1
|
Crump KB, Kanelis E, Segarra-Queralt M, Pascuet-Fontanet A, Bermudez-Lekerika P, Alminnawi A, Geris L, Alexopoulos LG, Noailly J, Gantenbein B. TNF induces catabolism in human cartilaginous endplate cells in 3D agarose culture under dynamic compression. Sci Rep 2025; 15:15849. [PMID: 40328789 PMCID: PMC12056083 DOI: 10.1038/s41598-025-00538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Intervertebral disc (IVD) degeneration is the leading cause of low back pain in young adults, and the cartilaginous endplate (CEP) is likely to play a key role in early IVD degeneration. To elucidate the effects of pro-inflammatory cytokines on the mechanobiology of the CEP, human CEP cells were seeded into 2% agarose, dynamically compressed up to 7%, and stimulated with tumor necrosis factor (TNF). It was hypothesized that dynamic compression would be sufficient to induce anabolism, while stimulation with TNF would induce catabolism. TNF was sufficient to induce a catabolic, time-dependent response in human CEP cells through downregulation of anabolic gene expression and increased secretion of pro-inflammatory proteins associated with herniated discs, bacteria inhibition, and pain. However, 7% strain or scaffold material, agarose, may not lead to full activation of integrins and downregulation of pro-inflammatory pathways, demonstrated in part through the unchanged gene expression of integrin subunits α5 and β1.
Collapse
Affiliation(s)
- Katherine B Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012, Bern, Switzerland
| | - Exarchos Kanelis
- School of Mechanical Engineering, National Technical University of Athens, 15772, Zografou, Greece
- Protavio Ltd, 15341, Agia Paraskevi, Greece
| | | | | | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012, Bern, Switzerland
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, 4000, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000, Leuven, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, 4000, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000, Leuven, Belgium
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, 15772, Zografou, Greece
- Protavio Ltd, 15341, Agia Paraskevi, Greece
| | - Jérôme Noailly
- BCN Medtech, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008, Bern, Switzerland.
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Faculty of Medicine, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
2
|
Sarabi M, Torshizian A, Khorasani ZM, Firoozi A, Majd HM, Khoshhal N, Saeidi N, AkbariRad M. Impact of Probiotics Administration on the VEGF, Adiponectin, and Glycolipid Metabolism, in Prediabetic Patients: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Food Sci Nutr 2025; 13:e70146. [PMID: 40321607 PMCID: PMC12045928 DOI: 10.1002/fsn3.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
It is debated that probiotics can improve glycolipid metabolism and slow the progression of prediabetes to diabetes mellitus. This study aimed to evaluate the effect of probiotics on lipid profile, glucose homeostasis, serum level of resistin, adiponectin, and vascular endothelial growth factor (VEGF) in prediabetic patients. This double-blind, randomized, placebo-controlled clinical trial was conducted on prediabetic patients in the Endocrinology clinic of Ghaem Hospital. Patients were randomly divided into two groups: the probiotics group was prescribed a daily 500-mg capsule of probiotics (109 colony-forming units), while the other received a placebo capsule with the same appearance. After 3 months, the effect of probiotic administration on laboratory parameters indicative of glycolipid metabolism, resistin, adiponectin, VEGF, body mass index (BMI), and blood pressure was compared between groups. This study was registered in the Iranian Registry of Clinical Trials (IRCT 20190801044405 N2). Fifty-two patients were included in the final analysis, with 26 patients in each group. The mean age of patients was 43.75 ± 8.45. At the beginning, both groups were similar in all demographic characteristics and measured serum levels of investigated biomarkers (p > 0.05 for all parameters). Both groups exhibited significant changes in BMI and fasting blood sugar (FBS). However, regarding FBS, the magnitude of change was significantly greater in patients treated with probiotics (p = 0.022). Our findings also revealed a significant increase in HDL (p = 0.001), adiponectin (p < 0.001), and VEGF (p = 0.024) serum levels and a significant decrease in HbA1c (p = 0.034), LDL (p = 0.002), TG (p < 0.001), and total cholesterol (p = 0.001) exclusively in the probiotics group. Probiotic supplementation efficiently improved glycolipid metabolism, adiponectin, and VEGF serum levels.
Collapse
Affiliation(s)
- Mehrdad Sarabi
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Ashkan Torshizian
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Zahra Mazloum Khorasani
- Department of Endocrinology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Hassan Mehrad Majd
- Molecular Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nastaran Khoshhal
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nikoo Saeidi
- Student Research CommitteeIslamic Azad UniversityMashhadIran
| | - Mina AkbariRad
- Department of Internal Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Kim BJ, Jo Y, Baek JY, Park SJ, Jung HW, Lee E, Jang IY, Sakong H, Ryu D. Higher serum resistin levels and increased frailty risk in older adults: Implications beyond metabolic function. J Nutr Health Aging 2025; 29:100521. [PMID: 39983655 DOI: 10.1016/j.jnha.2025.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Despite the pleiotropic role of resistin as an adipokine, its association with frailty-an indicator of biologic age and overall well-being in humans-remains largely unexplored. This study aims to investigate the potential of circulating resistin as a biomarker for frailty. METHODS The study included 228 older adults aged 65 years or older who underwent a comprehensive geriatric assessment. Frailty was evaluated using both the phenotypic frailty model by Fried and the deficit-accumulation frailty index (FI) by Rockwood. Serum resistin levels were measured using a competitive enzyme-linked immunosorbent assay. RESULTS After adjusting for sex, age, body mass index, smoking, alcohol, exercise, diabetes, and serum creatinine, serum resistin levels were 52.2% higher in individuals with phenotypic frailty than in robust controls (P = 0.001) and showed a positive correlation with the Rockwood FI (P = 0.015). Furthermore, for every 1 standard deviation increase in serum resistin levels, the risk of frailty increased by 67% (P = 0.021). When participants were divided into four groups based on serum resistin levels, individuals in the highest quartile had a 38% higher FI and exhibited a 12.5-fold higher odds ratio for frailty compared to those in the lowest quartile (P = 0.016 and 0.024, respectively). CONCLUSION These findings suggest that circulating resistin may serve as a candidate blood-based biomarker for frailty, encompassing the multifaceted physical, cognitive, and social dimensions, extending beyond its well-established role in metabolic regulation.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Ji Yeon Baek
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Hee-Won Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Hyuk Sakong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
4
|
Jolfayi AG, Beheshti AT, Hosseini SM, Fakhrabadi AA, Mohebbi B, Malakootian M, Maleki M, Pouraliakbar H, Hosseini S, Arabian M. Epicardial adipose tissue features as a biomarker and therapeutic target in coronary artery disease. Sci Rep 2025; 15:14786. [PMID: 40295726 PMCID: PMC12037875 DOI: 10.1038/s41598-025-99600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
This study aimed to examine the interplay between epicardial adipose tissue (EAT) features, macrophage polarization, and the cytokines Resistin and Apelin in the context of coronary artery disease (CAD). Using a case-control design with 21 CAD and 20 non-CAD individuals, the study collected demographic data, cardiovascular risk factors, and medical histories. Metabolic risk factors were assessed through laboratory tests, and CAD presence was confirmed by imaging studies. Detailed measurements of epicardial adipose characteristics were obtained through CT scans. Blood samples were analyzed for Resistin and Apelin levels, and tissue samples from EAT for macrophage polarization. The results revealed no significant differences in EAT volume and density between CAD and non-CAD groups, but the CAD group exhibited a significantly higher Calcium score. Apelin and Resistin mRNA expression levels in the right ventricular epicardial and atrioventricular fat tissue showed significantly lower Apelin and higher Resistin levels in CAD patients. CD206 expression levels in EAT were substantially lower in the CAD group, while CD11c expression levels were significantly higher. The CAD group exhibited a significantly higher CD11c/CD206 ratio in adipose tissue macrophages. This investigation highlights the significance of molecular characteristics of EAT in CAD development. While no significant differences were found in EAT volume and density, lower Apelin and higher Resistin mRNA expression in CAD patients' right ventricular fat tissue were observed. Changes in macrophage polarization markers, lower CD206 and higher CD11c, along with a higher CD11c/CD206 ratio in the macrophages of CAD patients have been shown in two investigated regions of EAT.
Collapse
Affiliation(s)
| | | | | | | | - Bahram Mohebbi
- Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | | | - Saeid Hosseini
- Heart Valve Disease Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Institute, Tehran, Iran.
| |
Collapse
|
5
|
Takahashi T, Takase Y, Shiraishi A, Matsubara S, Watanabe T, Kirimoto S, Yamagaki T, Osawa M. Weight Gain With Advancing Age Is Controlled by the Muscarinic Acetylcholine Receptor M4 in Male Mice. Endocrinology 2025; 166:bqaf064. [PMID: 40179260 PMCID: PMC12012353 DOI: 10.1210/endocr/bqaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Obesity is characterized by the excessive accumulation of adipose tissue, and it is a serious global health issue. Understanding the pathology of obesity is crucial for developing effective interventions. In this study, we investigated the role of muscarinic acetylcholine receptor M4 (mAChR-M4) in the regulation of obesity in Chrm4-knockout (M4-KO) mice. Male M4-KO mice showed higher weight gain and accumulation of white adipose tissue (WAT) with advancing age than the wild-type mice. The M4-KO mice also showed increased leptin expression at both the transcription and the translation levels. RNA sequencing and quantitative reverse transcription polymerase chain reaction analyses of subcutaneous adipose tissues revealed that the expression of WAT marker genes was significantly enhanced in the M4-KO mice. In contrast, the expression levels of brown adipose tissue/beige adipose tissue markers were strongly decreased in the M4-KO mice. To identify the Chrm4-expressing cell types, we generated Chrm4-mScarlet reporter mice and examined the localization of the mScarlet fluorescent signals in subcutaneous tissues. Fluorescent signals were prominently detected in WAT and mesenchymal stem cells. Additionally, we also found that choline acetyltransferase was expressed in macrophages, suggesting their involvement in acetylcholine (ACh) secretion. Corroborating this notion, we were able to quantitatively measure the ACh in subcutaneous tissues by liquid chromatography tandem mass spectrometry. Collectively, our findings suggest that endogenous ACh released from macrophages maintains the homeostasis of adipose cell growth and differentiation via mAChR-M4 in male mice. This study provides new insights into the molecular mechanisms underlying obesity and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Yuta Takase
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Shin Matsubara
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Takehiro Watanabe
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Shinji Kirimoto
- Animal Science Business Unit, KAC Co., Ltd., Kyoto 604-8423, Japan
| | - Tohru Yamagaki
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Masatake Osawa
- Department of Regenerative Medicine and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu 501-1194, Japan
| |
Collapse
|
6
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
7
|
Beheshti AS, Qazvini MM, Abeq M, Abedi E, Fadaei MS, Fadaei MR, Baradaran Rahimi V, Askari VR. Molecular, cellular, and metabolic insights of cinnamon (Cinnamomum zeylanicum) advantages in diabetes and related complications: condiment or medication? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3513-3526. [PMID: 39589531 DOI: 10.1007/s00210-024-03644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Diabetes mellitus (DM) is a growing concern in public health, which affects about 10% of the population. There are several chronic complications due to DM, including kidney failure, blindness, amputations, myocardial infarction, and stroke. Cinnamon zeylanicum (C. verum, Ceylon cinnamon, or true cinnamon) has been shown to have desirable effects such as anti-obesity, anti-diabetic, anti-dyslipidemia, and anti-inflammatory effects in experimental studies. In this regard, Scopus, PubMed, and Google Scholar databases have been investigated with keywords of "Cinnamon," "Cinnamomum zeylanicum," "diabetes mellitus," "diabetes complication," "hypoglycemic," "anti-hyperglycemic," and "anti-diabetic" from incept to June 2024. This study aimed to review all pharmacological effects and molecular pathways of C. zeylanicum in DM and its complications in vitro, in vivo, and in clinical. Based on these studies, C. zeylanicum has good potential to design human studies for controlling and modifying DM and its related disorders.
