1
|
Singh DK, Ahmed M, Akter S, Shivanna V, Bucşan AN, Mishra A, Golden NA, Didier PJ, Doyle LA, Hall-Ursone S, Roy CJ, Arora G, Dick EJ, Jagannath C, Mehra S, Khader SA, Kaushal D. Prevention of tuberculosis in cynomolgus macaques by an attenuated Mycobacterium tuberculosis vaccine candidate. Nat Commun 2025; 16:1957. [PMID: 40000643 PMCID: PMC11861635 DOI: 10.1038/s41467-025-57090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The need for novel vaccination strategies to control tuberculosis (TB) is underscored by the limited and variable efficacy of the currently licensed vaccine, Bacille Calmette-Guerin (BCG). SigH is critical for Mycobacterium tuberculosis (Mtb) to mitigate oxidative stress, and in its absence Mtb is unable to scavenge host oxidative/nitrosative bursts. The MtbΔsigH (ΔsigH) isogenic mutant induces signatures of the innate immunity in macrophages and protects rhesus macaques from a lethal Mtb challenge. To understand the immune mechanisms of protection via mucosal vaccination with ΔsigH, we employed the resistant cynomolgus macaque model; and our results show that ΔsigH vaccination significantly protects against lethal Mtb challenge in this species. ΔsigH-vaccinated macaques are devoid of granulomas and instead generate inducible bronchus associated lymphoid structures, and robust antigen-specific CD4+ and CD8+ T cell responses, driven by a hyper-immune, trained immunity-like phenotype in host macrophages with enhanced antigen presentation. Correlates of protection in ΔsigH-vaccinated macaques include gene signatures of T cell activation, IFNG production, including IFN-responsive, activated T cells, concomitant with IFNG production, and suppression of IDO+ Type I IFN-responsive macrophage recruitment. Thus, ΔsigH is a promising lead candidate for further development as an antitubercular vaccine.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Sadia Akter
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Vinay Shivanna
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Allison N Bucşan
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Nadia A Golden
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Peter J Didier
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Lara A Doyle
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chad J Roy
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Garima Arora
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
3
|
Sharan R, Zou Y, Lai Z, Singh B, Shivanna V, Dick E, Hall-Ursone S, Khader S, Mehra S, Alvarez X, Rengarajan J, Kaushal D. Concurrent TB and HIV therapies effectively control clinical reactivation of TB during co-infection but fail to eliminate chronic immune activation. RESEARCH SQUARE 2024:rs.3.rs-4908400. [PMID: 39257997 PMCID: PMC11384027 DOI: 10.21203/rs.3.rs-4908400/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The majority of Human Immunodeficiency Virus (HIV) negative individuals exposed to Mycobacterium tuberculosis (Mtb) control the bacillary infection as latent TB infection (LTBI). Co-infection with HIV, however, drastically increases the risk to progression to tuberculosis (TB) disease. TB is therefore the leading cause of death in people living with HIV (PLWH) globally. Combinatorial antiretroviral therapy (cART) is the cornerstone of HIV care in humans and reduces the risk of reactivation of LTBI. However, the immune control of Mtb infection is not fully restored by cART as indicated by higher incidence of TB in PLWH despite cART. In the macaque model of co-infection, skewed pulmonary CD4+ TEM responses persist, and new TB lesions form despite cART treatment. We hypothesized that regimens that concurrently administer anti-TB therapy and cART would significantly reduce TB in co-infected macaques than cART alone, resulting in superior bacterial control, mitigation of persistent inflammation and lasting protective immunity. We studied components of TB immunity that remain impaired after cART in the lung compartment, versus those that are restored by concurrent 3 months of once weekly isoniazid and rifapentine (3HP) and cART in the rhesus macaque (RM) model of LTBI and Simian Immunodeficiency Virus (SIV) co-infection. Concurrent administration of cART + 3HP did improve clinical and microbiological attributes of Mtb/SIV co-infection compared to cART-naïve or -untreated RMs. While RMs in the cART + 3HP group exhibited significantly lower granuloma volumes after treatment, they, however, continued to harbor caseous granulomas with increased FDG uptake. cART only partially restores the constitution of CD4 + T cells to the lung compartment in co-infected macaques. Concurrent therapy did not further enhance the frequency of reconstituted CD4+ T cells in BAL and lung of Mtb/SIV co-infected RMs compared to cART, and treated animals continued to display incomplete reconstitution to the lung. Furthermore, the reconstituted CD4+ T cells in BAL and lung of cART + 3HP treated RMs exhibited an increased frequencies of activated, exhausted and inflamed phenotype compared to LTBI RMs. cART + 3HP failed to restore the effector memory CD4+ T cell population that was significantly reduced in pulmonary compartment post SIV co-infection. Concurrent therapy was associated with the induction of Type I IFN transcriptional signatures and led to increased Mtb-specific TH1/TH17 responses correlated with protection, but decreased Mtb-specific TNFa responses, which could have a detrimental impact on long term protection. Our results suggest the mechanisms by which Mtb/HIV co-infected individuals remain at risk for progression due to subsequent infections or reactivation due of persisting defects in pulmonary T cell responses. By identifying lung-specific immune components in this model, it is possible to pinpoint the pathways that can be targeted for host-directed adjunctive therapies for TB/HIV co-infection.
Collapse
Affiliation(s)
| | | | - Zhao Lai
- The University of Texas Health San Antonio
| | | | | | | | | | | | | | | | | | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute
| |
Collapse
|
4
|
Yaseen F, Taj M, Ravindran R, Zaffar F, Luciw PA, Ikram A, Zafar SI, Gill T, Hogarth M, Khan IH. An exploratory deep learning approach to investigate tuberculosis pathogenesis in nonhuman primate model: Combining automated radiological analysis with clinical and biomarkers data. J Med Primatol 2024; 53:e12722. [PMID: 38949157 DOI: 10.1111/jmp.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Tuberculosis (TB) kills approximately 1.6 million people yearly despite the fact anti-TB drugs are generally curative. Therefore, TB-case detection and monitoring of therapy, need a comprehensive approach. Automated radiological analysis, combined with clinical, microbiological, and immunological data, by machine learning (ML), can help achieve it. METHODS Six rhesus macaques were experimentally inoculated with pathogenic Mycobacterium tuberculosis in the lung. Data, including Computed Tomography (CT), were collected at 0, 2, 4, 8, 12, 16, and 20 weeks. RESULTS Our ML-based CT analysis (TB-Net) efficiently and accurately analyzed disease progression, performing better than standard deep learning model (LLM OpenAI's CLIP Vi4). TB-Net based results were more consistent than, and confirmed independently by, blinded manual disease scoring by two radiologists and exhibited strong correlations with blood biomarkers, TB-lesion volumes, and disease-signs during disease pathogenesis. CONCLUSION The proposed approach is valuable in early disease detection, monitoring efficacy of therapy, and clinical decision making.
Collapse
Affiliation(s)
- Faisal Yaseen
- Department of Biomedical and Health Informatics, University of Washington, Seattle, Washington, USA
| | - Murtaza Taj
- Department of Computer Science, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| | - Fareed Zaffar
- Department of Computer Science, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Paul A Luciw
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| | - Aamer Ikram
- National Institutes of Health, Islamabad, Pakistan
| | - Saerah Iffat Zafar
- Armed Forces Institute of Radiology and Imaging (AFIRI), Rawalpindi, Pakistan
| | - Tariq Gill
- Albany Medical Center, Albany, New York, USA
| | - Michael Hogarth
- Department of Medicine, University of California, San Diego, California, USA
| | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| |
Collapse
|
5
|
Singh B, Sharan R, Ravichandran G, Escobedo R, Shivanna V, Dick EJ, Hall-Ursone S, Arora G, Alvarez X, Singh DK, Kaushal D, Mehra S. Indoleamine-2,3-dioxygenase inhibition improves immunity and is safe for concurrent use with cART during Mtb/SIV coinfection. JCI Insight 2024; 9:e179317. [PMID: 39114981 PMCID: PMC11383603 DOI: 10.1172/jci.insight.179317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic immune activation promotes tuberculosis (TB) reactivation in the macaque Mycobacterium tuberculosis (M. tuberculosis)/SIV coinfection model. Initiating combinatorial antiretroviral therapy (cART) early lowers the risk of TB reactivation, but immune activation persists. Studies of host-directed therapeutics (HDTs) that mitigate immune activation are, therefore, required. Indoleamine 2,3, dioxygenase (IDO), a potent immunosuppressor, is one of the most abundantly induced proteins in NHP and human TB granulomas. Inhibition of IDO improves immune responses in the lung, leading to better control of TB, including adjunctive to TB chemotherapy. The IDO inhibitor D-1 methyl tryptophan (D1MT) is, therefore, a bona fide TB HDT candidate. Since HDTs against TB are likely to be deployed in an HIV coinfection setting, we studied the effect of IDO inhibition in M. tuberculosis/SIV coinfection, adjunctive to cART. D1MT is safe in this setting, does not interfere with viral suppression, and improves the quality of CD4+ and CD8+ T cell responses, including reconstitution, activation and M. tuberculosis-specific cytokine production, and access of CD8+ T cells to the lung granulomas; it reduces granuloma size and necrosis, type I IFN expression, and the recruitment of inflammatory IDO+ interstitial macrophages (IMs). Thus, trials evaluating the potential of IDO inhibition as HDT in the setting of cART in M. tuberculosis/HIV coinfected individuals are warranted.
