1
|
Peoples N, Burns MD, Mihalitsis M, Wainwright PC. Evolutionary lability of a key innovation spurs rapid diversification. Nature 2025; 639:962-967. [PMID: 40011783 DOI: 10.1038/s41586-025-08612-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/08/2025] [Indexed: 02/28/2025]
Abstract
Rates of lineage diversification vary considerably across the tree of life, often as a result of evolutionary innovations1-5. Although the ability to produce new traits can vary between clades and may drive ecological transitions6-9, the impact of differences in the pace at which innovations evolve at macroevolutionary scales has been overlooked. Complex teeth are one innovation that contributed to the evolutionary success of major vertebrate lineages10-12. Here we show that evolutionary lability of tooth complexity, but not complexity itself, spurs rapid diversification across ray-finned fishes. Speciation rates are five times higher when transitions between simple and complex teeth occur rapidly. We find that African cichlids are unique among all fishes; they are dominated by lineages that transition between simple and complex teeth at unparalleled rates. This innovation interacted with the ecological versatility of complex teeth to spur rapid adaptive radiations in lakes Malawi, Victoria and Barombi Mbo. The marked effect on diversification stems from the tight association of tooth complexity with microhabitat and diet. Our results show that phylogenetic variation in how innovations evolve can have a stronger effect on patterns of diversification than the innovation itself. Investigating the impact of innovations from this new perspective will probably implicate more traits in causing heterogeneous diversification rates across the tree of life.
Collapse
Affiliation(s)
- Nick Peoples
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA.
| | - Michael D Burns
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvalis, OR, USA
| | - Michalis Mihalitsis
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
De-Kayne R, Schley R, Barth JMI, Campillo LC, Chaparro-Pedraza C, Joshi J, Salzburger W, Van Bocxlaer B, Cotoras DD, Fruciano C, Geneva AJ, Gillespie R, Heras J, Koblmüller S, Matthews B, Onstein RE, Seehausen O, Singh P, Svensson EI, Salazar-Valenzuela D, Vanhove MPM, Wogan GOU, Yamaguchi R, Yoder AD, Cerca J. Why Do Some Lineages Radiate While Others Do Not? Perspectives for Future Research on Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041448. [PMID: 38692838 PMCID: PMC11864108 DOI: 10.1101/cshperspect.a041448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Understanding the processes that drive phenotypic diversification and underpin speciation is key to elucidating how biodiversity has evolved. Although these processes have been studied across a wide array of clades, adaptive radiations (ARs), which are systems with multiple closely related species and broad phenotypic diversity, have been particularly fruitful for teasing apart the factors that drive and constrain diversification. As such, ARs have become popular candidate study systems for determining the extent to which ecological features, including aspects of organisms and the environment, and inter- and intraspecific interactions, led to evolutionary diversification. Despite substantial past empirical and theoretical work, understanding mechanistically how ARs evolve remains a major challenge. Here, we highlight a number of understudied components of the environment and of lineages themselves, which may help further our understanding of speciation and AR. We also outline some substantial remaining challenges to achieving a detailed understanding of adaptation, speciation, and the role of ecology in these processes. These major challenges include identifying factors that have a causative impact in promoting or constraining ARs, gaining a more holistic understanding of features of organisms and their environment that interact resulting in adaptation and speciation, and understanding whether the role of these organismal and environmental features varies throughout the radiation process. We conclude by providing perspectives on how future investigations into the AR process can overcome these challenges, allowing us to glean mechanistic insights into adaptation and speciation.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060, USA
| | - Rowan Schley
- University of Exeter, Exeter, Devon EX4 4QE, United Kingdom
| | - Julia M I Barth
- Zoological Institute, Department of Environmental Science, University of Basel, CH-4051 Basel, Switzerland
| | - Luke C Campillo
- Department of Biology, University of Kentucky, Lexington, Kentucky 40508, USA
| | - Catalina Chaparro-Pedraza
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Jahnavi Joshi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Science, University of Basel, CH-4051 Basel, Switzerland
| | | | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Carmelo Fruciano
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), 98122 Messina, Italy
- National Biodiversity Future Center, 61 90133 Palermo, Italy
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Anthony J Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey 08103, USA
| | - Rosemary Gillespie
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California 94720, USA
| | - Joseph Heras
- Department of Biology, California State University, San Bernardino, California 92407, USA
| | | | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Renske E Onstein
- Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Pooja Singh
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Erik I Svensson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Machala y Sabanilla, Quito EC170103, Ecuador
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Ryo Yamaguchi
- Department of Advanced Transdisciplinary Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - José Cerca
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
3
|
Takeuchi Y, Hata H, Sasaki M, Mvula A, Mizuhara S, Rusuwa B, Maruyama A. Preying on cyprinid snout warts (pearl organs) as a novel and peculiar habit in the Lake Malawi cichlid Docimodus evelynae. Sci Rep 2024; 14:19300. [PMID: 39198502 PMCID: PMC11358289 DOI: 10.1038/s41598-024-69755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Cichlid fishes in the African Great Lakes have undergone explosive speciation, acquiring markedly varying ecologies and diets. There are multiple lineages of scale-eating cichlids, and their natural history and evolutionary ecology is only partially understood. We examined the feeding habit of Docimodus evelynae, a known scale eater, in Lake Malawi. The stomach contents of young individuals mainly consisted of unknown 1 mm hard, white warts (> 30%). To clarify the origin of these warts, we conducted an X-ray fluorometer analysis, and found they were rich in sulphur but low in silicon and calcium, suggesting they were epidermal tissues. Histological and morphological analyses revealed they were multicellular and cup-shaped. These characteristics matched only those of the pearl organs of the coexisting cyprinid Labeo cylindricus. DNA was extracted from the warts found in the stomach of five D. evelynae individuals, followed by PCR using primers targeting the partial COI gene of L. cylindricus. The resulting sequences exhibited 98% similarity to those of L. cylindricus. Pearl organs, never reported as a primary food for fish, could offer a substantial nutritional source based on calorific calculations. Understanding how this peculiar diet is foraged is essential for full comprehension of the food-web structure in this lake.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan.
| | - Hiroki Hata
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyocho, Matsuyama, Ehime, 790-8577, Japan
| | - Mizuki Sasaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Andrew Mvula
- Faculty of Science and Technology, Ryukoku University, Yokotani 1-5 Seta-Oe, Otsu, Shiga, 520-2194, Japan
| | - Shinji Mizuhara
- Faculty of Science and Technology, Ryukoku University, Yokotani 1-5 Seta-Oe, Otsu, Shiga, 520-2194, Japan
| | - Bosco Rusuwa
- Department of Biology, Chancellor College, University of Malawi, Zomba, Malawi
| | - Atsushi Maruyama
- Faculty of Science and Technology, Ryukoku University, Yokotani 1-5 Seta-Oe, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
4
|
Tan A, St. John M, Chau D, Clair C, Chan H, Holzman R, Martin CH. A multi-peak performance landscape for scale biting in an adaptive radiation of pupfishes. J Exp Biol 2024; 227:jeb247615. [PMID: 39054887 PMCID: PMC11418179 DOI: 10.1242/jeb.247615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The physical interactions between organisms and their environment ultimately shape diversification rates, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here, we estimated a performance landscape for biting in an adaptive radiation of Cyprinodon pupfishes, including scale-biting and molluscivore specialists, and compared performance peaks with previous estimates of the fitness landscape in this system. We used high-speed video to film feeding strikes on gelatin cubes by scale eater, molluscivore, generalist and hybrid pupfishes and measured bite dimensions. We then measured five kinematic variables from 227 strikes using the SLEAP machine-learning model. We found a complex performance landscape with two distinct peaks best predicted gel-biting performance, corresponding to a significant non-linear interaction between peak gape and peak jaw protrusion. Only scale eaters and their hybrids were able to perform strikes within the highest performance peak, characterized by larger peak gapes and greater jaw protrusion. A performance valley separated this peak from a lower performance peak accessible to all species, characterized by smaller peak gapes and less jaw protrusion. However, most individuals exhibited substantial variation in strike kinematics and species could not be reliably distinguished by their strikes, indicating many-to-many mapping of morphology to performance. The two performance peaks observed in the lab were partially consistent with estimates of a two-peak fitness landscape measured in the wild, with the exception of the new performance peak for scale eaters. We thus reveal a new bimodal non-linear biomechanical model that connects morphology to performance to fitness in a sympatric radiation of trophic niche specialists.
Collapse
Affiliation(s)
- Anson Tan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michelle St. John
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Dylan Chau
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chloe Clair
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - HoWan Chan
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Roi Holzman
- School of Zoology, Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Dunker JC, St. John ME, Martin CH. Phenotypic covariation predicts diversification in an adaptive radiation of pupfishes. Ecol Evol 2024; 14:e11642. [PMID: 39114171 PMCID: PMC11303982 DOI: 10.1002/ece3.11642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Phenotypic covariation among suites of traits may constrain or promote diversification both within and between species, yet few studies have empirically tested this relationship. In this study, we investigate whether phenotypic covariation of craniofacial traits is associated with diversification in an adaptive radiation of pupfishes found only on San Salvador Island, Bahamas (SSI). The radiation includes generalist, durophagous, and lepidophagous species. We compared phenotypic variation and covariation (i.e., the P matrix) between (1) allopatric populations of generalist pupfish from neighboring islands and estuaries in the Caribbean, (2) SSI pupfish allopatric lake populations with only generalist pupfish, and (3) SSI lake populations containing the full radiation in sympatry. Additionally, we examine patterns observed in the P matrices of two independent lab-reared F2 hybrid crosses of the two most morphologically distinct members of the radiation to make inferences about the underlying mechanisms contributing to the variation in craniofacial traits in SSI pupfishes. We found that the P matrix of SSI allopatric generalist populations exhibited higher levels of mean trait correlation, constraints, and integration with simultaneously lower levels of flexibility compared to allopatric generalist populations on other Caribbean islands and sympatric populations of all three species on SSI. We also document that while many craniofacial traits appear to result from additive genetic effects, variation in key traits such as head depth, maxilla length, and lower jaw length may be produced via non-additive genetic mechanisms. Ultimately, this study suggests that differences in phenotypic covariation significantly contribute to producing and maintaining organismal diversity.