Collapse
Affiliation(s)
- Anahita Sadat Beheshti
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Qazvini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Abeq
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ermia Abedi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Szczegielniak M, Lesiak A, Reich A, Opalińska A, Zakrzewski B, Arasiewicz H, Grabowski K, Nolberczak D, Narbutt J. Inflammation-Related Markers in Pediatric Psoriasis: Resistin as a Potential Marker of Psoriasis Severity. J Clin Med 2025; 14:1689. [PMID: 40095687 PMCID: PMC11900389 DOI: 10.3390/jcm14051689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objective: Psoriasis is a chronic inflammatory skin disease. Studies on adult population have confirmed that there is an association between psoriasis and metabolic as well as cardiovascular diseases. The aim of this study was to evaluate the inflammatory potential and the association of psoriasis with metabolic and cardiovascular risk by analyzing serum concentrations of homocysteine, adiponectin, resistin, leptin, and pentraxin 3 in pediatric patients with psoriasis. Additionally, the study explored correlations between these biomarkers and psoriasis severity. Methods: The study included 75 pediatric patients (47 girls and 28 boys) aged 2-17 years with clinically confirmed psoriasis. In addition, 28 healthy children (15 girls and 13 boys) without psoriasis, metabolic or inflammatory diseases made up the control group. Psoriasis severity was evaluated using the scales psoriasis area and severity index (PASI) and the body surface area (BSA). Serum concentrations of homocysteine, adiponectin, pentraxin 3, resistin, and leptin were measured in both groups. Results: Children with psoriasis exhibited higher serum levels of homocysteine, resistin, leptin, and pentraxin 3 and lower serum levels of adiponectin compared to the control group. A positive correlation was observed between resistin serum concentration and psoriasis severity. Elevated resistin levels were associated with higher PASI and BSA scores. Conclusions: Psoriasis is an inflammatory disease that is potentially linked to metabolic disorders. Resistin may serve as a biomarker for psoriasis severity; however, this relationship requires further research.
Collapse
Affiliation(s)
- Magdalena Szczegielniak
- Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (A.L.); (K.G.); (D.N.); (J.N.)
| | - Aleksandra Lesiak
- Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (A.L.); (K.G.); (D.N.); (J.N.)
| | - Adam Reich
- Department of Dermatology, Medical College of Rzeszow University, 35-055 Rzeszow, Poland; (A.R.); (A.O.)
| | - Aleksandra Opalińska
- Department of Dermatology, Medical College of Rzeszow University, 35-055 Rzeszow, Poland; (A.R.); (A.O.)
| | - Bartosz Zakrzewski
- Zakrzewscy Clinic of Aesthetic Medicine and Dermatology, 40-246 Katowice, Poland;
| | - Hubert Arasiewicz
- Department of Dermatology and Vascular Anomalies, John Paul II Centre of Pediatrics, 41-200 Sosnowiec, Poland;
| | - Kamil Grabowski
- Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (A.L.); (K.G.); (D.N.); (J.N.)
| | - Daniel Nolberczak
- Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (A.L.); (K.G.); (D.N.); (J.N.)
| | - Joanna Narbutt
- Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (A.L.); (K.G.); (D.N.); (J.N.)
| |
Collapse
|
9
|
Nowicka B, Polkowska I, Zeliszewska-Duk P, Torres A, Duk M. Molecular Assessment of Plasma Concentrations of Selected Adipokines and IL-8 in Horses with Back Pain and Comorbid Asthma-Based on Clinical Cases. Animals (Basel) 2025; 15:310. [PMID: 39943080 PMCID: PMC11815831 DOI: 10.3390/ani15030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Similarly, in humans and horses, thoracic and lumbosacral back pain cause more disability and work interruptions worldwide than any other disease. Given that there are few effective treatments for back pain in humans and animals, primary prevention strategies and a reduction in pain factors may be crucial. In the analysed data obtained for the horses studied, the pattern of changes in adipocytokine concentrations, including resistin, visfatin and leptin, was noted for those with back pain compared to the control animals. Concentrations of selected adipocytokines in horses from the back pain group were different in animals with a coexisting diagnosis of asthma and back dysfunction. Very few studies are available on adipokine concentrations in horses. No information was found in relation to back pain and asthma in these animals. In humans, correlations of back pain and asthma with concentrations of selected adipokines have been described.
Collapse
Affiliation(s)
- Beata Nowicka
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Paulina Zeliszewska-Duk
- Department of Horse Breeding and Use, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Anna Torres
- Department of Pediatrics and Adolescent Gynecology, Medical University of Lublin, Chodzki 4, 20-093 Lublin, Poland;
| | - Mariusz Duk
- Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
| |
Collapse
|
10
|
Fan YH, Zhang S, Wang Y, Wang H, Li H, Bai L. Inter-organ metabolic interaction networks in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2025; 15:1494560. [PMID: 39850476 PMCID: PMC11754069 DOI: 10.3389/fendo.2024.1494560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multisystem metabolic disorder, marked by abnormal lipid accumulation and intricate inter-organ interactions, which contribute to systemic metabolic imbalances. NAFLD may progress through several stages, including simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and potentially liver cancer. This disease is closely associated with metabolic disorders driven by overnutrition, with key pathological processes including lipid dysregulation, impaired lipid autophagy, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and local inflammation. While hepatic lipid metabolism in NAFLD is well-documented, further research into inter-organ communication mechanisms is crucial for a deeper understanding of NAFLD progression. This review delves into intrahepatic networks and tissue-specific signaling mediators involved in NAFLD pathogenesis, emphasizing their impact on distal organs.
Collapse
Affiliation(s)
- Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Siyao Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ye Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongni Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
11
|
Hsu LA, Teng MS, Wu S, Liao MS, Chou HH, Ko YL. Circulating resistin levels and mutation burden of the RETN gene variants predict long-term mortality in a Taiwanese population. Sci Rep 2025; 15:564. [PMID: 39747951 PMCID: PMC11695976 DOI: 10.1038/s41598-024-84142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Human resistin is a proinflammatory cytokine involving the development and progression of cancer and cardiovascular diseases. However, prediction of long-term outcome using circulating resistin level and its genetic determinants in a population-based study remain to be explored. After genome-wide association study (GWAS), DNA methylation (DNAm) analysis and functional assays of a RETN rs370006313 variant, we tested whether resistin level and its genetic determinants can be used to determine the long-term outcomes of 5678 Taiwan Biobank (TWB) participants. GWAS and DNAm analysis revealed RETN variants, rs3219175, rs370006313, and rs3745368, and DNAm sites, cg21271423 and cg09909011, independently associated with circulating resistin levels. Functional assays showed rs370006313 variant played a key role in affecting RETN promoter activity, whereas genotypes of rs3219175 and rs3745368, but not rs370006313, exhibited genome-wide significant associations with RETN promoter DNAm levels. Using Kaplan-Meier survival and Cox regression analyses, participants with progressively increasing resistin levels had a higher hazard ratio for all-cause mortality and cancer mortality compared to those with lower resistin levels. Participants with all three RETN variants (high mutation burden) also exhibited significantly higher hazard ratios for all-cause mortality and cancer mortality, at 3.99 and 5.55, respectively, compared to those without a high mutation burden. In conclusion, RETN rs370006313 is a functional variant affecting RETN promoter activity. Elevated circulating resistin levels and a high RETN mutation burden predict all-cause and cancer mortality in TWB participants. Both resistin levels and RETN variants may serve as biomarkers of long-term outcomes in the general Taiwanese populations.
Collapse
Affiliation(s)
- Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Mei-Siou Liao
- The Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.289, Jianguo Road, Xindian Dist., New Taipei City, 23142, Taiwan
| | - Hsin-Hua Chou
- The Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.289, Jianguo Road, Xindian Dist., New Taipei City, 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
- The Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.289, Jianguo Road, Xindian Dist., New Taipei City, 23142, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
12
|
de Faria MHS, Barroso LSS, Souza-Gomes AF, de Barros JLVM, Kakehasi AM, Vieira ELM, Silva ACSE, Nunes-Silva A. Strength Training can Modulate Urinary Adipokine Levels in Healthy Young Males. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2025; 18:107-118. [PMID: 39916794 PMCID: PMC11798553 DOI: 10.70252/fxqy9475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Adipose tissue stores energy in fat-rich adipocytes, which can produce and release several adipokines and modulate body metabolism. Exercise may induce adipokine production in adipocytes; however, the relationship between the two remains unclear. Few studies have shown the relationship between adipokines and strength training. Thus, we aimed to evaluate the acute and chronic effects of strength training (ST) on urinary adiponectin, leptin, and resistin levels. Twelve untrained young men (23.42 ± 2.67 years) were included in this study. Body composition was evaluated at baseline and after completing of the training protocol using densitometry. Training protocol consisted of three exercises with three sets of 65% of one-repetition maximum (1MR) with a pause of 90 s between sets, each exercise lasting 5 s (2 s concentric / 3 s eccentric). The sessions were carried out three times a week for 10 weeks. Urine was collected during the pre- and post-training in the first and 30th session. Adipokine levels were determined by ELISA. Urinary levels of leptin acutely increased after the first ST session, and after the last ST session. Chronic changes in the leptin levels were also found when comparing the values before the last ST and before the first ST session. Urinary adiponectin levels changed in the comparison of values before and after the last session. There was a significant increase in the adiponectin levels when comparing values after the first and last ST sessions. The levels of resistin chronically increased. Strength training can induce acute and chronic changes in urinary levels of adipokines.
