGF-encapsulated HA/Alg platform contained functional cell clusters expressing specific glandular epithelial markers such as exocrine pro-acinar (AQP5, NKCC1, CHRM1, CHRM3, Mist1), ductal (K18, Krt19), and myoepithelial (α-SMA, Acta2), and possessed a high mitotic activity (38-62% Ki67 cells) with a large epithelial progenitor population (∼70% K14 cells). The P-EGF encapsulation strikingly upregulated the expression of pro-acinar AQP5 cells through culture time when compared to others (B-EGF, PBS). Thus, the utilization of Nicotiana benthamiana in molecular farming can produce EGF biologicals amenable to encapsulation in HA/Alg-based in vitro platforms, which can effectively and promptly induce the biofabrication of exocrine gland organoids.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Truc T Nguyen
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Kallam K, Moreno‐Giménez E, Mateos‐Fernández R, Tansley C, Gianoglio S, Orzaez D, Patron N. Tunable control of insect pheromone biosynthesis in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1440-1453. [PMID: 37032497 PMCID: PMC10281601 DOI: 10.1111/pbi.14048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Previous work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests. To date, most studies have relied on strong constitutive expression of all pathway genes. However, work in microbes has demonstrated that yields can be improved by controlling and balancing gene expression. Synthetic regulatory elements that provide control over the timing and levels of gene expression are therefore useful for maximizing yields from heterologous biosynthetic pathways. In this study, we demonstrate the use of pathway engineering and synthetic genetic elements for controlling the timing and levels of production of Lepidopteran sex pheromones in Nicotiana benthamiana. We demonstrate that copper can be used as a low-cost molecule for tightly regulated inducible expression. Further, we show how construct architecture influences relative gene expression and, consequently, product yields in multigene constructs. We compare a number of synthetic orthogonal regulatory elements and demonstrate maximal yields from constructs in which expression is mediated by dCas9-based synthetic transcriptional activators. The approaches demonstrated here provide new insights into the heterologous reconstruction of metabolic pathways in plants.
Collapse
Affiliation(s)
- Kalyani Kallam
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | | | | | - Connor Tansley
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Nicola Patron
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| |
Collapse
|
7
|
Lee J, Lee SK, Park JS, Lee KR. Plant-made pharmaceuticals: exploring studies for the production of recombinant protein in plants and assessing challenges ahead. PLANT BIOTECHNOLOGY REPORTS 2023; 17:53-65. [PMID: 36820221 PMCID: PMC9931573 DOI: 10.1007/s11816-023-00821-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The production of pharmaceutical compounds in plants is attracting increasing attention, as plant-based systems can be less expensive, safer, and more scalable than mammalian, yeast, bacterial, and insect cell expression systems. Here, we review the history and current status of plant-made pharmaceuticals. Producing pharmaceuticals in plants requires pairing the appropriate plant species with suitable transformation technology. Pharmaceuticals have been produced in tobacco, cereals, legumes, fruits, and vegetables via nuclear transformation, chloroplast transformation, transient expression, and transformation of suspension cell cultures. Despite this wide range of species and methods used, most such efforts have involved the nuclear transformation of tobacco. Tobacco readily generates large amounts of biomass, easily accepts foreign genes, and is amenable to stable gene expression via nuclear transformation. Although vaccines, antibodies, and therapeutic proteins have been produced in plants, such pharmaceuticals are not readily utilized by humans due to differences in glycosylation, and few such compounds have been approved due to a lack of clinical data. In addition, achieving an adequate immune response using plant-made pharmaceuticals can be difficult due to low rates of production compared to other expression systems. Various technologies have recently been developed to help overcome these limitations; however, plant systems are expected to increasingly become widely used expression systems for recombinant protein production.
Collapse
Affiliation(s)
- Juho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Seon-Kyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Jong-Sug Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| |
Collapse
|
8
|
Phetphoung T, Malla A, Rattanapisit K, Pisuttinusart N, Damrongyot N, Joyjamras K, Chanvorachote P, Phakham T, Wongtangprasert T, Strasser R, Chaotham C, Phoolcharoen W. Expression of plant-produced anti-PD-L1 antibody with anoikis sensitizing activity in human lung cancer cells via., suppression on epithelial-mesenchymal transition. PLoS One 2022; 17:e0274737. [PMID: 36367857 PMCID: PMC9651560 DOI: 10.1371/journal.pone.0274737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint antibodies in cancer treatment are receptor-ligand pairs that modulate cancer immunity. PD-1/PD-L1 pathway has emerged as one of the major targets in cancer immunotherapy. Atezolizumab, the first anti-PD-L1 antibody approved for the treatment of metastatic urothelial, non-small cell lung, small cell lung and triple-negative breast cancers, is produced in Chinese Hamster Ovary (CHO) cells with several limitations i.e., high-production costs, low-capacity yields, and contamination risks. Due to the rapid scalability and low production costs, the transient expression in Nicotiana benthamiana leaves was investigated by co-infiltration of Agrobacterium tumefaciens GV3101 cultures harboring the nucleic acid sequences encoding for Atezolizumab heavy chain and light chain in this study. The transient expression of Atezolizumab in transformed N. benthamiana accumulated up to 86.76 μg/g fresh leaf weight after 6 days of agroinfiltration (OD 600 nm: 0.4) with 1:1 ratio of heavy chain to light chain. The structural and functional characteristics of plant-produced Atezolizumab was compared with commercially available Tecentriq® from CHO cells with similar binding efficacies to PD-L1 receptor. The direct anti-cancer effect of plant-produced anti-PD-L1 was further performed in human lung metastatic cancer cells H460 cultured under detachment condition, demonstrating the activity of anti-PD-L1-antibody on sensitizing anoikis as well as the suppression on anti-apoptosis proteins (Bcl-2 and Mcl-1) and modulation of epithelial to mesenchymal regulating proteins (E-cadherin, N-cadherin, Snail and Slug). In conclusion, this study manifests plants as an alternative cost-effective platform for the production of functional monoclonal antibodies for use in cancer therapy.
