1
|
Van Zandt M, Pittenger C. Sexual dimorphism in histamine regulation of striatal dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.595049. [PMID: 38826392 PMCID: PMC11142073 DOI: 10.1101/2024.05.20.595049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dopamine modulation of the basal ganglia differs in males and females and is implicated in numerous neuropsychiatric conditions, including some, like Tourette Syndrome (TS) and attention deficit hyperactivity disorder (ADHD), that have marked sex differences in prevalence. Genetic studies in TS and subsequent work in animals suggest that a loss of histamine may contribute to dysregulation of dopamine. Motivated by this, we characterized the modulation of striatal dopamine by histamine, using microdialysis, targeted pharmacology, and shRNA knockdown of histamine receptors. Intracerebroventricular (ICV) histamine reduced striatal dopamine in male mice, replicating previous work. In contrast, and unexpectedly, ICV histamine increased striatal dopamine in females. ICV or targeted infusion of agonists revealed that the effect in males depends on H2R receptors in the substantia nigra pars compacta (SNc). Knockdown of H2R in SNc GABAergic neurons abrogated the effect, identifying these cells as a key locus of histamine's regulation of dopamine in males. In females, however, H2R had no discernible role; instead, H3R agonists in the striatum increased striatal dopamine. Strikingly, the effect of histamine on dopamine in females was modulated by the estrous cycle, appearing only in estrus/proestrus, when estrogen levels are high. These findings confirm the regulation of striatal dopamine by histamine but identify marked sexual dimorphism in and estrous modulation of this effect. These findings may shed light on the mechanistic underpinnings of sex differences in the striatal circuitry, and in several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA, 06519
- Department of Psychology, Yale School of Arts and Sciences, New Haven, USA, 06519
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, USA, 06519
- Wu-Tsai Institute, Yale University, New Haven, CT, USA, 06519
| |
Collapse
|
2
|
Kowalski TF, Wang R, Tischfield MA. Genetic advances and translational phenotypes in rodent models for Tourette disorder. Curr Opin Neurobiol 2025; 90:102967. [PMID: 39793296 DOI: 10.1016/j.conb.2024.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Tourette disorder (TD) is a neurodevelopmental condition affecting approximately 0.3%-1% of children and adolescents. It is defined by motor and vocal tics but encompasses wide ranging phenotypes due to its complex genetic origins, involving hundreds of risk genes across various signaling pathways. Traditional animal models of TD have focused on circuit manipulation or neuron ablation strategies to investigate its underlying causes and associated brain changes. However, the recent identification of high-confidence risk genes has opened new possibilities for creating models that express the exact genetic variants associated with TD. This review discusses early attempts to model TD in rodents and highlights advancements in next-generation models with true construct validity through the expression of orthologous human mutations in high-confidence risk genes. Additionally, we examine the translational potential of integrating cognitive and sensorimotor approaches to evaluate TD-related phenotypes in rodents, including changes to reinforcement learning, habitual behavior, and incentive motivation.
Collapse
Affiliation(s)
- Tess F Kowalski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Riley Wang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Max A Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
3
|
Babu H, Rachel G, Neogi U, Palaniappan AN, Narayanan A, Ponnuraja C, Sundaraj V, Viswanathan VK, Kumar CPG, Tripathy SP, Hanna LE. Accelerated cognitive aging in chronically infected HIV-1 positive individuals despite effective long-term antiretroviral therapy. Metab Brain Dis 2024; 40:32. [PMID: 39570517 DOI: 10.1007/s11011-024-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024]
Abstract
People living with HIV (PLHIV) are known to be at a higher risk of developing an array of aging-related diseases despite well-adhered combined antiretroviral therapy (cART). The present study aimed to investigate the impact of chronic HIV infection on neurocognitive function in virally suppressed PLHIV. We enrolled HIV-positive individuals randomly from an ART Center in Chennai, South India. A similar number of HIV-uninfected individuals matched for age and gender with the HIV-infected individuals served as controls. All individuals provided a detailed clinical history and underwent neuropsychological assessment using the International HIV Dementia Scale (IHDS). Plasma proteome analysis was performed using the Proximity extension assay (PEA) with the Olink® neuroexploratory panel, and untargeted metabolomics was performed using Ultra-High-Performance Liquid Chromatography/Mass Spectrometry/Mass Spectrometry. Despite a median duration of 9 years on first-line cART and suppressed viremia, a significant proportion of PLHIV registered significant levels of asymptomatic neurocognitive impairment, with 71% of these individuals scoring ≤ 10 in the IHDS test. We also observed significant alterations in a number of proteins and metabolites that are known to be associated with neuroinflammation, neurodegeneration, cognitive impairment, and gastrointestinal cancers, in the PLHIV group. Thus the study provides clinical as well as laboratory evidence to substantiate the presence of asymptomatic neurocognitive impairment in a large proportion of PLHIV, despite adequate cART and undetectable viremia, thereby supporting the view that HIV infection potentiates the risk for accelerated and accentuated neurological aging. This observation highlights the need to devise and implement appropriate intervention strategies for better long term management of HIV-infected persons.
Collapse
Affiliation(s)
- Hemalatha Babu
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Gladys Rachel
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
- Laboratory Sciences, ICMR-National Institute of Epidemiology, Chennai, 600077, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152, Huddinge, Sweden
| | | | - Aswathy Narayanan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152, Huddinge, Sweden
| | - Chinnaiyan Ponnuraja
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Vijila Sundaraj
- Government Hospital of Thoracic Medicine, Tambaram Sanatorium, Chennai, 600047, India
| | | | - C P Girish Kumar
- Laboratory Sciences, ICMR-National Institute of Epidemiology, Chennai, 600077, India
| | - Srikanth P Tripathy
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Luke Elizabeth Hanna
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India.
| |
Collapse
|
4
|
Rahman SN, Imhaouran F, Leurs R, Christopoulos A, Valant C, Langmead CJ. Ligand-directed biased agonism at human histamine H 3 receptor isoforms across Gα i/o- and β-arrestin2-mediated pathways. Biochem Pharmacol 2024; 228:115988. [PMID: 38159685 DOI: 10.1016/j.bcp.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The histamine H3 receptor (H3R) is a neurotransmitter receptor that is primarily found in the brain, where it controls the release and synthesis of histamine, as well as the release of other neurotransmitters (e.g. dopamine, serotonin). Notably, 20 H3R isoforms are differentially expressed in the human brain as a consequence of alternative gene splicing. The hH3R-445, -415, -365 and -329 isoforms contain the prototypical GPCR (7TM) structure, yet exhibit deletions in the third intracellular loop, a structural domain that is pivotal for G protein-coupling, signaling and regulation. To date, the physiological relevance underlying the individual and combinatorial function of hH3R isoforms remains poorly understood. Nevertheless, given their significant implication in physiological processes (e.g. cognition, homeostasis) and neurological disorders (e.g. Alzheimer's and Parkinson's disease, schizophrenia), widespread targeting of hH3R isoforms by drugs may lead to on-target side effects in brain regions that are unaffected by disease. To this end, isoform- and/or pathway-selective targeting of hH3R isoforms by biased agonists could be of therapeutic relevance for the development of region- and disease-specific drugs. Hence, we have evaluated ligand biased signaling at the hH3R-445, -415, -365 and -329 isoforms across various Gαi/o-mediated (i.e. [35S]GTPγS accumulation, cAMP inhibition, pERK1/2 activation, pAKT T308/S473 activation) and non Gαi/o-mediated (i.e. β-arrestin2 recruitment) endpoints that are relevant to neurological diseases. Our findings indicate that H3R agonists display significantly altered patterns in their degree of ligand bias, in a pathway- and isoform-dependent manner, underlining the significance to investigate GPCRs with multiple isoforms to improve development of selective drugs. SUBJECT CATEGORY: Neuropharmacology.