Collapse
Affiliation(s)
- Julia C. Dunker
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Michelle E. St. John
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Present address:
Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Christopher H. Martin
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
6
|
St John ME, Dunker JC, Richards EJ, Romero S, Martin CH. Parallel evolution of integrated craniofacial traits in trophic specialist pupfishes. Ecol Evol 2024; 14:e11640. [PMID: 38979003 PMCID: PMC11228360 DOI: 10.1002/ece3.11640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Populations may adapt to similar environments via parallel or non-parallel genetic changes, but the frequency of these alternative mechanisms and underlying contributing factors are still poorly understood outside model systems. We used QTL mapping to investigate the genetic basis of highly divergent craniofacial traits between the scale-eater (Cyprinodon desquamator) and molluscivore (C. brontotheroides) pupfish adapting to two different hypersaline lake environments on San Salvador Island, Bahamas. We lab-reared F2 scale-eater x molluscivore intercrosses from two different lake populations, estimated linkage maps, scanned for significant QTL for 29 skeletal and craniofacial traits, female mate preference, and sex. We compared the location of QTL between lakes to quantify parallel and non-parallel genetic changes. We detected significant QTL for six craniofacial traits in at least one lake. However, nearly all shared QTL loci were associated with a different craniofacial trait within each lake. Therefore, our estimate of parallel evolution of craniofacial genetic architecture could range from one out of six identical trait QTL (low parallelism) to five out of six integrated trait QTL (high parallelism). We suggest that pleiotropy and trait integration can affect estimates of parallel evolution, particularly within rapid radiations. We also observed increased adaptive introgression in shared QTL regions, suggesting that gene flow contributed to parallel evolution. Overall, our results suggest that the same genomic regions may contribute to parallel adaptation across integrated suites of craniofacial traits, rather than specific traits, and highlight the need for a more expansive definition of parallel evolution.
Collapse
Affiliation(s)
| | - Julia C Dunker
- Department of Integrative Biology University of California Berkeley California USA
| | - Emilie J Richards
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota USA
| | - Stephanie Romero
- Department of Evolution and Ecology University of California Davis California USA
| | - Christopher H Martin
- Department of Integrative Biology University of California Berkeley California USA
- Museum of Vertebrate Zoology University of California Berkeley California USA
| |
Collapse
|
7
|
Siddiqui R, Swank S, Ozark A, Joaquin F, Travis MP, McMahan CD, Bell MA, Stuart YE. Inferring the evolution of reproductive isolation in a lineage of fossil threespine stickleback, Gasterosteus doryssus. Proc Biol Sci 2024; 291:20240337. [PMID: 38628124 PMCID: PMC11021931 DOI: 10.1098/rspb.2024.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Darwin attributed the absence of species transitions in the fossil record to his hypothesis that speciation occurs within isolated habitat patches too geographically restricted to be captured by fossil sequences. Mayr's peripatric speciation model added that such speciation would be rapid, further explaining missing evidence of diversification. Indeed, Eldredge and Gould's original punctuated equilibrium model combined Darwin's conjecture, Mayr's model and 124 years of unsuccessfully sampling the fossil record for transitions. Observing such divergence, however, could illustrate the tempo and mode of evolution during early speciation. Here, we investigate peripatric divergence in a Miocene stickleback fish, Gasterosteus doryssus. This lineage appeared and, over approximately 8000 generations, evolved significant reduction of 12 of 16 traits related to armour, swimming and diet, relative to its ancestral population. This was greater morphological divergence than we observed between reproductively isolated, benthic-limnetic ecotypes of extant Gasterosteus aculeatus. Therefore, we infer that reproductive isolation was evolving. However, local extinction of G. doryssus lineages shows how young, isolated, speciating populations often disappear, supporting Darwin's explanation for missing evidence and revealing a mechanism behind morphological stasis. Extinction may also account for limited sustained divergence within the stickleback species complex and help reconcile speciation rate variation observed across time scales.
Collapse
Affiliation(s)
- Raheyma Siddiqui
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Samantha Swank
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Allison Ozark
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Franklin Joaquin
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Matthew P. Travis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Michael A. Bell
- University of California Museum of Paleontology, Berkeley, CA, USA
| | - Yoel E. Stuart
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Tan A, St. John M, Chau D, Clair C, Chan H, Holzman R, Martin CH. Multiple performance peaks for scale-biting in an adaptive radiation of pupfishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573139. [PMID: 38187684 PMCID: PMC10769438 DOI: 10.1101/2023.12.22.573139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The physical interactions between organisms and their environment ultimately shape their rate of speciation and adaptive radiation, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here we investigated an adaptive radiation of Cyprinodon pupfishes to measure the relationship between feeding kinematics and performance during adaptation to a novel trophic niche, lepidophagy, in which a predator removes only the scales, mucus, and sometimes tissue from their prey using scraping and biting attacks. We used high-speed video to film scale-biting strikes on gelatin cubes by scale-eater, molluscivore, generalist, and hybrid pupfishes and subsequently measured the dimensions of each bite. We then trained the SLEAP machine-learning animal tracking model to measure kinematic landmarks and automatically scored over 100,000 frames from 227 recorded strikes. Scale-eaters exhibited increased peak gape and greater bite length; however, substantial within-individual kinematic variation resulted in poor discrimination of strikes by species or strike type. Nonetheless, a complex performance landscape with two distinct peaks best predicted gel-biting performance, corresponding to a significant nonlinear interaction between peak gape and peak jaw protrusion in which scale-eaters and their hybrids occupied a second performance peak requiring larger peak gape and greater jaw protrusion. A bite performance valley separating scale-eaters from other species may have contributed to their rapid evolution and is consistent with multiple estimates of a multi-peak fitness landscape in the wild. We thus present an efficient deep-learning automated pipeline for kinematic analyses of feeding strikes and a new biomechanical model for understanding the performance and rapid evolution of a rare trophic niche.
Collapse
Affiliation(s)
- Anson Tan
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | | | - Dylan Chau
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | - Chloe Clair
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | | | - Roi Holzman
- School of Zoology, Tel Aviv University, Eilat, Israel
- Inter-University Institute for Marine Sciences, Eilat, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| |
Collapse
|
9
|
Palominos MF, Muhl V, Richards EJ, Miller CT, Martin CH. Jaw size variation is associated with a novel craniofacial function for galanin receptor 2 in an adaptive radiation of pupfishes. Proc Biol Sci 2023; 290:20231686. [PMID: 37876194 PMCID: PMC10598438 DOI: 10.1098/rspb.2023.1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel role for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a circulating Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.
Collapse
Affiliation(s)
- M. Fernanda Palominos
- Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Vanessa Muhl
- Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Emilie J. Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Craig T. Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Palominos MF, Muhl V, Richards EJ, Miller CT, Martin CH. Jaw size variation is associated with a novel craniofacial function for galanin receptor 2 in an adaptive radiation of pupfishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543513. [PMID: 37333213 PMCID: PMC10274624 DOI: 10.1101/2023.06.02.543513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology that also provides an opportunity to uncover new genes and regulatory networks with potential clinical relevance. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island in the Bahamas. We confirmed the loss of a putative Sry transcription factor binding site in the upstream region of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage and premaxilla using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel function for Galr2 in craniofacial development and jaw elongation by exposing embryos to drugs that inhibit Galr2 activity. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a postulated Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.
Collapse
Affiliation(s)
- M Fernanda Palominos
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | - Vanessa Muhl
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | - Emilie J Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota
| | - Craig T Miller
- Department of Molecular & Cell Biology, University of California, Berkeley
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| |
Collapse
|
11
|
Heras J, Martin CH. Minimal overall divergence of the gut microbiome in an adaptive radiation of Cyprinodon pupfishes despite potential adaptive enrichment for scale-eating. PLoS One 2022; 17:e0273177. [PMID: 36112615 PMCID: PMC9481044 DOI: 10.1371/journal.pone.0273177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive radiations offer an excellent opportunity to understand the eco-evolutionary dynamics of gut microbiota and host niche specialization. In a laboratory common garden, we compared the gut microbiota of two novel derived trophic specialist pupfishes, a scale-eater and a molluscivore, to closely related and distant outgroup generalist populations, spanning both rapid trophic evolution within 10 kya and stable generalist diets persisting over 11 Mya. We predicted an adaptive and highly divergent microbiome composition in the trophic specialists reflecting their rapid rates of craniofacial and behavioral diversification. We sequenced 16S rRNA amplicons of gut microbiomes from lab-reared adult pupfishes raised under identical conditions and fed the same high protein diet. In contrast to our predictions, gut microbiota largely reflected phylogenetic distance among species, rather than generalist or specialist life history, in support of phylosymbiosis. However, we did find significant enrichment of Burkholderiaceae bacteria in replicated lab-reared scale-eater populations. These bacteria sometimes digest collagen, the major component of fish scales, supporting an adaptive shift. We also found some enrichment of Rhodobacteraceae and Planctomycetia in lab-reared molluscivore populations, but these bacteria target cellulose. Overall phylogenetic conservation of microbiome composition contrasts with predictions of adaptive radiation theory and observations of rapid diversification in all other trophic traits in these hosts, including craniofacial morphology, foraging behavior, aggression, and gene expression, suggesting that the functional role of these minor shifts in microbiota will be important for understanding the role of the microbiome in trophic diversification.