Collapse
Affiliation(s)
- Thareeya Phetphoung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Nuttapat Pisuttinusart
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naruechai Damrongyot
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Keerati Joyjamras
- Pharmacology and Toxicology Unit, Department of Medical Science, Faculty of Science, Rangsit University, Pathum Thani, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tossapon Wongtangprasert
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| |
Collapse
|
9
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
10
|
Improvement of recombinant miraculin production in transgenic tomato by crossbreeding-based genetic background modification. Transgenic Res 2022; 31:567-578. [PMID: 35974134 DOI: 10.1007/s11248-022-00320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
An important optimization step in plant-based recombinant protein production systems is the selection of an appropriate cultivar after a potential host has been determined. Previously, we have shown that transgenic tomatoes of the variety 'Micro-Tom' accumulate incredibly high levels of miraculin (MIR) due to the introduction of MIR gene controlled by a CaMV35S promoter and a heat-shock protein terminator. However, 'Micro-Tom' is unsuitable for commercial production of MIR as it is a dwarf cultivar characterized by small-sized fruit and poor yield. Here, we used the crossbreeding approach to transfer the high MIR accumulation trait of transgenic 'Micro-Tom' tomatoes to 'Natsunokoma' and 'Aichi First', two commercial cultivars producing medium and large fruit sizes, respectively. Fruits of the resultant crossbred lines were larger (~ 95 times), but their miraculin accumulation levels (~ 1,062 μg/g fresh mass) were comparable to the donor cultivar, indicating that the high miraculin accumulation trait was preserved regardless of fruit size or cultivar. Further, the transferred trait resulted in a 3-4 fold increase in overall miraculin production than that of the previously reported line 5B. These findings demonstrate the effectiveness of crossbreeding in improving MIR production in tomatoes and could pave the way for a more efficient production of recombinant proteins in other plants.
Collapse
|
11
|
Szeto TH, Drake PMW, Teh AYH, Falci Finardi N, Clegg AG, Paul MJ, Reljic R, Ma JKC. Production of Recombinant Proteins in Transgenic Tobacco Plants. Methods Mol Biol 2022; 2480:17-48. [PMID: 35616855 DOI: 10.1007/978-1-0716-2241-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nicotiana tabacum (the tobacco plant ) has numerous advantages for molecular farming, including rapid growth, large biomass and the possibility of both cross- and self-fertilization. In addition, genetic transformation and tissue culture protocols for regeneration of transgenic plants are well-established. Here, we describe the production of transgenic tobacco using Agrobacterium tumefaciens and the analysis of recombinant proteins, either in crude plant extracts or after purification, by enzyme-linked immunosorbent assays, sodium dodecyl sulfate polyacrylamide gel electrophoresis with western blotting and surface plasmon resonance.
Collapse
Affiliation(s)
- Tim H Szeto
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Pascal M W Drake
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK.
| | - Audrey Y-H Teh
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Nicole Falci Finardi
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Ashleigh G Clegg
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Mathew J Paul
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Rajko Reljic
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| |
Collapse
|
12
|
Varchenko OI, Kuchuk MV, Parii MF, Symonenko YV. Comparison of gfp Gene Expression Levels after Agrobacterium-Mediated Transient Transformation of Nicotiana rustica L. by Constructs with Different Promoter Sequences. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452720060110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hanittinan O, Oo Y, Chaotham C, Rattanapisit K, Shanmugaraj B, Phoolcharoen W. Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. ACTA ACUST UNITED AC 2020; 28:e00524. [PMID: 32953470 PMCID: PMC7486445 DOI: 10.1016/j.btre.2020.e00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
Human epidermal growth factor (hEGF) has gained clinical importance due to its ability to promote wound healing. Due to its commercial applications and high market demand, recombinant EGF has been produced in several forms. Currently, plant expression system is considered as potential alternative for low-cost recombinant protein production. Hence, this study focused on improving the production of hEGF in plants by effective gene construct design and optimizing the Agrobacterium culture conditions for high protein production. In this context, hEGF gene was cloned into plant geminiviral expression vector pBYR2e and transformed in to N. benthamiana leaves via., agroinfiltration. The recombinant hEGF was purified from the plant crude extracts by single-step affinity chromatography. Furthermore, the plant-produced hEGF has shown to promote cell migration comparable to commercial hEGF in HaCaT cells in vitro. These results indicated the potential of plant expression system for the production of recombinant hEGF for tissue engineering applications.
Collapse
Affiliation(s)
- Oranicha Hanittinan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kaewta Rattanapisit
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Balamurugan Shanmugaraj
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Sedaghati B, Haddad R, Bandehpour M. Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 2020; 47:7169-7177. [PMID: 32642917 DOI: 10.1007/s11033-020-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Today, recombinant human proteins make up a considerable part of FDA-approved biotechnological drugs. The selection of proper expression platform for manufacturing recombinant protein is a vital factor in achieving the optimal yield and quality of a biopharmaceutical in a timely fashion. This experiment was aimed to compare the transient expression level of human serum albumin gene in different tobacco genotype. For this, the Agrobacterium tumefaciens strains LB4404 and GV3101 harboring pBI121-HSA binary vector were infiltered in leaves of three tobacco genotypes, including Nicotiana benthamiana and N. tabacum cv Xanthi and Samsun. The qRT-PCR, SDS-PAGE, western blotting and ELISA analysis were performed to evaluate the expression of HSA gene in transgenic plantlets. Our results illustrated that the expression level of rHSA in tobacco leaves was highly dependent on Agrobacterium strains, plant genotypes and harvesting time. The highest production of recombinant HSA protein was obtained in Samsun leaves infected with A. tumefaciens strain GV3101 after 3 days of infiltration.
Collapse
Affiliation(s)
- Behnam Sedaghati
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO 2. PLANTA 2019; 251:24. [PMID: 31784816 DOI: 10.1007/s00425-019-03301-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts. While solving this issue will undoubtedly involve a multifaceted approach, improving crop productivity will almost certainly provide one piece of the puzzle. The improvement of photosynthetic efficiency has been a long-standing goal of plant biotechnologists as possibly one of the last remaining means of achieving higher yielding crops. However, the vast majority of these studies have not taken into consideration possible outcomes when these plants are grown long-term under the elevated CO2 concentrations (e[CO2]) that will be evident in the not too distant future. Due to the considerable effect that CO2 levels have on the photosynthetic process, these assessments should become commonplace as a means of ensuring that research in this field focuses on the most effective approaches for our future climate scenarios. In this review, we discuss the main biotechnological research strategies that are currently underway with the aim of improving photosynthetic efficiency and biomass production/yields in the context of a future of e[CO2], as well as alternative approaches that may provide further photosynthetic benefits under these conditions.