Collapse
Affiliation(s)
- Sabrina N Rahman
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia; Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Faissal Imhaouran
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Arthur Christopoulos
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia
| | - Céline Valant
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia.
| | - Christopher J Langmead
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia.
| |
Collapse
|
5
|
Gao M, Ooms JF, Leurs R, Vischer HF. Histamine H 3 Receptor Isoforms: Insights from Alternative Splicing to Functional Complexity. Biomolecules 2024; 14:761. [PMID: 39062475 PMCID: PMC11274711 DOI: 10.3390/biom14070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Henry F. Vischer
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.G.); (J.F.O.); (R.L.)
| |
Collapse
|
6
|
Michalska B, Dzięgielewski M, Godyń J, Werner T, Bajda M, Karcz T, Szczepańska K, Stark H, Więckowska A, Walczyński K, Staszewski M. 4-Oxypiperidine Ethers as Multiple Targeting Ligands at Histamine H 3 Receptors and Cholinesterases. ACS Chem Neurosci 2024; 15:1206-1218. [PMID: 38440987 PMCID: PMC10958501 DOI: 10.1021/acschemneuro.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Collapse
Affiliation(s)
- Beata Michalska
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Dzięgielewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tobias Werner
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Walczyński
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Staszewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Arumuham A, Nour MM, Veronese M, Beck K, Onwordi EC, Lythgoe DJ, Jauhar S, Rabiner EA, Howes OD. Histamine-3 Receptor Availability and Glutamate Levels in the Brain: A PET-1H-MRS Study of Patients With Schizophrenia and Healthy Controls. Int J Neuropsychopharmacol 2024; 27:pyae011. [PMID: 38373256 PMCID: PMC10946236 DOI: 10.1093/ijnp/pyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The histamine-3 receptor (H3R) may have a role in cognitive processes through its action as a presynaptic heteroreceptor inhibiting the release of glutamate in the brain. To explore this, we examined anterior cingulate cortex (ACC) and striatum H3R availability in patients with schizophrenia and characterized their relationships with glutamate levels in corresponding brain regions. METHODS We employed a cross-sectional study, recruiting 12 patients with schizophrenia and 12 healthy volunteers. Participants underwent positron emission tomography using the H3R-specific radio ligand [11C]MK-8278, followed by proton magnetic resonance spectroscopy to measure glutamate levels, recorded as Glu and Glx. Based on existing literature, the ACC and striatum were selected as regions of interest. RESULTS We found significant inverse relationships between tracer uptake and Glu (r = -0.66, P = .02) and Glx (r = -0.62, P = .04) levels in the ACC of patients, which were absent in healthy volunteers (Glu: r = -0.19, P = .56, Glx: r = 0.10, P = .75). We also found a significant difference in striatal (F1,20 = 6.00, P = .02) and ACC (F1,19 = 4.75, P = .04) Glx levels between groups. CONCLUSIONS These results provide evidence of a regionally specific relationship between H3Rs and glutamate levels, which builds on existing preclinical literature. Our findings add to a growing literature indicating H3Rs may be a promising treatment target in schizophrenia, particularly for cognitive impairment, which has been associated with altered glutamate signaling.
Collapse
Affiliation(s)
- Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sameer Jauhar
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- H Lundbeck A/s, St Albans, UK
| |
Collapse
|
8
|
Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. Histaminergic regulation of food intake. Front Endocrinol (Lausanne) 2023; 14:1202089. [PMID: 37448468 PMCID: PMC10338010 DOI: 10.3389/fendo.2023.1202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.
Collapse
Affiliation(s)
- Axelle Khouma
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Moein Minbashi Moeini
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Medicine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
10
|
Rahman SN, McNaught-Flores DA, Huppelschoten Y, da Costa Pereira D, Christopoulos A, Leurs R, Langmead CJ. Structural and Molecular Determinants for Isoform Bias at Human Histamine H 3 Receptor Isoforms. ACS Chem Neurosci 2023; 14:645-656. [PMID: 36702158 DOI: 10.1021/acschemneuro.2c00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human histamine H3 receptor (hH3R) is predominantly expressed in the CNS, where it regulates the synthesis and release of histamine and other neurotransmitters. Due to its neuromodulatory role, the hH3R has been associated with various CNS disorders, including Alzheimer's and Parkinson's disease. Markedly, the hH3R gene undergoes extensive splicing, resulting in 20 isoforms, of which 7TM isoforms exhibit variations in the intracellular loop 3 (IL3) and/or C-terminal tail. Particularly, hH3R isoforms that display variations in IL3 (e.g., hH3R-365) are shown to differentially signal via Gαi-dependent pathways upon binding of biased agonists (e.g., immepip, proxifan, imetit). Nevertheless, the mechanisms underlying biased agonism at hH3R isoforms remain unknown. Using a structure-function relationship study with a broad range of H3R agonists, we thereby explored determinants underlying isoform bias at hH3R isoforms that exhibit variations in IL3 (i.e., hH3R-445, -415, -365, and -329) in a Gαi-dependent pathway (cAMP inhibition). Hence, we systematically characterized hH3R isoforms on isoform bias by comparing various ligand properties (i.e., structural and molecular) to the degree of isoform bias. Importantly, our study provides novel insights into the structural and molecular basis of receptor isoform bias, highlighting the importance to study GPCRs with multiple isoforms to better tailor drugs.
Collapse
Affiliation(s)
- Sabrina N Rahman
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands.,Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, 3052VIC, Australia
| | - Daniel A McNaught-Flores
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Yara Huppelschoten
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Arthur Christopoulos
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, 3052VIC, Australia
| | - Rob Leurs
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZAmsterdam, The Netherlands
| | - Christopher J Langmead
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, 3052VIC, Australia
| |
Collapse
|
11
|
Honkisz-Orzechowska E, Popiołek-Barczyk K, Linart Z, Filipek-Gorzała J, Rudnicka A, Siwek A, Werner T, Stark H, Chwastek J, Starowicz K, Kieć-Kononowicz K, Łażewska D. Anti-inflammatory effects of new human histamine H 3 receptor ligands with flavonoid structure on BV-2 neuroinflammation. Inflamm Res 2023; 72:181-194. [PMID: 36370200 PMCID: PMC9925557 DOI: 10.1007/s00011-022-01658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 μM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.
Collapse
Affiliation(s)
- Ewelina Honkisz-Orzechowska
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688, Kraków, Poland.
| | - Katarzyna Popiołek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Zuzanna Linart
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Jadwiga Filipek-Gorzała
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Rudnicka
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Pharmacobiology, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tobias Werner
- grid.411327.20000 0001 2176 9917Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- grid.411327.20000 0001 2176 9917Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jakub Chwastek
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Starowicz
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
12
|
Ghazanfari N, van Waarde A, Doorduin J, Sijbesma JWA, Kominia M, Koelewijn M, Attia K, Vállez-García D, Willemsen ATM, Heeres A, Dierckx RAJO, Visser TJ, de Vries EFJ, Elsinga PH. Binding of the Dual-Action Anti-Parkinsonian Drug AG-0029 to Dopamine D 2 and Histamine H 3 Receptors: A PET Study in Healthy Rats. Mol Pharm 2022; 19:2287-2298. [PMID: 35732005 PMCID: PMC9257755 DOI: 10.1021/acs.molpharmaceut.2c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Introduction: Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction and a diverse range of nonmotor symptoms. Functional relationships between the dopaminergic and histaminergic systems suggest that dual-action pharmaceuticals like AG-0029 (D2/D3 agonist/H3 antagonist) could ameliorate both the motor and cognitive symptoms of PD. The current study aimed to demonstrate the interaction of AG-0029 with its intended targets in the mammalian brain using positron emission tomography (PET). Methods: Healthy male Wistar rats were scanned with a small-animal PET camera, using either the dopamine D2/D3 receptor ligand [11C]raclopride or the histamine H3 receptor ligand [11C]GSK-189254, before and after treatment with an intravenous, acute, single dose of AG-0029. Dynamic [11C]raclopride PET data (60 min duration) were analyzed using the simplified reference tissue model 2 (SRTM2) with cerebellum as reference tissue and the nondisplaceable binding potential as the outcome parameter. Data from dynamic [11C]GSK-189254 scans (60 min duration) with arterial blood sampling were analyzed using Logan graphical analysis with the volume of distribution (VT) as the outcome parameter. Receptor occupancy was estimated using a Lassen plot. Results: Dopamine D2/3 receptor occupancies in the striatum were 22.6 ± 18.0 and 84.0 ± 3.5% (mean ± SD) after administration of 0.1 and 1 mg/kg AG-0029, respectively. In several brain regions, the VT values of [11C]GSK-189254 were significantly reduced after pretreatment of rats with 1 or 10 mg/kg AG-0029. The H3 receptor occupancies were 11.9 ± 8.5 and 40.3 ± 11.3% for the 1 and 10 mg/kg doses of AG-0029, respectively. Conclusions: Target engagement of AG-0029 as an agonist at dopamine D2/D3 receptors and an antagonist at histamine H3 receptors could be demonstrated in the rat brain with [11C]raclopride and [11C]GSK-189254 PET, respectively. The measured occupancy values reflect the previously reported high (subnanomolar) affinity of AG-0029 to D2/D3 and moderate (submicromolar) affinity to H3 receptors.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aren van Waarde
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Janine Doorduin
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jürgen W. A. Sijbesma
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Maria Kominia
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | - Khaled Attia
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - David Vállez-García
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Antoon T. M. Willemsen
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - André Heeres
- Symeres
B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ton J. Visser
- Symeres
B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Erik F. J. de Vries
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Philip H. Elsinga
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
13
|
The Novel Pimavanserin Derivative ST-2300 with Histamine H3 Receptor Affinity Shows Reduced 5-HT2A Binding, but Maintains Antidepressant- and Anxiolytic-like Properties in Mice. Biomolecules 2022; 12:biom12050683. [PMID: 35625611 PMCID: PMC9138994 DOI: 10.3390/biom12050683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023] Open
Abstract
The therapy of depression is challenging and still unsatisfactory despite the presence of many antidepressant drugs on the market. Consequently, there is a continuous need to search for new, safer, and more effective antidepressant therapeutics. Previous studies have suggested a potential association of brain histaminergic/serotoninergic signaling and antidepressant- and anxiolytic-like effects. Here, we evaluated the in vivo antidepressant- and anxiolytic-like effects of the newly developed multiple-active ligand ST-2300. ST-2300 was developed from 5-HT2A/2C inverse agonist pimavanserin (PIM, ACP-103) and incorporates a histamine H3 receptor (H3R) antagonist pharmacophore. Despite its parent compound, ST-2300 showed only moderate serotonin 5-HT2A antagonist/inverse agonist affinity (Ki value of 1302 nM), but excellent H3R affinity (Ki value of 14 nM). In vivo effects were examined using forced swim test (FST), tail suspension test (TST), and the open field test (OFT) in C57BL/6 mice. Unlike PIM, ST-2300 significantly increased the anxiolytic-like effects in OFT without altering general motor activity. In FST and TST, ST-2300 was able to reduce immobility time similar to fluoxetine (FLX), a recognized antidepressant drug. Importantly, pretreatment with the CNS-penetrant H3R agonist (R)-α-methylhistamine reversed the antidepressant-like effects of ST-2300 in FST and TST, but failed to reverse the ST-2300-provided anxiolytic effects in OFT. Present findings reveal critical structural features that are useful in a rational multiple-pharmacological approach to target H3R/5-HT2A/5-HT2C.