Collapse
Affiliation(s)
- Joseph Heras
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
12
|
Burress ED, Muñoz MM. Functional Trade-offs Asymmetrically Promote Phenotypic Evolution. Syst Biol 2022; 72:150-160. [PMID: 35961046 DOI: 10.1093/sysbio/syac058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Trade-offs are thought to bias evolution and are core features of many anatomical systems. Therefore, trade-offs may have far-reaching macroevolutionary consequences, including patterns of morphological, functional, and ecological diversity. Jaws, like many complex anatomical systems, are comprised of elements involved in biomechanical trade-offs. We test the impact of a core mechanical trade-off, transmission of velocity versus force (i.e., mechanical advantage), on rates of jaw evolution in Neotropical cichlids. Across 130 species representing a wide array of feeding ecologies, we find that the velocity-force trade-off impacts evolution of the surrounding jaw system. Specifically, rates of jaw evolution are faster at functional extremes than in more functionally intermediate or unspecialized jaws. Yet, surprisingly, the effect on jaw evolution is uneven across the extremes of the velocity-force continuum. Rates of jaw evolution are 4 to 10-fold faster in velocity-modified jaws, whereas force-modified jaws are 7 to 18-fold faster, compared to unspecialized jaws, depending on the extent of specialization. Further, we find that a more extreme mechanical trade-off resulted in faster rates of jaw evolution. The velocity-force trade-off reflects a gradient from specialization on capture-intensive (e.g., evasive or buried) to processing-intensive prey (e.g., attached or shelled), respectively. The velocity extreme of the trade-off is characterized by large magnitudes of trait change leading to functionally divergent specialists and ecological stasis. By contrast, the force extreme of the trade-off is characterized by enhanced ecological lability made possible by phenotypes more readily co-opted for different feeding ecologies. This asymmetry of macroevolutionary outcomes along each extreme is likely the result of an enhanced utility of the pharyngeal jaw system as force-modified oral jaws are adapted for prey that require intensive processing (e.g., algae, detritus, and molluscs). The velocity-force trade-off, a fundamental feature of many anatomical systems, promotes rapid phenotypic evolution of the surrounding jaw system in a canonical continental adaptive radiation. Considering that the velocity-force trade-off is an inherent feature of all jaw systems that involve a lower element that rotates at a joint, spanning the vast majority of vertebrates, our results may be widely applicable across the tree of life. [adaptive radiation; constraint; decoupling; jaws; macroevolution; specialization].
Collapse
Affiliation(s)
- Edward D Burress
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Patton AH, Richards EJ, Gould KJ, Buie LK, Martin CH. Hybridization alters the shape of the genotypic fitness landscape, increasing access to novel fitness peaks during adaptive radiation. eLife 2022; 11:e72905. [PMID: 35616528 PMCID: PMC9135402 DOI: 10.7554/elife.72905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood and processes for surmounting fitness valleys remain controversial. One outstanding system for addressing these connections is a recent adaptive radiation of ecologically and morphologically novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 single nucleotide polymorphisms (SNPs) that were significantly associated with fitness in field enclosures. Six out of the 13 regions most strongly associated with fitness contained differentially expressed genes and fixed SNPs between trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from adaptive alleles and show that scale-eating specialists are the most isolated of the three species on these networks. Intriguingly, introgressed and de novo variants reduced fitness landscape ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness paths from generalist to specialists. Our results suggest that adaptive introgression and de novo mutations alter the shape of the fitness landscape, providing key connections in adaptive walks circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation.
Collapse
Affiliation(s)
- Austin H Patton
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| | - Emilie J Richards
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| | - Katelyn J Gould
- Department of Biology, University of North CarolinaChapel HillUnited States
| | - Logan K Buie
- Department of Biology, University of North CarolinaChapel HillUnited States
| | - Christopher H Martin
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
14
|
Richards EJ, Martin CH. We get by with a little help from our friends: shared adaptive variation provides a bridge to novel ecological specialists during adaptive radiation. Proc Biol Sci 2022; 289:20220613. [PMID: 35611537 PMCID: PMC9130792 DOI: 10.1098/rspb.2022.0613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Adaptive radiations involve astounding bursts of phenotypic, ecological and species diversity. However, the microevolutionary processes that underlie the origins of these bursts are still poorly understood. We report the discovery of an intermediate C. sp. 'wide-mouth' scale-eating ecomorph in a sympatric radiation of Cyprinodon pupfishes, illuminating the transition from a widespread algae-eating generalist to a novel microendemic scale-eating specialist. We first show that this ecomorph occurs in sympatry with generalist C. variegatus and scale-eating specialist C. desquamator on San Salvador Island, Bahamas, but is genetically differentiated, morphologically distinct and often consumes scales. We then compared the timing of selective sweeps on shared and unique adaptive variants in trophic specialists to characterize their adaptive walk. Shared adaptive regions swept first in both the specialist desquamator and the intermediate 'wide-mouth' ecomorph, followed by unique sweeps of introgressed variation in 'wide-mouth' and de novo variation in desquamator. The two scale-eating populations additionally shared 9% of their hard selective sweeps with the molluscivore C. brontotheroides, despite no single common ancestor among specialists. Our work provides a new microevolutionary framework for investigating how major ecological transitions occur and illustrates how both shared and unique genetic variation can provide a bridge for multiple species to access novel ecological niches.
Collapse
Affiliation(s)
- Emilie J. Richards
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Chaparro‐Pedraza PC, Roth G, Seehausen O. The enrichment paradox in adaptive radiations: Emergence of predators hinders diversification in resource rich environments. Ecol Lett 2022; 25:802-813. [PMID: 35032146 PMCID: PMC9303570 DOI: 10.1111/ele.13955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
Adaptive radiations are known for rapid niche diversification in response to ecological opportunity. While most resources usually exist prior to adaptive radiation, novel niches associated with novel resources can be created as a clade diversifies. For example, in African lake cichlid radiations some species prey upon other species of the clade (intraclade consumers). Using a trait-based eco-evolutionary model, we investigate the evolution of intraclade consumers in adaptive radiations and the effect of this novel trophic interaction on the diversification process of the radiating clade. We find that the evolutionary emergence of intraclade consumers halts the diversification processes of other ecomorphs as a result of increased top-down control of density. Because high productivity enables earlier evolution of intraclade consumers, highly productive environments come to harbour less species-rich radiations than comparable radiations in less productive environments. Our results reveal how macroevolutionary and community patterns can emerge from ecological and microevolutionary processes.
Collapse
Affiliation(s)
- P. Catalina Chaparro‐Pedraza
- Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionSwiss Federal Institute of Aquatic Science and Technology (EAWAG)KastanienbaumSwitzerland
- Department Systems Analysis, Integrated Assessment and ModellingSwiss Federal Institute of Aquatic Science and Technology (EAWAG)DübendorfSwitzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Ole Seehausen
- Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionSwiss Federal Institute of Aquatic Science and Technology (EAWAG)KastanienbaumSwitzerland
| |
Collapse
|
16
|
Spikes M, Rodríguez-Silva R, Bennett KA, Bräger S, Josaphat J, Torres-Pineda P, Ernst A, Havenstein K, Schlupp I, Tiedemann R. A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario. BMC Res Notes 2021; 14:425. [PMID: 34823576 PMCID: PMC8613956 DOI: 10.1186/s13104-021-05843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Miragoâne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Miragoâne, relative to their congeners throughout the Caribbean. RESULTS For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Miragoâne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Miragoâne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Miragoâne clade.