Collapse
Affiliation(s)
- Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roland Kroebel
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
16
|
Habibi P, Daniell H, Soccol CR, Grossi‐de‐Sa MF. The potential of plant systems to break the HIV-TB link. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1868-1891. [PMID: 30908823 PMCID: PMC6737023 DOI: 10.1111/pbi.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaPRBrazil
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
| | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Catholic University of BrasíliaBrasíliaDFBrazil
- Post Graduation Program in BiotechnologyUniversity PotiguarNatalRNBrazil
| |
Collapse
|
17
|
Scott IM, Zhu H, Schieck K, Follick A, Reynolds LB, Menassa R. Non-target Effects of Hyperthermostable α-Amylase Transgenic Nicotiana tabacum in the Laboratory and the Field. FRONTIERS IN PLANT SCIENCE 2019; 10:878. [PMID: 31354758 PMCID: PMC6630089 DOI: 10.3389/fpls.2019.00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Thermostable α-amylases are important enzymes used in many industrial processes. The expression of recombinant Pyrococcus furiosus α-amylase (PFA) in Nicotiana tabacum has led to the accumulation of high levels of recombinant protein in transgenic plants. The initial steps to registering the transgenic tobacco at a commercial production scale and growing it in the field requires a risk assessment of potential non-target effects. The objective of this study was to assess the effect of feeding on transgenic tobacco with 2 indigenous insect species commonly associated with wild and commercial tobacco involving plants grown and evaluated under laboratory and field conditions. The highest levels of PFA ranged from 1.3 to 2.7 g/kg leaf fresh weight produced in the field-grown cultivars Con Havana and Little Crittenden, respectively. These two cultivars also had the highest nicotine (ranging from 4.6 to 10.9 mg/g), but there was little to no negative effect for either tobacco hornworm Manduca sexta L. or aphid Myzus nicotianae (Blackman). Both laboratory and field trials determined no short term (5 days) decrease in the survival or fecundity of the tobacco aphid after feeding on PFA transgenic tobacco compared to non-transgenic plants. In the field, tobacco hornworm larvae showed no differences in survival, final larval weights or development time to adult stage between transgenic lines of four cultivars and their corresponding wild type controls. Laboratory studies confirmed the field trial results indicating the low risk association of PFA expressed in tobacco leaves with tobacco hornworms and aphids that would feed on the transgenic plants.
Collapse
|
18
|
Shojaei Jeshvaghani F, Amani J, Kazemi R, Karimi Rahjerdi A, Jafari M, Abbasi S, Salmanian AH. Oral immunization with a plant-derived chimeric protein in mice: Toward the development of a multipotent edible vaccine against E. coli O157: H7 and ETEC. Immunobiology 2018; 224:262-269. [PMID: 30579628 DOI: 10.1016/j.imbio.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
The most bacterial cause of infectious diseases associated with diarrhea are enterotoxigenic and enterohemorrhagic Escherichia coli (ETEC and EHEC, respectively). These strains use colonization factors for the attachment to the human intestinal mucosa, followed by enterotoxins production that could induce more host damage. The Heat-labile enterotoxin (LT) and colonization factors (CFs) are momentous factors for the pathogenesis of ETEC. Also, Intimin and Shiga like toxin (STX) are the main pathogenic factors expressed by EHEC. Because of mucosal surfaces are the major entry site for these pathogens, oral immunization with providing the protective secretary IgA antibody (sIgA) responses in the mucosa, could prevent the bacterial adherence to the intestine. In this study oral immunogenicity of a synthetic recombinant protein containing StxB, Intimin, CfaB and LtB (SICL) was investigated. For specific expression in canola seeds, the optimized gene was cloned in to plant expression vector containing the Fatty Acid Elongase (FAE) promoter. The evaluation of the expression level in canola seeds was approximately 0.4% of total soluble protein (TSP). Following to oral immunization of mice, serum IgG and fecal IgA antibody responses induced. Caco-2 cell binding assay with ETEC shows that the sera from immunized mice could neutralize the attachment properties of toxigenic E. coli. The reduction of bacterial shedding after the challenge of immunized mice with E. coli O157:H7 was significant. The sera from immunized mice in the rabbit ileal loop experiment exhibited a significant decrease in the fluid accumulation compared to the control. The results indicate efficacy of the recombinant chimeric protein SICL in transgenic canola seed as an effective immunogen, which elicits both systemic and mucosal immune responses as well as protection against EHEC and ETEC adherence and toxicity.
Collapse
Affiliation(s)
- Fatemeh Shojaei Jeshvaghani
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rouhollah Kazemi
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ahmad Karimi Rahjerdi
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahyat Jafari
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahsanam Abbasi
- Department of Stem Cells and Regenerative Medicine. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
19
|
Modarresi M, Javaran MJ, Shams-bakhsh M, Zeinali S, Behdani M, Mirzaee M. Transient expression of anti-VEFGR2 nanobody in Nicotiana tabacum and N. benthamiana. 3 Biotech 2018; 8:484. [PMID: 30467531 DOI: 10.1007/s13205-018-1500-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
In human, the interaction between vascular endothelial growth factor (VEGF) and its receptor (VEGFR2) is critical for tumor angiogenesis. This is a vital process for cancer tumor growth and metastasis. Blocking VEGF/VEGFR2 conjugation by antibodies inhibits the neovascularization and tumor metastasis. This investigation designed to use a transient expression platform for production of recombinant anti-VEGFR2 nanobody in tobacco plants. At first, anti-VEGFR2-specific nanobody gene was cloned in a Turnip mosaic virus (TuMV)-based vector, and then, it was expressed in Nicotiana benthamiana and Nicotiana tabacum cv. Xanthi transiently. The expression of nanobody in tobacco plants were confirmed by reverse transcription-polymerase chain reaction (RT-PCR), dot blot, enzyme-linked immunosorbent assays (ELISA), and Western blot analysis. It was shown that tobacco plants could accumulate nanobody up to level 0.45% of total soluble protein (8.3 µg/100 mg of fresh leaf). This is the first report of the successful expression of the camelied anti-VEFGR2 nanobody gene in tobacco plants using a plant viral vector. This system provides a fast solution for production of pharmaceutical and commercial proteins such as anti-cancer nanobodies in tobacco plants.
Collapse
|
20
|
Gengenbach BB, Müschen CR, Buyel JF. Expression and purification of human phosphatase and actin regulator 1 (PHACTR1) in plant-based systems. Protein Expr Purif 2018; 151:46-55. [PMID: 29894805 DOI: 10.1016/j.pep.2018.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases are a prevalent cause of morbidity and mortality especially in industrialized countries. The human phosphatase and actin regulator 1 (PHACTR1) may be involved in such diseases, but its precise regulatory function remains unclear due to the large number of potential interaction partners. The same phenomenon makes this protein difficult to express in mammalian cells, but it is also an intrinsically disordered protein that likely aggregates when expressed in bacteria due to the absence of chaperones. We therefore used a design of experiments approach to test the suitability of three plant-based systems for the expression of satisfactory quantities of recombinant PHACTR1, namely transient expression in tobacco (Nicotiana tabacum) BY-2 plant cell packs (PCPs), whole N. benthamiana leaves and BY-2 cell lysate (BYL). The highest yield was achieved using the BYL: up to 120 mg product kg-1 biomass equivalent within 48 h of translation. This was 1.3-fold higher than transient expression in N. benthamiana together with the silencing inhibitor p19, and 6-fold higher than the PCP system. The presence of Triton X-100 in the extraction buffer increased the recovery of PHACTR1 by 2-200-fold depending on the conditions. PHACTR1 was incompatible with biomass blanching and was stable for less than 16 h in raw plant extracts. Purification using a DDK-tag proved inefficient whereas 15% purity was achieved by immobilized metal affinity chromatography.