Collapse
|
14
|
Beheshti S, Wasil Wesal M. Anticonvulsant activity of the histamine H3 receptor inverse agonist pitolisant in an electrical kindling model of epilepsy. Neurosci Lett 2022; 782:136685. [DOI: 10.1016/j.neulet.2022.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
15
|
Xu L, Zhang C, Zhong M, Che F, Guan C, Zheng X, Liu S. Role of histidine decarboxylase gene in the pathogenesis of Tourette syndrome. Brain Behav 2022; 12:e2511. [PMID: 35114079 PMCID: PMC8933785 DOI: 10.1002/brb3.2511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Tourette syndrome (TS) is caused by complex genetic and environmental factors and is characterized by tics. Histidine decarboxylase (HDC) mutation is a rare genetic cause with high penetrance in patients with TS. HDC-knockout (KO) mice have similar behavioral and neurochemical abnormalities as patients with TS. Therefore, HDC-KO mice are considered a valuable TS pathophysiological model as it reveals the underlying pathological mechanisms that cannot be obtained from patients with TS, thus advancing the development of treatment strategies for TS and other tic disorders. This review summarizes some of the recent research hotspots and progress in HDC-KO mice, aiming to deepen our understanding of brain mechanisms relevant to TS. Furthermore, we encapsulate the possible brain nerve cell changes in HDC-KO mice and their potential roles in TS to provide multiple directions for the future research on tics.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Meixiang Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Chengcheng Guan
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shiguo Liu
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Di Ciano P, Hendershot CS, Le Foll B. Therapeutic Potential of Histamine H3 Receptors in Substance Use Disorders. Curr Top Behav Neurosci 2022; 59:169-191. [PMID: 35704272 DOI: 10.1007/7854_2022_372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Substance use disorders are a leading cause of morbidity and mortality, and available pharmacological treatments are of modest efficacy. Histamine is a biogenic amine with four types of receptors. The histamine H3 receptor (H3R) is an autoreceptor and also an heteroreceptor. H3Rs are highly expressed in the basal ganglia, hippocampus and cortex, and regulate a number of neurotransmitters including acetylcholine, norepinephrine, GABA and dopamine. Its function and localization suggest that the H3R may be relevant to a number of psychiatric disorders and could represent a potential therapeutic target for substance use disorders. The purpose of the present review is to summarize preclinical studies investigating the effects of H3R agonists and antagonists on animal models of alcohol, nicotine and psychostimulant use. At present, the effects of H3R antagonists such as thioperamide, pitolisant or ciproxifan have been investigated in drug-induced locomotion, conditioned place preference, drug self-administration, reinstatement, sensitization and drug discrimination. For alcohol and nicotine, the effects of H3R ligands on two-bottle choice and memory tasks, respectively, have also been investigated. The results of these studies are inconsistent. For alcohol, H3R antagonists generally decreased the reward-related properties of ethanol, which suggests that H3R antagonists may be effective as a treatment option for alcohol use disorder. However, the effects of H3R antagonists on nicotine and psychostimulant motivation and reward are less clear. H3R antagonists potentiated the abuse-related properties of nicotine, but only a handful of studies have been conducted. For psychostimulants, evidence is mixed and suggests that more research is needed to establish whether H3R antagonists are a viable therapeutic option. The fact that different drugs of abuse have different brain targets may explain the differential effects of H3R ligands.
Collapse
Affiliation(s)
- Patricia Di Ciano
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Christian S Hendershot
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Abstract
Microglia, a category of glial cells in the central nervous system (CNS), have attracted much attention because of their important role in neuroinflammation. Many translational studies are currently ongoing to discover novel drugs targeting microglia for the treatment of various CNS disorders, such as Alzheimer's disease, Parkinson's disease (PD), and depression. Recent studies have shown that brain histamine, a neurotransmitter essential for the regulation of diverse brain functions, controls glial cells and neurons. In vitro studies using primary microglia and microglial cell lines have reported that histamine receptors are expressed in microglia and control microglial functions, including chemotaxis, migration, cytokine secretion, and autophagy. In vivo studies have demonstrated that histamine-related reagents could ameliorate abnormal symptoms in animal models of human diseases, such as amyotrophic lateral sclerosis (ALS), PD, and brain ischemia. Several human studies have revealed alterations in histamine receptor levels in ALS and PD, emphasizing the importance of the CNS histamine system, including histamine-dependent microglial modulation, as a therapeutic target for these disorders. In this review article, we summarize histamine-related research focusing on microglial functions.
Collapse
Affiliation(s)
- Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
18
|
Neurotransmitter and Neurotransmitter Receptor Expression in the Saccule of the Human Vestibular System. Prog Neurobiol 2022; 212:102238. [DOI: 10.1016/j.pneurobio.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
|
19
|
Wahan SK, Sharma B, Chawla PA. Medicinal perspective of quinazolinone derivatives: Recent developments and
structure–activity
relationship studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Bharti Sharma
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| |
Collapse
|
20
|
Bönisch H, Fink KB, Malinowska B, Molderings GJ, Schlicker E. Serotonin and beyond-a tribute to Manfred Göthert (1939-2019). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1829-1867. [PMID: 33991216 PMCID: PMC8376721 DOI: 10.1007/s00210-021-02083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
Manfred Göthert, who had served Naunyn-Schmiedeberg's Arch Pharmacol as Managing Editor from 1998 to 2005, deceased in June 2019. His scientific oeuvre encompasses more than 20 types of presynaptic receptors, mostly on serotoninergic and noradrenergic neurones. He was the first to identify presynaptic receptors for somatostatin and ACTH and described many presynaptic receptors, known from animal preparations, also in human tissue. In particular, he elucidated the pharmacology of presynaptic 5-HT receptors. A second field of interest included ligand-gated and voltage-dependent channels. The negative allosteric effect of anesthetics at peripheral nACh receptors is relevant for the peripheral clinical effects of these drugs and modified the Meyer-Overton hypothesis. The negative allosteric effect of ethanol at NMDA receptors in human brain tissue occurred at concentrations found in the range of clinical ethanol intoxication. Moreover, the inhibitory effect of gabapentinoids on P/Q Ca2+ channels and the subsequent decrease in AMPA-induced noradrenaline release may contribute to their clinical effect. Another ligand-gated ion channel, the 5-HT3 receptor, attracted the interest of Manfred Göthert from the whole animal via isolated preparations down to the cellular level. He contributed to that molecular study in which 5-HT3 receptor subtypes were disclosed. Finally, he found altered pharmacological properties of 5-HT receptor variants like the Arg219Leu 5-HT1A receptor (which was also shown to be associated with major depression) and the Phe124Cys 5-HT1B receptor (which may be related to sumatriptan-induced vasospasm). Manfred Göthert was a brilliant scientist and his papers have a major impact on today's pharmacology.