Collapse
Affiliation(s)
- Montrai Spikes
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Rodet Rodríguez-Silva
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Kerri-Ann Bennett
- Department of Life Sciences, The University of the West Indies (Mona Campus), Kingston, Jamaica
| | - Stefan Bräger
- German Oceanographic Museum (DMM), Katharinenberg 14-20, 18439, Stralsund, Germany
| | - James Josaphat
- Caribaea Intitiative and Université Des Antilles, Guadeloupe, Kingston, Jamaica
| | - Patricia Torres-Pineda
- Museo Nacional de Historia Natural Prof. "Eugenio de Jesús Marcano", Avenida Cesar Nicolás Penson, 10204, Santo Domingo, República Dominicana
| | - Anja Ernst
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Katja Havenstein
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Ingo Schlupp
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.
| |
Collapse
|
17
|
Sowersby W, Cerca J, Wong BBM, Lehtonen TK, Chapple DG, Leal-Cardín M, Barluenga M, Ravinet M. Pervasive admixture and the spread of a large-lipped form in a cichlid fish radiation. Mol Ecol 2021; 30:5551-5571. [PMID: 34418206 DOI: 10.1111/mec.16139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022]
Abstract
Adaptive radiations have proven important for understanding the mechanisms and processes underlying biological diversity. The convergence of form and function, as well as admixture and adaptive introgression, are common in adaptive radiations. However, distinguishing between these two scenarios remains a challenge for evolutionary research. The Midas cichlid species complex (Amphilophus spp.) is a prime example of adaptive radiation, with phenotypic diversification occurring at various stages of genetic differentiation. One species, A. labiatus, has large fleshy lips, is associated with rocky lake substrates, and occurs patchily within Lakes Nicaragua and Managua. By contrast, the similar, but thin-lipped, congener, A. citrinellus, is more common and widespread. We investigated the evolutionary history of the large-lipped form, specifically regarding whether the trait has evolved independently in both lakes from ancestral thin-lipped populations, or via dispersal and/or admixture events. We collected samples from distinct locations in both lakes, and assessed differences in morphology and ecology. Using RAD-seq, we genotyped thousands of SNPs to measure population structure and divergence, demographic history, and admixture. We found significant between-species differences in ecology and morphology, local intraspecific differences in body shape and trophic traits, but only limited intraspecific variation in lip shape. Despite clear ecological differences, our genomic approach uncovered pervasive admixture between the species and low genomic differentiation, with species within lakes being genetically more similar than species between lakes. Taken together, our results suggest a single origin of large-lips, followed by pervasive admixture and adaptive introgression, with morphology being driven by local ecological opportunities, despite ongoing gene-flow.
Collapse
Affiliation(s)
- Will Sowersby
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Biology, Osaka City University, Osaka, Japan
| | - José Cerca
- Frontiers of Evolutionary Zoology Research Group, Natural History Museum, University of Oslo, Oslo, Norway.,Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, USA.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Topi K Lehtonen
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Biology, University of Turku, Turku, Finland.,Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mariana Leal-Cardín
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.,Universidad de Alcalá de Henares, Madrid, Spain
| | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway.,Division of Population Genetics, National Institute of Genetics, Mishima, Japan.,School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
18
|
Cohen HE, Kane EA. Biting kinematics do not differ between ecologically divergent populations of Trinidadian guppies. J Zool (1987) 2021. [DOI: 10.1111/jzo.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H. E. Cohen
- Department of Biology Georgia Southern University Statesboro GA USA
| | - E. A. Kane
- Department of Biology University of Louisiana at Lafayette Lafayette LA USA
| |
Collapse
|
19
|
Abstract
Abstract
Cave animals and species flocks exhibit common evolutionary principles. In caves, all traits dependent on the information derived from light lose their biological function. Mutations destructive for such traits, but neutral for the organism as a whole, can persist and accumulate until a trait has vanished. Adaptive radiations start in ecosystems containing open niches. Here, selection on niche-specific traits, such as the viscerocranium in fish, is relaxed owing to the absence of competing species, and viscerocranial variability arises. It is transitorily high in recent and phylogenetically younger flocks, providing new phenotypes. It lessens and is completely lost after directional selection promotes the fixation of phenotypes that are best adapted. In cave animals and species flocks, single traits manifest phenotypic variability owing to relaxed selection. Like the eye in cave species, the viscerocranium can be classified a module, the development of which is encoded in gene regulatory networks. Mutations in these genes can result in new phenotypes. Regarding functionality, these mutations might be destructive and eliminated by selection, neutral and thus persisting, or beneficial and promoted to fixation by directional selection. Given the ancient heritage of teleostean fish, these gene regulatory networks might be prone to mutations at the same loci or to developmental reactions resulting in similar phenotypes in closely related or taxonomically and geographically distant species.
Collapse
Affiliation(s)
- Horst Wilkens
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Lencer E, McCune AR. Differences in Cell Proliferation and Craniofacial Phenotype of Closely Related Species in the Pupfish Genus Cyprinodon. J Hered 2021; 111:237-247. [PMID: 31811714 DOI: 10.1093/jhered/esz074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/04/2019] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis for phenotypic differences is fundamental to the study of macroevolutionary patterns of biological diversity. While technological advances in DNA sequencing have made researching genetic variation in wild taxa routine, fully understanding how these variants affect phenotype requires taking the next step to investigate how genetic changes alter cell and tissue interactions that ultimately produce phenotypes. In this article, we investigate a role for cell proliferation as a developmental source of craniofacial diversity in a radiation of 3 species of Cyprinodon from San Salvador Island, Bahamas. Patterns of cell proliferation in the heads of hatching-age fish differ among species of Cyprinodon, and correlate with differences in allometric growth rate among the jaws of 3 distinct species. Regional patterns of cell proliferation in the head are complex, resulting in an unintuitive result in which lower levels of cell proliferation in the posterior head region are associated with the development of relatively larger jaws in one species. We combine these data with previously published morphological and genomic data to show how studying the mechanisms generating phenotype at the cellular and tissue levels of biological organization can help mechanistically link genomic studies with classic morphological studies.
Collapse
Affiliation(s)
- Ezra Lencer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY.,Department of Craniofacial Biology, University of Denver-Anschutz, RC, Aurora, CO
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| |
Collapse
|
21
|
Richards EJ, McGirr JA, Wang JR, St John ME, Poelstra JW, Solano MJ, O'Connell DC, Turner BJ, Martin CH. A vertebrate adaptive radiation is assembled from an ancient and disjunct spatiotemporal landscape. Proc Natl Acad Sci U S A 2021; 118:e2011811118. [PMID: 33990463 PMCID: PMC8157919 DOI: 10.1073/pnas.2011811118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the origins and stages of vertebrate adaptive radiation, we reconstructed the spatial and temporal histories of adaptive alleles underlying major phenotypic axes of diversification from the genomes of 202 Caribbean pupfishes. On a single Bahamian island, ancient standing variation from disjunct geographic sources was reassembled into new combinations under strong directional selection for adaptation to the novel trophic niches of scale-eating and molluscivory. We found evidence for two longstanding hypotheses of adaptive radiation: hybrid swarm origins and temporal stages of adaptation. Using a combination of population genomics, transcriptomics, and genome-wide association mapping, we demonstrate that this microendemic adaptive radiation of novel trophic specialists on San Salvador Island, Bahamas experienced twice as much adaptive introgression as generalist populations on neighboring islands and that adaptive divergence occurred in stages. First, standing regulatory variation in genes associated with feeding behavior (prlh, cfap20, and rmi1) were swept to fixation by selection, then standing regulatory variation in genes associated with craniofacial and muscular development (itga5, ext1, cyp26b1, and galr2) and finally the only de novo nonsynonymous substitution in an osteogenic transcription factor and oncogene (twist1) swept to fixation most recently. Our results demonstrate how ancient alleles maintained in distinct environmental refugia can be assembled into new adaptive combinations and provide a framework for reconstructing the spatiotemporal landscape of adaptation and speciation.
Collapse
Affiliation(s)
- Emilie J Richards
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Joseph A McGirr
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| | - Jeremy R Wang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514
| | - Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, Ohio State University, Columbus, OH 43210
| | - Maria J Solano
- Department of Biology, University of North Carolina, Chapell Hill, NC 27514
| | | | - Bruce J Turner
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA 94720;
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| |
Collapse
|
22
|
McGirr JA, Martin CH. Few Fixed Variants between Trophic Specialist Pupfish Species Reveal Candidate Cis-Regulatory Alleles Underlying Rapid Craniofacial Divergence. Mol Biol Evol 2021; 38:405-423. [PMID: 32877534 PMCID: PMC7826174 DOI: 10.1093/molbev/msaa218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists-a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species-only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.
Collapse
Affiliation(s)
- Joseph A McGirr
- Environmental Toxicology Department, University of California, Davis, CA
| | - Christopher H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
23
|
Nicholson GM, Clements KD. Ecomorphological divergence and trophic resource partitioning in 15 syntopic Indo-Pacific parrotfishes (Labridae: Scarini). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Adaptive diversification is a product of both phylogenetic constraint and ecological opportunity. The species-rich parrotfish genera Scarus and Chlorurus display considerable variation in trophic cranial morphology, but these parrotfishes are often described as generalist herbivores. Recent work has suggested that parrotfish partition trophic resources at very fine spatial scales, raising the question of whether interspecific differences in cranial morphology reflect trophic partitioning. We tested this hypothesis by comparing targeted feeding substrata with a previously published dataset of nine cranial morphological traits. We sampled feeding substrata of 15 parrotfish species at Lizard Island, Great Barrier Reef, Australia, by following individuals until focused biting was observed, then extracting a bite core 22 mm in diameter. Three indices were parameterized for each bite core: substratum taphonomy, maximum turf height and cover of crustose coralline algae. Parrotfish species were spread along a single axis of variation in feeding substrata: successional status of the substratum taphonomy and epilithic and endolithic biota. This axis of trophic variation was significantly correlated with cranial morphology, indicating that morphological disparity within this clade is associated with interspecific partitioning of feeding substrata. Phylogenetic signal and phylomorphospace analyses revealed that the evolution of this clade involved a hitherto-unrecognized level of trophic diversification.