Collapse
Affiliation(s)
- B B Gengenbach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - C R Müschen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
21
|
Ligaba-Osena A, Jones J, Donkor E, Chandrayan S, Pole F, Wu CH, Vieille C, Adams MWW, Hankoua BB. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase. FRONTIERS IN PLANT SCIENCE 2018; 9:192. [PMID: 29541080 PMCID: PMC5836596 DOI: 10.3389/fpls.2018.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/01/2018] [Indexed: 11/06/2023]
Abstract
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Jenna Jones
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Emmanuel Donkor
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Sanjeev Chandrayan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Farris Pole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Claire Vieille
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Bertrand B. Hankoua
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
22
|
Rosales-Mendoza S, Monreal-Escalante E, González-Ortega O, Hernández M, Fragoso G, Garate T, Sciutto E. Transplastomic plants yield a multicomponent vaccine against cysticercosis. J Biotechnol 2018; 266:124-132. [PMID: 29253519 DOI: 10.1016/j.jbiotec.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022]
Abstract
Low cost vaccines against cysticercosis are needed to fight this parasitosis, especially in developing countries. Herein polycistron arrangements were designed to accomplish the simultaneous expression of multiple protective antigens from Taenia solium in the plant cell as an attractive biofactory and delivery vehicle of vaccines. Transplastomic plants carrying synthetic polycistrons were able to simultaneously express the KETc1, KETc7, KETc12, GK1, and TSOL18/HP6-Tsol antigens; which retained their antigenicity and ability to induce humoral responses in BALB/c mice. These clones may be useful for the production of low-cost cysticercosis vaccine prototypes.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, SLP. San Luis Potosí. México.
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, SLP. San Luis Potosí. México
| | - Omar González-Ortega
- Laboratorio de Bioseparaciones, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, SLP. San Luis Potosí, México
| | - Marisela Hernández
- Dpto. Inmunología. Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México. Circuito Escolar. Ciudad Universitaria, C.p. 04510. Ciudad De México, México
| | - Gladis Fragoso
- Dpto. Inmunología. Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México. Circuito Escolar. Ciudad Universitaria, C.p. 04510. Ciudad De México, México
| | - Teresa Garate
- Dpto. De Parasitología, Centro Nacional De Microbiología, Instituto De Salud Carlos Iii, Majadahonda, 28220, Madrid, Spain
| | - Edda Sciutto
- Dpto. Inmunología. Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México. Circuito Escolar. Ciudad Universitaria, C.p. 04510. Ciudad De México, México.
| |
Collapse
|
23
|
Melnik S, Neumann AC, Karongo R, Dirndorfer S, Stübler M, Ibl V, Niessner R, Knopp D, Stoger E. Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine]microcystin in freshwater. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:27-38. [PMID: 28421663 PMCID: PMC5785354 DOI: 10.1111/pbi.12746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen-binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma-derived counterpart. The plant-derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]-microcystins at concentrations of 100-300 ng/L in freshwater samples collected at different sites. Plant-based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody-based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.
Collapse
Affiliation(s)
- Stanislav Melnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Cathrine Neumann
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Ryan Karongo
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Sebastian Dirndorfer
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Martin Stübler
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
24
|
MacDonald J. Porcine Epidemic Diarrhea Virus. PROSPECTS OF PLANT-BASED VACCINES IN VETERINARY MEDICINE 2018. [PMCID: PMC7120993 DOI: 10.1007/978-3-319-90137-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Porcine epidemic diarrhea virus (PEDv) causes disease and mortality to piglets worldwide. Most vaccines used to combat the disease have been ineffective live attenuated virus vaccines. Research has emerged showing both the spike (S) and membrane (M) proteins of the virus have potential for use as subunit vaccines. This research has been largely undertaken using plants as expression platforms, with some promising candidates having emerged.
Collapse
|
25
|
Gurusamy PD, Schäfer H, Ramamoorthy S, Wink M. Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS One 2017; 12:e0182367. [PMID: 28800637 PMCID: PMC5553650 DOI: 10.1371/journal.pone.0182367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Hairy root culture is a potential alternative to conventional mammalian cell culture to produce recombinant proteins due to its ease in protein recovery, low costs and absence of potentially human pathogenic contaminants. The current study focussed to develop a new platform of a hairy root culture system from Nicotiana tabacum for the production of recombinant human EPO (rhEPO), which is regularly produced in mammalian cells. The human EPO construct was amplified with C-terminal hexahistidine tag from a cDNA of Caco-2 cells. Two versions of rhEPO clones, with or without the N-terminal calreticulin (cal) fusion sequence, were produced by cloning the amplified construct into gateway binary vector pK7WG2D. Following Agrobacterium rhizogenes mediated transformation of tobacco explants; integration and expression of constructs in hairy roots were confirmed by several tests at DNA, RNA and protein levels. The amount of intracellular rhEPO from hairy root cultures with cal signal peptide was measured up to 66.75 ng g-1 of total soluble protein. The presence of the ER signal peptide (cal) was essential for the secretion of rhEPO into the spent medium; no protein was detected from hairy root cultures without ER signal peptide. The addition of polyvinylpyrrolidone enhanced the stabilization of secreted rhEPO leading to a 5.6 fold increase to a maximum concentration of 185.48 pg rhEPOHR g-1 FW hairy root cultures. The rhizo-secreted rhEPO was separated by HPLC and its biological activity was confirmed by testing distinct parameters for proliferation and survival in retinal pigment epithelial cells (ARPE). In addition, the rhEPO was detected to an amount 14.8 ng g-1 of total soluble leaf protein in transgenic T0 generation plantlets regenerated from hairy root cultures with cal signal peptide.
Collapse
Affiliation(s)
- Poornima Devi Gurusamy
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Holger Schäfer
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Michael Wink
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Lee JH, Ko K. Production of Recombinant Anti-Cancer Vaccines in Plants. Biomol Ther (Seoul) 2017; 25:345-353. [PMID: 28554196 PMCID: PMC5499611 DOI: 10.4062/biomolther.2016.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
27
|
Zhu H, Reynolds LB, Menassa R. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates. BMC Biotechnol 2017; 17:53. [PMID: 28629346 PMCID: PMC5477289 DOI: 10.1186/s12896-017-0372-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. RESULTS We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. CONCLUSIONS Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.