Collapse
Affiliation(s)
- H Bönisch
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany
| | - K B Fink
- Merz Pharmaceuticals, Frankfurt/Main, Germany
| | - B Malinowska
- Department of Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - G J Molderings
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Schlicker
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany.
| |
Collapse
|
21
|
Nirogi R, Grandhi VR, Medapati RB, Ganuga N, Benade V, Gandipudi S, Manoharan A, Abraham R, Jayarajan P, Bhyrapuneni G, Shinde A, Badange RK, Subramanian R, Petlu S, Jasti V. Histamine 3 receptor inverse agonist Samelisant (SUVN-G3031): Pharmacological characterization of an investigational agent for the treatment of cognitive disorders. J Psychopharmacol 2021; 35:713-729. [PMID: 33546570 DOI: 10.1177/0269881120986418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Central histamine H3 receptors are a family of presynaptic auto and heteroreceptors. Blockade of the presynaptic H3 receptors activates the downstream pathway(s) involved in the processes of learning and memory, making it a potential therapeutic option for ameliorating cognitive dysfunction. Samelisant (SUVN-G3031) is a potent and selective inverse agonist at the H3 receptors. AIM The aim of this research is to study the effects of Samelisant in diverse animal models of cognitive functions. METHODS The effects of Samelisant on cognitive functions were studied using social recognition, object recognition and Morris water maze tasks. Neurochemical and electrophysiological effects of Samelisant were monitored using microdialysis and electroencephalography techniques. RESULTS Samelisant showed procognitive effects in diverse animal models of cognition at doses ranging from 0.3 to 3 mg/kg, per os (p.o.) (social recognition and object recognition task). Samelisant significantly increased the brain acetylcholine levels in the cortex at doses of 10 and 20 mg/kg, p.o. In the Morris water maze task, combined administration of suboptimal doses of Samelisant and donepezil resulted in procognitive effects significantly larger than the either treatment. Similarly, Samelisant significantly potentiated the effects of donepezil on pharmacodynamic biomarkers of cognition i.e. acetylcholine levels in brain and neuronal theta oscillations. CONCLUSION Samelisant may have potential utility in the treatment of cognitive deficits associated with hypocholinergic state.
Collapse
|
22
|
Discovery of Potential, Dual-Active Histamine H 3 Receptor Ligands with Combined Antioxidant Properties. Molecules 2021; 26:molecules26082300. [PMID: 33921144 PMCID: PMC8071534 DOI: 10.3390/molecules26082300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/13/2023] Open
Abstract
In an attempt to find new dual acting histamine H3 receptor (H3R) ligands, we designed a series of compounds, structurally based on previously described in our group, a highly active and selective human histamine H3 receptor (hH3R) ligand KSK63. As a result, 15 obtained compounds show moderate hH3R affinity, the best being the compound 17 (hH3R Ki = 518 nM). Docking to the histamine H3R homology model revealed two possible binding modes, with key interactions retained in both cases. In an attempt to find possible dual acting ligands, selected compounds were tested for antioxidant properties. Compound 16 (hH3R Ki = 592 nM) showed the strongest antioxidant properties at the concentration of 10−4 mol/L. It significantly reduced the amount of free radicals presenting 50–60% of ascorbic acid activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, as well as showed antioxidative properties in the ferric reducing antioxidant power (FRAP) assay. Despite the yet unknown antioxidation mechanism and moderate hH3R affinity, 16 (QD13) constitutes a starting point for the search of potential dual acting H3R ligands-promising tools for the treatment of neurological disorders associated with increased neuronal oxidative stress.
Collapse
|
23
|
Szczepańska K, Pockes S, Podlewska S, Höring C, Mika K, Latacz G, Bednarski M, Siwek A, Karcz T, Nagl M, Bresinsky M, Mönnich D, Seibel U, Kuder KJ, Kotańska M, Stark H, Elz S, Kieć-Kononowicz K. Structural modifications in the distal, regulatory region of histamine H 3 receptor antagonists leading to the identification of a potent anti-obesity agent. Eur J Med Chem 2021; 213:113041. [PMID: 33261900 DOI: 10.1016/j.ejmech.2020.113041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
A series of 4-pyridylpiperazine derivatives with varying regulatory region substituents proved to be potent histamine H3 receptor (H3R) ligands in the nanomolar concentration range. The most influential modification that affected the affinity toward the H3R appeared by introducing electron-withdrawing moieties into the distal aromatic ring. In order to finally discuss the influence of the characteristic 4-pyridylpiperazine moiety on H3R affinity, two Ciproxifan analogues 2 and 3 with a slight modification in their basic part were obtained. The replacement of piperazine in 3 with piperidine in compound 2, led to slightly reduced affinity towards the H3R (Ki = 3.17 and 7.70 nM, respectively). In fact, 3 showed the highest antagonistic properties among all compounds in this series, hence affirming our previous assumptions, that the 4-pyridylpiperazine moiety is the key element for suitable interaction with the human histamine H3 receptor. While its structural replacement to piperidine is also tolerated for H3R binding, the heteroaromatic 4-pyridyl moiety seems to be essential for proper ligand-receptor interaction. The putative protein-ligand interactions responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at the H3R, as well as drug-like properties of ligands were evaluated using in vitro methods. Moreover, pharmacological in vivo test results of compound 9 (structural analogue of Abbott's A-331440) clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Steffen Pockes
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Kamil Mika
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Marek Bednarski
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Martin Nagl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Merlin Bresinsky
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Ulla Seibel
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Magdalena Kotańska
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland.
| |
Collapse
|
24
|
Szczepańska K, Kuder KJ, Kieć-Kononowicz K. Dual-targeting Approach on Histamine H 3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders. Curr Med Chem 2021; 28:2974-2995. [PMID: 32767910 DOI: 10.2174/0929867327666200806103144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
25
|
Michael NJ, Caron A, Lee CE, Castorena CM, Lee S, Zigman JM, Williams KW, Elmquist JK. Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Mol Metab 2020; 35:100956. [PMID: 32244183 PMCID: PMC7082550 DOI: 10.1016/j.molmet.2020.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Histaminergic neurons of the tuberomammillary nucleus (TMN) are wake-promoting and contribute to the regulation of energy homeostasis. Evidence indicates that melanocortin 4 receptors (MC4R) are expressed within the TMN. However, whether the melanocortin system influences the activity and function of TMN neurons expressing histidine decarboxylase (HDC), the enzyme required for histamine synthesis, remains undefined. METHODS We utilized Hdc-Cre mice in combination with whole-cell patch-clamp electrophysiology and in vivo chemogenetic techniques to determine whether HDC neurons receive metabolically relevant information via the melanocortin system. RESULTS We found that subsets of HDC-expressing neurons were excited by melanotan II (MTII), a non-selective melanocortin receptor agonist. Use of melanocortin receptor selective agonists (THIQ, [D-Trp8]-γ-MSH) and inhibitors of synaptic transmission (TTX, CNQX, AP5) indicated that the effect was mediated specifically by MC4Rs and involved a glutamatergic dependent presynaptic mechanism. MTII enhanced evoked excitatory post-synaptic currents (EPSCs) originating from electrical stimulation of the perifornical lateral hypothalamic area (PeFLH), supportive of melanocortin effects on the glutamatergic PeFLH projection to the TMN. Finally, in vivo chemogenetic inhibition of HDC neurons strikingly enhanced the anorexigenic effects of intracerebroventricular administration of MTII, suggesting that MC4R activation of histaminergic neurons may restrain the anorexigenic effects of melanocortin system activation. CONCLUSIONS These experiments identify a functional interaction between the melanocortin and histaminergic systems and suggest that HDC neurons act naturally to restrain the anorexigenic effect of melanocortin system activation. These findings may have implications for the control of arousal and metabolic homeostasis, especially in the context of obesity, in which both processes are subjected to alterations.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Eating/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Hypothalamic Area, Lateral/cytology
- Hypothalamic Area, Lateral/metabolism
- Locomotion/drug effects
- Male
- Melanocortins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/drug effects
- Neurons/metabolism
- Peptides, Cyclic/pharmacology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Natalie J Michael
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Alexandre Caron
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Charlotte E Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Carlos M Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Syann Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| |
Collapse
|
26
|
Pittenger C. The histidine decarboxylase model of tic pathophysiology: a new focus on the histamine H 3 receptor. Br J Pharmacol 2019; 177:570-579. [PMID: 30714121 DOI: 10.1111/bph.14606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Histamine dysregulation was implicated as a rare cause of Tourette syndrome and other tic disorders a decade ago by a landmark genetic study in a high density family pedigree, which implicated a hypomorphic mutation in the histidine decarboxylase (Hdc) gene as a rare but high penetrance genetic cause. Studies in Hdc knockout (KO) mice have confirmed that this mutation causes tic-relevant behavioural and neurochemical abnormalities that parallel what is seen in patients and thus validate the KO as a potentially informative model of tic pathophysiology. Recent studies have focused on the potential role of the histamine H3 receptor in this model, and by association in tic disorders and related neuropsychiatric conditions. The H3 receptor is up-regulated in the striatum in Hdc KO mice. As the H3 receptor has constitutive activity in the absence of ligand, this receptor up-regulation may have significant cellular effects despite the absence of neurotransmitter histamine in these mice. Activation in vivo of H3 receptors in wild type mice regulates signalling in striatal medium spiny neurons (MSNs) that interacts non-linearly with dopamine receptor signalling. Baseline signalling alterations in MSNs in Hdc KO mice resemble those seen after H3 receptor agonist treatment in wild type animals. H3 receptor agonist treatment in the KOs further accentuates most of these signalling abnormalities and produces behavioural stereotypy. Together, these data suggest the intriguing hypothesis that constitutive signalling by up-regulated H3 receptors explains many of the molecular and behavioural abnormalities seen in these animals. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
|
27
|
Gagic M, Jamroz E, Krizkova S, Milosavljevic V, Kopel P, Adam V. Current Trends in Detection of Histamine in Food and Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:773-783. [PMID: 30585064 DOI: 10.1021/acs.jafc.8b05515] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histamine is a heterocyclic amine formed by decarboxylation of the amino acid l-histidine. It is involved in the local regulation of physiological processes but also can occur exogenously in the food supply. Histamine is toxic at high intakes; therefore, determination of the histamine level in food is an important aspect of food safety. This article will review the current understanding of physiological functions of endogenous and ingested histamine with a particular focus placed on existing and emerging technologies for histamine quantification in food. Methods reported in this article are sequentially arranged and provide a brief overview of analytical methods reported, including those based on nanotechnologies.