Collapse
Affiliation(s)
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Missagia RV, Patterson BD, Krentzel D, Perini FA. Insectivory leads to functional convergence in a group of Neotropical rodents. J Evol Biol 2020; 34:391-402. [PMID: 33617138 DOI: 10.1111/jeb.13748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
The mandible of vertebrates serves as insertion area for masticatory muscles that originate on the skull, and its functional properties are subject to selective forces related to trophic ecology. The efficiency of masticatory muscles can be measured as mechanical advantage on the mandible, which, in turn, has the property of correlating with bite force and shape. In the present work, we quantify the mechanical advantage of the mandible of akodontine rodents, which present a diverse radiation of insectivorous specialists, to assess their relationship to the estimated bite force and diet. We also tested the degree of morphofunctional convergence in response to insectivory on the group. We found the mechanical advantages to be convergent on insectivorous species, and associated with the estimated bite force, with higher mechanical advantages in species with a stronger bite and short, robust mandibles and lower mechanical advantages in insectivorous species with weaker bites and more elongated, dorso-ventrally compressed mandibles. Insectivorous species of Akodontini are functional specialists for the consumption of live prey and may exploit the resources that shrews, moles and hedgehogs consume elsewhere.
Collapse
Affiliation(s)
- Rafaela V Missagia
- PPG - Zoologia/Departamento de Zoologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Dallas Krentzel
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Fernando A Perini
- PPG - Zoologia/Departamento de Zoologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Martin CH, Gould KJ. Surprising spatiotemporal stability of a multi-peak fitness landscape revealed by independent field experiments measuring hybrid fitness. Evol Lett 2020; 4:530-544. [PMID: 33312688 PMCID: PMC7719547 DOI: 10.1002/evl3.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
The effect of the environment on fitness in natural populations is a fundamental question in evolutionary biology. However, experimental manipulations of both environment and phenotype at the same time are rare. Thus, the relative importance of the competitive environment versus intrinsic organismal performance in shaping the location, height, and fluidity of fitness peaks and valleys remains largely unknown. Here, we experimentally tested the effect of competitor frequency on the complex fitness landscape driving adaptive radiation of a generalist and two trophic specialist pupfishes, a scale-eater and molluscivore, endemic to hypersaline lakes on San Salvador Island (SSI), Bahamas. We manipulated phenotypes, by generating 3407 F4/F5 lab-reared hybrids, and competitive environment, by altering the frequency of rare transgressive hybrids between field enclosures in two independent lake populations. We then tracked hybrid survival and growth rates across these four field enclosures for 3-11 months. In contrast to competitive speciation theory, we found no evidence that the frequency of hybrid phenotypes affected their survival. Instead, we observed a strikingly similar fitness landscape to a previous independent field experiment, each supporting multiple fitness peaks for generalist and molluscivore phenotypes and a large fitness valley isolating the divergent scale-eater phenotype. These features of the fitness landscape were stable across manipulated competitive environments, multivariate trait axes, and spatiotemporal heterogeneity. We suggest that absolute performance constraints and divergent gene regulatory networks shape macroevolutionary (interspecific) fitness landscapes in addition to microevolutionary (intraspecific) competitive dynamics. This interplay between organism and environment underlies static and dynamic features of the adaptive landscape.
Collapse
Affiliation(s)
- Christopher H. Martin
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia94720
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia94720
| | - Katelyn J. Gould
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27515
| |
Collapse
|
26
|
Friedman NR, Lecroq Bennet B, Fischer G, Sarnat EM, Huang J, Knowles LLK, Economo EP. Macroevolutionary integration of phenotypes within and across ant worker castes. Ecol Evol 2020; 10:9371-9383. [PMID: 32953067 PMCID: PMC7487254 DOI: 10.1002/ece3.6623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022] Open
Abstract
Phenotypic traits are often integrated into evolutionary modules: sets of organismal parts that evolve together. In social insect colonies, the concepts of integration and modularity apply to sets of traits both within and among functionally and phenotypically differentiated castes. On macroevolutionary timescales, patterns of integration and modularity within and across castes can be clues to the selective and ecological factors shaping their evolution and diversification. We develop a set of hypotheses describing contrasting patterns of worker integration and apply this framework in a broad (246 species) comparative analysis of major and minor worker evolution in the hyperdiverse ant genus Pheidole. Using geometric morphometrics in a phylogenetic framework, we inferred fast and tightly integrated evolution of mesosoma shape between major and minor workers, but slower and more independent evolution of head shape between the two worker castes. Thus, Pheidole workers are evolving as a mixture of intracaste and intercaste integration and rate heterogeneity. The decoupling of homologous traits across worker castes may represent an important process facilitating the rise of social complexity.
Collapse
Affiliation(s)
- Nicholas R. Friedman
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Beatrice Lecroq Bennet
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Georg Fischer
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eli M. Sarnat
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Jen‐Pan Huang
- Department of Ecology and Evolutionary Biology, Museum of ZoologyUniversity of MichiganAnn ArborMIUSA
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - L. Lacey Knowles Knowles
- Department of Ecology and Evolutionary Biology, Museum of ZoologyUniversity of MichiganAnn ArborMIUSA
| | - Evan P. Economo
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
27
|
St. John ME, Dixon K, Martin CH. Oral shelling within an adaptive radiation of pupfishes: Testing the adaptive function of a novel nasal protrusion and behavioural preference. JOURNAL OF FISH BIOLOGY 2020; 97:163-171. [PMID: 32278332 PMCID: PMC8183458 DOI: 10.1111/jfb.14344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Dietary specialization on hard prey items, such as mollusks and crustaceans, is commonly observed in a diverse array of fish species. Many fish consume these types of prey by crushing the shell to consume the soft tissue within, but a few fishes extricate the soft tissue without breaking the shell using a method known as oral shelling. Oral shelling involves pulling a mollusc from its shell and it may be a way to subvert an otherwise insurmountable shell defence. However, the biomechanical requirements and potential adaptations for oral shelling are unknown. Here, we test the hypothesis that a novel nasal protrusion is an adaptation for oral shelling in the durophagous pupfish (Cyprinodon brontotheroides). We first demonstrate oral shelling in this species and then predict that a larger nasal protrusion would allow pupfish to consume larger snails. Durophagous pupfish are found within an endemic radiation of pupfish on San Salvador Island, Bahamas. We took advantage of closely related sympatric species and outgroups to test: (a) whether durophagous pupfish shell and consume more snails than other species, (b) if F1 and F2 durophagous hybrids consume similar amounts of snails as purebred durophagous pupfish, and (c) if nasal protrusion size in parental and hybrid populations increases the maximum size of consumed snails. We found that durophagous pupfish and their hybrids consumed the most snails, but did not find a strong association between nasal protrusion size and maximum snail size consumed within the parental or F2 hybrid population, suggesting that the size of their novel nasal protrusion does not provide a major benefit in oral shelling. Instead, we suggest that the nasal protrusion may increase feeding efficiency, act as a sensory organ, or is a sexually selected trait, and that a strong feeding preference may be most important for oral shelling.
Collapse
Affiliation(s)
- Michelle E. St. John
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Kristi Dixon
- Department of Biology, University of North Carolina at Chapel Hill, 120 South Rd., NC 27599, USA
| | - Christopher H. Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Grundler M, Rabosky DL. Complex Ecological Phenotypes on Phylogenetic Trees: A Markov Process Model for Comparative Analysis of Multivariate Count Data. Syst Biol 2020; 69:1200-1211. [DOI: 10.1093/sysbio/syaa031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
AbstractThe evolutionary dynamics of complex ecological traits—including multistate representations of diet, habitat, and behavior—remain poorly understood. Reconstructing the tempo, mode, and historical sequence of transitions involving such traits poses many challenges for comparative biologists, owing to their multidimensional nature. Continuous-time Markov chains are commonly used to model ecological niche evolution on phylogenetic trees but are limited by the assumption that taxa are monomorphic and that states are univariate categorical variables. A necessary first step in the analysis of many complex traits is therefore to categorize species into a predetermined number of univariate ecological states, but this procedure can lead to distortion and loss of information. This approach also confounds interpretation of state assignments with effects of sampling variation because it does not directly incorporate empirical observations for individual species into the statistical inference model. In this study, we develop a Dirichlet-multinomial framework to model resource use evolution on phylogenetic trees. Our approach is expressly designed to model ecological traits that are multidimensional and to account for uncertainty in state assignments of terminal taxa arising from effects of sampling variation. The method uses multivariate count data across a set of discrete resource categories sampled for individual species to simultaneously infer the number of ecological states, the proportional utilization of different resources by different states, and the phylogenetic distribution of ecological states among living species and their ancestors. The method is general and may be applied to any data expressible as a set of observational counts from different categories. [Comparative methods; Dirichlet multinomial; ecological niche evolution; macroevolution; Markov model.]
Collapse
Affiliation(s)
- Michael Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
St John ME, Holzman R, Martin CH. Rapid adaptive evolution of scale-eating kinematics to a novel ecological niche. J Exp Biol 2020; 223:jeb217570. [PMID: 32029459 PMCID: PMC7097200 DOI: 10.1242/jeb.217570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2020] [Indexed: 01/08/2023]
Abstract
The origins of novel trophic specialization, in which organisms begin to exploit resources for the first time, may be explained by shifts in behavior such as foraging preferences or feeding kinematics. One way to investigate behavioral mechanisms underlying ecological novelty is by comparing prey capture kinematics among species. We investigated the contribution of kinematics to the origins of a novel ecological niche for scale-eating within a microendemic adaptive radiation of pupfishes on San Salvador Island, Bahamas. We compared prey capture kinematics across three species of pupfish while they consumed shrimp and scales in the lab, and found that scale-eating pupfish exhibited peak gape sizes twice as large as in other species, but also attacked prey with a more obtuse angle between their lower jaw and suspensorium. We then investigated how this variation in feeding kinematics could explain scale-biting performance by measuring bite size (surface area removed) from standardized gelatin cubes. We found that a combination of larger peak gape and more obtuse lower jaw and suspensorium angles resulted in approximately 40% more surface area removed per strike, indicating that scale-eaters may reside on a performance optimum for scale biting. To test whether feeding performance could contribute to reproductive isolation between species, we also measured F1 hybrids and found that their kinematics and performance more closely resembled generalists, suggesting that F1 hybrids may have low fitness in the scale-eating niche. Ultimately, our results suggest that the evolution of strike kinematics in this radiation is an adaptation to the novel niche of scale eating.
