1
|
Ratna S, Pradhan L, Vasconcelos MP, Acharya A, Carnahan B, Wang A, Ghosh A, Bolt A, Ellis J, Hyland SN, Hillman AS, Fox JM, Kloxin A, Neunuebel MR, Grimes CL. The Legionella pneumophila peptidoglycan recycling kinase, AmgK, is essential for survival and replication inside host alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644609. [PMID: 40166355 PMCID: PMC11957156 DOI: 10.1101/2025.03.21.644609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bacterial cells are surrounded by a dynamic cell wall which in part is made up of a mesh-like peptidoglycan (PG) layer that provides the cell with structural integrity and resilience. In Gram-positive bacteria, this layer is thick and robust, whereas in Gram-negative bacteria, it is thinner and flexible as the cell is supported by an additional outer membrane. PG undergoes continuous turnover, with degradation products being recycled to maintain cell wall homeostasis. Some Gram-negative species can bypass de novo PG biosynthesis, relying instead on PG recycling to sustain growth and division. Legionella pneumophila (hereafter Legionella), the causative agent of Legionnaires' disease, encodes such recycling machinery within its genome. This study investigates the biochemical, genetic, and pathogenic roles of PG recycling in Legionella. Previously, we have shown that PG can be visualized in both model and native systems using a combination of N-acetylmuramic acid (NAM) probes and PG recycling programs. Here, two PG recycling gene homologs in the Legionella genome lpg0296 (amgK) and lpg0295 (murU) were identified and characterized; chemical biology strategies were used to rigorously track the incorporation of "click"-PG-probes. Deletion of amgK abolished PG labeling, while genetic complementation restored labeling. Additionally, copper-free click chemistry with ultra-fast tetrazine-NAM probes enabled live-cell PG labeling. The data suggest that amgK contributes to the pathogenicity of the organism, as amgK deletion increased Legionella's susceptibility to antibiotics and significantly reduced Legionella's ability to replicate in host alveolar macrophages. An intracellular replication assay demonstrated that while PG recycling is not essential for internalization, successful replication of Legionella within MH-S murine alveolar macrophages requires functional amgK. These findings underscore the essential role of AmgK in Legionella's intracellular survival, emphasizing the importance of PG recycling in pathogenicity, and establish a foundation for developing novel Legionella-specific antibiotic strategies.
Collapse
Affiliation(s)
- Sushanta Ratna
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lina Pradhan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marina P Vasconcelos
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Aastha Acharya
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Bella Carnahan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alex Wang
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Arit Ghosh
- Delaware Biotechnology Institute, UD Flow Cytometry & Single Cell Core, University of Delaware, Newark, Delaware 19716, United States
| | - Abigail Bolt
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob Ellis
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Stephen N Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - April Kloxin
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - M Ramona Neunuebel
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Wasmuth I, Warinner C, Stallforth P. Microbial dynamics and Pseudomonas natural product production in milk and dairy products. Nat Prod Rep 2025. [PMID: 40028703 PMCID: PMC11874467 DOI: 10.1039/d4np00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 03/05/2025]
Abstract
Covering: 2000 up to the first half of 2024Milk and its derived dairy products have long been integral to the human diet, with evidence of consumption dating back over 9000 years. Milk's high nutritional value renders dairy products an important element of human diet while also offering a fertile environment for microbial growth. Beneficial microorganisms in dairy products are often associated with biogenic and probiotic effects, whereas spoilage or pathogenic microorganisms can pose health risks. Fermentation is a key method to preserve milk. Whereas dairying practices in most parts of the world have been highly altered by industrialization over the past century, nomadic pastoralists in Mongolia notably retain a rich tradition of household-level dairy fermentation that has been practiced since 3000 BC. Milk-associated microorganisms produce a vast number of low molecular weight natural products that can mediate beneficial and detrimental interactions. Bacteria of the genus Pseudomonas are found in traditional Mongolian dairy products and are common contaminants in commercial dairy products, and they can strongly impact the quality and shelf-life of dairy products. These bacteria are well known for their ability to produce a variety of secondary metabolites, including nonribosomal (lipo)peptides, which are both structurally and functionally diverse. Lipopeptides can have antimicrobial properties, act as quorum sensing molecules, and contribute to biofilm formation due to their amphiphilic nature. Although often associated with spoilage, some of these natural products can also exhibit positive effects with potential beneficial applications in the dairy industry. This review aims to provide a comprehensive overview of the interplay between culinary fermentation and the production and activities of microbial-derived natural products.
Collapse
Affiliation(s)
- Ina Wasmuth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christina Warinner
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Mun W, Choi SY, Park D, Park S, Lee HS, Choi S, Lee JH, Mitchell RJ. Bacteriovorax antarcticus sp. nov., a bacterial predator isolated from near Potter Cove on King George Island, Antarctica. Int J Syst Evol Microbiol 2024; 74. [PMID: 39691993 DOI: 10.1099/ijsem.0.006607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
A new species of bacterial predator (PP10T) was isolated from a biocrust sample taken from near Potter Cove, King George Island, Antarctica (62°14'15.62″S 58°43'15.65″W). The Bdellovibrio and like organism was vibrio-shaped and employed a single polar flagellum for motility. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that this isolate clustered within the genus Bacteriovorax in the family Bacteriovoracaceae. The 16S rRNA gene sequence similarities between isolate PP10T and the type strain (Bacteriovorax stolpii DSM 12778T) were only 97.14%. The draft genome of PP10T has a size of 4.243 Mbps, with 4148 genes and a G+C content of 38.49%. While the optimal temperature for its growth was 25 °C, PP10T was active at 4 °C, classifying it as psychrotolerant. The results of genetic and physiological tests indicated phenotypic differentiation of strain PP10T from the type strain Bx. stolpii DSM 12778T. Based on physiological and phylogenetic analyses, as well as the prey spectrum, isolate PP10 represents a novel species within the genus Bacteriovorax, for which the name Bacteriovorax antarcticus sp. nov. is proposed. The type strain is PP10T (= KCTC 8097T = DSM 116241T).