Collapse
Affiliation(s)
- Hong Zhu
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
| | - L. Bruce Reynolds
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
- Department of Biology, University of Western Ontario, London, Ontario Canada
| |
Collapse
|
28
|
Nausch H, Hausmann T, Ponndorf D, Hühns M, Hoedtke S, Wolf P, Zeyner A, Broer I. Tobacco as platform for a commercial production of cyanophycin. N Biotechnol 2016; 33:842-851. [PMID: 27501906 DOI: 10.1016/j.nbt.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/22/2023]
Abstract
Cyanophycin (CP) is a proteinogenic polymer that can be substituted for petroleum in the production of plastic compounds and can also serve as a source of valuable dietary supplements. However, because there is no economically feasible system for large-scale industrial production, its application is limited. In order to develop a low-input system, CP-synthesis was established in the two commercial Nicotiana tabacum (N. tabacum) cultivars 'Badischer Geudertheimer' (BG) and 'Virginia Golta' (VG), by introducing the cyanophycin-synthetase gene from Thermosynecchococcus elongatus BP-1 (CphATe) either via crossbreeding with transgenic N. tabacum cv. Petit Havana SR1 (PH) T2 individual 51-3-2 or by agrobacterium-mediated transformation. Both in F1 hybrids (max. 9.4% CP/DW) and T0 transformants (max. 8.8% CP/DW), a substantial increase in CP content was achieved in leaf tissue, compared to a maximum of 1.7% CP/DW in PH T0 transformants of Hühns et al. (2008). In BG CP, yields were homogenous and there was no substantial difference in the variation of the CP content between primary transformants (T0), clones of T0 individuals, T1 siblings and F1 siblings of hybrids. Therefore, BG meets the requirements for establishing a master seed bank for continuous and reliable CP-production. In addition, it was shown that the polymer is not only stable in planta but also during silage, which simplifies storage of the harvest prior to isolation of CP.
Collapse
Affiliation(s)
- Henrik Nausch
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany.
| | - Tina Hausmann
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Daniel Ponndorf
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Maja Hühns
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Sandra Hoedtke
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Nutrition Physiology and Animal Nutrition, Justus-von-Liebig-Weg 6b, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Petra Wolf
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Nutrition Physiology and Animal Nutrition, Justus-von-Liebig-Weg 6b, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Annette Zeyner
- Martin-Luther-University Halle-Wittenberg, Institute for Agricultural and Nutritional Sciences, Chair of Animal Nutrition, Theodor-Lieser-Str. 11, 06120, Halle (Saale), Germany
| | - Inge Broer
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| |
Collapse
|
29
|
Kim DS, Song I, Kim J, Kim DS, Ko K. Plant Recycling for Molecular Biofarming to Produce Recombinant Anti-Cancer mAb. FRONTIERS IN PLANT SCIENCE 2016; 7:1037. [PMID: 27486465 PMCID: PMC4947592 DOI: 10.3389/fpls.2016.01037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/01/2016] [Indexed: 05/16/2023]
Abstract
The expression and glycosylation patterns of anti-colorectal cancer therapeutic monoclonal antibody (mAb) CO17-1A recognizing the tumor-associated antigen GA733-2, expressed in human colorectal carcinoma cells, were observed in the leaf and stem tissues of primary (0 cycle), secondary (1 cycle), and tertiary (2 cycle) growths of seedlings obtained from the stem cut of T2 plants. The bottom portion of the stem of T2 seedlings was cut to induce the 1 cycle shoot growth, which was again cut to induce the 2 cycle shoot growth. In the 1 and 2 cycle growths, the periods for floral organ formation (35 days) was shorter than that (100 days) for the 0 cycle growth. The genes of heavy and light chains of mAb CO17-1A existed at the top, middle, and basal portions of the leaves and stem obtained from the 0, 1, and 2 cycle plants. The protein levels in the leaves and stem tissues from the 1 and 2 cycles were similar to those in the tissues from the 0 cycle. The glycosylation level and pattern in the leaf and stem did not alter dramatically over the different cycles. Surface plasmon resonance (SPR) confirmed that mAbs CO17-1A obtained from leaf and stem tissues of the 0, 1, and 2 cycles had similar binding affinity for the GA733-2 antigen. These data suggest that the shoot growth by bottom stem cutting is applicable to speed up the growth of plant biomass expressing anti-colorectal cancer mAb without variation of expression, glycosylation, and functionality.
Collapse
Affiliation(s)
- Deuk-Su Kim
- Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Ilchan Song
- Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Jinhee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development AdministrationWanju-gun, South Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development AdministrationWanju-gun, South Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| |
Collapse
|
30
|
Hanson MR, Lin MT, Carmo-Silva AE, Parry MA. Towards engineering carboxysomes into C3 plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:38-50. [PMID: 26867858 PMCID: PMC4970904 DOI: 10.1111/tpj.13139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Photosynthesis in C3 plants is limited by features of the carbon-fixing enzyme Rubisco, which exhibits a low turnover rate and can react with O2 instead of CO2 , leading to photorespiration. In cyanobacteria, bacterial microcompartments, known as carboxysomes, improve the efficiency of photosynthesis by concentrating CO2 near the enzyme Rubisco. Cyanobacterial Rubisco enzymes are faster than those of C3 plants, though they have lower specificity toward CO2 than the land plant enzyme. Replacement of land plant Rubisco by faster bacterial variants with lower CO2 specificity will improve photosynthesis only if a microcompartment capable of concentrating CO2 can also be installed into the chloroplast. We review current information about cyanobacterial microcompartments and carbon-concentrating mechanisms, plant transformation strategies, replacement of Rubisco in a model C3 plant with cyanobacterial Rubisco and progress toward synthesizing a carboxysome in chloroplasts.
Collapse
Affiliation(s)
- Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | | | - Martin A.J. Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
31
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Duwadi K, Chen L, Menassa R, Dhaubhadel S. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production. PLoS One 2015; 10:e0130556. [PMID: 26148064 PMCID: PMC4493103 DOI: 10.1371/journal.pone.0130556] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022] Open
Abstract
Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL)-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP) in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10) were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER), suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.