Collapse
Affiliation(s)
- Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roi Holzman
- School of Zoology, Tel Aviv University, Eilat 6997801, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Arbour JH, Montaña CG, Winemiller KO, Pease AA, Soria-Barreto M, Cochran-Biederman JL, López-Fernández H. Macroevolutionary analyses indicate that repeated adaptive shifts towards predatory diets affect functional diversity in Neotropical cichlids. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
During adaptive radiation, diversification within clades is limited by adaptation to the available ecological niches, and this may drive patterns of both trait and species diversity. However, adaptation to disparate niches may result in varied impacts on the timing, pattern and rate of morphological evolution. In this study, we examined the relationship between feeding ecology and functional diversification across a diverse clade of freshwater fishes, the Neotropical cichlids. Species dietary niches were ordinated via multivariate analysis of stomach content data. We investigated changes in the rate and pattern of morphological diversification associated with feeding, including dietary niche and degree of dietary specialization. A major division in dietary niche space was observed between predators that consume fish and macroinvertebrates vs. other groups with diets dominated by small invertebrates, detritus or vegetation. These trophic niches were strongly associated with groupings defined by functional morphospace. Clades within the piscivore/macroinvertivore group rarely transitioned to other dietary niches. Comparatively, high dietary specialization enhanced functional diversification, driving the evolution of more extreme morphologies. Divergent patterns of trophic diversification among Neotropical cichlids appear to derive from different performance demands in regional abiotic and biotic environments associated with biogeographical history.
Collapse
Affiliation(s)
- Jessica H Arbour
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Carmen G Montaña
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Kirk O Winemiller
- Department of Wildlife and Fisheries Sciences, Texas A&M University, TAMU, College Station, TX, USA
| | - Allison A Pease
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, USA
| | - Miriam Soria-Barreto
- Departamento de Conservación de la Biodiversidad, CONACYT - El Colegio de la Frontera Sur (ECOSUR), San Cristóbal de Las Casas, Chiapas, Mexico
- Centro de Investigación de Ciencias Ambientales, Universidad Autónoma del Carmen, Ciudad del Carmen, Campeche, Mexico
| | | | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Abstract
Animals use a diverse array of motion to feed, escape predators, and reproduce. Linking morphology, performance, and fitness is a foundational paradigm in organismal biology and evolution. Yet, the influence of mechanical relationships on evolutionary diversity remains unresolved. Here, I focus on the many-to-one mapping of form to function, a widespread, emergent property of many mechanical systems in nature, and discuss how mechanical redundancy influences the tempo and mode of phenotypic evolution. By supplying many possible morphological pathways for functional adaptation, many-to-one mapping can release morphology from selection on performance. Consequently, many-to-one mapping decouples morphological and functional diversification. In fish, for example, parallel morphological evolution is weaker for traits that contribute to mechanically redundant motions, like suction feeding performance, than for systems with one-to-one form-function relationships, like lower jaw lever ratios. As mechanical complexity increases, historical factors play a stronger role in shaping evolutionary trajectories. Many-to-one mapping, however, does not always result in equal freedom of morphological evolution. The kinematics of complex systems can often be reduced to variation in a few traits of high mechanical effect. In various different four-bar linkage systems, for example, mechanical output (kinematic transmission) is highly sensitive to size variation in one or two links, and insensitive to variation in the others. In four-bar linkage systems, faster rates of evolution are biased to traits of high mechanical effect. Mechanical sensitivity also results in stronger parallel evolution-evolutionary transitions in mechanical output are coupled with transition in linkages of high mechanical effect. In other words, the evolutionary dynamics of complex systems can actually approximate that of simpler, one-to-one systems when mechanical sensitivity is strong. When examined in a macroevolutionary framework, the same mechanical system may experience distinct selective pressures in different groups of organisms. For example, performance tradeoffs are stronger for organisms that use the same mechanical structure for more functions. In general, stronger performance tradeoffs result in less phenotypic diversity in the system and, sometimes, a slower rate of evolution. These macroevolutionary trends can contribute to unevenness in functional and lineage diversity across the tree of life. Finally, I discuss how the evolution of mechanical systems informs our understanding of the relative roles of determinism and contingency in evolution.
Collapse
Affiliation(s)
- Martha M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
32
|
Friedman NR, Remeš V, Economo EP. A Morphological Integration Perspective on the Evolution of Dimorphism among Sexes and Social Insect Castes. Integr Comp Biol 2019; 59:410-419. [PMID: 31120505 DOI: 10.1093/icb/icz053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many species have evolved alternate phenotypes, thus enabling individuals to conditionally produce phenotypes that are favorable for reproductive success. Examples of this phenomenon include sexual dimorphism, alternative reproductive strategies, and social insect castes. While the evolutionary functions and developmental mechanisms of dimorphic phenotypes have been studied extensively, little attention has focused on the evolutionary covariance between each phenotype. We extend the conceptual framework and methods of morphological integration to hypothesize that dimorphic traits tend to be less integrated between sexes or social castes. In the case of social insects, we describe results from our recent study of an ant genus in which workers have major and minor worker castes that perform different behavioral repertoires in and around the nest. In the case of birds, we describe a new analysis of a family of songbirds that exhibits plumage coloration that can differ greatly between males and females, with apparently independent changes in each sex. Ant head shape, which is highly specialized in each worker caste, was weakly integrated between worker castes, whereas thorax shape, which is more monomorphic, was tightly integrated. Similarly, in birds, we found a negative association between dimorphism and the degree of integration between sexes. We also found that integration decreased in fairy wrens (Malurus) for many feather patches that evolved greater dichromatism. Together, this suggests that the process of evolving increased dimorphism results in a decrease in integration between sexes and social castes. We speculate that once a mechanism for dimorphism evolves, that mechanism can create independent variation in one sex or caste upon which selection may act.
Collapse
Affiliation(s)
- Nicholas R Friedman
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa Japan
| | - Vladimír Remeš
- Department of Zoology & Laboratory of Ornithology, Faculty of Science, Palacký University, Tř. 17 Listopadu 50, Olomouc, Czech Republic
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa Japan
| |
Collapse
|
33
|
Adams DC, Collyer ML. Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024555] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary biology is multivariate, and advances in phylogenetic comparative methods for multivariate phenotypes have surged to accommodate this fact. Evolutionary trends in multivariate phenotypes are derived from distances and directions between species in a multivariate phenotype space. For these patterns to be interpretable, phenotypes should be characterized by traits in commensurate units and scale. Visualizing such trends, as is achieved with phylomorphospaces, should continue to play a prominent role in macroevolutionary analyses. Evaluating phylogenetic generalized least squares (PGLS) models (e.g., phylogenetic analysis of variance and regression) is valuable, but using parametric procedures is limited to only a few phenotypic variables. In contrast, nonparametric, permutation-based PGLS methods provide a flexible alternative and are thus preferred for high-dimensional multivariate phenotypes. Permutation-based methods for evaluating covariation within multivariate phenotypes are also well established and can test evolutionary trends in phenotypic integration. However, comparing evolutionary rates and modes in multivariate phenotypes remains an important area of future development.
Collapse
Affiliation(s)
- Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Michael L. Collyer
- Department of Science, Chatham University, Pittsburgh, Pennsylvania 15232, USA
| |
Collapse
|
34
|
MARTIN CHRISTOPHERH, RICHARDS EMILIEJ. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:569-593. [PMID: 36237480 PMCID: PMC9555815 DOI: 10.1146/annurev-ecolsys-110617-062443] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes - species richness, phenotypic disparity, and ecological diversity - with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the 'transporter' hypothesis: introgression and the ancient origins of adaptive alleles, 2) the 'signal complexity' hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) 'diversity begets diversity', and 5) flexible stem/'plasticity first'. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation.
Collapse
Affiliation(s)
- CHRISTOPHER H. MARTIN
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - EMILIE J. RICHARDS
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
35
|
Conith MR, Conith AJ, Albertson RC. Evolution of a soft-tissue foraging adaptation in African cichlids: Roles for novelty, convergence, and constraint. Evolution 2019; 73:2072-2084. [PMID: 31418824 DOI: 10.1111/evo.13824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
Understanding the origins of biodiversity demands consideration of both extrinsic (e.g., ecological opportunity) and intrinsic (e.g., developmental constraint) factors. Here, we use a combination of phylogenetic and genetic tools to address the origin of novelty in African cichlids. In particular, we focus on an extreme hypertrophied snout that is structurally integrated with the upper jaw. We show that this bizarre trait has evolved independently in at least two distinct and ecologically successful cichlid clades. We find that snout dimensions are decoupled both phenotypically and genetically, which has enabled it to evolve independently in multiple directions. Further, patterns of variation among species and within a genetic mapping pedigree suggest that relative to snout length, depth is under greater genetic and/or developmental constraint. Models of evolution suggest that snout shape is under selection for feeding behavior, with snout depth being important for algae scraping and snout length for sand sifting. Indeed, the deep snout of some algivores is achieved via an expansion of the intermaxillary ligament, which is important for jaw stability and may increase feeding performance. Overall, our data imply that the evolution of exaggerated snout depth required overcoming a genetic/developmental constraint, which led to expanded ecological opportunity via foraging adaptation.