Collapse
Affiliation(s)
- Wonsik Mun
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seong Yeol Choi
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Bioneer Corporation, Daejeon, Republic of Korea
| | - Donghyeon Park
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sinseong Park
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyeon Seop Lee
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Korea Institute for Ceramic Engineering and Technology (KICET), Osong, Republic of Korea
| | - Sumin Choi
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jin Hyung Lee
- Korea Institute for Ceramic Engineering and Technology (KICET), Osong, Republic of Korea
| | - Robert J Mitchell
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
4
|
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar Drugs 2024; 22:299. [PMID: 39057408 PMCID: PMC11277574 DOI: 10.3390/md22070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| |
Collapse
|
5
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Moreno R, Yuste L, Morales G, Rojo F. Inactivation of Pseudomonas putida KT2440 pyruvate dehydrogenase relieves catabolite repression and improves the usefulness of this strain for degrading aromatic compounds. Microb Biotechnol 2024; 17:e14514. [PMID: 38923400 PMCID: PMC11196380 DOI: 10.1111/1751-7915.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Pyruvate dehydrogenase (PDH) catalyses the irreversible decarboxylation of pyruvate to acetyl-CoA, which feeds the tricarboxylic acid cycle. We investigated how the loss of PDH affects metabolism in Pseudomonas putida. PDH inactivation resulted in a strain unable to utilize compounds whose assimilation converges at pyruvate, including sugars and several amino acids, whereas compounds that generate acetyl-CoA supported growth. PDH inactivation also resulted in the loss of carbon catabolite repression (CCR), which inhibits the assimilation of non-preferred compounds in the presence of other preferred compounds. Pseudomonas putida can degrade many aromatic compounds, most of which produce acetyl-CoA, making it useful for biotransformation and bioremediation. However, the genes involved in these metabolic pathways are often inhibited by CCR when glucose or amino acids are also present. Our results demonstrate that the PDH-null strain can efficiently degrade aromatic compounds even in the presence of other preferred substrates, which the wild-type strain does inefficiently, or not at all. As the loss of PDH limits the assimilation of many sugars and amino acids and relieves the CCR, the PDH-null strain could be useful in biotransformation or bioremediation processes that require growth with mixtures of preferred substrates and aromatic compounds.
Collapse
Affiliation(s)
- Renata Moreno
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Luis Yuste
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Gracia Morales
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
- Present address:
European UniversityMadridSpain
| | - Fernando Rojo
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
7
|
Brauer A, Rosendahl S, Kängsep A, Lewańczyk AC, Rikberg R, Hõrak R, Tamman H. Isolation and characterization of a phage collection against Pseudomonas putida. Environ Microbiol 2024; 26:e16671. [PMID: 38863081 PMCID: PMC7616413 DOI: 10.1111/1462-2920.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
The environmental bacterium, Pseudomonas putida, possesses a broad spectrum of metabolic pathways. This makes it highly promising for use in biotechnological production as a cell factory, as well as in bioremediation strategies to degrade various aromatic pollutants. For P. putida to flourish in its environment, it must withstand the continuous threats posed by bacteriophages. Interestingly, until now, only a handful of phages have been isolated for the commonly used laboratory strain, P. putida KT2440, and no phage defence mechanisms have been characterized. In this study, we present a new Collection of Environmental P. putida Phages from Estonia, or CEPEST. This collection comprises 67 double-stranded DNA phages, which belong to 22 phage species and 9 phage genera. Our findings reveal that most phages in the CEPEST collection are more infectious at lower temperatures, have a narrow host range, and require an intact lipopolysaccharide for P. putida infection. Furthermore, we show that cryptic prophages present in the P. putida chromosome provide strong protection against the infection of many phages. However, the chromosomal toxin-antitoxin systems do not play a role in the phage defence of P. putida. This research provides valuable insights into the interactions between P. putida and bacteriophages, which could have significant implications for biotechnological and environmental applications.
Collapse
Affiliation(s)
- Age Brauer
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sirli Rosendahl
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Anu Kängsep
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alicja Cecylia Lewańczyk
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Roger Rikberg
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hedvig Tamman
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Moreno R, Rojo F. What are the signals that control catabolite repression in Pseudomonas? Microb Biotechnol 2024; 17:e14407. [PMID: 38227132 PMCID: PMC10832556 DOI: 10.1111/1751-7915.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Metabolically versatile bacteria exhibit a global regulatory response known as carbon catabolite repression (CCR), which prioritizes some carbon sources over others when all are present in sufficient amounts. This optimizes growth by distributing metabolite fluxes, but can restrict yields in biotechnological applications. The molecular mechanisms and preferred substrates for CCR vary between bacterial groups. Escherichia coli prioritizes glucose whereas Pseudomonas sp. prefer certain organic acids or amino acids. A significant issue in understanding (and potentially bypassing) CCR is the lack of information about the signals that trigger this regulatory response. In E. coli, several key compounds act as flux sensors, governing the flow of metabolites through catabolic pathways and preventing imbalances. These flux sensors can also modulate the CCR response. It has been suggested that the order of substrate preference is determined by carbon uptake flux rather than substrate identity. For Pseudomonas, much less information is available, as the signals that induce CCR are poorly understood. This article briefly discusses the available evidence on the signals that trigger CCR and the questions that remain to be answered in Pseudomonas.
Collapse
Affiliation(s)
- Renata Moreno
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Fernando Rojo
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
9
|
Wang L, Chen C, Tang Y, Liu B. A novel hypothermic strain, Pseudomonas reactans WL20-3 with high nitrate removal from actual sewage, and its synergistic resistance mechanism for efficient nitrate removal at 4 °C. BIORESOURCE TECHNOLOGY 2023; 385:129389. [PMID: 37369315 DOI: 10.1016/j.biortech.2023.129389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Nitrate can be well removed by bacteria at 25-30 °C. However, nitrate removal almost ceases at temperatures lower than 5 °C. In this study, a novel hypothermic strain, Pseudomonas reactans WL20-3 exhibited an excellent aerobic nitrate removal ability at 4 °C. It had high capability for the removal of nitrate, total dissolved nitrogen (TDN), and dissolved organic carbon (DOC) at 4 °C, achieving removal efficiencies of 100%, 87.91%, and 97.48%, respectively. The transcriptome analysis revealed all genes involved in the nitrate removal pathway were significantly up-regulated. Additionally, the up-regulation of ABC transporter genes and down-regulation of respiratory chain genes cooperated with the nitrate metabolism pathway to resist low-temperature stress. In actual sewage, inoculated with WL20-3, the nitrate removal efficiency was found to be 70.70%. Overall, these findings demonstrated the impressive capacity of the novel strain WL20-3 to remove nitrate and provided novel insights into the synergistic resistance mechanism of WL20-3 at low temperature.
Collapse
Affiliation(s)
- Li Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd, Haikou, Hainan 571126, PR China
| | - Yueqin Tang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Baicang Liu
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
10
|
Yum SJ, Lee HR, Yu SY, Seo DW, Kwon JH, Kim SM, Kim JH, Jeong HG. Characterization of the Bacterial Communities in Cichorium intybus According to Cultivation and Storage Conditions. Microorganisms 2023; 11:1560. [PMID: 37375061 DOI: 10.3390/microorganisms11061560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chicory leaves (Cichorium intybus) are widely consumed due to their health benefits. They are mainly consumed raw or without adequate washing, which has led to an increase in food-borne illness. This study investigated the taxonomic composition and diversity of chicory leaves collected at different sampling times and sites. The potential pathogenic genera (Sphingomonas, Pseudomonas, Pantoea, Staphylococcus, Escherichia, and Bacillus) were identified on the chicory leaves. We also evaluated the effects of various storage conditions (enterohemorrhagic E. coli contamination, washing treatment, and temperature) on the chicory leaves' microbiota. These results provide an understanding of the microbiota in chicory and could be used to prevent food-borne illnesses.