Collapse
Affiliation(s)
- Milica Gagic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Ewelina Jamroz
- Institute of Chemistry , University of Agriculture in Cracow , Balicka Street 122 , PL-30-149 Cracow , Poland
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| |
Collapse
|
28
|
Staszewski M, Stasiak A, Karcz T, McNaught Flores D, Fogel WA, Kieć-Kononowicz K, Leurs R, Walczyński K. Design, synthesis, and in vitro and in vivo characterization of 1-{4-[4-(substituted)piperazin-1-yl]butyl}guanidines and their piperidine analogues as histamine H 3 receptor antagonists. MEDCHEMCOMM 2019; 10:234-251. [PMID: 30881612 DOI: 10.1039/c8md00527c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 02/01/2023]
Abstract
Previously, we have shown that 1-substituted-[4-(7-phenoxyheptylpiperazin-1-yl)butyl]guanidine with electron withdrawing substituents at position 4 in the benzyl moiety exhibits high in vitro affinities toward the guinea pig jejunal histamine H3 receptor with pA 2 ranging from 8.49 to 8.43. Here, we present data on the impact of replacement of the piperazine scaffold by the piperidine ring (compounds 2a and 2b), moving benzyl- and 4-trifluoromethylbenzyl substituents from position 1 to 3 of the guanidine moiety (compounds 2c and 2d), which decreases the guanidine basicity (compound 2e), and the influence of individual synthons (compounds 2f-h), present in the lead compounds 1b and 1c, on the antagonistic activity against the histamine H3 receptor. Additionally, the most active compounds 1a, 1c, and 1d were evaluated for their affinity to the rat histamine H3 receptor and the human histamine H3 and H4 receptors. It was also shown that compounds 1a, 1c and 1d, given parenterally for five days, reduced the food intake of rats and did not influence the brain histamine or noradrenaline concentrations; however, significantly reduced serotonin and dopamine concentrations were found in rats administered with compounds 1a and 1c, respectively.
Collapse
Affiliation(s)
- Marek Staszewski
- Department of Synthesis and Technology of Drugs , Medical University of Lodz , ul. Muszyńskiego 1 , 90-151 Łódź , Poland . ; ; Tel: +48 42 6779194 ; Tel: +48 42 6779196
| | - Anna Stasiak
- Department of Hormone Biochemistry , Medical University of Lodz , ul. Żeligowskiego 7/9 , 90-752 Łódź , Poland . ;
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian UniversityMedical College , ul. Medyczna 9 , 30-688 Kraków , Poland . ;
| | - Daniel McNaught Flores
- Amsterdam Institute of Molecules , Medicines & Systems, Division of Medicinal Chemistry , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands . ;
| | - Wiesława Agnieszka Fogel
- Department of Hormone Biochemistry , Medical University of Lodz , ul. Żeligowskiego 7/9 , 90-752 Łódź , Poland . ;
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian UniversityMedical College , ul. Medyczna 9 , 30-688 Kraków , Poland . ;
| | - Rob Leurs
- Amsterdam Institute of Molecules , Medicines & Systems, Division of Medicinal Chemistry , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands . ;
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs , Medical University of Lodz , ul. Muszyńskiego 1 , 90-151 Łódź , Poland . ; ; Tel: +48 42 6779194 ; Tel: +48 42 6779196
| |
Collapse
|
29
|
Rapanelli M, Frick L, Jindachomthong K, Xu J, Ohtsu H, Nairn AC, Pittenger C. Striatal Signaling Regulated by the H3R Histamine Receptor in a Mouse Model of tic Pathophysiology. Neuroscience 2018; 392:172-179. [PMID: 30278251 PMCID: PMC6204318 DOI: 10.1016/j.neuroscience.2018.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Histamine dysregulation has been identified as a rare genetic cause of tic disorders; mice with a knockout of the histidine decarboxylase (Hdc) gene represent a promising model of this pathophysiology. How alterations in the histamine system lead to neuropsychiatric disease, however, remains unclear. The H3R histamine receptor is elevated in the striatum of Hdc KO mice, and H3R agonists, acting in the dorsal striatum, trigger tic-like movements in the model. In wild-type mice, H3R in the dorsal striatum differentially regulates mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) signaling in D1R dopamine receptor-expressing striatonigral medium spiny neurons (dMSNs) and D2R dopamine receptor-expressing striatopallidal MSNs (iMSNs), respectively. We examined the effects of H3R agonist treatment on MSN signaling in the Hdc-KO model. In dMSNs, MAPK signaling was elevated at baseline in the Hdc-KO model, resembling what is seen after H3R activation in WT animals. Similarly, in iMSNs, Akt phosphorylation was reduced at baseline in the KO model, resembling what is seen after H3R activation in WT animals. H3R activation in Hdc-KO mice further enhanced the baseline effect on Akt phosphorylation in iMSNs but attenuated the abnormality in MAPK signaling in dMSNs. These observations support the hypothesis that constitutive activity of upregulated H3R receptors in the Hdc-KO model mediates the observed alterations in baseline MSN signaling; but further activation of H3R, which produces tic-like repetitive movements in the model, has more complex effects.
Collapse
Affiliation(s)
| | - Luciana Frick
- Department of Psychiatry, Yale University, United States
| | | | - Jian Xu
- Department of Psychiatry, Yale University, United States; Child Study Center, Yale University, United States
| | - Hiroshi Ohtsu
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale University, United States; Interdepartental Neuroscience Program, Yale University, United States
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, United States; Child Study Center, Yale University, United States; Interdepartental Neuroscience Program, Yale University, United States.
| |
Collapse
|
30
|
N-Ethylmaleimide differentiates between the M 2- and M 4-autoreceptor-mediated inhibition of acetylcholine release in the mouse brain. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1295-1299. [PMID: 30032313 DOI: 10.1007/s00210-018-1539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Muscarinic M2 and M4 receptors resemble each other in brain distribution, function, and Gi/o protein signaling. However, there is evidence from human recombinant receptors that the M4 receptor also couples to Gs protein whereas such an alternative signaling is of minor importance for its M2 counterpart. The question arises whether this property is shared by native receptors, e.g., the murine hippocampal M2- and the striatal M4-autoreceptor. To this end, the electrically evoked tritium overflow was studied in mouse hippocampal and striatal slices pre-incubated with 3H-choline. 3H-Acetylcholine release in either region was inhibited by the potent muscarinic receptor agonist iperoxo (pIC50 8.6-8.8) in an atropine-sensitive manner (apparent pA2 8.6-8.8); iperoxo was much more potent than oxotremorine (pIC50 6.5-6.6). In hippocampal slices, N-ethylmaleimide (NEM) 32 μM, which inactivates Gi/o proteins, tended to shift the concentration-response curve of iperoxo (pIC50 8.8) to the right (pIC50 8.5) and depressed its maximum from 85 to 69%. In striatal slices, the inhibitory effect of iperoxo declined at concentrations higher than 0.1 μM, yielding a biphasic curve with a pIC50 of 8.6 for the falling part and a pEC50 of 6.4 for the rising part of the curve. The inhibitory effect of iperoxo 10 μM (47%) after NEM pre-treatment was lower by about 35% compared to the maximum (74%) obtained without NEM. In conclusion, our data, which need to be confirmed by pertussis toxin, might suggest that in the striatum, unlike the hippocampus, stimulatory Gs protein comes into play at high concentrations of a muscarinic receptor agonist.