Collapse
|
6
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Kaushal D, Singh DK, Mehra S. Immune Responses in Lung Granulomas during Mtb/HIV Co-Infection: Implications for Pathogenesis and Therapy. Pathogens 2023; 12:1120. [PMID: 37764928 PMCID: PMC10534770 DOI: 10.3390/pathogens12091120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
HIV and TB are the cause of significant worldwide mortality and pose a grave danger to the global public health. TB is the leading cause of death in HIV-infected persons, with one in four deaths attributable to TB. While the majority of healthy individuals infected with M. tuberculosis (Mtb) are able to control the infection, co-infection with HIV increases the risk of TB infection progressing to TB disease by over 20-fold. While antiretroviral therapy (ART), the cornerstone of HIV care, decreases the incidence of TB in HIV-uninfected people, this remains 4- to 7-fold higher after ART in HIV-co-infected individuals in TB-endemic settings, regardless of the duration of therapy. Thus, the immune control of Mtb infection in Mtb/HIV-co-infected individuals is not fully restored by ART. We do not fully understand the reasons why Mtb/HIV-co-infected individuals maintain a high susceptibility to the reactivation of LTBI, despite an effective viral control by ART. A deep understanding of the molecular mechanisms that govern HIV-induced reactivation of TB is essential to develop improved treatments and vaccines for the Mtb/HIV-co-infected population. We discuss potential strategies for the mitigation of the observed chronic immune activation in combination with both anti-TB and anti-retroviral approaches.
Collapse
Affiliation(s)
| | | | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
8
|
Adefisayo OO, Curtis ER, Smith CM. Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment. Infect Immun 2023; 91:e0043022. [PMID: 37249448 PMCID: PMC10269127 DOI: 10.1128/iai.00430-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the oldest and most successful pathogens in the world. Diverse selective pressures encountered within host cells have directed the evolution of unique phenotypic traits, resulting in the remarkable evolutionary success of this largely obligate pathogen. Despite centuries of study, the genetic repertoire utilized by Mtb to drive virulence and host immune evasion remains to be fully understood. Various genetic approaches have been and continue to be developed to tackle the challenges of functional gene annotation and validation in an intractable organism such as Mtb. In vitro and ex vivo systems remain the primary approaches to generate and confirm hypotheses that drive a general understanding of mycobacteria biology. However, it remains of great importance to characterize genetic requirements for successful infection within a host system as in vitro and ex vivo studies fail to fully replicate the complex microenvironment experienced by Mtb. In this review, we evaluate the employment of the mycobacterial genetic toolkit to probe the host-pathogen interface by surveying the current state of mycobacterial genetic studies within host systems, with a major focus on the murine model. Specifically, we discuss the different ways that these tools have been utilized to examine various aspects of infection, including bacterial survival/virulence, bacterial evasion of host immunity, and development of novel antibacterial/vaccine strategies.
Collapse
Affiliation(s)
| | - Erin R. Curtis
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Clare M. Smith
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
9
|
Herrera M, Keynan Y, Lopez L, Marín D, Vélez L, McLaren PJ, Rueda ZV. Cytokine/chemokine profiles in people with recent infection by Mycobacterium tuberculosis. Front Immunol 2023; 14:1129398. [PMID: 37261336 PMCID: PMC10229054 DOI: 10.3389/fimmu.2023.1129398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The risk of progression to tuberculosis disease is highest within the first year after M. tuberculosis infection (TBI). We hypothesize that people with newly acquired TBI have a unique cytokine/chemokine profile that could be used as a potential biomarker. Methods We evaluated socio-demographic variables and 18 cytokines/chemokines in plasma samples from a cohort of people deprived of liberty (PDL) in two Colombian prisons: 47 people diagnosed with pulmonary TB, 24 with new TBI, and 47 non-infected individuals. We performed a multinomial regression to identify the immune parameters that differentiate the groups. Results The concentration of immune parameters changed over time and was affected by the time of incarceration. The concentration of sCD14, IL-18 and IP-10 differed between individuals with new TBI and short and long times of incarceration. Among people with short incarceration, high concentrations of MIP-3α were associated with a higher risk of a new TBI, and higher concentrations of Eotaxin were associated with a lower risk of a new TBI. Higher concentrations of sCD14 and TNF-α were associated with a higher risk of TB disease, and higher concentrations of IL-18 and MCP-1 were associated with a lower risk of TB disease. Conclusions There were cytokines/chemokines associated with new TBI and TB disease. However, the concentration of immune mediators varies by the time of incarceration among people with new TBI. Further studies should evaluate the changes of these and other cytokines/chemokines over time to understand the immune mechanisms across the spectrum of TB.
Collapse
Affiliation(s)
- Mariana Herrera
- Epidemiology Doctorate, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Departments of Internal Medicine and Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Lucelly Lopez
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación en Salud Pública, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Diana Marín
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación en Salud Pública, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Lázaro Vélez
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Paul J. McLaren
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación en Salud Pública, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
10
|
Singh B, Moodley C, Singh DK, Escobedo RA, Sharan R, Arora G, Ganatra SR, Shivanna V, Gonzalez O, Hall-Ursone S, Dick EJ, Kaushal D, Alvarez X, Mehra S. Inhibition of indoleamine dioxygenase leads to better control of tuberculosis adjunctive to chemotherapy. JCI Insight 2023; 8:e163101. [PMID: 36692017 PMCID: PMC9977315 DOI: 10.1172/jci.insight.163101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
The expression of indoleamine 2,3-dioxygenase (IDO), a robust immunosuppressant, is significantly induced in macaque tuberculosis (TB) granulomas, where it is expressed on IFN-responsive macrophages and myeloid-derived suppressor cells. IDO expression is also highly induced in human TB granulomas, and products of its activity are detected in patients with TB. In vivo blockade of IDO activity resulted in the reorganization of the granuloma with substantially greater T cells being recruited to the core of the lesions. This correlated with better immune control of TB and reduced lung M. tuberculosis burdens. To study if the IDO blockade strategy can be translated to a bona fide host-directed therapy in the clinical setting of TB, we studied the effect of IDO inhibitor 1-methyl-d-tryptophan adjunctive to suboptimal anti-TB chemotherapy. While two-thirds of controls and one-third of chemotherapy-treated animals progressed to active TB, inhibition of IDO adjunctive to the same therapy protected macaques from TB, as measured by clinical, radiological, and microbiological attributes. Although chemotherapy improved proliferative T cell responses, adjunctive inhibition of IDO further enhanced the recruitment of effector T cells to the lung. These results strongly suggest the possibility that IDO inhibition can be attempted adjunctive to anti-TB chemotherapy in clinical trials.
Collapse
|
11
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
12
|
Hoerter A, Arnett E, Schlesinger LS, Pienaar E. Systems biology approaches to investigate the role of granulomas in TB-HIV coinfection. Front Immunol 2022; 13:1014515. [PMID: 36405707 PMCID: PMC9670175 DOI: 10.3389/fimmu.2022.1014515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.
Collapse
Affiliation(s)
- Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Gough M, Singh DK, Singh B, Kaushal D, Mehra S. System-wide identification of myeloid markers of TB disease and HIV-induced reactivation in the macaque model of Mtb infection and Mtb/SIV co-infection. Front Immunol 2022; 13:777733. [PMID: 36275677 PMCID: PMC9583676 DOI: 10.3389/fimmu.2022.777733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.