Collapse
Affiliation(s)
- Moira R Conith
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Andrew J Conith
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - R Craig Albertson
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, 01003.,Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| |
Collapse
|
36
|
Levis NA, Pfennig DW. Plasticity‐led evolution: A survey of developmental mechanisms and empirical tests. Evol Dev 2019; 22:71-87. [DOI: 10.1111/ede.12309] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas A. Levis
- Department of Biology University of North Carolina Chapel Hill North Carolina
| | - David W. Pfennig
- Department of Biology University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
37
|
Martin CH, McGirr JA, Richards EJ, St. John ME. How to Investigate the Origins of Novelty: Insights Gained from Genetic, Behavioral, and Fitness Perspectives. Integr Org Biol 2019; 1:obz018. [PMID: 33791533 PMCID: PMC7671130 DOI: 10.1093/iob/obz018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biologists are drawn to the most extraordinary adaptations in the natural world, often referred to as evolutionary novelties, yet rarely do we understand the microevolutionary context underlying the origins of novel traits, behaviors, or ecological niches. Here we discuss insights gained into the origins of novelty from a research program spanning biological levels of organization from genotype to fitness in Caribbean pupfishes. We focus on a case study of the origins of novel trophic specialists on San Salvador Island, Bahamas and place this radiation in the context of other rapid radiations. We highlight questions that can be addressed about the origins of novelty at different biological levels, such as measuring the isolation of novel phenotypes on the fitness landscape, locating the spatial and temporal origins of adaptive variation contributing to novelty, detecting dysfunctional gene regulation due to adaptive divergence, and connecting behaviors with novel traits. Evolutionary novelties are rare, almost by definition, and we conclude that integrative case studies can provide insights into this rarity relative to the dynamics of adaptation to more common ecological niches and repeated parallel speciation, such as the relative isolation of novel phenotypes on fitness landscapes and the transient availability of ecological, genetic, and behavioral opportunities.
Collapse
Affiliation(s)
- C H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - J A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - E J Richards
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - M E St. John
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
McGirr JA, Martin CH. Hybrid gene misregulation in multiple developing tissues within a recent adaptive radiation of Cyprinodon pupfishes. PLoS One 2019; 14:e0218899. [PMID: 31291291 PMCID: PMC6619667 DOI: 10.1371/journal.pone.0218899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic incompatibilities constitute the final stages of reproductive isolation and speciation, but little is known about incompatibilities that occur within recent adaptive radiations among closely related diverging populations. Crossing divergent species to form hybrids can break up coadapted variation, resulting in genetic incompatibilities within developmental networks shaping divergent adaptive traits. We crossed two closely related sympatric Cyprinodon pupfish species–a dietary generalist and a specialized molluscivore–and measured expression levels in their F1 hybrids to identify regulatory variation underlying the novel craniofacial morphology found in this recent microendemic adaptive radiation. We extracted mRNA from eight day old whole-larvae tissue and from craniofacial tissues dissected from 17–20 day old larvae to compare gene expression between a total of seven F1 hybrids and 24 individuals from parental species populations. We found 3.9% of genes differentially expressed between generalists and molluscivores in whole-larvae tissues and 0.6% of genes differentially expressed in craniofacial tissue. We found that 2.1% of genes were misregulated in whole-larvae hybrids whereas 19.1% of genes were misregulated in hybrid craniofacial tissues, after correcting for sequencing biases. We also measured allele specific expression across 15,429 heterozygous sites to identify putative compensatory regulatory mechanisms underlying differential expression between generalists and molluscivores. Together, our results highlight the importance of considering misregulation as an early indicator of genetic incompatibilities in the context of rapidly diverging adaptive radiations and suggests that compensatory regulatory divergence drives hybrid gene misregulation in developing tissues that give rise to novel craniofacial traits.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
39
|
St. John ME, McGirr JA, Martin CH. The behavioral origins of novelty: did increased aggression lead to scale-eating in pupfishes? Behav Ecol 2019; 30:557-569. [PMID: 30971862 PMCID: PMC6450202 DOI: 10.1093/beheco/ary196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Behavioral changes in a new environment are often assumed to precede the origins of evolutionary novelties. Here, we examined whether an increase in aggression is associated with a novel scale-eating trophic niche within a recent radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. We measured aggression using multiple behavioral assays and used transcriptomic analyses to identify differentially expressed genes in aggression and other behavioral pathways across 3 sympatric species in the San Salvador radiation (generalist, snail-eating specialist, and scale-eating specialist) and 2 generalist outgroups. Surprisingly, we found increased behavioral aggression and differential expression of aggression-related pathways in both the scale-eating and snail-eating specialists, despite their independent evolutionary origins. Increased behavioral aggression varied across both sex and stimulus context in both species. Our results indicate that aggression is not unique to scale-eating specialists. Instead, selection may increase aggression in other contexts such as niche specialization in general or mate competition. Alternatively, increased aggression may result from indirect selection on craniofacial traits, pigmentation, or metabolism-all traits which are highly divergent, exhibit signs of selective sweeps, and are affected by aggression-related genetic pathways which are differentially expressed in this system. In conclusion, the evolution of a novel predatory trophic niche within a recent adaptive radiation does not have clear-cut behavioral origins as previously assumed, highlighting the multivariate nature of adaptation and the complex integration of behavior with other phenotypic traits.
Collapse
Affiliation(s)
| | - Joseph A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
40
|
Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of change with and within phylogenetic trees including extinct species. PLoS One 2019; 14:e0210101. [PMID: 30682060 PMCID: PMC6347132 DOI: 10.1371/journal.pone.0210101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Recognizing evolutionary trends in phenotypic means and rates requires the application of phylogenetic comparative methods (PCMs). Most PCMs are unsuited to make full use of fossil information, which is a drawback, given the inclusion of such data improves, and in some cases even corrects, the proper understanding of trait evolution. Here we present a new computer application, written in R, that allows the simultaneous computation of temporal trends in phenotypic mean and evolutionary rate along a phylogeny, and to contrast such patterns among different clades within the tree. By using simulation experiments, we show the new implementation, names search.trend is as powerful as existing PCM tools in discerning macroevolutionary patterns in phenotypic means and rates, but differently from any other PCM allows comparing individual clades to each other, and provides rich information about trait evolution for all lineages in the tree.
Collapse
|
41
|
Sakamoto M, Ruta M, Venditti C. Extreme and rapid bursts of functional adaptations shape bite force in amniotes. Proc Biol Sci 2019; 286:20181932. [PMID: 30963871 PMCID: PMC6367170 DOI: 10.1098/rspb.2018.1932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/12/2018] [Indexed: 11/12/2022] Open
Abstract
Adaptation is the fundamental driver of functional and biomechanical evolution. Accordingly, the states of biomechanical traits (absolute or relative trait values) have long been used as proxies for adaptations in response to direct selection. However, ignoring evolutionary history, in particular ancestry, passage of time and the rate of evolution, can be misleading. Here, we apply a recently developed phylogenetic statistical approach using significant rate shifts to detect instances of exceptional rates of adaptive changes in bite force in a large group of terrestrial vertebrates, the amniotes. Our results show that bite force in amniotes evolved through multiple bursts of exceptional rates of adaptive changes, whereby whole groups-including Darwin's finches, maniraptoran dinosaurs (group of non-avian dinosaurs including birds), anthropoids and hominins (fossil and modern humans)-experienced significant rate increases compared to the background rate. However, in most parts of the amniote tree of life, we find no exceptional rate increases, indicating that coevolution with body size was primarily responsible for the patterns observed in bite force. Our approach represents a template for future studies in functional morphology and biomechanics, where exceptional rates of adaptive changes can be quantified and potentially linked to specific ecological factors underpinning major evolutionary radiations.
Collapse
Affiliation(s)
- Manabu Sakamoto
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6BX, UK
| | - Marcello Ruta
- School of Life Sciences, University of Lincoln, Lincoln, Lincolnshire LN6 7DL, UK
| | - Chris Venditti
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6BX, UK
| |
Collapse
|
42
|
Reef fish functional traits evolve fastest at trophic extremes. Nat Ecol Evol 2018; 3:191-199. [DOI: 10.1038/s41559-018-0725-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
|
43
|
|
44
|
Chira AM, Cooney CR, Bright JA, Capp EJR, Hughes EC, Moody CJA, Nouri LO, Varley ZK, Thomas GH. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol Lett 2018; 21:1505-1514. [PMID: 30133084 PMCID: PMC6175488 DOI: 10.1111/ele.13131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
Heterogeneity in rates of trait evolution is widespread, but it remains unclear which processes drive fast and slow character divergence across global radiations. Here, we test multiple hypotheses for explaining rate variation in an ecomorphological trait (beak shape) across a globally distributed group (birds). We find low support that variation in evolutionary rates of species is correlated with life history, environmental mutagenic factors, range size, number of competitors, or living on islands. Indeed, after controlling for the negative effect of species' age, 80% of variation in species‐specific evolutionary rates remains unexplained. At the clade level, high evolutionary rates are associated with unusual phenotypes or high species richness. Taken together, these results imply that macroevolutionary rates of ecomorphological traits are governed by both ecological opportunity in distinct adaptive zones and niche differentiation among closely related species.