Collapse
Affiliation(s)
- Su-Jin Yum
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Heoun-Reoul Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon Yeong Yu
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Woo Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Hyeok Kwon
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung Min Kim
- Division of Human Ecology, Korea National Open University, Seoul 03087, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Hee-Gon Jeong
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Min H, An F, Wei T, Wang S, Ma P, Dai Y. Microbial community structure and biogenic amines content variations in chilled chicken during storage. Food Sci Nutr 2023; 11:627-638. [PMID: 36789075 PMCID: PMC9922133 DOI: 10.1002/fsn3.3122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the sensory indicators, biogenic amine contents, and bacterial community structure and diversity of chilled chicken stored at 4°C under aerobic conditions. Bacterial diversity and dominant bacteria were analyzed using high-throughput sequencing technique (HTS). The relationship between biogenic amine contents and microbial community structure was studied. The results showed that contents of putrescine and cadaverine increased significantly with storage time. Proteobacteria was absolutely dominant flora at the phylum level. The predominant spoilage bacteria found in chicken thighs were Pseudomonas, Acinetobacter, Aeromonas, Shewanella, and Yersinia, and the difference with chicken breasts was related to the presence of Myroides and absence of Yersinia. Myroides, Yersinia, and Shewanella were reported for the first time as an important contributor to the spoilage-related microflora. Bacterial diversity and richness indices showed fluctuating and decreasing trend with storage time. The redundancy analysis showed that the relative abundance of Pseudomonas, Yersinia, and Janthinobacterium was positively related to the contents of putrescine, cadaverine, and tyramine, while Shewanella and Aeromonas showed positive relationship with putrescine content. Furthermore, positive relationship of Myroides and Desulfovibrio with the contents of cadaverine and tyramine was proposed for the first time. The key findings of this study can provide experimental data for food safety monitoring during refrigerated storage and preservation for poultry meat products.
Collapse
Affiliation(s)
- Hong Min
- NMPA Key Laboratory for Testing Technology of Pharmaceutical MicrobiologyShaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Fengqiu An
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityXi'anPeople's Republic of China
| | - Ting Wei
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityXi'anPeople's Republic of China
| | - Song Wang
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Pengfei Ma
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Yong Dai
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| |
Collapse
|
12
|
Agregán R, Pateiro M, Kumar M, Franco D, Capanoglu E, Dhama K, Lorenzo JM. The potential of proteomics in the study of processed meat products. J Proteomics 2023; 270:104744. [PMID: 36220542 DOI: 10.1016/j.jprot.2022.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Proteomics is a field that has grown rapidly since its emergence in the mid-1990s, reaching many disciplines such as food technology. The application of proteomic techniques in the study of complex biological samples such as foods, specifically meat products, allows scientists to decipher the underlying cellular mechanisms behind different quality traits. Lately, much emphasis has been placed on the discovery of biomarkers that facilitate the prediction of biochemical transformations of the product and provide key information on parameters associated with traceability and food safety. This review study focuses on the contribution of proteomics in the improvement of processed meat products. Different techniques and strategies have recently been successfully carried out in the study of the proteome of these products that can help the development of foods with a higher sensory quality, while ensuring consumer safety through early detection of microbiological contamination and fraud. SIGNIFICANCE: The food industry and the academic world work together with the aim of responding to market demands, always seeking excellence. In particular, the meat industry has to face a series of challenges such as, achieving sensory attributes in accordance with the standards required by the consumer and maintaining a high level of safety and transparency, avoiding deliver adulterated and/or contaminated products. This review work exposes how the aforementioned challenges are attempted to be solved through proteomic technology, discussing the latest and most outstanding research in this regard, which undoubtedly contribute to improving the quality, in all the extension of the word, of meat products, providing relevant knowledge in the field of proteomic research.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
13
|
Tribelli PM, López NI. Insights into the temperature responses of Pseudomonas species in beneficial and pathogenic host interactions. Appl Microbiol Biotechnol 2022; 106:7699-7709. [PMID: 36271255 DOI: 10.1007/s00253-022-12243-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Pseudomonas species are metabolically versatile bacteria able to exploit a wide range of ecological niches. Different Pseudomonas species can grow as free-living cells, biofilms, or associated with plants or animals, including humans, and their ecological success partially lies in their ability to grow and adapt to different temperatures. These bacteria are relevant for human activities, due to their clinical importance and their biotechnological potential for different applications such as bioremediation and the production of biopolymers, surfactants, secondary metabolites, and enzymes. In agriculture, some of them can act as plant growth promoters and are thus used as inoculants, whereas others, like P. syringae pathovars, can cause disease in commercial crops. This review aims to provide an overview of the temperature-response mechanisms in Pseudomonas species, looking for novel features or strategies based on techniques such as transcriptomics and proteomics. We focused on temperature-dependent traits mainly associated with virulence, host colonization, survival, and production of secondary metabolites. We analyzed human, animal, and plant pathogens and plant growth-promoting Pseudomonas species, including P. aeruginosa, P. plecoglossicida, several P. syringae pathovars, and P. protegens. Our aim was to provide a comprehensive view of the relevance of temperature-response traits in human and animal health and agricultural applications. Our analysis showed that features relevant to the bacterial-host interaction are adjusted to the environmental or host temperature regardless of the optimal growth temperature in the laboratory, and thus contribute to improving bacterial fitness. KEY POINTS: • In Pseudomonas species, temperature impacts the bacterial-host interaction. • Interaction traits are expressed at temperatures different from the optimal reported. • The bacterial-host interaction could be affected by climate change.
Collapse
Affiliation(s)
- Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428EGA, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Buenos Aires, Argentina.