Collapse
Affiliation(s)
- Marcelo Henrique Salviano de Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Lucélia Scarabeli Silva Barroso
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Antonio Felipe Souza-Gomes
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - João Luís Vieira Monteiro de Barros
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana Maria Kakehasi
- Departamento do Aparelho Locomotor, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil
| | - Erica Leandro Marciano Vieira
- Centre for Addiction and Mental Health, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Albená Nunes-Silva
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
13
|
Vasile AI, Tiu C, Badiu C. Copeptin as biomarker for acute ischemic stroke prognosis and revascularization treatment efficacy. Front Neurol 2024; 15:1447355. [PMID: 39777314 PMCID: PMC11705377 DOI: 10.3389/fneur.2024.1447355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Pro-arginine vasopressin consists of three peptides: arginine-vasopressin, neurophysin II, and copeptin. AVP is released by the neurohypophysis in response to increased plasma osmolality, decreased blood volume and stress. Copeptin has the advantage of being stable ex vivo and easy to measure. New data show the importance of copeptin in ischemic stroke and its complications. Methods We present a literature review that highlights the importance of copeptin as a biological marker for stroke. We searched the Pubmed and Scopus databases for papers with the following keywords: "stroke AND copeptin." PRISMA criteria were used. Results We identified 332 papers that met the criteria. We excluded analyzed reviews, systematic reviews and meta-analyses. 31 articles resulted. The number of patients included in the analyzed studies varied between 18 and 4,302. Copeptin is a marker that associated with clinical stroke severity, infarct volume, short-term and long-term functionality and mortality and adds prognostic value to the previously used scales. It may reflect the effectiveness of revascularization therapy. Copeptin is a biomarker that can help predict post-stroke complications such as: cerebral edema and hemorrhagic transformation. Discussion Copeptin is a novel and promising biomarker for evaluating cerebrovascular diseases. Because it is considered a non-specific biomarker, it is not yet used routinely and it cannot replace the clinical examination. However, combined with other clinical or paraclinical parameters, it can increase the accuracy of the diagnosis.
Collapse
Affiliation(s)
- Antonia Ioana Vasile
- Neurology Department, University Emergency Hospital of Bucharest, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristina Tiu
- Neurology Department, University Emergency Hospital of Bucharest, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Corin Badiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Endocrinology IV, C.I. Parhon National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
14
|
Mardan M, Mamat M, Yasin P, Cai X, Zheng H, Xu Q, Song S, Li B, Cai H, Chen P, Lu Z, Omar S, Jiang S, Jiang L, Zheng X. Investigating the causal links between inflammatory cytokines and scoliosis through bidirectional Mendelian randomization analysis. JOR Spine 2024; 7:e70019. [PMID: 39664590 PMCID: PMC11632254 DOI: 10.1002/jsp2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Background Scoliosis, characterized by a lateral curvature of the spine, affects millions globally. The role of inflammatory cytokines in the pathogenesis of scoliosis is increasingly acknowledged, yet their causal relationships remain poorly defined. Aims This study aims to explore the genetic-level causal relationships between inflammatory cytokines and scoliosis utilizing bidirectional Mendelian randomization (MR) analysis. Materials and Methods This study leverages genetic data from public Genome-Wide Association Studies (GWAS). Bidirectional MR was employed to investigate the causal relationships between 44 inflammatory cytokines and scoliosis. The inflammatory cytokine data include 8293 Finnish individuals, while the scoliosis data consist of 165 850 participants of European descent, including 1168 scoliosis cases and 164 682 controls. Causal links were assessed using the inverse variance-weighted method, supplemented by MR-Egger, weighted median, and weighted mode analyses. Heterogeneity and pleiotropy were assessed using standard tests, with sensitivity analysis conducted through leave-one-out analysis. Results Our analysis demonstrated a significant causal association between the cytokine Resistin (RETN) and the development of scoliosis (p = 0.024, OR 95% CI = 1.344 [1.039-1.739]). No other cytokines among the 44 studied showed significant associations. Discussion The findings highlight the critical role of RETN in scoliosis progression and underscore the complex interplay of genetic and inflammatory pathways. Further research is needed to explore additional biomarkers and their mechanisms in scoliosis. Conclusion This study provides evidence of a significant causal relationship between RETN and scoliosis, emphasizing its potential as a therapeutic target. These findings contribute to understanding scoliosis pathogenesis and pave the way for future research on inflammation-related pathways and therapies.
Collapse
Affiliation(s)
- Muradil Mardan
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Mardan Mamat
- Department of Spine SurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Parhat Yasin
- Department of Spine SurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Xiaoyu Cai
- Department of Spine SurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Huoliang Zheng
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qingyin Xu
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shaokuan Song
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Bo Li
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Hao Cai
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Pengbo Chen
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Zeyu Lu
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shahna Omar
- Department of Research CommercializationWuxiChina
| | - Shengdan Jiang
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Leisheng Jiang
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Xin‐feng Zheng
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
15
|
Fortes YM, Souza-Gomes AF, Moreira ARS, Campos LN, de Moura SS, Barroso LSS, de Faria MHS, de Barros Fernandes H, de Miranda AS, Martins-Costa HC, Simões e Silva AC, Moreira JM, Nunes-Silva A. A single session of strength training changed plasma levels of resistin, but not leptin in overweight and obese men. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:324-330. [PMID: 39309458 PMCID: PMC11411330 DOI: 10.1016/j.smhs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 09/25/2024] Open
Abstract
Obesity has a complex multifactorial etiology and is characterized by excessive accumulation of adipose tissue. Visceral adipose tissue has deleterious effects on health because it secretes large amounts of inflammatory cytokines. Nutritional calorie restriction associated with strength training may be useful in managing chronic systemic inflammation. This study aimed to evaluate the acute effect of a single strength-training session on plasma adipokine levels in sedentary, overweight, and obese young men. This study included twelve men (Age: [34.95 ± 9.77] years; Height: [174.16 ± 3.66] centimeter [cm]; Weight: [97.83 ± 12.87] kilogram (kg); body mass index [BMI]: [32.30 ± 4.51] kg/m2), who performed a single strength training session. The strength training protocol consisted of 4 sets of 12 repetitions in the following six exercises, 45° leg press, bench press, leg extension, machine row, leg curl, and shoulder press. Blood samples were collected before, immediately after, and 1-h subsequent after strength training. The plasma levels of resistin and leptin were measured. A significant decrease in resistin levels were found 1 h after the strength training session if compared to levels before the training session (pre-[before] [2 390 ± 1 199] picograms per milliliter [pg/mL] vs post-1 h [1-h subsequent] [1 523 ± 798],6 pg/mL, p = 0.002 8). The plasma leptin levels did not differ at any time point. In conclusion, a very well controlled single session of strength training significantly decreased the plasma levels of resistin without altering the concentration of leptin in overweight and obese individuals. This effect, at least in part, supports the benefits of exercise by reducing the low grade inflammation and insulin resistance in obesity.
Collapse
Affiliation(s)
- Yago Martins Fortes
- Laboratory of Inflammation and Exercise Immunology, Department of Physical Education, School of Physical Education, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Postgraduate Program in Health and Nutrition, Nutrition School, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Antonio Felipe Souza-Gomes
- Laboratory of Inflammation and Exercise Immunology, Department of Physical Education, School of Physical Education, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Postgraduate Program in Health and Nutrition, Nutrition School, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alessandro Roberto Silveira Moreira
- Laboratory of Inflammation and Exercise Immunology, Department of Physical Education, School of Physical Education, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Postgraduate Program in Health and Nutrition, Nutrition School, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Leo Nogueira Campos
- Laboratory of Inflammation and Exercise Immunology, Department of Physical Education, School of Physical Education, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Samara Silva de Moura
- Postgraduate Program in Health and Nutrition, Nutrition School, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Lucélia Scarabeli Silva Barroso
- Laboratory of Inflammation and Exercise Immunology, Department of Physical Education, School of Physical Education, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Interdisciplinary Medical Research Laboratory, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Henrique Salviano de Faria
- Laboratory of Inflammation and Exercise Immunology, Department of Physical Education, School of Physical Education, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Interdisciplinary Medical Research Laboratory, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana de Barros Fernandes
- Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana Cristina Simões e Silva
- Interdisciplinary Medical Research Laboratory, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janaina Matos Moreira
- Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Albená Nunes-Silva
- Laboratory of Inflammation and Exercise Immunology, Department of Physical Education, School of Physical Education, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Postgraduate Program in Health and Nutrition, Nutrition School, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
16
|
Roca G, Sabate S, Serrano A, Benito MC, Pérez M, Revuelta M, Lorenzo A, Busquets J, Rodríguez G, Sanz D, Jiménez A, Parera A, de la Gala F, Montes A. Sex Differences in Chronic Postsurgical Pain after Open Thoracotomy. J Cardiothorac Vasc Anesth 2024; 38:3134-3142. [PMID: 39322441 DOI: 10.1053/j.jvca.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
STUDY OBJECTIVE To determine the incidence of chronic postsurgical pain (CPSP) in women after open thoracotomy. Secondary objectives were to compare relevant patient and procedural variables between women and men. DESIGN Observational cohort study. SETTING Ten university-affiliated hospitals. SUBJECTS Ninety-six women and 137 men. INTERVENTIONS Scheduled open thoracotomy. MEASUREMENTS Pain histories, psychological measures, and perceived health status and catastrophizing scores were obtained. The diagnosis of chronic postsurgical pain was by physical examination at 4 months. Standard preoperative, intraoperative, and postoperative data were also recorded. MAIN RESULTS The chronic postsurgical pain incidence was significantly higher in women (53.1%) than in men (38.0%) (p = 0.023). At baseline, women had significantly worse scores on psychological measures (perception of mental state [p = 0.01], depression [p = 0.006], and catastrophizing [p < 0.001]). Women also reported more preoperative pain in the operative area (p = 0.011) and other areas (p = 0.030). CONCLUSION These findings show that the incidence of physician-diagnosed chronic postsurgical pain is higher in women than in men after surgeries involving thoracotomy. Sex and gender should be included in future clinical research on pain in surgical settings.
Collapse
Affiliation(s)
- Gisela Roca
- Pain Unit, Department of Anesthesiology, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Sergi Sabate
- Department of Anesthesiology, Pain Unit, Hospital Universitari de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ancor Serrano
- Pain Unit, Department of Anesthesiology, Hospital Universitari Bellvitge, Universitat de Barcelona, Hospitalet del Llobregat, Spain
| | - María Carmen Benito
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - María Pérez
- Pain Unit, Department of Anesthesiology, Hospital Clinico Universitario de Valladolid, Universidad de Valladolid, Valladolid, Spain
| | - Miren Revuelta
- Department of Anesthesiology, Pain Unit, Hospital Universitari de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ana Lorenzo
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi Busquets
- Pain Unit, Department of Anesthesiology, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Gema Rodríguez
- Pain Unit, Department of Anesthesiology, Hospital Clinico Universitario de Valladolid, Universidad de Valladolid, Valladolid, Spain
| | - David Sanz
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - Anabel Jiménez
- Pain Unit, Department of Anesthesiology, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Ana Parera
- Department of Anesthesiology, Pain Unit, Hospital Universitari de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Francisco de la Gala
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Montes
- Department of Anesthesiology, Parc de Salut MAR, Institut Municipal d'Investigació Médica, Universitat Autónoma de Barcelona, Spain.
| |
Collapse
|
17
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Yan Y, Wang L, Zhong N, Wen D, Liu L. Multifaced roles of adipokines in endothelial cell function. Front Endocrinol (Lausanne) 2024; 15:1490143. [PMID: 39558976 PMCID: PMC11570283 DOI: 10.3389/fendo.2024.1490143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity significantly contributes to the progression of cardiovascular diseases (CVDs) and elevates the risk of cardiovascular mortality. Atherosclerosis, the primary pathogenic process underlying CVDs, initiates with vascular endothelial dysfunction, serving as the cornerstone of vascular lesions. Adipokines, bioactive molecules secreted by adipose tissue that regulate metabolic and endocrine functions, play a pivotal role in modulating endothelial function during atherosclerosis. This review comprehensively examines the distinct roles of various adipokines in regulating endothelial function in atherosclerosis. We categorize these adipokines into two main groups: protective adipokines, including adiponectin, FGF21, CTRP9, PGRN, Omentin, and Vaspin, and detrimental adipokines such as leptin, Chemerin, Resistin, FABP4, among others. Targeting specific adipokines holds promise for novel clinical interventions in the management of atherosclerosis-related CVDs, thereby providing a theoretical foundation for cardiovascular disease treatment strategies.