Collapse
|
31
|
Atkin T, Comai S, Gobbi G. Drugs for Insomnia beyond Benzodiazepines: Pharmacology, Clinical Applications, and Discovery. Pharmacol Rev 2018; 70:197-245. [PMID: 29487083 DOI: 10.1124/pr.117.014381] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the GABAergic benzodiazepines (BZDs) and Z-drugs (zolpidem, zopiclone, and zaleplon) are FDA-approved for insomnia disorders with a strong evidence base, they have many side effects, including cognitive impairment, tolerance, rebound insomnia upon discontinuation, car accidents/falls, abuse, and dependence liability. Consequently, the clinical use of off-label drugs and novel drugs that do not target the GABAergic system is increasing. The purpose of this review is to analyze the neurobiological and clinical evidence of pharmacological treatments of insomnia, excluding the BZDs and Z-drugs. We analyzed the melatonergic agonist drugs, agomelatine, prolonged-release melatonin, ramelteon, and tasimelteon; the dual orexin receptor antagonist suvorexant; the modulators of the α2δ subunit of voltage-sensitive calcium channels, gabapentin and pregabalin; the H1 antagonist, low-dose doxepin; and the histamine and serotonin receptor antagonists, amitriptyline, mirtazapine, trazodone, olanzapine, and quetiapine. The pharmacology and mechanism of action of these treatments and the evidence-base for the use of these drugs in clinical practice is outlined along with novel pipelines. There is evidence to recommend suvorexant and low-dose doxepin for sleep maintenance insomnia; there is also sufficient evidence to recommend ramelteon for sleep onset insomnia. Although there is limited evidence for the use of the quetiapine, trazodone, mirtazapine, amitriptyline, pregabalin, gabapentin, agomelatine, and olanzapine as treatments for insomnia disorder, these drugs may improve sleep while successfully treating comorbid disorders, with a different side effect profile than the BZDs and Z-drugs. The unique mechanism of action of each drug allows for a more personalized and targeted medical management of insomnia.
Collapse
Affiliation(s)
- Tobias Atkin
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, Quebec, Canada (T.A., S.C., G.G.); and Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.)
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, Quebec, Canada (T.A., S.C., G.G.); and Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.)
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, Quebec, Canada (T.A., S.C., G.G.); and Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.)
| |
Collapse
|
32
|
Puttonen HAJ, Sundvik M, Semenova S, Shirai Y, Chen YC, Panula P. Knockout of histamine receptor H3 alters adaptation to sudden darkness and monoamine levels in the zebrafish. Acta Physiol (Oxf) 2018; 222. [PMID: 29044927 DOI: 10.1111/apha.12981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Abstract
AIM Histamine receptor H3 (HRH3) has substantial neuropharmacological potential. Currently, knockout models of this receptor have been investigated only in mice. We characterized the expression of this receptor in the zebrafish and generated a zebrafish HRH3 knockout line. Using this model, we studied the role of HRH3 in important behaviours. We also analysed the effect of HRH3 knockout on monoaminergic systems, which has not been thoroughly studied in any animal model. METHODS Generation of a mutant zebrafish line using the CRISPR-Cas9 system. Analysis of locomotor and social behaviour. Expression of HRH3 was characterized using in situ hybridization. Analysis of monoamine networks using HPLC, immunohistochemistry and quantitative PCR. RESULTS We found that HRH3 knockout zebrafish larvae showed a shorter period of increased locomotion after a sudden onset of darkness, while the knockout larvae had a wild-type-like acute response to sudden darkness. Adult knockout fish showed decreased swimming velocity, although locomotor activity of knockout larvae was unaltered. Additionally, levels of dopamine and serotonin were significantly decreased in the knockout fish, while monoamine-related gene expression and immunohistochemistry patterns were unchanged. CONCLUSIONS Our results show that HRH3 knockout larvae adapt faster to sudden darkness, suggesting a role for this receptor in regulating responses to changes in the environment. The decreased levels of dopamine and serotonin provide the first direct evidence that knockout of HRH3 alters these systems.
Collapse
Affiliation(s)
- H. A. J. Puttonen
- Neuroscience Center and Department of Anatomy; University of Helsinki; Helsinki Finland
| | - M. Sundvik
- Neuroscience Center and Department of Anatomy; University of Helsinki; Helsinki Finland
| | - S. Semenova
- Neuroscience Center and Department of Anatomy; University of Helsinki; Helsinki Finland
| | - Y. Shirai
- Neuroscience Center and Department of Anatomy; University of Helsinki; Helsinki Finland
| | - Y-C. Chen
- Neuroscience Center and Department of Anatomy; University of Helsinki; Helsinki Finland
| | - P. Panula
- Neuroscience Center and Department of Anatomy; University of Helsinki; Helsinki Finland
| |
Collapse
|
33
|
Guryn R, Staszewski M, Stasiak A, McNaught Flores D, Fogel WA, Leurs R, Walczyński K. Non-Imidazole Histamine H₃ Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines. Molecules 2018; 23:molecules23020326. [PMID: 29401659 PMCID: PMC6017745 DOI: 10.3390/molecules23020326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
H₃ receptors present on histaminergic and non-histaminergic neurons, act as autoreceptors or heteroreceptors controlling neurotransmitter release and synthesis. Previous, studies have found that the compound N-methyl-N-3-phenylalkyl-2-[2-(4-n-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethan-1-amine (ADS-531, 2c) exhibits high in vitro potency toward H₃ guinea pig jejunal receptors, with pA₂ = 8.27. To optimize the structure of the lead compound ADS-531, a series of 5-substituted-2-thiazol-4-n-propylpiperazines 3 were synthesized and subjected to in vitro pharmacological characterization; the alkyl chain between position 2 of the thiazole ring and the terminal secondary N-methylamino function was elongated from three to four methylene groups and the N-methylamino functionality was substituted by benzyl-, 2-phenylethyl-, and 3-phenyl-propyl- moieties. SAR studies on novel non-imidazole, 5-substituted-2-thiazol-4-n-propyl-piperazines 3 showed that the most active compound 3a (pA₂ = 8.38), additionally possessed a weak competitive H₁-antagonistic activity. Therefore, compound ADS-531, which did not exhibit any H₁-antagonistic activity, was chosen for further evaluation for its affinity to the recombinant rat and human histamine H₃ receptors (rH₃R and hH₃R, respectively). ADS-531 exhibited nanomolar affinity for both rH₃R and hH₃R receptors. It was also shown that, ADS-531 given subchronically to rats (s.c. 3 mg/kg, 5 days) penetrated the brain, where it affected dopamine, noradrenaline and serotonin concentration; however, it did not affect histamine concentration nor feeding behavior.
Collapse
Affiliation(s)
- Roman Guryn
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-145 Łódź, Poland.
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-145 Łódź, Poland.
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752 Łódź, Poland.
| | - Daniel McNaught Flores
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Wiesława Agnieszka Fogel
- Department of Hormone Biochemistry, Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752 Łódź, Poland.
| | - Rob Leurs
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-145 Łódź, Poland.
| |
Collapse
|
34
|
Mahmood D, Akhtar M, Jahan K, Goswami D. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801. J Basic Clin Physiol Pharmacol 2017; 27:463-71. [PMID: 27089413 DOI: 10.1515/jbcpp-2015-0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 03/05/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. METHODS The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. RESULTS Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. CONCLUSIONS The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.
Collapse
|
35
|
Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro 2017; 4:eN-NWR-0286-16. [PMID: 28275716 PMCID: PMC5334454 DOI: 10.1523/eneuro.0286-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 01/11/2023] Open
Abstract
Pharmacological studies in mammals and zebrafish suggest that histamine plays an important role in promoting arousal. However, genetic studies using rodents with disrupted histamine synthesis or signaling have revealed only subtle or no sleep/wake phenotypes. Studies of histamine function in mammalian arousal are complicated by its production in cells of the immune system and its roles in humoral and cellular immunity, which can have profound effects on sleep/wake states. To avoid this potential confound, we used genetics to explore the role of histamine in regulating sleep in zebrafish, a diurnal vertebrate in which histamine production is restricted to neurons in the brain. Similar to rodent genetic studies, we found that zebrafish that lack histamine due to mutation of histidine decarboxylase (hdc) exhibit largely normal sleep/wake behaviors. Zebrafish containing predicted null mutations in several histamine receptors also lack robust sleep/wake phenotypes, although we are unable to verify that these mutants are completely nonfunctional. Consistent with some rodent studies, we found that arousal induced by overexpression of the neuropeptide hypocretin (Hcrt) or by stimulation of hcrt-expressing neurons is not blocked in hdc or hrh1 mutants. We also found that the number of hcrt-expressing or histaminergic neurons is unaffected in animals that lack histamine or Hcrt signaling, respectively. Thus, while acute pharmacological manipulation of histamine signaling has been shown to have profound effects on zebrafish and mammalian sleep, our results suggest that chronic loss of histamine signaling due to genetic mutations has only subtle effects on sleep in zebrafish, similar to rodents.