Collapse
Affiliation(s)
| | | | | | | | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
14
|
Jacobs WR. A world without tuberculosis: moving from imagination to reality. J Clin Invest 2022; 132:162688. [PMID: 36106635 PMCID: PMC9479609 DOI: 10.1172/jci162688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Bucşan AN, Veatch A, Singh DK, Akter S, Golden NA, Kirkpatrick M, Threeton B, Moodley C, Ahmed M, Doyle LA, Russell-Lodrigue K, Norton EB, Didier PJ, Roy CJ, Abramovitch RB, Mehra S, Khader SA, Kaushal D. Response to Hypoxia and the Ensuing Dysregulation of Inflammation Impacts Mycobacterium tuberculosis Pathogenicity. Am J Respir Crit Care Med 2022; 206:94-104. [PMID: 35412961 PMCID: PMC9718519 DOI: 10.1164/rccm.202112-2747oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Different Mycobacterium tuberculosis (Mtb) strains exhibit variable degrees of virulence in humans and animal models. Differing stress response strategies used by different strains of Mtb could influence virulence. Objectives: We compared the virulence of two strains of Mtb with use in animal model research: CDC1551 and Erdman. Methods: Rhesus macaques, which develop human-like tuberculosis attributes and pathology, were infected with a high dose of either strain via aerosol, and virulence was compared by bacterial burden and pathology. Measurements and Main Results: Infection with Erdman resulted in significantly shorter times to euthanasia and higher bacterial burdens and greater systemic inflammation and lung pathology relative to those infected with CDC1551. Macaques infected with Erdman also exhibited significantly higher early inflammatory myeloid cell influx to the lung, greater macrophage and T cell activity, and higher expression of lung remodeling (extracellular matrix) genes, consistent with greater pathology. Expression of NOTCH4 (neurogenic locus notch homolog 4) signaling, which is induced in response to hypoxia and promotes undifferentiated cellular state, was also higher in Erdman-infected lungs. The granulomas generated by Erdman, and not CDC1551, infection appeared to have larger regions of necrosis, which is strongly associated with hypoxia. To better understand the mechanisms of differential hypoxia induction by these strains, we subjected both to hypoxia in vitro. Erdman induced higher concentrations of DosR regulon relative to CDC1551. The DosR regulon is the global regulator of response to hypoxia in Mtb and critical for its persistence in granulomas. Conclusions: Our results show that the response to hypoxia is a critical mediator of virulence determination in Mtb, with potential impacts on bacillary persistence, reactivation, and efficiency of therapeutics.
Collapse
Affiliation(s)
- Allison N. Bucşan
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Ashley Veatch
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Sadia Akter
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Nadia A. Golden
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Melanie Kirkpatrick
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Breanna Threeton
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Chivonne Moodley
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Lara A. Doyle
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Elizabeth B. Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Peter J. Didier
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
| | - Chad J. Roy
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Smriti Mehra
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Deepak Kaushal
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
16
|
Foreman TW, Nelson CE, Kauffman KD, Lora NE, Vinhaes CL, Dorosky DE, Sakai S, Gomez F, Fleegle JD, Parham M, Perera SR, Lindestam Arlehamn CS, Sette A, Brenchley JM, Queiroz ATL, Andrade BB, Kabat J, Via LE, Barber DL. CD4 T cells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Rep 2022; 39:110896. [PMID: 35649361 DOI: 10.1016/j.celrep.2022.110896] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.
Collapse
Affiliation(s)
- Taylor W Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine E Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keith D Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nickiana E Lora
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caian L Vinhaes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA 40296, Brazil
| | - Danielle E Dorosky
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel D Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Parham
- Axle Informatics, National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - Shehan R Perera
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | -
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Artur T L Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Data and Knowledge Integration Center for Health (CIDACS), Instituto Gonçalo Moniz, Salvador, BA 40296, Brazil
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA 40296, Brazil
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura E Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Daniel L Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Gough M, Singh DK, Moodley C, Niu T, Golden NA, Kaushal D, Mehra S. Peripheral Blood Markers Correlate with the Progression of Active Tuberculosis Relative to Latent Control of Mycobacterium tuberculosis Infection in Macaques. Pathogens 2022; 11:544. [PMID: 35631065 PMCID: PMC9146669 DOI: 10.3390/pathogens11050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Despite a century of research into tuberculosis (TB), there is a dearth of reproducible, easily quantifiable, biomarkers that can predict disease onset and differentiate between host disease states. Due to the challenges associated with human sampling, nonhuman primates (NHPs) are utilized for recapitulating the closest possible modelling of human TB. To establish a predictive peripheral biomarker profile based on a larger cohort of rhesus macaques (RM), we analyzed results pertaining to peripheral blood serum chemistry and cell counts from RMs that were experimentally exposed to Mtb in our prior studies and characterized as having either developed active TB (ATB) disease or latent TB infection (LTBI). We compared lung CFU burdens and quantitative pathologies with a number of measurables in the peripheral blood. Based on our results, the investigations were then extended to the study of specific molecules and cells in the lung compartments of a subset of these animals and their immune responses. In addition to the elevated serum C-reactive protein (CRP) levels, frequently used to discern the level of Mtb infection in model systems, reduced serum albumin-to-globulin (A/G) ratios were also predictive of active TB disease. Furthermore, higher peripheral myeloid cell levels, particularly those of neutrophils, kynurenine-to-tryptophan ratio, an indicator of induced expression of the immunosuppressive molecule indoleamine dioxygenase, and an influx of myeloid cell populations could also efficiently discriminate between ATB and LTBI in experimentally infected macaques. These quantifiable correlates of disease were then used in conjunction with a regression-based analysis to predict bacterial load. Our results suggest a potential biomarker profile of TB disease in rhesus macaques, that could inform future NHP-TB research. Our results thus suggest that specific biomarkers may be developed from the myeloid subset of peripheral blood or plasma with the ability to discriminate between active and latent Mtb infection.
Collapse
Affiliation(s)
- Maya Gough
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
- Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Nadia A. Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| |
Collapse
|
18
|
SIV Evolutionary Dynamics in Cynomolgus Macaques during SIV- Mycobacterium tuberculosis Co-Infection. Viruses 2021; 14:v14010048. [PMID: 35062252 PMCID: PMC8778162 DOI: 10.3390/v14010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Co-infection with Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) is a worldwide public health concern, leading to worse clinical outcomes caused by both pathogens. We used a non-human primate model of simian immunodeficiency virus (SIV)-Mtb co-infection, in which latent Mtb infection was established prior to SIVmac251 infection. The evolutionary dynamics of SIV env was evaluated from samples in plasma, lymph nodes, and lungs (including granulomas) of SIV-Mtb co-infected and SIV only control animals. While the diversity of the challenge virus was low and overall viral diversity remained relatively low over 6–9 weeks, changes in viral diversity and divergence were observed, including evidence for tissue compartmentalization. Overall, viral diversity was highest in SIV-Mtb animals that did not develop clinical Mtb reactivation compared to animals with Mtb reactivation. Among lung granulomas, viral diversity was positively correlated with the frequency of CD4+ T cells and negatively correlated with the frequency of CD8+ T cells. SIV diversity was highest in the thoracic lymph nodes compared to other sites, suggesting that lymphatic drainage from the lungs in co-infected animals provides an advantageous environment for SIV replication. This is the first assessment of SIV diversity across tissue compartments during SIV-Mtb co-infection after established Mtb latency.