Collapse
Affiliation(s)
- Yu Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lihui Wang
- Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ni Zhong
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Donghua Wen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
Bergman BC, Zemski Berry K, Garfield A, Keller A, Zarini S, Bowen S, McKenna C, Kahn D, Pavelka J, Macias E, Uhlson C, Johnson C, Russ HA, Viesi CH, Seldin M, Liu C, Doliba N, Schoen J, Rothchild K, Hazel K, Naji A. Human peripancreatic adipose tissue paracrine signaling impacts insulin secretion, blood flow, and gene transcription. J Clin Endocrinol Metab 2024:dgae767. [PMID: 39484843 DOI: 10.1210/clinem/dgae767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT Adipose tissue accumulation around non-adipose tissues is associated with obesity and metabolic disease. One relatively unstudied depot is peripancreatic adipose tissue (PAT) that accumulates in obesity and insulin resistance and may impact beta cell function. Pancreatic lipid accumulation and PAT content are negatively related to metabolic outcomes in humans, but these studies are limited by the inability to pursue mechanisms. OBJECTIVE We obtained PAT from human donors through the Human Pancreas Analysis Program to evaluate differences in paracrine signaling compared to subcutaneous adipose tissue (SAT), as well as effects of the PAT secretome on aortic vasodilation, human islet insulin secretion, and gene transcription using RNAseq. RESULTS PAT had greater secretion of IFN-γ and most inflammatory eicosanoids compared to SAT. Secretion of adipokines negatively related to metabolic health were also increased in PAT compared to SAT. We found no overall effects of PAT compared to SAT on human islet insulin secretion, however, insulin secretion was suppressed after PAT exposure from men compared to women. Vasodilation was significantly dampened by PAT conditioned media, an effect explained almost completely by PAT from men and not women. Islets treated with PAT showed selective changes in lipid metabolism pathways while SAT altered cellular signaling and growth. RNAseq analysis showed changes in islet gene transcription impacted by PAT compared to SAT, with the biggest changes found between PAT based on sex. CONCLUSION The PAT secretome is metabolically negative compared to SAT, and impacts islet insulin secretion, blood flow, and gene transcription in a sex dependent manner.
Collapse
Affiliation(s)
- Bryan C Bergman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karin Zemski Berry
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amy Keller
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Simona Zarini
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sophia Bowen
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colleen McKenna
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Darcy Kahn
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Pavelka
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Macias
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charis Uhlson
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Johnson
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Holger A Russ
- College of Medicine, Department of Pharmacology and Therapeutics, University of Florida USA
- Diabetes Institute, University of Florida USA
| | - Carlos H Viesi
- Department of Biological Chemistry and the Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry and the Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Chengyang Liu
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Nicolai Doliba
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Jonathan Schoen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin Rothchild
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kweku Hazel
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ali Naji
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
20
|
Hirano A, Sakashita A, Fujii W, Baßler K, Tsuji T, Kadoya M, Omoto A, Hiraoka N, Imabayashi T, Kaneko Y, Sofue H, Maehara Y, Seno T, Wada M, Kohno M, Fukuda W, Yamada K, Takayama K, Kawahito Y. Immunological characteristics of bronchoalveolar lavage fluid and blood across connective tissue disease-associated interstitial lung diseases. Front Immunol 2024; 15:1408880. [PMID: 39524435 PMCID: PMC11543407 DOI: 10.3389/fimmu.2024.1408880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Interstitial lung disease (ILD) is a serious complication of connective tissue diseases (CTDs). The heterogeneity of ILDs reflects differences in pathogenesis among diseases. This study aimed to clarify the characteristics of CTD-ILDs via a detailed analysis of the bronchoalveolar lavage fluid (BALF) and blood immune cells. BALF and blood samples were collected from 39 Japanese patients with newly diagnosed ILD: five patients with Sjögren's syndrome (SS), eight patients with dermatomyositis (DM), six patients with rheumatoid arthritis (RA), six patients with systemic sclerosis, four patients with anti-neutrophil cytoplasmic antibody-associated vasculitis, and 10 patients with idiopathic interstitial pneumonia. We performed single-cell RNA sequencing to analyze the gene expression profiles in these patients' immune cells. In patients with SS, B cells in the BALF were increased and genes associated with the innate and acquired immunity were enriched in both the BALF and blood. In contrast, patients with DM showed an upregulation of genes associated with viral infection in both the BALF and blood. In patients with RA, neutrophils in the BALF tended to increase, and their gene expression patterns changed towards inflammation. These disease-specific characteristics may help us understand the pathogenesis for each disease and discover potential biomarkers.
Collapse
Affiliation(s)
- Aiko Hirano
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aki Sakashita
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Fujii
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Taisuke Tsuji
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Masatoshi Kadoya
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Atsushi Omoto
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Noriya Hiraoka
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Tatsuya Imabayashi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideaki Sofue
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Maehara
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Seno
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Wada
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masataka Kohno
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Fukuda
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
21
|
Economou A, Mallia I, Fioravanti A, Gentileschi S, Nacci F, Bellando Randone S, Lepri G, Guiducci S. The Role of Adipokines between Genders in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2024; 25:10865. [PMID: 39409194 PMCID: PMC11476677 DOI: 10.3390/ijms251910865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, degenerative joint disease characterized by joint pain, stiffness, and limited movement. It presents significant intra- and inter-individual variability-in particular, between genders. Recent research has increasingly focused on the role of adipokines-especially leptin, adiponectin, and resistin-in the development of OA. Adipokines, peptide hormones primarily secreted by adipose tissue, are involved in crucial physiological processes related to metabolism and immunity. They can also impact bone and cartilage turnover by interacting with joint cells such as osteoblasts, osteoclasts, chondrocytes, and mesenchymal stem cells, thereby linking inflammation with bone cartilage homeostasis. This review aims to elucidate the structure and functions of various adipokines, their serum and synovial levels, and their association with clinical presentation and radiographic progression in OA patients, with a focus on differences between sexes. A narrative literature review was conducted using three databases specifically analyzing sex differences. OA patients generally show elevated serum and synovial levels of leptin, chemerin, and visfatin, as well as high plasma levels of resistin and visfatin. In contrast, synovial levels of adiponectin and omentin are reduced in OA patients compared to healthy individuals, with an inverse relationship to disease severity, suggesting a potential protective role. Resistin and leptin were positively correlated with pain severity and radiographic progression, while adiponectin's role in OA remains controversial. Regarding sex differences, male OA patients exhibited higher serum levels of leptin, chemerin, and omentin compared to healthy controls, with a positive correlation to the BMI and estrogen levels, potentially explaining the sexual dimorphism observed in this condition. Studies on visfatin and lipocalin did not reveal significant differences in synovial or serum levels between the sexes. The role of resistin remains controversial. Adipokines influence the joint microenvironment and contribute to the progression of osteoarthritis (OA). However, the precise biological mechanisms are not yet fully understood due to the complex interactions between the metabolic, mechanical, and immune systems. Further research is needed to clarify their roles in OA and to identify targeted therapies for managing this degenerative disease.
Collapse
Affiliation(s)
- Alessio Economou
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Ilenia Mallia
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Stefano Gentileschi
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Francesca Nacci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Silvia Bellando Randone
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Gemma Lepri
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Serena Guiducci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| |
Collapse
|
22
|
Yang J, Chen Y, Zhang S, Gao X. Clinical significance of RETN gene expression and rs3219175 G > a polymorphism in cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-11. [PMID: 39324380 DOI: 10.1080/15257770.2024.2408735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/21/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The inflammatory cytokine resistin, which is encoded by the RETN gene, plays a variety of roles in cancer. This study aimed to assess the relationship between RETN gene expression and cancer stage, survival prognosis, immune infiltration, and drug sensitivity, and whether the rs3219175 G > A polymorphism affected the expression of the RETN gene and cancer risk. The clinical significance of RETN gene expression and the rs3219175 polymorphism in cancer was analyzed by the GSCA platform, GTEx database and STATA software. The results showed that RETN gene expression was associated with the stage of thyroid carcinoma, survival prognosis and immune infiltration of certain cancers, and sensitivity to multiple drugs. The rs3219175 polymorphism could influence the expression of the RETN gene in a wide range of tissues. Furthermore, RETN gene rs3219175 polymorphism was significantly associated with cancer risk [GA vs. GG: OR = 2.27, 95%CI = 1.26-4.09; (GA + AA) vs. GG: OR = 2.23, 95%CI = 1.28-3.88; A vs. G: OR = 1.72, 95%CI = 1.15-2.58]. In conclusion, the current study suggested that resistin might serve as a prognostic marker and therapeutic target for certain cancers, and the rs3219175 polymorphism might be used as a marker for predicting cancer risk.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuqing Chen
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Shulong Zhang
- Department of General Surgery, Xuhui District Central Hospital of Shanghai, Shanghai, China
| | - Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| |
Collapse
|
23
|
Ozmen F, Şahin TT, Dolgun A, Ozmen MM. Changes in serum ghrelin and resistin levels after sleeve gastrectomy versus one anastomosis gastric bypass: prospective cohort study. Int J Surg 2024; 110:5434-5443. [PMID: 38833355 PMCID: PMC11392113 DOI: 10.1097/js9.0000000000001608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Humoral factors and neural mechanisms play a central role in the pathogenesis of obesity and in weight loss following bariatric surgery. Although various hormones and adipokines, including ghrelin and resistin, are linked to obesity, studies analyzing the changes in fasting ghrelin and resistin levels in patients following one anastomosis gastric bypass (OAGB) are lacking. AIM The authors aimed to investigate resistin and ghrelin levels before and after two commonly used bariatric procedures with different mechanisms of action: sleeve gastrectomy (SG) and OAGB. PATIENTS AND METHODS Fasting serum ghrelin and resistin levels were evaluated by using ELISA in a nonrandomized, prospective cohort study for the pattern of changes in the preoperative period and 1 week, 1 month, 3 months and, 12 months after surgery in age and sex-matched patients with BMI ≥40 kg/m 2 undergoing either SG ( n =40) or OAGB ( n =40). Their relationships with demographic parameters such as body weight, BMI, presence of T2DM, HbA 1 C, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index were also evaluated. RESULTS OAGB was superior in weight control compared to the SG group. There were significant differences in resistin and ghrelin levels between the OAGB and SG groups. Ghrelin decreased more in the SG group than the preoperative values. This change in ghrelin levels was more significant at 1 year after SG [preoperative mean (range) level of 334.2 (36.6-972.1) pg/ml decreased to 84 (9.1-227) pg/ml at 1 year] whereas in the OAGB group no significant change was observed [preoperative mean (range) level of 310 (146-548) pg/ml decreased to 264 (112-418) pg/ml at 1 year]. Resistin levels decreased in both groups, especially after 3 months and onward following both operations [the mean (range) resistin levels were 2.6 (0.87-5.4) ng/ml and decreased to 1.1 (0.5-2.4) ng/ml in the SG group vs 2.48 (0.89-6.43) ng/ml decreased to 0.72 (0.35-1.8) ng/ml in OAGB group at 1 year], which was in parallel with changes in HOMA-IR index, body weight, and BMI changes at 1st year. HOMA-IR index changes were similar, but more prominent after OAGB. OAGB was als3 three months and onward), and HOMA-IR changes. CONCLUSION This is the first study to compare fasting ghrelin and resistin levels after OAGB and SG. Although similar changes were observed, ghrelin changes were more prominent after SG, whereas resistin were observed after OAGB. OAGB was superior in T2DM control, which was in parallel with weight loss, fasting resistin levels, and HOMA-IR changes suggesting a possible effect of resistin after OAGB in glucose metabolism and insulin resistance.