Collapse
Affiliation(s)
- Kishor Duwadi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Ling Chen
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western Ontario, London, ON, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, ON, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| |
Collapse
|
33
|
Avesani L, Merlin M, Gecchele E, Capaldi S, Brozzetti A, Falorni A, Pezzotti M. Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Transgenic Res 2014; 23:281-91. [PMID: 24142387 PMCID: PMC3951962 DOI: 10.1007/s11248-013-9749-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/31/2013] [Indexed: 01/13/2023]
Abstract
The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major diabetes autoantigen that can be used for the diagnosis and (more recently) the treatment of autoimmune diabetes. We previously reported that a catalytically-inactive version (hGAD65mut) accumulated to tenfold higher levels than its active counterpart in transgenic tobacco plants, providing a safe and less expensive source of the protein compared to mammalian production platforms. Here we show that hGAD65mut is also produced at higher levels than hGAD65 by transient expression in Nicotiana benthamiana (using either the pK7WG2 or MagnICON vectors), in insect cells using baculovirus vectors, and in bacterial cells using an inducible-expression system, although the latter system is unsuitable because hGAD65mut accumulates within inclusion bodies. The most productive of these platforms was the MagnICON system, which achieved yields of 78.8 μg/g fresh leaf weight (FLW) but this was substantially less than the best-performing elite transgenic tobacco plants, which reached 114.3 μg/g FLW after six generations of self-crossing. The transgenic system was found to be the most productive and cost-effective although the breeding process took 3 years to complete. The MagnICON system was less productive overall, but generated large amounts of protein in a few days. Both plant-based systems were therefore advantageous over the baculovirus-based production platform in our hands.
Collapse
Affiliation(s)
- Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Gecchele
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alberto Falorni
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
34
|
Hegedus DD, Baron M, Labbe N, Coutu C, Lydiate D, Lui H, Rozwadowski K. A strategy for targeting recombinant proteins to protein storage vacuoles by fusion to Brassica napus napin in napin-depleted seeds. Protein Expr Purif 2014; 95:162-8. [PMID: 24394588 DOI: 10.1016/j.pep.2013.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/29/2022]
Abstract
Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous proteins under certain conditions. Arabidopsis thaliana was used to develop a strategy to deplete seeds of an endogenous SSP and then replenish them with the same protein fused to a heterologous protein. In several other studies, competition with endogenous SSP for space and metabolic resources was shown to affect the accumulation of recombinant proteins in seeds. We used RNAi to reduce the expression of the five napin genes and deplete the seeds of this SSP. Targeting a recombinant protein to a vacuole or structure within the seed where it can be protected from cytosolic proteases can also promote its accumulation. To achieve this, a synthetic Brassica napus napin gene (Bn napin) was designed that was both impervious to the A. thaliana napin (At napin) RNAi construct and permitted fusion to a heterologous protein, in this case green fluorescent protein (GFP). GFP was placed in several strategic locations within Bn napin with consideration to maintaining structure, processing sites and possible vacuolar targeting signals. In transgenic A. thaliana plants, GFP was strongly localized to the seed protein storage vacuole in all Bn napin fusion configurations tested, but not when expressed alone. This SSP depletion-replenishment strategy outlined here would be applicable to expression of recombinant proteins in industrial crops that generally have large repertoires of endogenous SSP genes.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada.
| | - Marcus Baron
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Natalie Labbe
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Derek Lydiate
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Helen Lui
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Kevin Rozwadowski
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| |
Collapse
|
35
|
Jez J, Castilho A, Grass J, Vorauer-Uhl K, Sterovsky T, Altmann F, Steinkellner H. Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J 2013; 8:371-82. [PMID: 23325672 PMCID: PMC3601435 DOI: 10.1002/biot.201200363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/10/2012] [Accepted: 01/11/2013] [Indexed: 12/21/2022]
Abstract
Recombinant human erythropoietin (rhEPO), a glycohormone, is one of the leading biopharmaceutical products. The production of rhEPO is currently restricted to mammalian cell expression systems because of rhEPO's highly complex glycosylation pattern, which is a major determinant for drug-efficacy. Here we evaluate the ability of plants to produce different glycoforms of rhEPO. cDNA constructs were delivered to Nicotiana benthamiana (N. benthamiana) and transiently expressed by a viral based expression system. Expression levels up to 85 mg rhEPO/kg fresh leaf material were achieved. Moreover, co-expression of rhEPO with six mammalian genes required for in planta protein sialylation resulted in the synthesis of rhEPO decorated mainly with bisialylated N-glycans (NaNa), the most abundant glycoform of circulating hEPO in patients with anemia. A newly established peptide tag (ELDKWA) fused to hEPO was particularly well-suited for purification of the recombinant hormone based on immunoaffinity. Subsequent lectin chromatography allowed enrichment of exclusively sialylated rhEPO. All plant-derived glycoforms exhibited high biological activity as determined by a cell-based receptor-binding assay. The generation of rhEPO carrying largely homogeneous glycosylation profiles (GnGnXF, GnGn, and NaNa) will facilitate further investigation of functionalities with potential implications for medical applications.
Collapse
Affiliation(s)
- Jakub Jez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Gutiérrez SP, Saberianfar R, Kohalmi SE, Menassa R. Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins. BMC Biotechnol 2013; 13:40. [PMID: 23663656 PMCID: PMC3659085 DOI: 10.1186/1472-6750-13-40] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/06/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum. RESULTS The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants. CONCLUSION The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags increase the accumulation levels of the recombinant protein and induce the formation of PBs regardless of the cultivar used. However, a specific level of recombinant protein accumulation needs to be reached for PBs to form.