Collapse
|
19
|
Sharan R, Ganatra SR, Bucsan AN, Cole J, Singh DK, Alvarez X, Gough M, Alvarez C, Blakley A, Ferdin J, Thippeshappa R, Singh B, Escobedo R, Shivanna V, Dick EJ, Hall-Ursone S, Khader SA, Mehra S, Rengarajan J, Kaushal D. Antiretroviral therapy timing impacts latent tuberculosis infection reactivation in a tuberculosis/simian immunodeficiency virus coinfection model. J Clin Invest 2021; 132:153090. [PMID: 34855621 PMCID: PMC8803324 DOI: 10.1172/jci153090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies using the nonhuman primate model of Mycobacteriumtuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell–independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shashank R Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Allison N Bucsan
- Department of Molecular Microbiology, Washington University, St. Louis, St. Louis, United States of America
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Maya Gough
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Cynthia Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Alyssa Blakley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Justin Ferdin
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Ruby Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Vinay Shivanna
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University, St. Louis, St. Louis, United States of America
| | - Smriti Mehra
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, United States of America
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| |
Collapse
|
20
|
Mukundan S, Bhatt R, Lucas J, Tereyek M, Chang TL, Subbian S, Parekkadan B. 3D host cell and pathogen-based bioassay development for testing anti-tuberculosis (TB) drug response and modeling immunodeficiency. Biomol Concepts 2021; 12:117-128. [PMID: 34473918 DOI: 10.1515/bmc-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Tuberculosis (TB) is a global health threat that affects 10 million people worldwide. Human Immunodeficiency Virus (HIV) remains one of the major contributors to the reactivation of asymptomatic latent tuberculosis (LTBI). Over the recent years, there has been a significant focus in developing in-vitro 3D models mimicking early events of Mycobacterium tuberculosis (Mtb) pathogenesis, especially formation of the granuloma. However, these models are low throughput and require extracellular matrix. In this article, we report the generation of a matrix-free 3D model, using THP-1 human monocyte/macrophage cells and mCherry-expressing Mycobacterium bovis BCG (Bacilli Camille Guérin), henceforth referred as 3D spheroids, to study the host cell-bacterial interactions. Using mCherry-intensity-based tracking, we monitored the kinetics of BCG growth in the 3D spheroids. We also demonstrate the application of the 3D spheroids for testing anti-TB compounds such as isoniazid (INH), rifampicin (RIF), as well as a host-directed drug, everolimus (EVR) as single and combinational treatments. We further established a dual infection 3D spheroid model by coinfecting THP-1 macrophages with BCG mCherry and pseudotype HIV. In this HIV-TB co-infection model, we found an increase in BCG mCherry growth within the 3D spheroids infected with HIV pseudotype. The degree of disruption of the granuloma was proportional to the virus titers used for co-infection. In summary, this 3D spheroid assay is an useful tool to screen anti-TB response of potential candidate drugs and can be adopted to model HIV-TB interactions.
Collapse
Affiliation(s)
- Shilpaa Mukundan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - Rachana Bhatt
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - John Lucas
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - Matthew Tereyek
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - Theresa L Chang
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ 07103
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ 07103
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854; Department of Medicine, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, NJ 08854
| |
Collapse
|
21
|
Sharan R, Singh DK, Rengarajan J, Kaushal D. Characterizing Early T Cell Responses in Nonhuman Primate Model of Tuberculosis. Front Immunol 2021; 12:706723. [PMID: 34484203 PMCID: PMC8416058 DOI: 10.3389/fimmu.2021.706723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading infectious disease killer worldwide with 1.4 million TB deaths in 2019. While the majority of infected population maintain an active control of the bacteria, a subset develops active disease leading to mortality. Effective T cell responses are critical to TB immunity with CD4+ and CD8+ T cells being key players of defense. These early cellular responses to TB infection have not yet been studied in-depth in either humans or preclinical animal models. Characterizing early T cell responses in a physiologically relevant preclinical model can provide valuable understanding of the factors that control disease development. We studied Mtb-specific T cell responses in the lung compartment of rhesus macaques infected with either a low- or a high-dose of Mtb CDC1551 via aerosol. Relative to baseline, significantly higher Mtb-specific CD4+IFN-γ+ and TNF-α+ T cell responses were observed in the BAL of low dose infected macaques as early as week 1 post TB infection. The IFN-γ and TNF-a response was delayed to week 3 post infection in Mtb-specific CD4+ and CD8+T cells in the high dose group. The manifestation of earlier T cell responses in the group exposed to the lower Mtb dose suggested a critical role of these cytokines in the antimycobacterial immune cascade, and specifically in the granuloma formation to contain the bacteria. However, a similar increase was not reflected in the CD4+ and CD8+IL-17+ T cells at week 1 post infection in the low dose group. This could be attributed to either a suppression of the IL-17 response or a lack of induction at this early stage of infection. On the contrary, there was a significantly higher IL-17+ response in Mtb-specific CD4+ and CD8+T cells at week 3 in the high dose group. The results clearly demonstrate an early differentiation in the immunity following low dose and high dose infection, largely represented by differences in the IFN-γ and TNF-α response by Mtb-specific T cells in the BAL. This early response to antigen expression by the bacteria could be critical for both bacterial growth control and bacterial containment.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Dhiraj Kumar Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jyothi Rengarajan
- Emory Vaccine Center and Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, GA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
22
|
Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL, Baranowski TM, Tomko JA, Causgrove CM, Maiello P, O'Connor SL, Scanga CA. Pre-existing Simian Immunodeficiency Virus Infection Increases Expression of T Cell Markers Associated with Activation during Early Mycobacterium tuberculosis Coinfection and Impairs TNF Responses in Granulomas. THE JOURNAL OF IMMUNOLOGY 2021; 207:175-188. [PMID: 34145063 DOI: 10.4049/jimmunol.2100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA;
| | - Amy Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tonilynn M Baranowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chelsea M Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, WI; and
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
23
|
Endsley JJ, Huante MB, Naqvi KF, Gelman BB, Endsley MA. Advancing our understanding of HIV co-infections and neurological disease using the humanized mouse. Retrovirology 2021; 18:14. [PMID: 34134725 PMCID: PMC8206883 DOI: 10.1186/s12977-021-00559-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
Humanized mice have become an important workhorse model for HIV research. Advances that enabled development of a human immune system in immune deficient mouse strains have aided new basic research in HIV pathogenesis and immune dysfunction. The small animal features facilitate development of clinical interventions that are difficult to study in clinical cohorts, and avoid the high cost and regulatory burdens of using non-human primates. The model also overcomes the host restriction of HIV for human immune cells which limits discovery and translational research related to important co-infections of people living with HIV. In this review we emphasize recent advances in modeling bacterial and viral co-infections in the setting of HIV in humanized mice, especially neurological disease, and Mycobacterium tuberculosis and HIV co-infections. Applications of current and future co-infection models to address important clinical and research questions are further discussed.
Collapse
Affiliation(s)
- Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
24
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Basile JI, Liu R, Mou W, Gao Y, Carow B, Rottenberg ME. Mycobacteria-Specific T Cells Are Generated in the Lung During Mucosal BCG Immunization or Infection With Mycobacterium tuberculosis. Front Immunol 2020; 11:566319. [PMID: 33193338 PMCID: PMC7643023 DOI: 10.3389/fimmu.2020.566319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023] Open
Abstract
Specific T cell responses are central for protection against infection with M. tuberculosis. Here we show that mycobacteria-specific CD4 and CD8 T cells accumulated in the lung but not in the mediastinal lymph node (MLN) at different time points after M. tuberculosis infection or BCG immunization. Proliferating specific T cells were found in the lung after infection and immunization. Pulmonary, but not MLN-derived CD4 and CD8 T cells, from M. tuberculosis-infected mice secreted IFN-γ after stimulation with different mycobacterial peptides. Mycobacteria-specific resident memory CD4 and CD8 T cells (TRM) expressing PD-1 accumulated in the lung after aerosol infection and intratracheal (i.t.) -but not subcutaneous (s.c.)- BCG immunization. Chemical inhibition of recirculation indicated that TRM were generated in the lung after BCG i.t. immunization. In summary, mycobacteria specific-TRM accumulate in the lung during i.t. but not s.c. immunization or M. tuberculosis infection. Collectively our data suggests that priming, accumulation and/or expansion of specific T cells during BCG immunization and M. tuberculosis infection occurs in the lung.
Collapse
Affiliation(s)
- Juan I Basile
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Wenjun Mou
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Ganatra SR, Bucşan AN, Alvarez X, Kumar S, Chatterjee A, Quezada M, Fish A, Singh DK, Singh B, Sharan R, Lee TH, Shanmugasundaram U, Velu V, Khader SA, Mehra S, Rengarajan J, Kaushal D. Antiretroviral therapy does not reduce tuberculosis reactivation in a tuberculosis-HIV coinfection model. J Clin Invest 2020; 130:5171-5179. [PMID: 32544085 PMCID: PMC7524506 DOI: 10.1172/jci136502] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
While the advent of combination antiretroviral therapy (ART) has significantly improved survival, tuberculosis (TB) remains the leading cause of death in the HIV-infected population. We used Mycobacterium tuberculosis/simian immunodeficiency virus-coinfected (M. tuberculosis/SIV-coinfected) macaques to model M. tuberculosis/HIV coinfection and study the impact of ART on TB reactivation due to HIV infection. Although ART significantly reduced viral loads and increased CD4+ T cell counts in blood and bronchoalveolar lavage (BAL) samples, it did not reduce the relative risk of SIV-induced TB reactivation in ART-treated macaques in the early phase of treatment. CD4+ T cells were poorly restored specifically in the lung interstitium, despite their significant restoration in the alveolar compartment of the lung as well as in the periphery. IDO1 induction in myeloid cells in the inducible bronchus-associated lymphoid tissue (iBALT) likely contributed to dysregulated T cell homing and impaired lung immunity. Thus, although ART was indispensable for controlling viral replication, restoring CD4+ T cells, and preventing opportunistic infection, it appeared inadequate in reversing the clinical signs of TB reactivation during the relatively short duration of ART administered in this study. This finding warrants the modeling of concurrent treatment of TB and HIV to potentially reduce the risk of reactivation of TB due to HIV to inform treatment strategies in patients with M. tuberculosis/HIV coinfection.