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428EGA, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Roy S, Mittal P, Tayi L, Bondada S, Ray MK, Patel HK, Sonti RV. Xanthomonas oryzae pv. oryzae Exoribonuclease R Is Required for Complete Virulence in Rice, Optimal Motility, and Growth Under Stress. PHYTOPATHOLOGY 2022; 112:501-510. [PMID: 34384245 DOI: 10.1094/phyto-07-21-0310-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exoribonuclease R (RNase R) is a 3' hydrolytic exoribonuclease that can degrade structured RNA. Mutation in RNase R affects virulence of certain human pathogenic bacteria. The aim of this study was to determine whether RNase R is necessary for virulence of the phytopathogen that causes bacterial blight in rice, Xanthomonas oryzae pv. oryzae (Xoo). In silico analysis has indicated that RNase R is highly conserved among various xanthomonads. Amino acid sequence alignment of Xoo RNase R with RNase R from various taxa indicated that Xoo RNase R clustered with RNase R of order Xanthomonadales. To study its role in virulence, we generated a gene disruption mutant of Xoo RNase R. The Xoo rnr- mutant is moderately virulence deficient, and the complementing strain (rnr-/pHM1::rnr) rescued the virulence deficiency of the mutant. We investigated swimming and swarming motilities in both nutrient-deficient minimal media and nutrient-optimal media. We observed that RNase R mutation has adversely affected the swimming and swarming motilities of Xoo in optimal media. However, in nutrient-deficient media only swimming motility was noticeably affected. Growth curves in optimal media at suboptimal temperature (15°C cold stress) indicate that the Xoo rnr- mutant grows more slowly than the Xoo wild type and complementing strain (rnr-/pHM1::rnr). Given these findings, we report for the first time that RNase R function is necessary for complete virulence of Xoo in rice. It is also important for motility of Xoo in media and for growth of Xoo at suboptimal temperature.
Collapse
Affiliation(s)
- Sharmila Roy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India 500007
| | - Pragya Mittal
- MRC Human Genetics Unit, University of Edinburgh, Crewe Road South, Edinburgh, UK, EH4 2XU
| | - Lavanya Tayi
- Center for Plant Molecular Biology, Osmania University, Tarnaka, Hyderabad, Telangana State, India 500007
| | - Sahitya Bondada
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India 500007
| | - Malay K Ray
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India 500007
| | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India 500007
| | - Ramesh V Sonti
- Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh, India 517507
| |
Collapse
|
15
|
Seo DW, Yum SJ, Lee HR, Kim SM, Jeong HG. Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive ( Allium tuberosum Rottler) Depending on Retail Types. J Microbiol Biotechnol 2022; 32:195-204. [PMID: 34949749 PMCID: PMC9628847 DOI: 10.4014/jmb.2112.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26°C, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.
Collapse
Affiliation(s)
- Dong Woo Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Su-jin Yum
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Heoun Reoul Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Seung Min Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hee Gon Jeong
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea,Corresponding author Phone: +82-42-821-6726 E-mail:
| |
Collapse
|
16
|
Touchette D, Altshuler I, Gostinčar C, Zalar P, Raymond-Bouchard I, Zajc J, McKay CP, Gunde-Cimerman N, Whyte LG. Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis. THE ISME JOURNAL 2022; 16:221-232. [PMID: 34294882 PMCID: PMC8692454 DOI: 10.1038/s41396-021-01030-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
The novel extremophilic yeast Rhodotorula frigidialcoholis, formerly R. JG1b, was isolated from ice-cemented permafrost in University Valley (Antarctic), one of coldest and driest environments on Earth. Phenotypic and phylogenetic analyses classified R. frigidialcoholis as a novel species. To characterize its cold-adaptive strategies, we performed mRNA and sRNA transcriptomic analyses, phenotypic profiling, and assessed ethanol production at 0 and 23 °C. Downregulation of the ETC and citrate cycle genes, overexpression of fermentation and pentose phosphate pathways genes, growth without reduction of tetrazolium dye, and our discovery of ethanol production at 0 °C indicate that R. frigidialcoholis induces a metabolic switch from respiration to ethanol fermentation as adaptation in Antarctic permafrost. This is the first report of microbial ethanol fermentation utilized as the major energy pathway in response to cold and the coldest temperature reported for natural ethanol production. R. frigidialcoholis increased its diversity and abundance of sRNAs when grown at 0 versus 23 °C. This was consistent with increase in transcription of Dicer, a key protein for sRNA processing. Our results strongly imply that post-transcriptional regulation of gene expression and mRNA silencing may be a novel evolutionary fungal adaptation in the cryosphere.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China
| | - P Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - I Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - J Zajc
- Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - C P McKay
- NASA Ames Research Center, Moffett Field, CA, USA
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
17
|
Bassey AP, Ye K, Li C, Zhou G. Transcriptomic-proteomic integration: A powerful synergy to elucidate the mechanisms of meat spoilage in the cold chain. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
A novel paper-based and pH-sensitive intelligent detector in meat and seafood packaging. Talanta 2021; 224:121913. [DOI: 10.1016/j.talanta.2020.121913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
|
19
|
Vatansever C, Turetgen I. Investigation of the effects of various stress factors on biofilms and planktonic bacteria in cooling tower model system. Arch Microbiol 2021; 203:1411-1425. [PMID: 33388788 DOI: 10.1007/s00203-020-02116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/27/2022]
Abstract
Biofilm is a microbial population which live in a self-produced extracellular polymeric matrix by attaching to surfaces. Biofilms consist of different different types of organisms such as bacteria, fungi, protozoa, etc. Many biofilms that develop in nature consist of more than one type of organism. Biofilms protect bacteria from adverse conditions such as temperature fluctuation and disinfectants. The aim of this study was to determine the effective elimination strategies for combating biofilm and planktonic bacteria in cooling tower model system using different decontamination / disinfection techniques. In this study, 14 week-old biofilms were treated with temperatures of 4 °C, 65 °C; pH of 3, 11; 2 and 10 mg/l chlorine, 2 and 10 mg/l monochloramine; hypotonic salt (0.01% NaCl) and hypertonic salt (3% NaCl) solution. For enumeration, number of aerobic heterotrophic bacteria was determined by conventional culture method, number of live bacteria was determined by LIVE/DEAD viability kit, CTC-DAPI and Alamar blue staining methods. Temperature of 65 °C, pH of 3, 10 mg/l monochloramine and hypertonic salt solution were the most effective parameters for decontamination of biofilm and planktonic bacteria. Biofilm bacteria in the circulating water system were significantly more resistant than planktonic bacteria against stress factors. When the numbers of epifluorescence microscopy and conventional culture technique were compared, significantly higher number of live bacteria were detected using epifluorescence microscopy. Bacteria enter the viable but non-culturable phase by loosing their culturability under stress conditions. For this reason, the conventional culture method should be supported by different techniques to get more realistic numbers.