Collapse
Affiliation(s)
- Fusun Ozmen
- Department of Basic Oncology, Cancer Institute, Hacettepe University
| | - Tevfik T. Şahin
- Depatment of Surgery, Medical School, Hacettepe University
- Liver Transplant Institute, Inonu University, Malatya
| | - Anil Dolgun
- Department of Biostatistics, Medical School, Hacettepe University, Ankara
| | - M. Mahir Ozmen
- Depatment of Surgery, Medical School, Hacettepe University
- Department of Surgery, Faculty of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
- Department of Surgery, Faculty of Medicine, University of La Sapienza, Rome, Italy
| |
Collapse
|
24
|
Chan HTL, Chan KM, Abhreet-Kaur, Sam SW, Chan SW. A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon). Foods 2024; 13:2740. [PMID: 39272505 PMCID: PMC11394486 DOI: 10.3390/foods13172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Solanaceae, commonly known as nightshade, is a diverse family of flowering plants comprising around 90 genera and an estimated 3000-4000 species. Solanaceae spp. and its various fruits, including pepino (Solanum muricatum), commonly known as pepino melon, are widely recognized by the public for their nutritional value and pharmacological effects. Pepino melon, in particular, is often enjoyed as a fresh dessert or salad due to its juicy flesh. Given its beneficial properties, the potential of pepino melon to be developed as a functional food has been extensively studied. This review aims to provide a comprehensive summary of the reported pharmacological effects of the active compounds found in pepino plant and melon. Among these compounds, polyphenols, notably quercetin, and vitamin C have demonstrated notable antioxidant properties such as scavenging free radicals, effectively protecting against free-radical damage. Moreover, these active ingredients provide pepino with anti-inflammatory properties by inhibiting the expression of proinflammatory cytokines and enzymes, thereby reducing nitric oxide production. Additionally, they have shown promise in selectively targeting cancer cells, exhibiting anti-cancer properties. Furthermore, the active compounds such as quercetin in pepino have been associated with anti-diabetic effects, improving insulin sensitivity and inhibiting insulin resistance. Overall, this review highlights the diverse and significant pharmacological effects of the active compounds found in pepino melon, emphasizing its potential as a valuable functional food.
Collapse
Affiliation(s)
- Hei-Tung Lydia Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Ka-Man Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Abhreet-Kaur
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Sze-Wing Sam
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Shun-Wan Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| |
Collapse
|
25
|
Bârsan IC, Iluţ S, Tohănean N, Pop RM, Vesa ŞC, Perju-Dumbravă L. Development and Validation of a Predictive Score for Three-Year Mortality in Acute Ischemic Stroke Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1413. [PMID: 39336454 PMCID: PMC11434564 DOI: 10.3390/medicina60091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Acute ischemic stroke (AIS) is a leading cause of death and disability with poor long-term outcomes. Creating a predictive score for long-term mortality in AIS might be important for optimizing treatment strategies. The aim of this study is to develop and validate a predictive score for three-year mortality in patients with AIS using several demographic, clinical, laboratory and imaging parameters. Materials and Methods: This study included 244 AIS patients admitted to a tertiary center and followed up for three years. The patients' data included demographics, clinical features, laboratory tests (including resistin and leptin levels) and imaging parameters. The patients were randomly divided into a predictive group (n = 164) and a validation group (n = 80). Results: Advanced age, a high NIHSS score, low levels of hemoglobin, elevated resistin levels and the presence of carotid plaques were independently associated with three-year mortality. The predictive model incorporated these variables, and it was validated in a separate cohort. Leptin levels did not significantly predict mortality. Conclusions: This study developed and validated a promising predictive score for three-year mortality in patients with AIS. Advanced age, high NIHSS scores, low hemoglobin levels, elevated resistin levels and the presence of carotid plaques were the independent predictors of long-term mortality.
Collapse
Affiliation(s)
- Ioana Cristina Bârsan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Silvina Iluţ
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicoleta Tohănean
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ştefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Lăcrămioara Perju-Dumbravă
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Bârsan IC, Iluţ S, Tohănean N, Pop R, Vesa ŞC, Perju-Dumbravă L. Resistin and In-Hospital Mortality in Patients with Acute Ischemic Stroke: A Prospective Study. J Clin Med 2024; 13:4889. [PMID: 39201031 PMCID: PMC11355181 DOI: 10.3390/jcm13164889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Understanding the prognostic factors of acute ischemic stroke (AIS) is essential for improving patient outcomes. The aim of this study was to establish the predictive role of plasmatic resistin and leptin on short-term mortality in adult patients with a first episode of AIS. Methods: This study enrolled 277 patients who were consecutively hospitalized for AIS. Demographic data, cardiovascular risk, comorbidities, and laboratory tests were collected. Death was noted if it occurred during hospitalization. Results: Death was recorded in 33 (11.9%) patients. Conducting multivariate analysis, the following variables were independent variables associated with in-hospital mortality: a resistin value of >11 ng/mL (OR 10.81 (95%CI 2.31;50.57), p = 0.002), a lesion volume of >18.8 mL (OR 4.87 (95%CI 1.87;12.67), p = 0.001), a NIHSS score of >7 (OR 5.88 (95%CI 2.01;17.16), p = 0.001), and the presence of IHD (OR 4.33 (95%CI 1.66;11.27), p = 0.003). This study has some limitations: single-center design (which may affect the generalizability of the results) and the potential impact of the COVID-19 pandemic on patient outcomes. Conclusions: This study demonstrated that resistin is a significant predictor of in-hospital mortality in AIS patients. Other established factors, such as a high NIHSS score, large lesion volume, and the presence of IHD, were reaffirmed as important predictors.
Collapse
Affiliation(s)
- Ioana Cristina Bârsan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Silvina Iluţ
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (N.T.); (L.P.-D.)
| | - Nicoleta Tohănean
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (N.T.); (L.P.-D.)
| | - Raluca Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (Ş.C.V.)
| | - Ştefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (Ş.C.V.)
| | - Lăcrămioara Perju-Dumbravă
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (N.T.); (L.P.-D.)
| |
Collapse
|
27
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
28
|
Bandala C, Carro-Rodríguez J, Cárdenas-Rodríguez N, Peña-Montero I, Gómez-López M, Hernández-Roldán AP, Huerta-Cruz JC, Muñoz-González F, Ignacio-Mejía I, Domínguez B, Lara-Padilla E. Comparative Effects of Gymnema sylvestre and Berberine on Adipokines, Body Composition, and Metabolic Parameters in Obese Patients: A Randomized Study. Nutrients 2024; 16:2284. [PMID: 39064727 PMCID: PMC11280467 DOI: 10.3390/nu16142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Gymnema sylvestre (GS) and berberine (BBR) are natural products that have demonstrated therapeutic potential for the management of obesity and its comorbidities, as effective and safe alternatives to synthetic drugs. Although their anti-obesogenic and antidiabetic properties have been widely studied, comparative research on their impact on the gene expression of adipokines, such as resistin (Res), omentin (Ome), visfatin (Vis) and apelin (Ap), has not been reported. METHODOLOGY We performed a comparative study in 50 adult Mexican patients with obesity treated with GS or BBR for 3 months. The baseline and final biochemical parameters, body composition, blood pressure, gene expression of Res, Ome, Vis, and Ap, and safety parameters were evaluated. RESULTS BBR significantly decreased (p < 0.05) body weight, blood pressure and Vis and Ap gene expression and increased Ome, while GS decreased fasting glucose and Res gene expression (p < 0.05). A comparative analysis of the final measurements revealed a lower gene expression of Ap and Vis (p < 0.05) in patients treated with BBR than in those treated with GS. The most frequent adverse effects in both groups were gastrointestinal symptoms, which attenuated during the first month of treatment. CONCLUSION In patients with obesity, BBR has a better effect on body composition, blood pressure, and the gene expression of adipokines related to metabolic risk, while GS has a better effect on fasting glucose and adipokines related to insulin resistance, with minimal side effects.
Collapse
Affiliation(s)
- Cindy Bandala
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Jazmín Carro-Rodríguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | | | - Itzel Peña-Montero
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Modesto Gómez-López
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Ana Paola Hernández-Roldán
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, Secretaria de Salud, Mexico City 14080, Mexico;
| | - Felipe Muñoz-González
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Mexico City 11340, Mexico
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados en Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Brayan Domínguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Eleazar Lara-Padilla
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| |
Collapse
|
29
|
Ryyti R, Hämäläinen M, Tolonen T, Mäki M, Jaakkola M, Peltola R, Moilanen E. Lingonberry ( Vaccinium vitis- idaea L.) Skin Extract Prevents Weight Gain and Hyperglycemia in High-Fat Diet-Induced Model of Obesity in Mice. Nutrients 2024; 16:2107. [PMID: 38999854 PMCID: PMC11243352 DOI: 10.3390/nu16132107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The percentage of obese people is increasing worldwide, causing versatile health problems. Obesity is connected to diseases such as diabetes and cardiovascular diseases, which are preceded by a state called metabolic syndrome. Diets rich in fruits and vegetables have been reported to decrease the risk of metabolic syndrome and type 2 diabetes. Berries with a high polyphenol content, including lingonberry (Vaccinium vitis-idaea L.), have also been of interest to possibly prevent obesity-induced metabolic disturbances. In the present study, we prepared an extract from the by-product of a lingonberry juice production process (press cake/pomace) and investigated its metabolic effects in the high-fat diet-induced model of obesity in mice. The lingonberry skin extract partly prevented weight and epididymal fat gain as well as a rise in fasting glucose level in high-fat diet-fed mice. The extract also attenuated high-fat diet-induced glucose intolerance as measured by an intraperitoneal glucose tolerance test (IPGTT). The extract had no effect on the levels of cholesterol, triglyceride or the adipokines adiponectin, leptin, or resistin. The results extend previous data on the beneficial metabolic effects of lingonberry. Further research is needed to explore the mechanisms behind these effects and to develop further health-promoting lingonberry applications.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Tiina Tolonen
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, 87400 Kajaani, Finland
| | - Marianne Mäki
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, 87400 Kajaani, Finland
| | - Mari Jaakkola
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, 87400 Kajaani, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96200 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| |
Collapse
|
30
|
Risi R, Vidal-Puig A, Bidault G. An adipocentric perspective of pancreatic lipotoxicity in diabetes pathogenesis. J Endocrinol 2024; 262:e230313. [PMID: 38642584 PMCID: PMC11227041 DOI: 10.1530/joe-23-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Obesity and diabetes represent two increasing and invalidating public health issues that often coexist. It is acknowledged that fat mass excess predisposes to insulin resistance and type 2 diabetes mellitus (T2D), with the increasing incidence of the two diseases significantly associated. Moreover, emerging evidence suggests that obesity might also accelerate the appearance of type 1 diabetes (T1D), which is now a relatively frequent comorbidity in patients with obesity. It is a common clinical finding that not all patients with obesity will develop diabetes at the same level of adiposity, with gender, genetic, and ethnic factors playing an important role in defining the timing of diabetes appearance. The adipose tissue (AT) expandability hypothesis explains this paradigm, indicating that the individual capacity to appropriately store energy surplus in the form of fat within the AT determines and prevents the toxic deposition of lipids in other organs, such as the pancreas. Thus, we posit that when the maximal storing capacity of AT is exceeded, individuals will develop T2D. In this review, we provide insight into mechanisms by which the AT controls pancreas lipid content and homeostasis in case of obesity to offer an adipocentric perspective of pancreatic lipotoxicity in the pathogenesis of diabetes. Moreover, we suggest that improving AT function is a valid therapeutic approach to fighting obesity-associated complications including diabetes.