Collapse
Affiliation(s)
- Shashank R. Ganatra
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Allison N. Bucşan
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Shyamesh Kumar
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ayan Chatterjee
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie Quezada
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Abigail Fish
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Dhiraj K. Singh
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Bindu Singh
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Riti Sharan
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tae-Hyung Lee
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Uma Shanmugasundaram
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vijayakumar Velu
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Smriti Mehra
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Jyothi Rengarajan
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
27
|
Sharan R, Bucşan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, Khader SA, Kaushal D. Chronic Immune Activation in TB/HIV Co-infection. Trends Microbiol 2020; 28:619-632. [PMID: 32417227 PMCID: PMC7390597 DOI: 10.1016/j.tim.2020.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022]
Abstract
HIV co-infection is the most critical risk factor for the reactivation of latent tuberculosis (TB) infection (LTBI). While CD4+ T cell depletion has been considered the major cause of HIV-induced reactivation of LTBI, recent work in macaques co-infected with Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) suggests that cytopathic effects of SIV resulting in chronic immune activation and dysregulation of T cell homeostasis correlate with reactivation of LTBI. This review builds on compelling data that the reactivation of LTBI during HIV co-infection is likely to be driven by the events of HIV replication and therefore highlights the need to have optimum translational interventions directed at reactivation due to co-infection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Allison N Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
28
|
Mishra A, Singh VK, Actor JK, Hunter RL, Jagannath C, Subbian S, Khan A. GM-CSF Dependent Differential Control of Mycobacterium tuberculosis Infection in Human and Mouse Macrophages: Is Macrophage Source of GM-CSF Critical to Tuberculosis Immunity? Front Immunol 2020; 11:1599. [PMID: 32793233 PMCID: PMC7390890 DOI: 10.3389/fimmu.2020.01599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
Although classically associated with myelopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) is being increasingly recognized for its potential role in innate resistance against tuberculosis (TB). While the GM-CSF is produced by a variety of host cells, including conventional and non-conventional T cells, macrophages, alveolar epithelial cells, the cell population that promotes GM-CSF mediated innate protection against Mycobacterium tuberculosis infection remains unclear. This is because studies related to the role of GM-CSF so far have been carried out in murine models of experimental TB, which is inherently susceptible to TB as compared to humans, who exhibit a resolution of infection in majority of cases. We found a significantly higher amount of GM-CSF production by human macrophages, compared to mouse macrophages, after infection with M. tuberculosis in vitro. The higher levels of GM-CSF produced by human macrophages were also directly correlated with their increased life span and ability to control M. tuberculosis infection. Other evidence from recent studies also support that M. tuberculosis infected human macrophages display heterogeneity in their antibacterial capacity, and cells with increased expression of genes involved in GM-CSF signaling pathway can control intracellular M. tuberculosis growth more efficiently. Collectively, these emerging evidence indicate that GM-CSF produced by lung resident macrophages could be vital for the host resistance against M. tuberculosis infection in humans. Identification of GM-CSF dependent key cellular pathways/processes that mediate intracellular host defense can lay the groundwork for the development of novel host directed therapies against TB as well as other intracellular infections.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Vipul Kumar Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, United States
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Selvakumar Subbian
- Department of Medicine, New Jersey Medical School, Public Health Research Institute, Newark, NJ, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
29
|
Shanmugasundaram U, Bucsan AN, Ganatra SR, Ibegbu C, Quezada M, Blair RV, Alvarez X, Velu V, Kaushal D, Rengarajan J. Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. JCI Insight 2020; 5:137858. [PMID: 32554933 PMCID: PMC7453885 DOI: 10.1172/jci.insight.137858] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis-specific (M. tuberculosis-specific) T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a nonhuman primate aerosol model, we studied the kinetics, phenotypes, and functions of M. tuberculosis antigen-specific T cells in peripheral and lung compartments of M. tuberculosis-infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage, for up to 24 weeks postinfection. We found substantially higher frequencies of M. tuberculosis-specific effector and memory CD4+ and CD8+ T cells producing IFN-γ in the airways compared with peripheral blood, and these frequencies were maintained throughout the study period. Moreover, M. tuberculosis-specific IL-17+ and IL-17+IFN-γ+ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of M. tuberculosis-specific CD4+ T cells that homed to the airways expressed the chemokine receptor CXCR3 and coexpressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and nongranulomatous regions of the lung and inversely correlated with M. tuberculosis burden. Our findings provide insights into antigen-specific T cell responses associated with asymptomatic M. tuberculosis infection that are relevant for developing better strategies to control TB.
Collapse
Affiliation(s)
| | - Allison N. Bucsan
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
| | - Shashank R. Ganatra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Melanie Quezada
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Xavier Alvarez
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
31
|
Thippeshappa R, Kimata JT, Kaushal D. Toward a Macaque Model of HIV-1 Infection: Roadblocks, Progress, and Future Strategies. Front Microbiol 2020; 11:882. [PMID: 32477302 PMCID: PMC7237640 DOI: 10.3389/fmicb.2020.00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The human-specific tropism of Human Immunodeficiency Virus Type 1 (HIV-1) has complicated the development of a macaque model of HIV-1 infection/AIDS that is suitable for preclinical evaluation of vaccines and novel treatment strategies. Several innate retroviral restriction factors, such as APOBEC3 family of proteins, TRIM5α, BST2, and SAMHD1, that prevent HIV-1 replication have been identified in macaque cells. Accessory proteins expressed by Simian Immunodeficiency virus (SIV) such as viral infectivity factor (Vif), viral protein X (Vpx), viral protein R (Vpr), and negative factor (Nef) have been shown to play key roles in overcoming these restriction factors in macaque cells. Thus, substituting HIV-1 accessory genes with those from SIV may enable HIV-1 replication in macaques. We and others have constructed macaque-tropic HIV-1 derivatives [also called simian-tropic HIV-1 (stHIV-1) or Human-Simian Immunodeficiency Virus (HSIV)] carrying SIV vif to overcome APOBEC3 family proteins. Additional modifications to HIV-1 gag in some of the macaque-tropic HIV-1 have also been done to overcome TRIM5α restriction in rhesus and cynomolgus macaques. Although these viruses replicate persistently in macaque species, they do not result in CD4 depletion. Thus, these studies suggest that additional blocks to HIV-1 replication exist in macaques that prevent high-level viral replication. Furthermore, serial animal-to-animal passaging of macaque-tropic HIV-1 in vivo has not resulted in pathogenic variants that cause AIDS in immunocompetent macaques. In this review, we discuss recent developments made toward developing macaque model of HIV-1 infection.
Collapse
Affiliation(s)
- Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
32
|
Huante MB, Saito TB, Nusbaum RJ, Naqvi KF, Chauhan S, Hunter RL, Actor JK, Rudra JS, Endsley MA, Lisinicchia JG, Gelman BB, Endsley JJ. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the Setting of HIV Co-infection. Front Cell Infect Microbiol 2020; 10:150. [PMID: 32373548 PMCID: PMC7176873 DOI: 10.3389/fcimb.2020.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis relapse following drug treatment of active disease is an important global public health problem due to the poorer clinical outcomes and increased risk of drug resistance development. Concurrent infection with HIV, including in those receiving anti-retroviral therapy (ART), is an important risk factor for relapse and expansion of drug resistant Mycobacterium tuberculosis (Mtb) isolates. A greater understanding of the HIV-associated factors driving TB relapse is important for development of interventions that support immune containment and complement drug therapy. We employed the humanized mouse to develop a new model of post-chemotherapy TB relapse in the setting of HIV infection. Paucibacillary TB infection was observed following treatment with Rifampin and Isoniazid and subsequent infection with HIV-1 was associated with increased Mtb burden in the post-drug phase. Organized granulomas were observed during development of acute TB and appeared to resolve following TB drug therapy. At relapse, granulomatous pathology in the lung was infrequent and mycobacteria were most often observed in the interstitium and at sites of diffuse inflammation. Compared to animals with HIV mono-infection, higher viral replication was observed in the lung and liver, but not in the periphery, of animals with post-drug TB relapse. The results demonstrate a potential role for the humanized mouse as an experimental model of TB relapse in the setting of HIV. Long term, the model could facilitate discovery of disease mechanisms and development of clinical interventions.