Collapse
Affiliation(s)
- Cansu Vatansever
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Altinbas University, Istanbul, Turkey.
| | - Irfan Turetgen
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Zhu C, Miller M, Lusskin N, Bergk Pinto B, Maccario L, Häggblom M, Vogel T, Larose C, Bromberg Y. Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. Microbiologyopen 2020; 9:e1100. [PMID: 32762019 PMCID: PMC7520998 DOI: 10.1002/mbo3.1100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Microbes active in extreme cold are not as well explored as those of other extreme environments. Studies have revealed a substantial microbial diversity and identified cold-specific microbiome molecular functions. We analyzed the metagenomes and metatranscriptomes of 20 snow samples collected in early and late spring in Svalbard, Norway using mi-faser, our read-based computational microbiome function annotation tool. Our results reveal a more diverse microbiome functional capacity and activity in the early- vs. late-spring samples. We also find that functional dissimilarity between the same-sample metagenomes and metatranscriptomes is significantly higher in early than late spring samples. These findings suggest that early spring samples may contain a larger fraction of DNA of dormant (or dead) organisms, while late spring samples reflect a new, metabolically active community. We further show that the abundance of sequencing reads mapping to the fatty acid synthesis-related microbial pathways in late spring metagenomes and metatranscriptomes is significantly correlated with the organic acid levels measured in these samples. Similarly, the organic acid levels correlate with the pathway read abundances of geraniol degradation and inversely correlate with those of styrene degradation, suggesting a possible nutrient change. Our study thus highlights the activity of microbial degradation pathways of complex organic compounds previously unreported at low temperatures.
Collapse
Affiliation(s)
- Chengsheng Zhu
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Maximilian Miller
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Nicholas Lusskin
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Benoît Bergk Pinto
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Lorrie Maccario
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
- Section of MicrobiologyCopenhagen UniversityCopenhagen ØDenmark
| | - Max Häggblom
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Timothy Vogel
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Catherine Larose
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Yana Bromberg
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
- Department of GeneticsHuman Genetics InstituteRutgers UniversityPiscatawayNJUSA
| |
Collapse
|
21
|
Hernández-Cabanyero C, Sanjuán E, Fouz B, Pajuelo D, Vallejos-Vidal E, Reyes-López FE, Amaro C. The Effect of the Environmental Temperature on the Adaptation to Host in the Zoonotic Pathogen Vibrio vulnificus. Front Microbiol 2020; 11:489. [PMID: 32296402 PMCID: PMC7137831 DOI: 10.3389/fmicb.2020.00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - David Pajuelo
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
22
|
Li C, Murugaiyan J, Thomas C, Alter T, Riedel C. Isolate Specific Cold Response of Yersinia enterocolitica in Transcriptional, Proteomic, and Membrane Physiological Changes. Front Microbiol 2020; 10:3037. [PMID: 32038527 PMCID: PMC6990146 DOI: 10.3389/fmicb.2019.03037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Yersinia enterocolitica, a zoonotic foodborne pathogen, is able to withstand low temperatures. This psychrotrophic ability allows it to multiply in food stored in refrigerators. However, little is known about the Y. enterocolitica cold response. In this study, isolate-specific behavior at 4°C was demonstrated and the cold response was investigated by examining changes in phenotype, gene expression, and the proteome. Altered expression of cold-responsive genes showed that the ability to survive at low temperature depends on the capacity to acclimate and adapt to cold stress. This cold acclimation at the transcriptional level involves the transient induction and effective repression of cold-shock protein (Csp) genes. Moreover, the resumption of expression of genes encoding other non-Csp is essential during prolonged adaptation. Based on proteomic analyses, the predominant functional categories of cold-responsive proteins are associated with protein synthesis, cell membrane structure, and cell motility. In addition, changes in membrane fluidity and motility were shown to be important in the cold response of Y. enterocolitica. Isolate-specific differences in the transcription of membrane fluidity- and motility-related genes provided evidence to classify strains within a spectrum of cold response. The combination of different approaches has permitted the systematic description of the Y. enterocolitica cold response and gives a better understanding of the physiological processes underlying this phenomenon.
Collapse
Affiliation(s)
- Chenyang Li
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biotechnology, SRM University AP, Amaravati, India
| | - Christian Thomas
- Department of Food Science and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Carolin Riedel
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Wang C, Chen Y, Zhou H, Li X, Tan Z. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: Physiological and transcriptome. CHEMOSPHERE 2020; 238:124571. [PMID: 31472351 DOI: 10.1016/j.chemosphere.2019.124571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Rhodococcus exhibits strong adaptability to environmental stressors and plays a crucial role in environmental bioremediation. However, seasonal changes in ambient temperature, especially rapid temperature drops exert an adverse effect on in situ bioremediation. In this paper, we studied the cell morphology and fatty acid composition of an aniline-degrading strain Rhodococcus sp. CNS16 at temperatures of 30 °C, 20 °C, and 10 °C. At suboptimal temperatures, cell morphology of CNS16 changed from short rod-shaped to long rod or irregular shaped, and the proportion of unsaturated fatty acids was upregulated. Transcriptomic technologies were then utilized to gain detailed insights into the adaptive mechanisms of CNS16 subjected to suboptimal temperatures. The results showed that the number of gene responses was significantly higher at 10 °C than that at 20 °C. The inhibition of peptidoglycan synthase expression and up-regulation of Filamentous Temperature Sensitive as well as unsaturated fatty acid synthesis genes at suboptimal temperatures might be closely related to corresponding changes in cell morphology and fatty acids composition. Strain CNS16 showed loss of catalase and superoxide dismutase activity, and utilized thioredoxin-dependent thiol peroxidase to resist oxidative stress. The up-regulation of carotenoid and Vitamin B2 synthesis at 10 °C might also be involved in the resistance to oxidative stress. Amino acid metabolism, coenzyme and vitamin metabolism, ABC transport, and energy metabolism are essential for peptidoglycan synthesis and regulation of cellular metabolism; therefore, synergistically resisting environmental stress. This study provides a mechanistic basis for the regulation of aniline degradation in Rhodococcus sp. CNS16 at low temperatures.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China.