Collapse
Affiliation(s)
- Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Sapienza University of Rome, Rome, Italy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
31
|
Maylem ERS, Schütz LF, Spicer LJ. The role of asprosin in regulating ovarian granulosa- and theca-cell steroidogenesis: a review with comparisons to other adipokines. Reprod Fertil Dev 2024; 36:RD24027. [PMID: 39074236 DOI: 10.1071/rd24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.
Collapse
Affiliation(s)
- Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
32
|
Trandafir MF, Savu OI, Gheorghiu M. The Complex Immunological Alterations in Patients with Type 2 Diabetes Mellitus on Hemodialysis. J Clin Med 2024; 13:3687. [PMID: 38999253 PMCID: PMC11242658 DOI: 10.3390/jcm13133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
It is widely known that diabetes mellitus negatively impacts both the innate immunity (the inflammatory response) and the acquired immunity (the humoral and cellular immune responses). Many patients with diabetes go on to develop chronic kidney disease, which will necessitate hemodialysis. In turn, long-term chronic hemodialysis generates an additional chronic inflammatory response and impairs acquired immunity. The purpose of this paper is to outline and compare the mechanisms that are the basis of the constant aggression towards self-components that affects patients with diabetes on hemodialysis, in order to find possible new therapeutic ways to improve the functionality of the immune system. Our study will take a detailed look at the mechanisms of endothelial alteration in diabetes and hemodialysis, at the mechanisms of inflammatory generation and signaling at different levels and also at the mechanisms of inflammation-induced insulin resistance. It will also discuss the alterations in leukocyte chemotaxis, antigen recognition and the dysfunctionalities in neutrophils and macrophages. Regarding acquired immunity, we will outline the behavioral alterations of T and B lymphocytes induced by diabetes mellitus and chronic hemodialysis.
Collapse
Affiliation(s)
- Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Octavian Ionel Savu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
33
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
34
|
Mocanu V, Timofte DV, Zară-Dănceanu CM, Labusca L. Obesity, Metabolic Syndrome, and Osteoarthritis Require Integrative Understanding and Management. Biomedicines 2024; 12:1262. [PMID: 38927469 PMCID: PMC11201254 DOI: 10.3390/biomedicines12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a progressive chronic disease affecting the articular joints, leading to pain and disability. Unlike traditional views that primarily link OA to aging, recent understanding portrays it as a multifactorial degenerative disease of the entire joint. Emerging research highlights metabolic and immune dysregulation in OA pathogenesis, emphasizing the roles of obesity, dyslipidemia, and insulin resistance in altering joint homeostasis. Recent studies have increasingly focused on the complex role of white adipose tissue (WAT) in OA. WAT not only serves metabolic functions but also plays a critical role in systemic inflammation through the release of various adipokines. These adipokines, including leptin and adiponectin, have been implicated in exacerbating cartilage erosion and promoting inflammatory pathways within joint tissues. The overlapping global crises of obesity and metabolic syndrome have significantly impacted joint health. Obesity, now understood to contribute to mechanical joint overload and metabolic dysregulation, heightens the risk of developing OA, particularly in the knee. Metabolic syndrome compounds these risks by inducing chronic inflammation and altering macrophage activity within the joints. The multifaceted effects of obesity and metabolic syndrome extend beyond simple joint loading. These conditions disrupt normal joint function by modifying tissue composition, promoting inflammatory macrophage polarization, and impairing chondrocyte metabolism. These changes contribute to OA progression, highlighting the need for targeted therapeutic strategies that address both the mechanical and biochemical aspects of the disease. Recent advances in understanding the molecular pathways involved in OA suggest potential therapeutic targets. Interventions that modulate macrophage polarization, improve chondrocyte function, or normalize adipokine levels could serve as preventative or disease-modifying therapies. Exploring the role of diet, exercise, and pharmacological interventions in modulating these pathways offers promising avenues for reducing the burden of OA. Furthermore, such methods could prove cost-effective, avoiding the increase in access to healthcare.
Collapse
Affiliation(s)
- Veronica Mocanu
- Center for Obesity BioBehavioral Experimental Research, Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Camelia-Mihaela Zară-Dănceanu
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
| | - Luminita Labusca
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
- Department of Orthopedics, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania
| |
Collapse
|
35
|
Chong S, Mu G, Cen X, Xiang Q, Cui Y. Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 2024; 53:57. [PMID: 38757360 PMCID: PMC11093556 DOI: 10.3892/ijmm.2024.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
Collapse
Affiliation(s)
- Shan Chong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
36
|
Daidone M, Casuccio A, Puleo MG, Del Cuore A, Pacinella G, Di Chiara T, Di Raimondo D, Immordino P, Tuttolomondo A. Mediterranean diet effects on vascular health and serum levels of adipokines and ceramides. PLoS One 2024; 19:e0300844. [PMID: 38809909 PMCID: PMC11135776 DOI: 10.1371/journal.pone.0300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND A randomized clinical trial to evaluate the effect of a Mediterranean-style diet on vascular health indices such as endothelial function indices, serum lipid and ceramide plasma and some adipokine serum levels. We recruited all consecutive patients at high risk of cardiovascular diseases admitted to the Internal Medicine and Stroke Care ward at the University Hospital of Palermo between September 2017 and December 2020. MATERIALS AND METHODS The enrolled subjects, after the evaluation of the degree of adherence to a dietary regimen of the Mediterranean-style diet, were randomised to a Mediterranean Diet (group A) assessing the adherence to a Mediterranean-style diet at each follow up visit (every three months) for the entire duration of the study (twelve months) and to a Low-fat diet (group B) with a dietary "counselling" starting every three months for the entire duration of the study (twelve months).The aims of the study were to evaluate: the effects of adherence to Mediterranean Diet on some surrogate markers of vascular damage, such as endothelial function measured by means of the reactive hyperaemia index (RHI) and augmentation index (AIX), at the 6-(T1) and 12-month (T2) follow-ups; the effects of adherence to Mediterranean Diet on the lipidaemic profile and on serum levels of ceramides at T1 and T2 follow-ups; the effects of adherence to Mediterranean Diet on serum levels of visfatin, adiponectin and resistin at the 6- and 12-month follow-ups. RESULTS A total of 101 patients were randomised to a Mediterranean Diet style and 52 control subjects were randomised to a low-fat diet with a dietary "counselling". At the six-month follow-up (T1), subjects in the Mediterranean Diet group showed significantly lower mean serum total cholesterol levels, and significantly higher increase in reactive hyperaemia index (RHI) values compared to the low-fat diet group. Patients in the Mediterranean Diet group also showed lower serum levels of resistin and visfatin at the six-month follow-up compared to the control group, as well as higher values of adiponectin, lower values of C24:0, higher values of C22:0 and higher values of the C24:0/C16:0 ratio. At the twelve-month follow-up (T2), subjects in the Mediterranean Diet group showed lower serum total cholesterol levels and lower serum LDL cholesterol levels than those in the control group. At the twelve-month follow-up, we also observed a further significant increase in the mean RHI in the Mediterranean Diet group, lower serum levels of resistin and visfatin, lower values of C24:0 and of C:18:0,and higher values of the C24:0/C16:0 ratio. DISCUSSION The findings of our current study offer a further possible explanation with regard to the beneficial effects of a higher degree of adherence to a Mediterranean-style diet on multiple cardiovascular risk factors and the underlying mechanisms of atherosclerosis. Moreover, these findings provide an additional plausible interpretation of the results from observational and cohort studies linking high adherence to a Mediterranean-style diet with lower total mortality and a decrease in cardiovascular events and cardiovascular mortality. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04873167. https://classic.clinicaltrials.gov/ct2/show/NCT04873167.
Collapse
Affiliation(s)
- Mario Daidone
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Alessandra Casuccio
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Maria Grazia Puleo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Alessandro Del Cuore
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Gaetano Pacinella
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Tiziana Di Chiara
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Domenico Di Raimondo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Palmira Immordino
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
| | - Antonino Tuttolomondo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| |
Collapse
|
37
|
Yang HM, Kim J, Kim BK, Seo HJ, Kim JY, Lee JE, Lee J, You J, Jin S, Kwon YW, Jang HD, Kim HS. Resistin Regulates Inflammation and Insulin Resistance in Humans via the Endocannabinoid System. RESEARCH (WASHINGTON, D.C.) 2024; 7:0326. [PMID: 39050819 PMCID: PMC11267475 DOI: 10.34133/research.0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/01/2024] [Indexed: 07/27/2024]
Abstract
Resistin plays an important role in the pathophysiology of obesity-mediated insulin resistance in mice. However, the biology of resistin in humans is quite different from that in rodents. Therefore, the association between resistin and insulin resistance remains unclear in humans. Here, we tested whether and how the endocannabinoid system (ECS) control circulating peripheral blood mononuclear cells (PBMCs) that produce resistin and infiltrate into the adipose tissue, heart, skeletal muscle, and liver, resulting in inflammation and insulin resistance. Using human PBMCs, we investigate whether the ECS is connected to human resistin. To test whether the ECS regulates inflammation and insulin resistance in vivo, we used 2 animal models such as "humanized" nonobese diabetic/Shi-severe combined immunodeficient interleukin-2Rγ (null) (NOG) mice and "humanized" resistin mouse models, which mimic human body. In human atheromatous plaques, cannabinoid 1 receptor (CB1R)-positive macrophage was colocalized with the resistin expression. In addition, resistin was exclusively expressed in the sorted CB1R-positive cells from human PBMCs. In CB1R-positive cells, endocannabinoid ligands induced resistin expression via the p38-Sp1 pathway. In both mouse models, a high-fat diet increased the accumulation of endocannabinoid ligands in adipose tissue, which recruited the CB1R-positive cells that secrete resistin, leading to adipose tissue inflammation and insulin resistance. This phenomenon was suppressed by CB1R blockade or in resistin knockout mice. Interestingly, this process was accompanied by mitochondrial change that was induced by resistin treatment. These results provide important insights into the ECS-resistin axis, leading to the development of metabolic diseases. Therefore, the regulation of resistin via the CB1R could be a potential therapeutic strategy for cardiometabolic diseases.