Collapse
|
36
|
Rapanelli M, Frick L, Pogorelov V, Ohtsu H, Bito H, Pittenger C. Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders. Transl Psychiatry 2017; 7:e1013. [PMID: 28117842 PMCID: PMC5545743 DOI: 10.1038/tp.2016.290] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/05/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Tic disorders affect ~5% of the population and are frequently comorbid with obsessive-compulsive disorder, autism, and attention deficit disorder. Histamine dysregulation has been identified as a rare genetic cause of tic disorders; mice with a knockout of the histidine decarboxylase (Hdc) gene represent a promising pathophysiologically grounded model. How alterations in the histamine system lead to tics and other neuropsychiatric pathology, however, remains unclear. We found elevated expression of the histamine H3 receptor in the striatum of Hdc knockout mice. The H3 receptor has significant basal activity even in the absence of ligand and thus may modulate striatal function in this knockout model. We probed H3R function using specific agonists. The H3 agonists R-aminomethylhistamine (RAMH) and immepip produced behavioral stereotypies in KO mice, but not in controls. H3 agonist treatment elevated intra-striatal dopamine in KO mice, but not in controls. This was associated with elevations in phosphorylation of rpS6, a sensitive marker of neural activity, in the dorsal striatum. We used a novel chemogenetic strategy to demonstrate that this dorsal striatal activity is necessary and sufficient for the development of stereotypy: when RAMH-activated cells in the dorsal striatum were chemogenetically activated (in the absence of RAMH), stereotypy was recapitulated in KO animals, and when they were silenced the ability of RAMH to produce stereotypy was blocked. These results identify the H3 receptor in the dorsal striatum as a contributor to repetitive behavioral pathology.
Collapse
Affiliation(s)
- M Rapanelli
- Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, 34 Park Street, W315, New Haven, CT 06519, USA. E-mail: or
| | - L Frick
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - V Pogorelov
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - H Ohtsu
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - H Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - C Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychology, Yale University, New Haven, CT, USA,Child Study Center, Yale University, New Haven, CT, USA,Interdepartental Neuroscience Program, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, 34 Park Street, W315, New Haven, CT 06519, USA. E-mail: or
| |
Collapse
|
37
|
Pittenger C. Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions. Handb Exp Pharmacol 2017; 241:189-215. [PMID: 28233179 PMCID: PMC5538774 DOI: 10.1007/164_2016_127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While the normal functions of histamine (HA) in the central nervous system have gradually come into focus over the past 30 years, the relationship of abnormalities in neurotransmitter HA to human disease has been slower to emerge. New insight came with the 2010 description of a rare nonsense mutation in the biosynthetic enzyme histidine decarboxylase (Hdc) that was associated with Tourette syndrome (TS) and related conditions in a single family pedigree. Subsequent genetic work has provided further support for abnormalities of HA signaling in sporadic TS. As a result of this genetic work, Hdc knockout mice, which were generated more than 15 years ago, have been reexamined as a model of the pathophysiology of TS and related conditions. Parallel work in these KO mice and in human carriers of the Hdc mutation has revealed abnormalities in the basal ganglia system and its modulation by dopamine (DA) and has confirmed the etiologic, face, and predictive validity of the model. The Hdc-KO model thus serves as a unique platform to probe the pathophysiology of TS and related conditions, and to generate specific hypotheses for subsequent testing in humans. This chapter summarizes the development and validation of this model and recent and ongoing work using it to further investigate pathophysiological changes that may contribute to these disorders.
Collapse
Affiliation(s)
- Christopher Pittenger
- Departments of Psychiatry and Psychology, Yale Child Study Center, and Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, W315, New Haven, CT, 06519, USA.
| |
Collapse
|
38
|
Pini A, Obara I, Battell E, Chazot PL, Rosa AC. Histamine in diabetes: Is it time to reconsider? Pharmacol Res 2016; 111:316-324. [DOI: 10.1016/j.phrs.2016.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
|
39
|
Rapanelli M, Frick LR, Horn KD, Schwarcz RC, Pogorelov V, Nairn AC, Pittenger C. The Histamine H3 Receptor Differentially Modulates Mitogen-activated Protein Kinase (MAPK) and Akt Signaling in Striatonigral and Striatopallidal Neurons. J Biol Chem 2016; 291:21042-21052. [PMID: 27510032 DOI: 10.1074/jbc.m116.731406] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 01/11/2023] Open
Abstract
The basal ganglia have a central role in motor patterning, habits, motivated behaviors, and cognition as well as in numerous neuropsychiatric disorders. Receptors for histamine, especially the H3 receptor (H3R), are highly expressed in the striatum, the primary input nucleus of the basal ganglia, but their effects on this circuitry have been little explored. H3R interacts with dopamine (DA) receptors ex vivo; the nature and functional importance of these interactions in vivo remain obscure. We found H3R activation with the agonist R-(-)-α-methylhistamine to produce a unique time- and cell type-dependent profile of molecular signaling events in the striatum. H3 agonist treatment did not detectably alter extracellular DA levels or signaling through the cAMP/DARPP-32 signaling pathway in either D1- or D2-expressing striatal medium spiny neurons (MSNs). In D1-MSNs, H3 agonist treatment transiently activated MAPK signaling and phosphorylation of rpS6 and led to phosphorylation of GSK3β-Ser9, a novel effect. Consequences of H3 activation in D2-MSNs were completely different. MAPK signaling was unchanged, and GSK3β-Ser9 phosphorylation was reduced. At the behavioral level, two H3 agonists had no significant effect on locomotion or stereotypy, but they dramatically attenuated the locomotor activation produced by the D1 agonist SKF82958. H3 agonist co-administration blocked the activation of MAPK signaling and the phosphorylation of rpS6 produced by D1 activation in D1-MSNs, paralleling behavioral effects. In contrast, GSK3β-Ser9 phosphorylation was seen only after H3 agonist treatment, with no interactive effects. H3R signaling has been neglected in models of basal ganglia function and has implications for a range of pathophysiologies.
Collapse
Affiliation(s)
| | | | | | - Rivka C Schwarcz
- Graduate Program in Cell Biology, Yale University, New Haven, Connecticut 06519
| | | | | | - Christopher Pittenger
- From the Departments Psychiatry and Interdepartmental Neuroscience Program, and Psychology, Child Study Center,
| |
Collapse
|
40
|
Jain NS, Tandi L, Verma L. Contribution of the central histaminergic transmission in the cataleptic and neuroleptic effects of haloperidol. Pharmacol Biochem Behav 2015; 139:59-66. [DOI: 10.1016/j.pbb.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
41
|
Mahmood D, Pillai KK, Khanam R, Jahan K, Goswami D, Akhtar M. The Effect of Subchronic Dosing of Ciproxifan and Clobenpropit on Dopamine and Histamine Levels in Rats. J Exp Neurosci 2015; 9:73-80. [PMID: 26379444 PMCID: PMC4556212 DOI: 10.4137/jen.s27244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 01/16/2023] Open
Abstract
The present study was designed to investigate the effect of once daily for 7-day (subchronic treatment) dosing of histamine H3 receptor antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p), including clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively, on MK-801(0.2 mg/kg, i.p.)-induced locomotor activity, and dopamine and histamine levels in rats. Dopamine and histamine levels were measured in striatum and hypothalamus, respectively, of rat brain. Atypical and typical antipsychotics were used to serve as clinically relevant reference agents to compare the effects of the H3 receptor antagonists. MK-801-induced increase of horizontal activity was reduced with CPX and CBP. The attenuation of MK-801-induced locomotor hyperactivity produced by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised dopamine levels in the striatum, which was reduced in rats pretreated with CPX and CBP. CPZ also lowered striatal dopamine levels, though the decrease was less robust compared to CLZ, CPX and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increase in histamine levels in the hypothalamus compared to the MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.) counteracted the effects of CPX and CBP. In conclusion, the subchronic dosing of CPX/CBP suggests some antipsychotic-like activities as CPX/CBP counteracts the modulatory effects of MK-801 on dopamine and histamine levels and prevents MK-801-induced hyperlocomotor behaviors.