Collapse
Affiliation(s)
- Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rebecca J Nusbaum
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Kubra F Naqvi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
33
|
Corleis B, Bucsan AN, Deruaz M, Vrbanac VD, Lisanti-Park AC, Gates SJ, Linder AH, Paer JM, Olson GS, Bowman BA, Schiff AE, Medoff BD, Tager AM, Luster AD, Khader SA, Kaushal D, Kwon DS. HIV-1 and SIV Infection Are Associated with Early Loss of Lung Interstitial CD4+ T Cells and Dissemination of Pulmonary Tuberculosis. Cell Rep 2020; 26:1409-1418.e5. [PMID: 30726727 PMCID: PMC6417097 DOI: 10.1016/j.celrep.2019.01.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/25/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung interstitial CD4+ T cells are critical for protection against pulmonary infections, but the fate of this population during HIV-1 infection is not well described. We studied CD4+ T cells in the setting of HIV-1 infection in human lung tissue, humanized mice, and a Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) nonhuman primate co-infection model. Infection with a CCR5-tropic strain of HIV-1 or SIV results in severe and rapid loss of lung interstitial CD4+ T cells but not blood or lung alveolar CD4+ T cells. This is accompanied by high HIV-1 production in these cells in vitro and in vivo. Importantly, during early SIV infection, loss of lung interstitial CD4+ T cells is associated with increased dissemination of pulmonary Mtb infection. We show that lung interstitial CD4+ T cells serve as an efficient target for HIV-1 and SIV infection that leads to their early depletion and an increased risk of disseminated tuberculosis. Corleis et al. show that lung parenchymal CD4+ T cells are permissive to HIV-1-dependent cell death. CD4+ T cell loss is highly significant in the interstitium but not the alveolar space, and loss of interstitial CD4+ T cells is associated with extrapulmonary dissemination of M. tuberculosis.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Allison N Bucsan
- Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Maud Deruaz
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Vladimir D Vrbanac
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Antonella C Lisanti-Park
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha J Gates
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice H Linder
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Paer
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory S Olson
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany A Bowman
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail E Schiff
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew M Tager
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA, USA; Southwest National Primate Research Center, San Antonio, TX, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
34
|
Dupont M, Souriant S, Balboa L, Vu Manh TP, Pingris K, Rousset S, Cougoule C, Rombouts Y, Poincloux R, Ben Neji M, Allers C, Kaushal D, Kuroda MJ, Benet S, Martinez-Picado J, Izquierdo-Useros N, Sasiain MDC, Maridonneau-Parini I, Neyrolles O, Vérollet C, Lugo-Villarino G. Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. eLife 2020; 9:52535. [PMID: 32223897 PMCID: PMC7173963 DOI: 10.7554/elife.52535] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb) worsens HIV-1 pathogenesis remain scarce. We showed that HIV-1 infection is exacerbated in macrophages exposed to TB-associated microenvironments due to tunneling nanotube (TNT) formation. To identify molecular factors associated with TNT function, we performed a transcriptomic analysis in these macrophages, and revealed the up-regulation of Siglec-1 receptor. Siglec-1 expression depends on Mtb-induced production of type I interferon (IFN-I). In co-infected non-human primates, Siglec-1 is highly expressed by alveolar macrophages, whose abundance correlates with pathology and activation of IFN-I/STAT1 pathway. Siglec-1 localizes mainly on microtubule-containing TNT that are long and carry HIV-1 cargo. Siglec-1 depletion decreases TNT length, diminishes HIV-1 capture and cell-to-cell transfer, and abrogates the exacerbation of HIV-1 infection induced by Mtb. Altogether, we uncover a deleterious role for Siglec-1 in TB-HIV-1 co-infection and open new avenues to understand TNT biology.
Collapse
Affiliation(s)
- Maeva Dupont
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Shanti Souriant
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Luciana Balboa
- International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France.,Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | | | - Karine Pingris
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stella Rousset
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Yoann Rombouts
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Myriam Ben Neji
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carolina Allers
- Tulane National Primate Research Center, Department of Microbiology and Immunology, School of Medicine, Tulane University, Covington, United States
| | - Deepak Kaushal
- Tulane National Primate Research Center, Department of Microbiology and Immunology, School of Medicine, Tulane University, Covington, United States
| | - Marcelo J Kuroda
- Tulane National Primate Research Center, Department of Microbiology and Immunology, School of Medicine, Tulane University, Covington, United States
| | - Susana Benet
- IrsiCaixa AIDS Research Institute, Department of Retrovirology, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Department of Retrovirology, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Department of Retrovirology, Badalona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Maria Del Carmen Sasiain
- International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France.,Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| |
Collapse
|
35
|
Abstract
Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli Mycobacterium tuberculosis (M. tuberculosis), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between M. tuberculosis and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against M. tuberculosis infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.
Collapse
|
36
|
Foreman TW, Bucşan AN, Mehra S, Peloquin C, Doyle LA, Russell-Lodrigue K, Gandhi NR, Altman J, Day CL, Ernst JD, Blumberg HM, Rengarajan J, Kaushal D. Isoniazid and Rifapentine Treatment Eradicates Persistent Mycobacterium tuberculosis in Macaques. Am J Respir Crit Care Med 2020; 201:469-477. [PMID: 31647877 PMCID: PMC7049922 DOI: 10.1164/rccm.201903-0646oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022] Open
Abstract
Rationale: Direct evidence for persistence of Mycobacterium tuberculosis (Mtb) during asymptomatic latent tuberculosis infection (LTBI) in humans is currently lacking. Moreover, although a 12-week regimen of once-weekly isoniazid and rifapentine (3HP) is currently recommended by the CDC as treatment for LTBI, experimental evidence for 3HP-mediated clearance of persistent Mtb infection in human lungs has not been established.Objectives: Using a nonhuman primate (NHP) model of TB, we sought to assess 3HP treatment-mediated clearance of Mtb infection in latently infected macaques.Methods: Sixteen NHPs were infected via inhalation with ∼10 cfu of Mtb CDC1551, after which asymptomatic animals were either treated with 3HP or left untreated. Pharmacokinetics of the 3HP regimen were measured. Following treatment, animals were coinfected with simian immunodeficiency virus to assess reactivation of LTBI and development of active TB disease.Measurements and Main Results: Fourteen NHPs remained free of clinical signs or microbiological evidence of active TB following infection with Mtb and were subsequently either treated with 3HP (n = 7) or left untreated (n = 7). Untreated NHPs were asymptomatic for 7 months but harbored persistent Mtb infection, as shown by reactivation of latent infection following simian immunodeficiency virus coinfection. However, none of the treated animals developed TB reactivation disease, and they remained without clinical or microbiological evidence of persistent bacilli, suggesting treatment-mediated clearance of bacteria.Conclusions:Mtb can persist in asymptomatic macaques for at least 7 months. Furthermore, 3HP treatment effectively cleared bacteria and prevented reactivation of TB in latently infected macaques.
Collapse
Affiliation(s)
- Taylor W Foreman
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana
| | - Allison N Bucşan
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana
| | - Smriti Mehra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana
| | | | - Lara A Doyle
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana
| | | | - John Altman
- Emory Vaccine Center and Yerkes National Primate Center, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology and
| | - Cheryl L Day
- Emory Vaccine Center and Yerkes National Primate Center, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology and
| | - Joel D Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California; and
| | - Henry M Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jyothi Rengarajan
- Emory Vaccine Center and Yerkes National Primate Center, Emory University, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Deepak Kaushal
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana
- Southwest National Primate Research Center, Texas Biomedical Research Center, San Antonio, Texas
| |
Collapse
|
37
|
Waters R, Ndengane M, Abrahams MR, Diedrich CR, Wilkinson RJ, Coussens AK. The Mtb-HIV syndemic interaction: why treating M. tuberculosis infection may be crucial for HIV-1 eradication. Future Virol 2020; 15:101-125. [PMID: 32273900 PMCID: PMC7132588 DOI: 10.2217/fvl-2019-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accelerated tuberculosis and AIDS progression seen in HIV-1 and Mycobacterium tuberculosis (Mtb)-coinfected individuals indicates the important interaction between these syndemic pathogens. The immunological interaction between HIV-1 and Mtb has been largely defined by how the virus exacerbates tuberculosis disease pathogenesis. Understanding of the mechanisms by which pre-existing or subsequent Mtb infection may favor the replication, persistence and progression of HIV, is less characterized. We present a rationale for the critical consideration of ‘latent’ Mtb infection in HIV-1 prevention and cure strategies. In support of this position, we review evidence of the effect of Mtb infection on HIV-1 acquisition, replication and persistence. We propose that ‘latent’ Mtb infection may have considerable impact on HIV-1 pathogenesis and the continuing HIV-1 epidemic in sub-Saharan Africa.