Collapse
Affiliation(s)
- Han-Mo Yang
- Department of Internal Medicine,
Seoul National University Hospital, Seoul, Korea
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Baek-Kyung Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyun Ju Seo
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Ju-Young Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Joo-Eun Lee
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Jaewon Lee
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Jihye You
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Sooryeonhwa Jin
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyun-Duk Jang
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine,
Seoul National University Hospital, Seoul, Korea
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences,
Seoul National University, Seoul, 03080, Korea
| |
Collapse
|
38
|
Abhinav K, Lee AG, Pendharkar AV, Bigder M, Bet A, Rosenberg-Hasson Y, Cheng MY, Steinberg GK. Comprehensive Profiling of Secreted Factors in the Cerebrospinal Fluid of Moyamoya Disease Patients. Transl Stroke Res 2024; 15:399-408. [PMID: 36745304 PMCID: PMC10891229 DOI: 10.1007/s12975-023-01135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Moyamoya disease (MMD) is characterized by progressive occlusion of the intracranial internal carotid arteries, leading to ischemic and hemorrhagic events. Significant clinical differences exist between ischemic and hemorrhagic MMD. To understand the molecular profiles in the cerebrospinal fluid (CSF) of MMD patients, we investigated 62 secreted factors in both MMD subtypes (ischemic and hemorrhagic) and examined their relationship with preoperative perfusion status, the extent of postoperative angiographic revascularization, and functional outcomes. Intraoperative CSF was collected from 32 control and 71 MMD patients (37 ischemic and 34 hemorrhagic). Multiplex Luminex assay analysis showed that 41 molecules were significantly elevated in both MMD subtypes when compared to controls, including platelet-derived growth factor-BB (PDGF-BB), plasminogen activator inhibitor 1 (PAI-1), and intercellular adhesion molecule 1 (ICAM1) (p < 0.001). Many of these secreted proteins have not been previously reported in MMD, including interleukins (IL-2, IL-4, IL-5, IL-7, IL-8, IL-9, IL-17, IL-18, IL-22, and IL-23) and C-X-C motif chemokines (CXCL1 and CXCL9). Pathway analysis indicated that both MMD subtypes exhibited similar cellular/molecular functions and pathways, including cellular activation, migration, and inflammatory response. While neuroinflammation and dendritic cell pathways were activated in MMD patients, lipid signaling pathways involving nuclear receptors, peroxisome proliferator-activated receptor (PPAR), and liver X receptors (LXR)/retinoid X receptors (RXR) signaling were inhibited. IL-13 and IL-2 were negatively correlated with preoperative cerebral perfusion status, while 7 factors were positively correlated with the extent of postoperative revascularization. These elevated cytokines, chemokines, and growth factors in CSF may contribute to the pathogenesis of MMD and represent potential future therapeutic targets.
Collapse
Affiliation(s)
- Kumar Abhinav
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Bristol Institute of Clinical Neuroscience, Southmead Hospital, Bristol, UK
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Bigder
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony Bet
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Lis-Kuberka J, Berghausen-Mazur M, Orczyk-Pawiłowicz M. Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines. Int J Mol Sci 2024; 25:3853. [PMID: 38612666 PMCID: PMC11011253 DOI: 10.3390/ijms25073853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic disorder that has short- and long-term effects on maternal and offspring health. This study aimed to assess the impact of maternal hyperglycemia severity, classified as GDM-G1 (diet treatment) and GDM-G2 (insulin treatment) on colostral appetite-regulating molecules. Colostrum samples were collected from hyperglycemic (N = 30) and normoglycemic (N = 21) mothers, and the concentrations of milk hormones were determined by immunoenzymatic assay. A difference was found for milk ghrelin, but not for molecules such as adiponectin, leptin, resistin, or IGF-I levels, in relation to maternal hyperglycemia. The colostral ghrelin in the GDM-G1 cohort (0.21 ng/mL) was significantly lower than for GDM-G2 (0.38 ng/mL) and non-GDM groups (0.36 ng/mL). However, colostral resistin was higher, but not significantly, for GDM-G1 (13.33 ng/mL) and GDM-G2 (12.81 ng/mL) cohorts than for normoglycemic mothers (7.89 ng/mL). The lack of difference in relation to hyperglycemia for milk leptin, adiponectin, leptin-adiponectin ratio, resistin, and IGF-I levels might be the outcome of effective treatment of GDM during pregnancy. The shift between ghrelin and other appetite-regulating hormones might translate into altered ability to regulate energy balance, affecting offspring's metabolic homeostasis.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Marta Berghausen-Mazur
- Department of Neonatology, J. Gromkowski Provincial Specialist Hospital, Koszarowa 5, 51-149 Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| | - Magdalena Orczyk-Pawiłowicz
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| |
Collapse
|
40
|
Krauz K, Kempiński M, Jańczak P, Momot K, Zarębiński M, Poprawa I, Wojciechowska M. The Role of Epicardial Adipose Tissue in Acute Coronary Syndromes, Post-Infarct Remodeling and Cardiac Regeneration. Int J Mol Sci 2024; 25:3583. [PMID: 38612394 PMCID: PMC11011833 DOI: 10.3390/ijms25073583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat deposit surrounding the heart and located under the visceral layer of the pericardium. Due to its unique features, the contribution of EAT to the pathogenesis of cardiovascular and metabolic disorders is extensively studied. Especially, EAT can be associated with the onset and development of coronary artery disease, myocardial infarction and post-infarct heart failure which all are significant problems for public health. In this article, we focus on the mechanisms of how EAT impacts acute coronary syndromes. Particular emphasis was placed on the role of inflammation and adipokines secreted by EAT. Moreover, we present how EAT affects the remodeling of the heart following myocardial infarction. We further review the role of EAT as a source of stem cells for cardiac regeneration. In addition, we describe the imaging assessment of EAT, its prognostic value, and its correlation with the clinical characteristics of patients.
Collapse
Affiliation(s)
- Kamil Krauz
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Marcel Kempiński
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Paweł Jańczak
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Karol Momot
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Izabela Poprawa
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| |
Collapse
|
41
|
Zhang L, Xu L, Chen Z, You H, Hu H, He H. Risk factors and related miRNA phenotypes of chronic pain after thoracoscopic surgery in lung adenocarcinoma patients. PLoS One 2024; 19:e0297742. [PMID: 38483909 PMCID: PMC10939217 DOI: 10.1371/journal.pone.0297742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
Chronic postsurgical pain may have a substantial impact on patient's quality of life, and has highly heterogenous presentation amongst sufferers. We aimed to explore the risk factors relating to chronic pain and the related miRNA phenotypes in patients with lung adenocarcinoma after video-assisted thoracoscopic lobectomy to identify potential biomarkers. Our prospective study involved a total of 289 patients with early invasive adenocarcinoma undergoing thoracoscopic lobotomy and a follow-up period of 3 months after surgery. Blood was collected the day before surgery for miRNA detection and patient information including operation duration, duration of continuous drainage of the chest, leukocyte count before and after operation, and postoperative pain scores were recorded. Using clinical and biochemical information for each patient, the risk factors for chronic postsurgical pain and related miRNA phenotypes were screened. We found that chronic postsurgical pain was associated with higher body mass index; greater preoperative history of chronic pain; longer postoperative drainage tube retention duration; higher numerical rating scale scores one, two, and three days after surgery; and changes in miRNA expression, namely lower expression of miRNA 146a-3p and higher expression of miRNA 550a-3p and miRNA 3613-3p in peripheral blood (p < 0.05). Of these factors, patient body mass index, preoperative history of chronic pain, average numerical rating scale score after operation, and preoperative peripheral blood miRNA 550a-3P expression were independent risk factors for the development of chronic postsurgical pain. Identification of individual risk markers may aid the development and selection of appropriate preventive and control measures.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liming Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhiyuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Haiping You
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huirong Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
42
|
Qiao K, Jiang R, Contreras GA, Xie L, Pascottini OB, Opsomer G, Dong Q. The Complex Interplay of Insulin Resistance and Metabolic Inflammation in Transition Dairy Cows. Animals (Basel) 2024; 14:832. [PMID: 38539930 PMCID: PMC10967290 DOI: 10.3390/ani14060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
During the transition period, dairy cows exhibit heightened energy requirements to sustain fetal growth and lactogenesis. The mammary gland and the growing fetus increase their demand for glucose, leading to the mobilization of lipids to support the function of tissues that can use fatty acids as energy substrates. These physiological adaptations lead to negative energy balance, metabolic inflammation, and transient insulin resistance (IR), processes that are part of the normal homeorhetic adaptations related to parturition and subsequent lactation. Insulin resistance is characterized by a reduced biological response of insulin-sensitive tissues to normal physiological concentrations of insulin. Metabolic inflammation is characterized by a chronic, low-level inflammatory state that is strongly associated with metabolic disorders. The relationship between IR and metabolic inflammation in transitioning cows is intricate and mutually influential. On one hand, IR may play a role in the initiation of metabolic inflammation by promoting lipolysis in adipose tissue and increasing the release of free fatty acids. Metabolic inflammation, conversely, triggers inflammatory signaling pathways by pro-inflammatory cytokines, thereby leading to impaired insulin signaling. The interaction of these factors results in a harmful cycle in which IR and metabolic inflammation mutually reinforce each other. This article offers a comprehensive review of recent advancements in the research on IR, metabolic inflammation, and their intricate interrelationship. The text delves into multiple facets of physiological regulation, pathogenesis, and their consequent impacts.