Collapse
Affiliation(s)
- D Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - K K Pillai
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - R Khanam
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - K Jahan
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - D Goswami
- Ranbaxy Research Laboratories Ltd., Gurgoan, Haryana, India
| | - M Akhtar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| |
Collapse
|
42
|
Rapanelli M, Pittenger C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions. Neuropharmacology 2015; 106:85-90. [PMID: 26282120 DOI: 10.1016/j.neuropharm.2015.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023]
Abstract
The potential contributions of dysregulation of the brain's histaminergic modulatory system to neuropsychiatric disease, and the potential of histamine-targeting medications as therapeutic agents, are gradually coming into focus. The H3R receptor, which is expressed primarily in the central nervous system, is a promising pharmacotherapeutic target. Recent evidence for a contribution of histamine dysregulation to Tourette syndrome and tic disorders is particularly strong; although specific mutations in histamine-associated genes are rare, they have led to informative studies in animal models that may pave the way for therapeutic advances. A controlled study of an H3R antagonist in Tourette syndrome is ongoing. Preclinical studies of H3R antagonists in schizophrenia, attention deficit disorder, and narcolepsy have all shown promise. Recently reported controlled studies have been disappointing in schizophrenia and attention deficit disorder, but the H3R antagonist pitolisant shows promise in the treatment of narcolepsy and excessive daytime sleepiness and is currently under regulatory review for these conditions. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Department of Child Study Center, Yale University, New Haven, CT, USA; Department of Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
| |
Collapse
|
43
|
Interaction Between Brain Histamine and Serotonin, Norepinephrine, and Dopamine Systems: In Vivo Microdialysis and Electrophysiology Study. J Mol Neurosci 2015; 56:320-8. [DOI: 10.1007/s12031-015-0536-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
44
|
Nakamura T, Yoshikawa T, Naganuma F, Mohsen A, Iida T, Miura Y, Sugawara A, Yanai K. Role of histamine H3 receptor in glucagon-secreting αTC1.6 cells. FEBS Open Bio 2014; 5:36-41. [PMID: 25685663 PMCID: PMC4309840 DOI: 10.1016/j.fob.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/14/2022] Open
Abstract
Histamine H3 receptor is expressed in pancreatic α-cells. Histamine H3 receptor negatively regulates glucagon secretion from αTC1.6 cells. Immepip, a selective H3 receptor agonist, decreases serum glucagon concentration in rats.
Pancreatic α-cells secrete glucagon to maintain energy homeostasis. Although histamine has an important role in energy homeostasis, the expression and function of histamine receptors in pancreatic α-cells remains unknown. We found that the histamine H3 receptor (H3R) was expressed in mouse pancreatic α-cells and αTC1.6 cells, a mouse pancreatic α-cell line. H3R inhibited glucagon secretion from αTC1.6 cells by inhibiting an increase in intracellular Ca2+ concentration. We also found that immepip, a selective H3R agonist, decreased serum glucagon concentration in rats. These results suggest that H3R modulates glucagon secretion from pancreatic α-cells.
Collapse
Affiliation(s)
- Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Attayeb Mohsen
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yamato Miura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
45
|
Feliszek M, Speckmann V, Schacht D, von Lehe M, Stark H, Schlicker E. A search for functional histamine H4 receptors in the human, guinea pig and mouse brain. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:11-7. [PMID: 25300787 DOI: 10.1007/s00210-014-1053-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/28/2014] [Indexed: 01/08/2023]
Abstract
Histamine H4 receptors are expressed in immune cells, but their potential role in the brain is less clear. Although H4 transcripts have been identified in human and rat brain, the presence of H4 receptors on the protein level has so far not been proven since appropriate antibodies fulfilling the strict criteria for G protein-coupled receptors are missing. Here, we searched for functional H4 receptors in human, guinea pig and mouse cortex. We studied whether H4 receptor activation is associated with increased GTPγS binding and reduced noradrenaline release. The latter two effects have been previously shown for H3 receptors, which, like the H4 receptors, are coupled to G i/o protein. G protein activation was studied using (35)S-GTPγS binding in cortical membranes. The electrically induced (3)H-noradrenaline release was determined in superfused cortical slices. The H4 agonist 4-methylhistamine failed to affect (35)S-GTPγS binding and/or noradrenaline release in human, guinea pig and mouse cortex although an H 3 receptor-mediated increase in (35)S-GTPγS binding and inhibition of noradrenaline release occurred in parallel experiments. In conclusion, functional H4 receptors increasing (35)S-GTPγS binding and/or decreasing noradrenaline release are not found in human, guinea pig and mouse cortex.
Collapse
Affiliation(s)
- Monika Feliszek
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Yoshikawa T, Nakamura T, Shibakusa T, Sugita M, Naganuma F, Iida T, Miura Y, Mohsen A, Harada R, Yanai K. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice. J Nutr 2014; 144:1637-41. [PMID: 25056690 DOI: 10.3945/jn.114.196105] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | | | - Mayu Sugita
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Yamato Miura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Attayeb Mohsen
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| |
Collapse
|
47
|
Baldan LC, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 2014; 81:77-90. [PMID: 24411733 DOI: 10.1016/j.neuron.2013.10.052] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/25/2022]
Abstract
Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine (DA) D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal DA levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. DA D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm histidine decarboxylase deficiency as a rare cause of TS and identify HA-DA interactions in the basal ganglia as an important locus of pathology.
Collapse
Affiliation(s)
| | - Kyle A Williams
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine
| | | | | | | | - Michael Crowley
- Department of Child Study Center, Yale University School of Medicine
| | - George M Anderson
- Department of Child Study Center, Yale University School of Medicine.,Department of Laboratory Medicine, Yale University School of Medicine
| | - Erin Loring
- Department of Child Study Center, Yale University School of Medicine.,Department of Genetics, Yale University School of Medicine.,Department of Program on Neurogenetics, Yale University School of Medicine
| | | | | | | | - Kaitlyn E Panza
- Department of Child Study Center, Yale University School of Medicine
| | - A Gulhan Ercan-Sencicek
- Department of Child Study Center, Yale University School of Medicine.,Department of Genetics, Yale University School of Medicine
| | - Kuakarun Krusong
- Department of Psychiatry, Yale University School of Medicine.,Dept. of Biochem., Faculty of Science, Chulalongkorn Univ., Bangkok, Thailand
| | - Bennett L Leventhal
- Nathan S. Kline Institute for Psychiatric Research.,New York University Dept of Child and Adolescent Psychiatry
| | - Hiroshi Ohtsu
- Tohoku University, Graduate School of Engineering, Sendai, Japan
| | - Michael H Bloch
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer, Inc., Cambridge, MA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine
| | - Linda Mayes
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine.,Department of Pediatrics, Yale University School of Medicine.,Department of Psychology, Yale University School of Medicine
| | - Ivan de Araujo
- Department of Psychiatry, Yale University School of Medicine.,John B. Pierce Laboratory, New Haven, CT
| | - Yu-Shin Ding
- Department of Diagnostic Radiology, Yale University School of Medicine
| | - Matthew W State
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine.,Department of Genetics, Yale University School of Medicine.,Department of Program on Neurogenetics, Yale University School of Medicine
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine.,Department of Psychology, Yale University School of Medicine.,Integrated Neuroscience Research Program; New Haven, CT 06520
| |
Collapse
|
48
|
Yan H, Zhang X, Hu W, Ma J, Hou W, Zhang X, Wang X, Gao J, Shen Y, Lv J, Ohtsu H, Han F, Wang G, Chen Z. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms. Nat Commun 2014; 5:3334. [PMID: 24566390 PMCID: PMC3948077 DOI: 10.1038/ncomms4334] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022] Open
Abstract
The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. Histamine H3 receptor dysregulation is a hallmark of pathological conditions in the central nervous system, and H3 receptor antagonism is neuroprotective. Here Chen et al. show that histamine-independent H3 receptor activation can enhance neuronal cell death during cerebral ischaemia by suppressing autophagy.
Collapse
Affiliation(s)
- Haijing Yan
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2]
| | - Xiangnan Zhang
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China [3]
| | - Weiwei Hu
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China [3]
| | - Jing Ma
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Hou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingzhou Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Wang
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Jieqiong Gao
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Yao Shen
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Jianxin Lv
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Hiroshi Ohtsu
- Department of Engineering, School of Medicine, Tohoku University, Aoba-ku, Sendai 980-8775, Japan
| | - Feng Han
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University, College of Pharmaceutical Sciences, Suzhou 215123, China
| | - Zhong Chen
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China
| |
Collapse
|
49
|
Navakkode S, Korte M. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis. Neuropharmacology 2014; 79:525-33. [PMID: 24412673 DOI: 10.1016/j.neuropharm.2013.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022]
Abstract
Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany
| | - Martin Korte
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany.
| |
Collapse
|
50
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|