| |
Collapse
|
24
|
Molina L, La Rosa R, Nogales J, Rojo F. Influence of the Crc global regulator on substrate uptake rates and the distribution of metabolic fluxes in Pseudomonas putida KT2440 growing in a complete medium. Environ Microbiol 2019; 21:4446-4459. [PMID: 31595602 PMCID: PMC6900033 DOI: 10.1111/1462-2920.14812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022]
Abstract
When the soil bacterium Pseudomonas putida grows in a complete medium, it prioritizes the assimilation of preferred carbon sources, optimizing its metabolism and growth. This regulatory process is orchestrated by the Crc and Hfq proteins. The present work examines the changes that occur in metabolic fluxes when the crc gene is inactivated and cells grow exponentially in LB complete medium. Analyses were performed at three different moments during exponential growth, examining the assimilation rates for the compounds present in LB, changes in the proteome, and the changes in metabolic fluxes predicted by the iJN1411 metabolic model for P. putida KT2440. During the early exponential phase, consumption rates for sugars, many organic acids and most amino acids were higher in a Crc-null strain than in the wild type, leading to an overflow of the metabolic pathways and the leakage of pyruvate and acetate. These accelerated consumption rates decreased during the mid-exponential phase, when cells mostly used sugars and alanine. At later times, pyruvate was recovered from the medium and utilized. The higher consumption rates of the Crc-null strain reduced the growth rate. The lack of the Crc/Hfq regulatory system thus led to unbalanced metabolism with poorly optimized metabolic fluxes.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Ruggero La Rosa
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Juan Nogales
- Systems Biology ProgramCentro Nacional de Biotecnología, CSICMadridSpain
| | - Fernando Rojo
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
25
|
Alcântara ALD, Bruzaroski SR, Luiz LL, Souza CHB, Poli‐Frederico RC, Fagnani R, Santana EHW. Antimicrobial activity of Lactobacillus rhamnosusagainst Pseudomonas fluorescensand Pseudomonas putidafrom raw milk. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Laura D’Amico Alcântara
- Master of Science and Technology of Milk and Dairy Products Degree Program Pitágoras Unopar University (UNOPAR) Londrina Brazil
| | - Samera Rafaela Bruzaroski
- Master of Science and Technology of Milk and Dairy Products Degree Program Pitágoras Unopar University (UNOPAR) Londrina Brazil
| | - Lucas Lima Luiz
- Master of Science and Technology of Milk and Dairy Products Degree Program Pitágoras Unopar University (UNOPAR) Londrina Brazil
| | - Cínthia Hoch Batista Souza
- Master of Science and Technology of Milk and Dairy Products Degree Program Pitágoras Unopar University (UNOPAR) Londrina Brazil
| | | | - Rafael Fagnani
- Master of Science and Technology of Milk and Dairy Products Degree Program Pitágoras Unopar University (UNOPAR) Londrina Brazil
| | - Elsa Helena Walter Santana
- Master of Science and Technology of Milk and Dairy Products Degree Program Pitágoras Unopar University (UNOPAR) Londrina Brazil
| |
Collapse
|
26
|
Pereira FA, Luiz LL, Bruzaroski SR, Poli-Frederico RC, Fagnani R, Santana EH. The effect of cold storage, time and the population of Pseudomonas species on milk lipolysis. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.0583181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to evaluate the lipolytic index (LI) of Pseudomonas fluorescens and Pseudomonas putida (2, 5, 6 log CFU/mL) in milk during 96 h by the Lipo R method. The strains were isolated from refrigerated raw milk (30 °C, 48 h), and species were confirmed by PCR, inoculated in reconstituted whole milk, and stored at 2 °C, 4 °C, and 8 °C. The storage time (ST) and temperature were associated with LI of P. putida. The interaction among lipolysis, temperature, and ST occurs even with a low population of P. putida and these variables combined together contributed to about 77% of the free fatty acids (FFA) in milk. The ST, temperature, and population of P. fluorescens showed a significant effect on its LI, and the variables contributed to about 43% of FFA. LI was about 224% higher in milk with P. fluorescens than with P. putida. The reduc-tion in ST and milk temperature resulted in a decrease in lipid lysis and a lower index of FFA by P. putida and P. fluorescens, with P. fluorescens showing a higher lipolytic capacity.
Collapse
|
27
|
Bååth E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. GLOBAL CHANGE BIOLOGY 2018; 24:2850-2861. [PMID: 29682877 DOI: 10.1111/gcb.14285] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 05/26/2023]
Abstract
Numerous models have been used to express the temperature sensitivity of microbial growth and activity in soil making it difficult to compare results from different habitats. Q10 still is one of the most common ways to express temperature relationships. However, Q10 is not constant with temperature and will differ depending on the temperature interval used for the calculation. The use of the square root (Ratkowsky) relationship between microbial activity (A) and temperature below optimum temperature, √A = a × (T-Tmin ), is proposed as a simple and adequate model that allow for one descriptor, Tmin (a theoretical minimum temperature for growth and activity), to estimate correct Q10-values over the entire in situ temperature interval. The square root model can adequately describe both microbial growth and respiration, allowing for an easy determination of Tmin . Q10 for any temperature interval can then be calculated by Q10 = [(T + 10 - Tmin )/(T-Tmin )]2 , where T is the lowest temperature in the Q10 comparison. Tmin also describes the temperature adaptation of the microbial community. An envelope of Tmin covering most natural soil habitats varying between -15°C (cold habitats like Antarctica/Arctic) to 0°C (tropical habitats like rain forests and deserts) is suggested, with an 0.3°C increase in Tmin per 1°C increase in mean annual temperature. It is shown that the main difference between common temperature relationships used in global models is differences in the assumed temperature adaptation of the soil microbial community. The use of the square root equation will allow for one descriptor, Tmin , determining the temperature response of soil microorganisms, and at the same time allow for comparing temperature sensitivity of microbial activity between habitats, including future projections.
Collapse
Affiliation(s)
- Erland Bååth
- Microbial Ecology, Department of Biology, Ecology Building, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Park C, Park W. Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential. Front Microbiol 2018; 9:1081. [PMID: 29910779 PMCID: PMC5992423 DOI: 10.3389/fmicb.2018.01081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Many petroleum-polluted areas are considered as extreme environments because of co-occurrence of low and high temperatures, high salt, and acidic and anaerobic conditions. Alkanes, which are major constituents of crude oils, can be degraded under extreme conditions, both aerobically and anaerobically by bacteria and archaea of different phyla. Alkane degraders possess exclusive metabolic pathways and survival strategies, which involve the use of protein and RNA chaperones, compatible solutes, biosurfactants, and exopolysaccharide production for self-protection during harsh environmental conditions such as oxidative and osmotic stress, and ionic nutrient-shortage. Recent findings suggest that the thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus uses a novel alkylsuccinate synthase for long-chain alkane degradation, and the thermophilic Candidatus Syntrophoarchaeum butanivorans anaerobically oxidizes butane via alkyl-coenzyme M formation. In addition, gene expression data suggest that extremophiles produce energy via the glyoxylate shunt and the Pta-AckA pathway when grown on a diverse range of alkanes under stress conditions. Alkane degraders possess biotechnological potential for bioremediation because of their unusual characteristics. This review will provide genomic and molecular insights on alkane degraders under extreme conditions.