Collapse
Affiliation(s)
- Kaixi Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Renjiao Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Lei Xie
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Qiang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| |
Collapse
|
43
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
44
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Fatty Acids and their Proteins in Adipose Tissue Inflammation. Cell Biochem Biophys 2024; 82:35-51. [PMID: 37794302 PMCID: PMC10867084 DOI: 10.1007/s12013-023-01185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Chronic low-grade adipose tissue inflammation is associated with metabolic disorders. Inflammation results from the intertwined cross-talks of pro-inflammatory and anti-inflammatory pathways in the immune response of adipose tissue. In addition, adipose FABP4 levels and lipid droplet proteins are involved in systemic and tissue inflammation. Dysregulated adipocytes help infiltrate immune cells derived from bone marrow responsible for producing cytokines and chemokines. When adipose tissue expands in excess, adipocyte exhibits increased secretion of adipokines and is implicated in metabolic disturbances due to the release of free fatty acids. This review presents an emerging concept in adipose tissue fat metabolism, fatty acid handling and binding proteins, and lipid droplet proteins and their involvement in inflammatory disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, Queretaro, 76130, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
45
|
Popescu RG, Dinischiotu A, Soare T, Vlase E, Marinescu GC. Nicotinamide Mononucleotide (NMN) Works in Type 2 Diabetes through Unexpected Effects in Adipose Tissue, Not by Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:2594. [PMID: 38473844 DOI: 10.3390/ijms25052594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) has emerged as a promising therapeutic intervention for age-related disorders, including type 2 diabetes. In this study, we confirmed the previously observed effects of NMN treatment on glucose uptake and investigated its underlying mechanisms in various tissues and cell lines. Through the most comprehensive proteomic analysis to date, we discovered a series of novel organ-specific effects responsible for glucose uptake as measured by the IPGTT: adipose tissue growing (suggested by increased protein synthesis and degradation and mTOR proliferation signaling upregulation). Notably, we observed the upregulation of thermogenic UCP1, promoting enhanced glucose conversion to heat in intermuscular adipose tissue while showing a surprising repressive effect on mitochondrial biogenesis in muscle and the brain. Additionally, liver and muscle cells displayed a unique response, characterized by spliceosome downregulation and concurrent upregulation of chaperones, proteasomes, and ribosomes, leading to mildly impaired and energy-inefficient protein synthesis machinery. Furthermore, our findings revealed remarkable metabolic rewiring in the brain. This involved increased production of ketone bodies, downregulation of mitochondrial OXPHOS and TCA cycle components, as well as the induction of well-known fasting-associated effects. Collectively, our data elucidate the multifaceted nature of NMN action, highlighting its organ-specific effects and their role in improving glucose uptake. These findings deepen our understanding of NMN's therapeutic potential and pave the way for novel strategies in managing metabolic disorders.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Independent Research Association, 012416 Bucharest, Romania
- Blue Screen SRL, 012416 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Teodoru Soare
- Pathology Department, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| | - Ene Vlase
- Animals Facility Laboratory, Cantacuzino National Institute for Medico-Military Research and Development, 013821 Bucharest, Romania
| | - George Cătălin Marinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Independent Research Association, 012416 Bucharest, Romania
- Blue Screen SRL, 012416 Bucharest, Romania
| |
Collapse
|
46
|
Kumrah R, Goyal T, Rawat A, Singh S. Markers of Endothelial Dysfunction in Kawasaki Disease: An Update. Clin Rev Allergy Immunol 2024; 66:99-111. [PMID: 38462555 DOI: 10.1007/s12016-024-08985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Kawasaki disease (KD) is a medium vessel vasculitis that has a special predilection for coronary arteries. Cardiovascular complications include the development of coronary artery abnormalities (CAAs) and myocarditis. Endothelial dysfunction (ED) is now recognized to be a key component in the pathogenesis of KD and is believed to contribute to the development of CAAs. ED has been evaluated by several clinical parameters. However, there is paucity of literature on laboratory markers for ED in KD. The evaluation of ED can be aided by the identification of biomarkers such as oxidative stress markers, circulating cells and their progenitors, angiogenesis factors, cytokines, chemokines, cell-adhesion molecules, and adipokines. If validated in multicentric studies, these biomarkers may be useful for monitoring the disease course of KD. They may also provide a useful predictive marker for the development of premature atherosclerosis that is often a concern during long-term follow-up of KD. This review provides insights into the current understanding of the significance of ED in KD.
Collapse
Affiliation(s)
- Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
47
|
Srikanth M, Rasool M. Resistin - A Plausible Therapeutic Target in the Pathogenesis of Psoriasis. Immunol Invest 2024; 53:115-159. [PMID: 38054436 DOI: 10.1080/08820139.2023.2288836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Resistin, a cytokine hormone predominantly secreted by adipose tissue, is elevated in various metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. In addition to its involvement in metabolic regulation, resistin has been implicated in the pathogenesis of psoriasis, a chronic inflammatory skin disorder. Numerous studies have reported increased resistin levels in psoriatic skin lesions, suggesting a possible association between resistin and psoriasis. Recent studies have suggested the potential involvement of resistin in the development and progression of certain cancers. Resistin is overexpressed in breast, colorectal, and gastric cancers. This suggests that it may play a role in the development of these cancers, possibly by inducing inflammation and cell growth. The link between resistin and cancer raises the possibility of shared underlying mechanisms driving the pathogenesis of psoriasis. Chronic inflammation, one such mechanism, is a hallmark of psoriasis and cancer. Further research is needed to fully understand the relationship between resistin and psoriasis. Identifying potential therapeutic targets is crucial for effective management of psoriasis. By doing so, we may be able to develop more effective treatment options for individuals living with psoriasis and ultimately improve their quality of life. Ultimately, a more comprehensive understanding of the mechanisms underlying the impact of resistin on psoriasis is essential for advancing our knowledge and finding new ways to treat and manage this challenging condition.
Collapse
Affiliation(s)
- Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
48
|
Zhao D, Sohouli MH, Rohani P, Fotros D, Velu P, Ziamanesh F, Fatahi S, Shojaie S, Li Y. The effect of metformin on adipokines levels: A systematic review and meta-analysis of randomized-controlled trials. Diabetes Res Clin Pract 2024; 207:111076. [PMID: 38154535 DOI: 10.1016/j.diabres.2023.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Considering the role of adipokine on diseases related to metabolic syndrome and even chronic diseases, it seems necessary to investigate effective interventions on these factors. This study aimed to comprehensively investigate the effects of metformin on adipokines. METHODS A comprehensive search was conducted in five databases using established keywords. The purpose of this search was to uncover controlled studies that have examined the impact of metformin on adipokines, specifically leptin, adiponectin, and resistin. The random-effects model analysis was used to provide pooled weighted mean difference and 95% confidence intervals. RESULTS Forty-nine studies were included in this article. The pooled findings showed that that the administration of metformin significantly decreases leptin (WMD: -3.06 ng/ml, 95 % CI: -3.81, -2.30, P < 0.001) and resistin (WMD: -1.27 µg/mL, 95 % CI: -2.22, -0.31, P = 0.009) levels in different populations compared to the control group. However, no significant effect of this antidiabetic drug on adiponectin levels was reported. The results obtained from the subgroup results in the present study also showed that metformin in people with a BMI greater than 30 kg/m2 compared to a BMI ≤ 30 kg/m2 causes a significant decrease in leptin levels and an increase in adiponectin levels. Also, metformin in lower doses (≤1500 mg/day) and younger people (<30 years) causes a significant increase in adiponectin levels. CONCLUSIONS In general, considering the role of adipokines on metabolic disease and even chronic disease, this drug can be used as a potentially useful drug, especially in obese people, to improve these factors.
Collapse
Affiliation(s)
- Dan Zhao
- Department of stomatology, Chongqing Hospital of People's Armed Police, 400000, China
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt. Ltd., Nagapattinam, Tamil Nadu, India
| | - Fateme Ziamanesh
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yoya Li
- Department of stomatology, Chongqing Hospital of People's Armed Police, 400000, China
| |
Collapse
|
49
|
Stakhneva EM, Kuzminykh NA, Scherbakova LV, Kashtanova EV, Polonskaya YV, Shramko VS, Garbuzova Striukova EV, Sadovski EV, Ragino YI. Metabolic Blood Hormones in Young People With Electrocardiographic Signs of Ischemic Myocardial Changes. KARDIOLOGIIA 2023; 63:4-11. [PMID: 38088107 DOI: 10.18087/cardio.2023.11.n2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 12/18/2023]
Abstract
Aim To study changes in blood concentrations of metabolic hormones and adipocytokines in people aged 25-44 years with electrocardiographic (ECG) signs of ischemic changes in the myocardium.Material and methods This study was a part of a cross-sectional survey of a random sample of Novosibirsk population aged 25-44 years. The study included 1363 people divided into two groups: group 1, subjects with ECG signs of ischemic changes in the myocardium and group 2, subjects without ECG changes. Blood serum concentrations of adipocytokines and metabolic hormones were measured by multiplex assay on a Luminex MAGPIX flow-through fluorometer.Results The group with ECG signs of myocardial ischemia had higher blood concentrations of adiponectin, resistin, glucagon, and interleukin 6 (IL-6) than in the comparison group. A multivariate logistic regression analysis showed that the glucagon concentration was associated with the presence of ECG signs of myocardial ischemia (OR, 1.019; CI, 1.018-1.034; p=0.017).Conclusion In young people aged 25-44 years, higher blood concentrations of glucagon are associated with the presence of ECG signs of myocardial ischemia.
Collapse
Affiliation(s)
- E M Stakhneva
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - N A Kuzminykh
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - L V Scherbakova
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E V Kashtanova
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - Ya V Polonskaya
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - V S Shramko
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E V Garbuzova Striukova
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E V Sadovski
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - Yu I Ragino
- Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
50
|
Lee H, Joo J, Song J, Kim H, Kim YH, Park HR. Immunological link between periodontitis and type 2 diabetes deciphered by single-cell RNA analysis. Clin Transl Med 2023; 13:e1503. [PMID: 38082425 PMCID: PMC10713875 DOI: 10.1002/ctm2.1503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is a complex metabolic disorder that causes various complications, including periodontitis (PD). Although a bidirectional relationship has been reported between DM and PD, their immunological relationship remains poorly understood. Therefore, this study aimed to compare the immune response in patients with PD alone and in those with both PD and DM (PDDM) to expand our knowledge of the complicated connection between PD and DM. METHODS Peripheral blood mononuclear cells were collected from 11 healthy controls, 10 patients with PD without DM, and six patients with PDDM, followed by analysis using single-cell RNA sequencing. The differences among groups were then compared based on intracellular and intercellular perspectives. RESULTS Compared to the healthy state, classical monocytes exhibited the highest degree of transcriptional change, with elevated levels of pro-inflammatory cytokines in both PD and PDDM. DM diminished the effector function of CD8+ T and natural killer (NK) cells as well as completely modified the differentiation direction of these cells. Interestingly, a prominent pathway, RESISTIN, which is known to increase insulin resistance and susceptibility to diabetes, was found to be activated under both PD and PDDM conditions. In particular, CAP1+ classical monocytes from patients with PD and PDDM showed elevated nuclear factor kappa B-inducing kinase activity. CONCLUSIONS Overall, this study elucidates how the presence of DM contributes to the deterioration of T/NK cell immunity and the immunological basis connecting PD to DM.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research InstitutePusan National UniversityYangsanRepublic of Korea
| | - Ji‐Young Joo
- Department of PeriodontologySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Jae‐Min Song
- Department of Oral and Maxillofacial SurgerySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Hyun‐Joo Kim
- Department of PeriodontologyDental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of AnatomySchool of Medicine, Pusan National UniversityYangsanRepublic of Korea
| | - Hae Ryoun Park
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Oral PathologyDental and Life Science Institute, Pusan National UniversityYangsanRepublic of Korea
| |
Collapse
|