Collapse
Affiliation(s)
- Robyn Waters
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa
| | - Mthawelanga Ndengane
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Melissa-Rose Abrahams
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Collin R Diedrich
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa.,Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia.,Division of Medical Biology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville 3279, VIC, Australia
| |
Collapse
|
38
|
Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S, Rangel-Moreno J, Lu L, Mehra S, Mbandi SK, Thackray LB, Diamond MS, Murphy KM, Means T, Martin J, Kaushal D, Scriba TJ, Mitreva M, Khader SA. Immune correlates of tuberculosis disease and risk translate across species. Sci Transl Med 2020; 12:eaay0233. [PMID: 31996462 PMCID: PMC7354419 DOI: 10.1126/scitranslmed.aay0233] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/29/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
One quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Although most infected individuals successfully control or clear the infection, some individuals will progress to TB disease. Immune correlates identified using animal models are not always effectively translated to human TB, thus resulting in a slow pace of translational discoveries from animal models to human TB for many platforms including vaccines, therapeutics, biomarkers, and diagnostic discovery. Therefore, it is critical to improve our poor understanding of immune correlates of disease and protection that are shared across animal TB models and human TB. In this study, we have provided an in-depth identification of the conserved and diversified gene/immune pathways in TB models of nonhuman primate and diversity outbred mouse and human TB. Our results show that prominent differentially expressed genes/pathways induced during TB disease progression are conserved in genetically diverse mice, macaques, and humans. In addition, using gene-deficient inbred mouse models, we have addressed the functional role of individual genes comprising the gene signature of disease progression seen in humans with Mtb infection. We show that genes representing specific immune pathways can be protective, detrimental, or redundant in controlling Mtb infection and translate into identifying immune pathways that mediate TB immunopathology in humans. Together, our cross-species findings provide insights into modeling TB disease and the immunological basis of TB disease progression.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kimberly A Thomas
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14624, USA
| | - Lan Lu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Smriti Mehra
- Department of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Larissa B Thackray
- Department of Medicine, Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Medicine, Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Terry Means
- Autoimmunity Cluster, Immunology & Inflammation Therapeutic Area, Sanofi, Cambridge, MA 02139, USA
| | - John Martin
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA.
- Department of Medicine, Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Salina EG, Grigorov AS, Bychenko OS, Skvortsova YV, Mamedov IZ, Azhikina TL, Kaprelyants AS. Resuscitation of Dormant "Non-culturable" Mycobacterium tuberculosis Is Characterized by Immediate Transcriptional Burst. Front Cell Infect Microbiol 2019; 9:272. [PMID: 31428590 PMCID: PMC6689984 DOI: 10.3389/fcimb.2019.00272] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 01/23/2023] Open
Abstract
Under unfavorable conditions such as host immune responses and environmental stresses, human pathogen Mycobacterium tuberculosis may acquire the dormancy phenotype characterized by "non-culturability" and a substantial decrease of metabolic activity and global transcription rates. Here, we found that the transition of M. tuberculosis from the dormant "non-culturable" (NC) cells to fully replicating population in vitro occurred not earlier than 7 days after the start of the resuscitation process, with predominant resuscitation over this time interval evidenced by shortening apparent generation time up to 2.8 h at the beginning of resuscitation. The early resuscitation phase was characterized by constant, albeit low, incorporation of radioactive uracil, indicating de novo transcription immediately after the removal of the stress factor, which resulted in significant changes of the M. tuberculosis transcriptional profile already after the first 24 h of resuscitation. This early response included transcriptional upregulation of genes encoding enzymes of fatty acid synthase system type I (FASI) and type II (FASII) responsible for fatty acid/mycolic acid biosynthesis, and regulatory genes, including whiB6 encoding a redox-sensing transcription factor. The second resuscitation phase took place 4 days after the resuscitation onset, i.e., still before the start of active cell division, and included activation of central metabolism genes encoding NADH dehydrogenases, ATP-synthases, and ribosomal proteins. Our results demonstrate, for the first time, that the resuscitation of dormant NC M. tuberculosis is characterized by immediate activation of de novo transcription followed by the upregulation of genes controlling key metabolic pathways and then, cell multiplication.
Collapse
Affiliation(s)
- Elena G Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Artem S Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oksana S Bychenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia V Skvortsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilgar Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arseny S Kaprelyants
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Bucsan AN, Rout N, Foreman TW, Khader SA, Rengarajan J, Kaushal D. Mucosal-activated invariant T cells do not exhibit significant lung recruitment and proliferation profiles in macaques in response to infection with Mycobacterium tuberculosis CDC1551. Tuberculosis (Edinb) 2019; 116S:S11-S18. [PMID: 31072689 PMCID: PMC7050191 DOI: 10.1016/j.tube.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022]
Abstract
TB is a catastrophic infectious disease, affecting roughly one third of the world's population. Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize vitamin B metabolites produced by bacteria, possess effector memory phenotype, and express tissue-homing markers driving migration to sites of infection. Previous research in both Mtb and HIV infections has shown that MAIT cells are depleted in the human periphery, possibly migrating to the tissue sites of infection. We investigated this hypothesis using rhesus macaques (RMs) with active TB, latent TB (LTBI), and SIV-coinfection to explore the effects of different disease states on the MAIT cell populations in vivo. Early in infection, we observed that MAIT cells increased in the blood and bronchoalveolar lavage fluid (BAL) of all infected RMs, irrespective of clinical outcome. However, the frequency of MAIT cells rapidly normalized such that they had returned to baseline levels prior to endpoint. Furthermore, following infection, the chemokines expressed on MAIT cells reflected a strong shift towards a Th1 phenotype from a shared Th1/Th17 phenotype. In conclusion, MAIT cells with enhanced Th1 functions migrating to the site of Mtb-infection. The anti-mycobacterial effector functions of MAIT cells, particularly during the early stages of Mtb infection, had been of interest in promoting protective long-term TB immunity. Our research shows, however, that they have relatively short-acting responses in the host.
Collapse
Affiliation(s)
| | - Namita Rout
- Tulane National Primate Research Centre, Covington, LA, USA
| | | | | | | | - Deepak Kaushal
- Tulane National Primate Research Centre, Covington, LA, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
41
|
Souriant S, Balboa L, Dupont M, Pingris K, Kviatcovsky D, Cougoule C, Lastrucci C, Bah A, Gasser R, Poincloux R, Raynaud-Messina B, Al Saati T, Inwentarz S, Poggi S, Moraña EJ, González-Montaner P, Corti M, Lagane B, Vergne I, Allers C, Kaushal D, Kuroda MJ, Sasiain MDC, Neyrolles O, Maridonneau-Parini I, Lugo-Villarino G, Vérollet C. Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Rep 2019; 26:3586-3599.e7. [PMID: 30917314 PMCID: PMC6733268 DOI: 10.1016/j.celrep.2019.02.091] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
Collapse
Affiliation(s)
- Shanti Souriant
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Luciana Balboa
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Maeva Dupont
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Karine Pingris
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denise Kviatcovsky
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Claire Lastrucci
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; Centre for Genomic Regulation, Barcelona, Spain
| | - Aicha Bah
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Gasser
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Talal Al Saati
- INSERM/UPS/ENVT-US006/CREFRE, Service d'Histopathologie, CHU Purpan, 31024 Toulouse, France
| | - Sandra Inwentarz
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | - Susana Poggi
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | - Eduardo Jose Moraña
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | | | - Marcelo Corti
- Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Bernard Lagane
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Isabelle Vergne
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carolina Allers
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marcelo J Kuroda
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Maria Del Carmen Sasiain
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina.
| |
Collapse
|
42
|
Mantilla Galindo A, Ocampo M, Patarroyo MA. Experimental models used in evaluating anti-tuberculosis vaccines: the latest advances in the field. Expert Rev Vaccines 2019; 18:365-377. [PMID: 30773949 DOI: 10.1080/14760584.2019.1583558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Tuberculosis is an infectious disease which is caused by bacilli from the M. tuberculosis complex. The Mycobacterium bovis Bacillus Calmette-Guérin vaccine is currently available as a prophylactic tool for preventing the disease; it has been shown to be efficient in preventing disseminated forms of tuberculosis during early ages; however, its efficiency is limited in areas where individuals have had prior exposure to environmental mycobacteria, and its efficacy decreases with a host's age. AREAS COVERED Following a comprehensive search of the available literature, this review describes some of the most frequently used animal models, the most frequently used methods for evaluating efficacy in animal models and some in vitro strategies as alternatives for evaluating vaccines. EXPERT OPINION Identifying the animal models used up to now for evaluating vaccines during their development stages, their characteristics and limitations, as well as knowledge regarding strategies for evaluating promising vaccine candidate efficacy, will ensure more efficient, reliable and reproducible pre-clinical trials. Although much of the knowledge accrued to date concerning vaccine effectiveness against tuberculosis has been based on animal models, it is clear that large questions still need to be resolved and that extrapolation of such efficacy to humans has yet to be achieved.