Collapse
Affiliation(s)
- Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
29
|
Wang H, Li J, Jewett MC. Development of a Pseudomonas putida cell-free protein synthesis platform for rapid screening of gene regulatory elements. Synth Biol (Oxf) 2018; 3:ysy003. [PMID: 32995512 PMCID: PMC7445763 DOI: 10.1093/synbio/ysy003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems enable the production of protein without the use of living, intact cells. An emerging area of interest is to use CFPS systems to characterize individual elements for genetic programs [e.g. promoters, ribosome binding sites (RBS)]. To enable this research area, robust CFPS systems must be developed from new chassis organisms. One such chassis is the Gram-negative Pseudomonas bacteria, which have been studied extensively for their diverse metabolism with promises in the field of bioremediation and biosynthesis. Here, we report the development and optimization of a high-yielding (198 ± 5.9 µg/ml) batch CFPS system from Pseudomonas putida ATCC 12633. Importantly, both circular and linear DNA templates can be applied directly to the CFPS reaction to program protein synthesis. Therefore, it is possible to prepare hundreds or even thousands of DNA templates without time-consuming cloning work. This opens the possibility to rapidly assess and validate genetic part performance in vitro before performing experiments in cells. To validate the P. putida CFPS system as a platform for prototyping genetic parts, we designed and constructed a library consisting of 15 different RBSs upstream of the reporter protein sfGFP, which covered an order of magnitude range in expression. Looking forward, our P. putida CFPS platform will not only expand the protein synthesis toolkit for synthetic biology but also serve as a platform in expediting the screening and prototyping of gene regulatory elements.
Collapse
Affiliation(s)
- He Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Master of Biotechnology Program, Northwestern University, Evanston, IL, 60208, USA
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Master of Biotechnology Program, Northwestern University, Evanston, IL, 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
30
|
Abstract
It is well known that cold environments are predominant over the Earth and there are a great number of reports analyzing bacterial adaptations to cold. Most of these works are focused on characteristics traditionally involved in cold adaptation, such as the structural adjustment of enzymes, maintenance of membrane fluidity, expression of cold shock proteins and presence of compatible solutes. Recent works based mainly on novel "omic" technologies have presented evidence of the presence of other important features to thrive in cold. In this work, we analyze cold-adapted bacteria, looking for strategies involving novel features, and/or activation of non-classical metabolisms for a cold lifestyle. Metabolic traits related to energy generation, compounds and mechanisms involved in stress resistance and cold adaptation, as well as characteristics of the cell envelope, are analyzed in heterotrophic cold-adapted bacteria. In addition, metagenomic, metatranscriptomic and metaproteomic data are used to detect key functions in bacterial communities inhabiting cold environments.
Collapse
Affiliation(s)
- Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
31
|
Benforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L, López NI, Tribelli PM. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 2018; 13:e0192559. [PMID: 29415056 PMCID: PMC5802925 DOI: 10.1371/journal.pone.0192559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.
Collapse
Affiliation(s)
- Florencia C. Benforte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria A. Colonnella
- Centro de Investigaciones en Bionanociencias, CONICET, Buenos Aires, Argentina
| | - Martiniano M. Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias, CONICET, Buenos Aires, Argentina
| | - Nancy I. López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
- * E-mail: (NIL); (PMT)
| | - Paula M. Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
- * E-mail: (NIL); (PMT)
| |
Collapse
|
32
|
Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Raiger Iustman LJ, Lopez NI. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. ACTA ACUST UNITED AC 2018; 45:15-23. [DOI: 10.1007/s10295-017-1987-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 01/25/2023]
Abstract
Abstract
Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13–C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments.
Collapse
Affiliation(s)
- Paula M Tribelli
- 0000 0001 0056 1981 grid.7345.5 Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Guiraldes, 2160 C1428EGA Buenos Aires Argentina
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| | - Leticia Rossi
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| | - Martiniano M Ricardi
- 0000 0001 0056 1981 grid.7345.5 Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires C1428EGA Buenos Aires Argentina
| | - Maria Gomez-Lozano
- 0000 0001 2181 8870 grid.5170.3 Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Hørsholm Denmark
| | - Søren Molin
- 0000 0001 2181 8870 grid.5170.3 Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Hørsholm Denmark
| | - Laura J Raiger Iustman
- 0000 0001 0056 1981 grid.7345.5 Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Guiraldes, 2160 C1428EGA Buenos Aires Argentina
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| | - Nancy I Lopez
- 0000 0001 0056 1981 grid.7345.5 Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Guiraldes, 2160 C1428EGA Buenos Aires Argentina
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| |
Collapse
|
33
|
Roth S, Funk I, Hofer M, Sieber V. Chemoenzymatic Synthesis of a Novel Borneol-Based Polyester. CHEMSUSCHEM 2017; 10:3574-3580. [PMID: 28772002 DOI: 10.1002/cssc.201701146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Terpenes are a class of natural compounds that have recently moved into the focus as a bio-based resource for chemical production, owing to their abundance, their mostly cyclic structures, and the presence of olefin or single hydroxy groups. To apply this raw material in new industrial fields, a second hydroxy group is inserted into borneol by cytochrome P450cam (CYP101) enzymes in a whole-cell catalytic biotransformation with Pseudomonas putida KT2440. Next, a semi-continuous batch system was developed to produce 5-exo-hydroxyborneol with a final concentration of 0.54 g L-1 . The bifunctional terpene was then used for the synthesis of a bio-based polyester by a solvent-free polycondensation reaction. The resulting polymer showed a glass transition temperature of around 70 °C and a molecular weight in the range of 2000-4000 g mol-1 (Mw ). These results show that whole-cell catalytic biotransformation of terpenes could lead to bio-based, higher-functionalized monomers, which might be basic raw materials for different fields of application, such as biopolymers.
Collapse
Affiliation(s)
- Steffen Roth
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315, Straubing, Germany
| | - Irina Funk
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315, Straubing, Germany
| | - Michael Hofer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Volker Sieber
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315, Straubing, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| |
Collapse
|
34
|
Ma Z, Tian M, Tan Y, Cui G, Feng Y, Cui Q, Song X. Response mechanism of the docosahexaenoic acid producer Aurantiochytrium under cold stress. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Transcriptomic Analysis of Laribacter hongkongensis Reveals Adaptive Response Coupled with Temperature. PLoS One 2017; 12:e0169998. [PMID: 28085929 PMCID: PMC5234827 DOI: 10.1371/journal.pone.0169998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022] Open
Abstract
Bacterial adaptation to different hosts requires transcriptomic alteration in response to the environmental conditions. Laribacter hongkongensis is a gram-negative, facultative anaerobic, urease-positive bacillus caused infections in liver cirrhosis patients and community-acquired gastroenteritis. It was also found in intestine from commonly consumed freshwater fishes and drinking water reservoirs. Since L. hongkongensis could survive as either fish or human pathogens, their survival mechanisms in two different habitats should be temperature-regulated and highly complex. Therefore, we performed transcriptomic analysis of L. hongkongensis at body temperatures of fish and human in order to elucidate the versatile adaptation mechanisms coupled with the temperatures. We identified numerous novel temperature-induced pathways involved in host pathogenesis, in addition to the shift of metabolic equilibriums and overexpression of stress-related proteins. Moreover, these pathways form a network that can be activated at a particular temperature, and change the physiology of the bacteria to adapt to the environments. In summary, the dynamic of transcriptomes in L. hongkongensis provides versatile strategies for the bacterial survival at different habitats and this alteration prepares the bacterium for the challenge of host immunity.