Collapse
Affiliation(s)
- Sonia P Gutiérrez
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Reza Saberianfar
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
37
|
Kolotilin I, Kaldis A, Pereira EO, Laberge S, Menassa R. Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:65. [PMID: 23642171 PMCID: PMC3655837 DOI: 10.1186/1754-6834-6-65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/29/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chloroplast transformation in tobacco has been used extensively to produce recombinant proteins and enzymes. Chloroplast expression cassettes can be designed with different configurations of the cis-acting elements that govern foreign gene expression. With the aim to optimize production of recombinant hemicellulases in transplastomic tobacco, we developed a set of cassettes that incorporate elements known to facilitate protein expression in chloroplasts and examined expression and accumulation of a bacterial xylanase XynA. Biomass production is another important factor in achieving sustainable and high-volume production of cellulolytic enzymes. Therefore, we compared productivity of two tobacco cultivars - a low-alkaloid and a high-biomass - as transplastomic expression platforms. RESULTS Four different cassettes expressing XynA produced various mutant phenotypes of the transplastomic plants, affected their growth rate and resulted in different accumulation levels of the XynA enzyme. The most productive cassette was identified and used further to express XynA and two additional fungal xylanases, Xyn10A and Xyn11B, in a high-biomass tobacco cultivar. The high biomass cultivar allowed for a 60% increase in XynA production per plant. Accumulation of the fungal enzymes reached more than 10-fold higher levels than the bacterial enzyme, constituting up to 6% of the total soluble protein in the leaf tissue. Use of a well-characterized translational enhancer with the selected expression cassette revealed inconsistent effects on accumulation of the recombinant xylanases. Additionally, differences in the enzymatic activity of crude plant extracts measured in leaves of different age suggest presence of a specific xylanase inhibitor in the green leaf tissue. CONCLUSION Our results demonstrate the pivotal importance of the expression cassette design and appropriate tobacco cultivar for high-level transplastomic production of recombinant proteins.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Eridan Orlando Pereira
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Serge Laberge
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
38
|
Recovery of bovine lysozyme from transgenic sugarcane stalks: extraction, membrane filtration, and purification. Bioprocess Biosyst Eng 2013; 36:1407-16. [PMID: 23329238 DOI: 10.1007/s00449-012-0878-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
Abstract
Increased industrial use of sugarcane (Saccharum spp. hybrid) for food and bioenergy has led to considerable improvements in its genetic transformation, which allowed the development of not only pest- and herbicide-resistant lines but also lines expressing high-value bioproducts and biopolymers. However, the economic benefits of using inexpensive transgenic plant systems for the production of industrial proteins could be offset by high downstream processing costs. In this work, transgenic sugarcane expressing recombinant bovine lysozyme (BvLz) was used to evaluate the feasibility of extraction and fractionation of recombinant proteins expressed in sugarcane stalks. Three pH levels (4.5, 6.0 and 7.5) and three salt concentrations (0, 50, and 150 mM NaCl) were tested to determine BvLz and total protein extractability. Two extraction conditions were selected to prepare BvLz extracts for further processing by cross-flow filtration, a suitable method for concentration and conditioning of extracts for direct applications or prior to chromatography. Partial removal of native proteins was achieved using a 100 kDa membrane but 20-30 % of the extracted BvLz was lost. Concentration of clarified extracts using a 3 kDa membrane resulted in twofold purification and 65 % recovery of BvLz. Loading of concentrated sugarcane extract on hydrophobic interaction chromatography (HIC) resulted in 50 % BvLz purity and 69 % recovery of BvLz.
Collapse
|
39
|
Garabagi F, Gilbert E, Loos A, McLean MD, Hall JC. Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1118-28. [PMID: 22984968 DOI: 10.1111/j.1467-7652.2012.00742.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 05/18/2023]
Abstract
To study how the P19 suppressor of gene-silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co-expressed with P19 in an RNAi-based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102-106) containing different 5' and 3' UTRs, designated as vector sets 102-106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5'UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15-fold (to about 2.3% of TSP) when co-expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co-expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I-64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19-induced responses.
Collapse
Affiliation(s)
- Freydoun Garabagi
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
40
|
Nausch H, Mikschofsky H, Koslowski R, Meyer U, Broer I, Huckauf J. High-level transient expression of ER-targeted human interleukin 6 in Nicotiana benthamiana. PLoS One 2012; 7:e48938. [PMID: 23152824 PMCID: PMC3495959 DOI: 10.1371/journal.pone.0048938] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Tobacco plants can be used to express recombinant proteins that cannot be produced in a soluble and active form using traditional platforms such as Escherichia coli. We therefore expressed the human glycoprotein interleukin 6 (IL6) in two commercial tobacco cultivars (Nicotiana tabacum cv. Virginia and cv. Geudertheimer) as well as the model host N. benthamiana to compare different transformation strategies (stable vs. transient expression) and subcellular targeting (apoplast, endoplasmic reticulum (ER) and vacuole). In T(0) transgenic plants, the highest expression levels were achieved by ER targeting but the overall yields of IL6 were still low in the leaves (0.005% TSP in the ER, 0.0008% in the vacuole and 0.0005% in the apoplast). The apoplast variant accumulated to similar levels in leaves and seeds, whereas the ER-targeted variant was 1.2-fold more abundant in seeds and the vacuolar variant was 6-fold more abundant in seeds. The yields improved in subsequent generations, with the best-performing T(2) plants producing the ER-targeted IL6 at 0.14% TSP in both leaves and seeds. Transient expression of ER-targeted IL6 in leaves using the MagnICON system resulted in yields of up to 7% TSP in N. benthamiana, but only 1% in N. tabacum cv. Virginia and 0.5% in cv. Geudertheimer. Although the commercial tobacco cultivars produced up to threefold more biomass than N. benthamiana, this was not enough to compensate for the lower overall yields. The recombinant IL6 produced by transient and stable expression in plants was biologically active and presented as two alternative bands matching the corresponding native protein.
Collapse
Affiliation(s)
- Henrik Nausch
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | - Heike Mikschofsky
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | | | | | - Inge Broer
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
41
|
Piotrzkowski N, Schillberg S, Rasche S. Tackling heterogeneity: a leaf disc-based assay for the high-throughput screening of transient gene expression in tobacco. PLoS One 2012; 7:e45803. [PMID: 23029251 PMCID: PMC3448687 DOI: 10.1371/journal.pone.0045803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Transient Agrobacterium-mediated gene expression assays for Nicotiana tabacum (N. tabacum) are frequently used because they facilitate the comparison of multiple expression constructs regarding their capacity for maximum recombinant protein production. However, for three model proteins, we found that recombinant protein accumulation (rpa) was significantly influenced by leaf age and leaf position effects. The ratio between the highest and lowest amount of protein accumulation (max/min ratio) was found to be as high as 11. Therefore, construct-based impacts on the rpa level that are less than 11-fold will be masked by background noise. To address this problem, we developed a leaf disc-based screening assay and infiltration device that allows the rpa level in a whole tobacco plant to be reliably and reproducibly determined. The prototype of the leaf disc infiltration device allows 14 Agrobacterium-mediated infiltration events to be conducted in parallel. As shown for three model proteins, the average max/min rpa ratio was reduced to 1.4 using this method, which allows for a sensitive comparison of different genetic elements affecting recombinant protein expression.
Collapse
Affiliation(s)
- Natalia Piotrzkowski
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| |
Collapse
|
42
|
Redkiewicz P, Więsyk A, Góra-Sochacka A, Sirko A. Transgenic tobacco plants as production platform for biologically active human interleukin 2 and its fusion with proteinase inhibitors. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:806-14. [PMID: 22564275 DOI: 10.1111/j.1467-7652.2012.00698.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transgenic plants offer a low-cost approach for the production of pharmaceutically important and commercially valuable recombinant proteins. Our studies were focused on the plant-based production of human interleukin 2 (hIL-2) and its fusion with proteinase inhibitors, either SPI2 from Galleria mellonella or CMTI from Cucurbita maxima. Finally, five plant expression cassettes were obtained. Three of them contained the single cDNA encoding CMTI I, SPI2 and hIL-2, respectively, while two of them contained the translational fusion, SPI2::hIL-2 and CMTI::hIL-2. In all cases, the transgenes were controlled by the RbcS1 promoter and terminator and the recombinant proteins were targeted to the endoplasmic reticulum. After tobacco transformation, five groups of transgenic plants were obtained and analysed. The level of recombinant proteins was estimated either by Western blot or by ELISA. The biological activity of plant-produced hIL-2 alone or in a fusion with SPI2 or CMTI was confirmed using the mammalian cells proliferation assay. The activities of proteinase inhibitors were confirmed in proteolysis assay using azocoll as a substrate. The usefulness of using proteinase inhibitor CMTI I in a fusion with hIL-2 as a protective agent against trypsin digestion was demonstrated.