Collapse
Affiliation(s)
- A M Chira
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - C R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - J A Bright
- School of Geosciences, University of South Florida, Tampa, FL, USA
| | - E J R Capp
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - E C Hughes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - C J A Moody
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - L O Nouri
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Z K Varley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - G H Thomas
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, Hertfordshire, UK
| |
Collapse
|
45
|
Foster KL, Piller KR. Disentangling the drivers of diversification in an imperiled group of freshwater fishes (Cyprinodontiformes: Goodeidae). BMC Evol Biol 2018; 18:116. [PMID: 30021522 PMCID: PMC6052539 DOI: 10.1186/s12862-018-1220-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/20/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND One of the most perplexing questions in evolutionary biology is why some lineages diversify into many species, and others do not. In many cases, ecological opportunity has played an important role, leading to diversification along trophic or habitat-based axes. The Goodeidae (Teleostomi: Cyprinodontiformes) are a family of freshwater fishes with two subfamilies: Goodeinae (42 species, viviparous, heterogeneous habitats, Mesa Central of Mexico) and Empetrichthyinae (4 species, oviparous, homogeneous habitats, Great Basin of the United States). These discrepant sets of characteristics and their sister-group relationship make the goodeids amenable to a comparative study of diversification. We gathered lateral body images from more than 1600 specimens of all extant species in the family. Geometric morphometric, and phylogenetic comparative analyses were used to address whether higher species diversity correlates with higher rates of morphological shape evolution and whether there are differences in functional/habitat modules between the two subfamilies. RESULTS This study recovered a higher rate of overall body shape evolution in the Goodeinae that is nearly double in magnitude compared to the Empetrichthyinae. A modularity test indicated that the Goodeinae displayed elevated rates of morphological evolution in comparison to the Empetrichthyinae when only trunk (locomotor) regions were compared between subfamilies. No significant differences in evolutionary shape rates were recovered when the trophic (head) regions were compared between subfamilies. DISCUSSION These results support the hypothesis that Mexican goodeids radiated via an ecological opportunity scenario into a wide-array of novel habitats in the island-like Mesa Central as evidenced by their high rate of shape evolution, relative to the Empetrichthyinae. This study quantitatively unraveled the drivers of evolution and eliminated trophic specialization as a driving force within the Goodeidae. CONCLUSIONS A combination of phylogenetic and morphometric data, and phylogenetic comparative analyses were used to examine body shape rate evolution within the Goodeidae. Results support the hypothesis that species in the subfamily Goodeinae on the central Mexican plateau had a higher rate of body shape evolution relative to its sister subfamily Empetrichthyinae in the Great Basin suggesting that the Goodeinae diversified via an ecological opportunity scenario along habitat, rather than trophic axes.
Collapse
Affiliation(s)
- Kimberly L. Foster
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402 USA
- Present Address: Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410 USA
| | - Kyle R. Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402 USA
| |
Collapse
|
46
|
Martin CH, Turner BJ. Long-distance dispersal over land by fishes: extremely rare ecological events become probable over millennial timescales. Proc Biol Sci 2018; 285:20172436. [PMID: 29925610 PMCID: PMC6030530 DOI: 10.1098/rspb.2017.2436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Bruce J Turner
- Department of Biological Sciences, Virginia Tech, VA, USA
| |
Collapse
|
47
|
McGirr JA, Martin CH. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol Lett 2018; 2:62-75. [PMID: 30283665 PMCID: PMC6089502 DOI: 10.1002/evl3.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Parallel evolution of gene expression commonly underlies convergent niche specialization, but parallel changes in expression could also underlie divergent specialization. We investigated divergence in gene expression and whole-genome genetic variation across three sympatric Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist and two derived specialists adapted to novel niches: a scale-eating and a snail-eating pupfish. We sampled total mRNA from all three species at two early developmental stages and compared gene expression with whole-genome genetic differentiation among all three species in 42 resequenced genomes. Eighty percent of genes that were differentially expressed between snail-eaters and generalists were up or down regulated in the same direction between scale-eaters and generalists; however, there were no fixed variants shared between species underlying these parallel changes in expression. Genes showing parallel evolution of expression were enriched for effects on metabolic processes, whereas genes showing divergent expression were enriched for effects on cranial skeleton development and pigment biosynthesis, reflecting the most divergent phenotypes observed between specialist species. Our findings reveal that even divergent niche specialists may exhibit convergent adaptation to higher trophic levels through shared genetic pathways. This counterintuitive result suggests that parallel evolution in gene expression can accompany divergent ecological speciation during adaptive radiation.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| | - Christopher H. Martin
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| |
Collapse
|
48
|
Stange M, Aguirre-Fernández G, Salzburger W, Sánchez-Villagra MR. Study of morphological variation of northern Neotropical Ariidae reveals conservatism despite macrohabitat transitions. BMC Evol Biol 2018; 18:38. [PMID: 29587647 PMCID: PMC5870521 DOI: 10.1186/s12862-018-1152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The study of shape variation in an evolutionary context is usually restricted to well-studied fish models. We take advantage of the recently revised systematics of New World Ariidae and investigate skull shape evolution in six genera of northern Neotropical Ariidae. They constitute a lineage that diversified in the marine habitat but repeatedly adapted to freshwater habitats. 3D geometric morphometrics was applied for the first time in catfish skulls and phylogenetically informed statistical analyses were performed to test for the impact of habitat on skull diversification after habitat transition in this lineage. RESULTS We found that skull shape is conserved throughout phylogeny. A morphospace analysis revealed that freshwater and marine species occupy extreme ends of the first principal component axis and that they exhibit similar Procrustes variances. Yet freshwater species occupy the smallest shape space compared to marine and brackish species (based on partial disparity), and marine and freshwater species have the largest Procrustes distance to each other. We observed a single case of shape convergence as derived from 'C-metrics', which cannot be explained by the occupation of the same habitat. CONCLUSIONS Although Ariidae occupy such a broad spectrum of different habitats from sea to freshwater, the morphospace analysis and analyses of shape and co-variation with habitat in a phylogenetic context shows that conservatism dominates skull shape evolution among ariid genera.
Collapse
Affiliation(s)
- Madlen Stange
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland.
| | - Gabriel Aguirre-Fernández
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Marcelo R Sánchez-Villagra
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| |
Collapse
|
49
|
Becher C, Gumm JM. The roles of inter- and intra-sexual selection in behavioral isolation between native and invasive pupfishes. Curr Zool 2018; 64:135-144. [PMID: 29492046 PMCID: PMC5809032 DOI: 10.1093/cz/zox068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/18/2017] [Indexed: 11/14/2022] Open
Abstract
Male-male competition and female mate choice may both play important roles in driving and maintaining reproductive isolation between species. When previously allopatric species come into secondary contact with each other due to introductions, they provide an opportunity to evaluate the identity and strength of reproductive isolating mechanisms. If reproductive isolation is not maintained, hybridization may occur. We examined how reproductive isolating mechanisms mediate hybridization between endemic populations of the Red River pupfish Cyprinodon rubrofluviatilis and the recently introduced sheepshead minnow C. variegatus. In lab-based dominance trials, males of both species won the same number of competitions. However, male C. rubrofluviatilis that won competitions were more aggressive than C. variegatus winners, and more aggression was needed to win against competitor C. variagatus than allopatric C. rubrofluviatilis. Duration of fights also differed based on the relatedness of the competitor. In dichotomous mate choice trials, there were no conspecific or heterospecific preferences expressed by females of either species. Our findings that male-male aggression differs between closely and distantly related groups, but female choice does not suggest that male-male competition may be the more likely mechanism to impede gene flow in this system.
Collapse
Affiliation(s)
- Cory Becher
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX 75962, USA and.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jennifer M Gumm
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX 75962, USA and
| |
Collapse
|
50
|
Sherratt E, Rasmussen AR, Sanders KL. Trophic specialization drives morphological evolution in sea snakes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172141. [PMID: 29657807 PMCID: PMC5882731 DOI: 10.1098/rsos.172141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/26/2018] [Indexed: 05/19/2023]
Abstract
Viviparous sea snakes are the most rapidly speciating reptiles known, yet the ecological factors underlying this radiation are poorly understood. Here, we reconstructed dated trees for 75% of sea snake species and quantified body shape (forebody relative to hindbody girth), maximum body length and trophic diversity to examine how dietary specialization has influenced morphological diversification in this rapid radiation. We show that sea snake body shape and size are strongly correlated with the proportion of burrowing prey in the diet. Specialist predators of burrowing eels have convergently evolved a 'microcephalic' morphotype with dramatically reduced forebody relative to hindbody girth and intermediate body length. By comparison, snakes that predominantly feed on burrowing gobies are generally short-bodied and small-headed, but there is no evidence of convergent evolution. The eel specialists also exhibit faster rates of size and shape evolution compared to all other sea snakes, including those that feed on gobies. Our results suggest that trophic specialization to particular burrowing prey (eels) has invoked strong selective pressures that manifest as predictable and rapid morphological changes. Further studies are needed to examine the genetic and developmental mechanisms underlying these dramatic morphological changes and assess their role in sea snake speciation.
Collapse
Affiliation(s)
- Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Arne R. Rasmussen
- The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation, Copenhagen K, Denmark
| | - Kate L. Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|