Collapse
Affiliation(s)
| | - Marisol Ocampo
- b Basic Sciences Department, School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia.,c Department of Tuberculosis and Molecular Biology , Fundación Instituto de Inmunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Manuel Alfonso Patarroyo
- b Basic Sciences Department, School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia.,c Department of Tuberculosis and Molecular Biology , Fundación Instituto de Inmunología de Colombia (FIDIC) , Bogotá , Colombia
| |
Collapse
|
43
|
Foreman TW, Mehra S, Lackner AA, Kaushal D. Translational Research in the Nonhuman Primate Model of Tuberculosis. ILAR J 2018; 58:151-159. [PMID: 28575319 DOI: 10.1093/ilar/ilx015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/10/2017] [Indexed: 11/14/2022] Open
Abstract
Infection with Mycobacterium tuberculosis predominantly establishes subclinical latent infection over the lifetime of an individual, with a fraction of infected individuals rapidly progressing to active disease. The immune control in latent infection can be perturbed by comorbidities such as diabetes mellitus, obesity, smoking, and coinfection with helminthes or HIV. Modeling the varying aspects of natural infection remains incomplete when using zebrafish and mice. However, the nonhuman primate model of tuberculosis offers a unique and accurate model to investigate host responses to infection, test novel therapeutics, and thoroughly assess preclinical vaccine candidates. Rhesus macaques and cynomolgus macaques manifest the full gamut of clinical and pathological findings in human Mycobacterium tuberculosis infection, including the ability to co-infect macaques with Simian Immunodeficiency Virus to model HIV co-infection. Here we discuss advanced techniques to assay various clinical outcomes of the natural progression of infection as well as therapeutics in development and novel preclinical vaccines. Finally, we survey the translational aspects of nonhuman primate research and argue the urgent need to thoroughly examine preclinical therapeutics and vaccines using this model prior to clinical implementation.
Collapse
Affiliation(s)
- Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana.,Tulane University School of Medicine, New Orleans, Louisiana
| | - Smriti Mehra
- Louisiana State University School, Veterinary Medicine, Baton Rouge, Louisiana.,Tulane National Primate Research Center in Covington, Louisiana
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana.,Immunology and Pathology at Tulane University School of Medicine in New Orleans, Louisiana
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana.,Immunology at Tulane University School of Medicine, New Orleans, Louisiana.,Department of Medicine, Tulane University School of Medicine in New Orleans, Louisiana
| |
Collapse
|
44
|
Kuroda MJ, Sugimoto C, Cai Y, Merino KM, Mehra S, Araínga M, Roy CJ, Midkiff CC, Alvarez X, Didier ES, Kaushal D. High Turnover of Tissue Macrophages Contributes to Tuberculosis Reactivation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Infect Dis 2018; 217:1865-1874. [PMID: 29432596 PMCID: PMC5972562 DOI: 10.1093/infdis/jix625] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/29/2017] [Indexed: 01/29/2023] Open
Abstract
Background Tuberculosis (TB) and human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) profoundly affect the immune system and synergistically accelerate disease progression. It is believed that CD4+ T-cell depletion by HIV is the major cause of immunodeficiency and reactivation of latent TB. Previous studies demonstrated that blood monocyte turnover concurrent with tissue macrophage death from virus infection better predicted AIDS onset than CD4+ T-cell depletion in macaques infected with simian immunodeficiency virus (SIV). Methods In this study, we describe the contribution of macrophages to the pathogenesis of Mycobacterium tuberculosis (Mtb)/SIV coinfection in a rhesus macaque model using in vivo BrdU labeling, immunostaining, flow cytometry, and confocal microscopy. Results We found that increased monocyte and macrophage turnover and levels of SIV-infected lung macrophages correlated with TB reactivation. All Mtb/SIV-coinfected monkeys exhibited declines in CD4+ T cells regardless of reactivation or latency outcomes, negating lower CD4+ T-cell levels as a primary cause of Mtb reactivation. Conclusions Results suggest that SIV-related damage to macrophages contributes to Mtb reactivation during coinfection. This also supports strategies to target lung macrophages for the treatment of TB.
Collapse
Affiliation(s)
- Marcelo J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Chie Sugimoto
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Yanhui Cai
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Kristen M Merino
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
- Center for Experimental Infectious Diseases Research, Baton Rouge, Louisiana
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Mariluz Araínga
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana
| | - Elizabeth S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, is a prominent global health threat because of the enormous reservoir of subclinical latent tuberculosis infection (LTBI). Current diagnostic approaches are limited in their ability to predict reactivation risk and LTBI is recalcitrant to antibiotic treatment. The present review summarizes recent advances in our ability to detect, treat and model LTBI as well as our understanding of bacterial physiology during latency. RECENT FINDINGS T-cell subsets and circulating proteins have been identified which could serve as biomarkers for LTBI or indicators of reactivation risk. In addition, experimental and in-silico models have enabled discoveries regarding bacterial physiology during latency and the host immune response following infection with latent M.tb. SUMMARY Despite recent advances, much more research is needed to bolster our ability to detect, implement treatment and model LTBI. The present work is crucial for the eradication of this global problem.
Collapse
|
46
|
Abstract
Tuberculosis is responsible for more deaths worldwide than any other infectious disease. For anyone looking to learn more about this persistent public health threat, this conversational "frequently asked questions" style review addresses a breadth of questions. It offers a brief, somewhat opinionated, review of what is and is not known, particularly in light of how findings in the lab do or do not help inform the understanding of human tuberculosis.
Collapse
Affiliation(s)
- Kristine M Guinn
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Abstract
Tuberculosis is one of the most successful human diseases in our history due in large part to the multitude of virulence factors exhibited by the causative agent, Mycobacterium tuberculosis. Understanding the pathogenic nuances of this organism in the context of its human host is an ongoing topic of study facilitated by isolating cells from model organisms such as mice and non-human primates. However, M. tuberculosis is an obligate intracellular human pathogen, and disease progression and outcome in these model systems can differ from that of human disease. Current in vitro models of infection include primary macrophages and macrophage-like immortalized cell lines as well as the induced pluripotent stem cell-derived cell types. This article will discuss these in vitro model systems in general, what we have learned so far about utilizing them to answer questions about pathogenesis, the potential role of other cell types in innate control of M. tuberculosis infection, and the development of new coculture systems with multiple cell types. As we continue to expand current in vitro systems and institute new ones, the knowledge gained will improve our understanding of not only tuberculosis but all infectious diseases.
Collapse
|
48
|
In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2017; 115:E62-E71. [PMID: 29255022 PMCID: PMC5776797 DOI: 10.1073/pnas.1711373114] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB.
Collapse
|
49
|
Foreman TW, Veatch AV, LoBato DN, Didier PJ, Doyle-Meyers LA, Russell-Lodrigue KE, Lackner AA, Kousoulas KG, Khader SA, Kaushal D, Mehra S. Nonpathologic Infection of Macaques by an Attenuated Mycobacterial Vaccine Is Not Reactivated in the Setting of HIV Co-Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2811-2820. [PMID: 28935575 PMCID: PMC5718104 DOI: 10.1016/j.ajpath.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
Abstract
Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.
Collapse
Affiliation(s)
- Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ashley V Veatch
- Tulane National Primate Research Center, Covington, Louisiana
| | - Denae N LoBato
- Tulane National Primate Research Center, Covington, Louisiana
| | - Peter J Didier
- Tulane National Primate Research Center, Covington, Louisiana
| | | | | | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Konstantin G Kousoulas
- Center for Biomedical Research Excellence, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana; Center for Biomedical Research Excellence, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana.
| |
Collapse
|
50
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|