Collapse
Affiliation(s)
- Patrycja Redkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
43
|
Kolotilin I, Kaldis A, Devriendt B, Joensuu J, Cox E, Menassa R. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco. PLoS One 2012; 7:e42405. [PMID: 22879967 PMCID: PMC3411772 DOI: 10.1371/journal.pone.0042405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc), engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc) per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc) protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc) in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc) protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Bert Devriendt
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Jussi Joensuu
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Eric Cox
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
44
|
Møldrup ME, Geu-Flores F, de Vos M, Olsen CE, Sun J, Jander G, Halkier BA. Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth). PLANT BIOTECHNOLOGY JOURNAL 2012; 10:435-42. [PMID: 22256859 DOI: 10.1111/j.1467-7652.2011.00680.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glucosinolates are biologically active natural products characteristic of crucifers, including oilseed rape, cabbage vegetables and the model plant Arabidopsis thaliana. Crucifer-specialist insect herbivores, like the economically important pest Plutella xylostella (diamondback moth), frequently use glucosinolates as oviposition stimuli. This suggests that the transfer of a glucosinolate biosynthetic pathway to a non-crucifer would stimulate oviposition on an otherwise non-attractive plant. Here, we demonstrate that stable genetic transfer of the six-step benzylglucosinolate pathway from A. thaliana to Nicotiana tabacum (tobacco) results in the production of benzylglucosinolate without causing morphological alterations. Benzylglucosinolate-producing tobacco plants were more attractive for oviposition by female P. xylostella moths than wild-type tobacco plants. As newly hatched P. xylostella larvae were unable to survive on tobacco, these results represent a proof-of-concept strategy for rendering non-host plants attractive for oviposition by specialist herbivores with the long-term goal of generating efficient dead-end trap crops for agriculturally important pests.
Collapse
Affiliation(s)
- Morten E Møldrup
- Section for Molecular Plant Biology, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Lai H, He J, Engle M, Diamond MS, Chen Q. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:95-104. [PMID: 21883868 PMCID: PMC3232331 DOI: 10.1111/j.1467-7652.2011.00649.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for the generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties owing to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that are effective, safe, low cost, and amenable to large-scale manufacturing.
Collapse
Affiliation(s)
- Huafang Lai
- The Biodesign Institute and College of Technology and Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Junyun He
- The Biodesign Institute and College of Technology and Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Engle
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis MO 63110, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis MO 63110, USA
| | - Qiang Chen
- The Biodesign Institute and College of Technology and Innovation, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
46
|
Garabagi F, McLean MD, Hall JC. Transient and stable expression of antibodies in Nicotiana species. Methods Mol Biol 2012; 907:389-408. [PMID: 22907365 DOI: 10.1007/978-1-61779-974-7_23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expression and purification of recombinant proteins produced in plants is emerging as an affordable alternative to using more costly mammalian bioreactors since plants are capable of producing mammalian proteins at high concentrations. There are two general methods of expressing foreign proteins in plants, namely, transient expression and stable transgenic expression. Both methods have advantages which serve different purposes. Nicotiana benthamiana is primarily used as plant host for transient expression of foreign proteins. This system is capable of producing high yields of antibody in a relatively short period of time (days); however, intensive upstream processing is required as each plant must be infected with Agrobacterium tumefaciens cells by vacuum infiltration. N. tabacum is often used for production of stable transgenic plants through a procedure that requires longer development time (months). Although antibody yields are smaller compared with the transient method, the advantage of using stable transgenic expression is that very little upstream process management is required once homozygous seed lines are developed. In this chapter, we describe the basic methodologies for expressing antibodies in plants using the transient and transgenic systems.
Collapse
Affiliation(s)
- Freydoun Garabagi
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
47
|
He J, Lai H, Brock C, Chen Q. A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol 2011; 2012:106783. [PMID: 22187532 PMCID: PMC3236498 DOI: 10.1155/2012/106783] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/02/2011] [Indexed: 11/17/2022] Open
Abstract
The threat of West Nile virus (WNV) epidemics necessitates the development of a technology platform that can produce reagents to support detection and diagnosis rapidly and inexpensively. A plant expression system is attractive for protein production due to its low-cost and high-scalability nature and its ability to make appropriate posttranslational modifications. Here, we investigated the feasibility of using plants to produce two WNV detection and diagnostic reagents to address the current cost and scalability issues. We demonstrated that WNV DIII antigen and E16 monoclonal antibody are rapidly produced at high levels in two plant species and are easily purified. Furthermore, they are effective in identifying WNV and in detecting human IgM response to WNV infection. E16 mAb does not cross-react with other flaviviruses, therefore, is valuable for improving diagnostic accuracy. This study provides a proof of principle for using plants as a robust and economical system to produce diagnostic reagents for arboviruses.
Collapse
Affiliation(s)
- Junyun He
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - Huafang Lai
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - Christopher Brock
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
48
|
Soria-Guerra RE, Moreno-Fierros L, Rosales-Mendoza S. Two decades of plant-based candidate vaccines: a review of the chimeric protein approaches. PLANT CELL REPORTS 2011; 30:1367-82. [PMID: 21505834 DOI: 10.1007/s00299-011-1065-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/20/2011] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
Genetic engineering revolutionized the concept of traditional vaccines since subunit vaccines became reality. Additionally, over the past two decades plant-derived antigens have been studied as potential vaccines with several advantages, including low cost and convenient administration. More specifically, genetic fusions allowed the expression of fusion proteins carrying two or more components with the aim to elicit immune responses against different targets, including antigens from distinct pathogens or strains. This review aims to provide an update in the field of the production of plant-based vaccine, focusing on those approaches based on the production of chimeric proteins comprising antigens from human pathogens, emphasizing the case of cholera toxin/E. coli enterotoxin fusions, chimeric viruses like particles approaches as well as the possible use of adjuvant-producing plants as expression hosts. Challenges for the near future in this field are also discussed.
Collapse
Affiliation(s)
- Ruth Elena Soria-Guerra
- Laboratorio de biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosi, SLP, Mexico
| | | | | |
Collapse
|