Collapse
|
36
|
Poblete-Castro I, Borrero-de Acuña JM, Nikel PI, Kohlstedt M, Wittmann C. Host Organism: Pseudomonas putida. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ignacio Poblete-Castro
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - José M. Borrero-de Acuña
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program; National Spanish Center for Biotechnology (CNB-CSIC); Calle Darwin, 3 28049 Madrid, Spain
| | - Michael Kohlstedt
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| |
Collapse
|
37
|
King T, Kocharunchitt C, Gobius K, Bowman JP, Ross T. Physiological Response of Escherichia coli O157:H7 Sakai to Dynamic Changes in Temperature and Water Activity as Experienced during Carcass Chilling. Mol Cell Proteomics 2016; 15:3331-3347. [PMID: 27615263 PMCID: PMC5098033 DOI: 10.1074/mcp.m116.063065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/04/2016] [Indexed: 02/03/2023] Open
Abstract
Enterohemeorrhagic Escherichia coli is a leading cause of foodborne illness, with the majority of cases linked to foods of bovine origin. Currently, no completely effective method for controlling this pathogen during carcass processing exists. Understanding how this pathogen behaves under those stress conditions experienced on the carcass during chilling in cold air could offer opportunities for development or improvement of effective decontamination processes. Therefore, we studied the growth kinetics and physiological response of exponential phase E. coli O157:H7 Sakai cultures upon an abrupt downshift in temperature and water activity (from 35 °C aw 0.993 to 14 °C aw 0.967). A parallel Biolog study was conducted to follow the phenotypic responses to 190 carbon sources. Exposure of E. coli to combined cold and water activity stresses resulted in a complex pattern of population changes. This pattern could be divided into two main phases, including adaptation and regrowth phases, based on growth kinetics and clustering analyses. The transcriptomic and proteomic studies revealed that E. coli exhibited a "window" of cell susceptibility (i.e. weaknesses) during adaptation phase. This included apparent DNA damage, the downregulation of molecular chaperones and proteins associated with responses to oxidative damage. However, E. coli also displayed a transient induction in the RpoE-controlled envelope stress response and activation of the master stress regulator RpoS and the Rcs phosphorelay system involved in colanic acid biosynthesis. Increased expression was observed for several genes and/or proteins involved in DNA repair, protein and peptide degradation, amino acid biosynthesis, and carbohydrate catabolism and energy generation. Furthermore, the Biolog study revealed reduced carbon source utilization during adaptation phase, indicating the disruption of energy-generating processes. This study provides insight into the physiological response of E. coli during exposure to combined cold and water activity stress, which could be exploited to enhance the microbiological safety of carcasses and related foods.
Collapse
Affiliation(s)
- Thea King
- From the ‡CSIRO Agriculture and Food, North Ryde, NSW 2113, Australia;
| | - Chawalit Kocharunchitt
- §Food Safety Centre, Tasmanian Institute of Agriculture, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Kari Gobius
- ¶CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - John P Bowman
- §Food Safety Centre, Tasmanian Institute of Agriculture, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Tom Ross
- §Food Safety Centre, Tasmanian Institute of Agriculture, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| |
Collapse
|
38
|
Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton. Appl Environ Microbiol 2016; 82:4441-52. [PMID: 27208110 DOI: 10.1128/aem.00807-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae IMPORTANCE Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to fluctuations in temperature, which results in changes to biofilm formation and type VI secretion system activation. These processes in turn impact environmental survival and the virulence potential of this pathogen.
Collapse
|
39
|
Cordero N, Maza F, Navea-Perez H, Aravena A, Marquez-Fontt B, Navarrete P, Figueroa G, González M, Latorre M, Reyes-Jara A. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature. Front Microbiol 2016; 7:229. [PMID: 26973610 PMCID: PMC4772535 DOI: 10.3389/fmicb.2016.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/12/2016] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature.
Collapse
Affiliation(s)
- Ninoska Cordero
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Felipe Maza
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Helen Navea-Perez
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Andrés Aravena
- Department of Molecular Biology and Genetics, Istanbul University Istanbul, Turkey
| | - Bárbara Marquez-Fontt
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Guillermo Figueroa
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de ChileSantiago, Chile
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de ChileSantiago, Chile; Mathomics, Center for Mathematical Modeling, Universidad de ChileSantiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| |
Collapse
|
40
|
Tribelli PM, Solar Venero EC, Ricardi MM, Gómez-Lozano M, Raiger Iustman LJ, Molin S, López NI. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis. PLoS One 2015; 10:e0145353. [PMID: 26671564 PMCID: PMC4686015 DOI: 10.1371/journal.pone.0145353] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures. Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deep-sequencing technology of early exponential cultures of P. extremaustralis growing in LB (Luria Broth) supplemented with sodium octanoate to favor PHA accumulation at 8°C and 30°C. We found that genes involved in primary metabolism, including tricarboxylic acid cycle (TCA) related genes, as well as cytochromes and amino acid metabolism coding genes, were repressed at low temperature. Among up-regulated genes, those coding for transcriptional regulatory and signal transduction proteins were over-represented at cold conditions. Remarkably, we found that genes involved in ethanol oxidation, exaA, exaB and exaC, encoding a pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the cytochrome c550 and an aldehyde dehydrogenase respectively, were up-regulated. Along with RNA-seq experiments, analysis of mutant strains for pqqB (PQQ biosynthesis protein B) and exaA were carried out. We found that the exaA and pqqB genes are essential for growth under low temperature in LB supplemented with sodium octanoate. Additionally, p-rosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures grown at 8°C support the conclusion that this pathway is important under cold conditions. The obtained results have led to the identification of novel components involved in cold adaptation mechanisms in this bacterium, suggesting for the first time a role of the ethanol oxidation pathway for bacterial growth at low temperatures.
Collapse
Affiliation(s)
- Paula M. Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| | | | - Martiniano M. Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Maria Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Laura J. Raiger Iustman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Nancy I. López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
41
|
Hyldgaard M, Meyer RL, Peng M, Hibberd AA, Fischer J, Sigmundsson A, Mygind T. Binary combination of epsilon-poly-l-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat. Int J Food Microbiol 2015; 215:131-42. [DOI: 10.1016/j.ijfoodmicro.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 09/07/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022]
|
42
|
Bargiela R, Herbst FA, Martínez-Martínez M, Seifert J, Rojo D, Cappello S, Genovese M, Crisafi F, Denaro R, Chernikova TN, Barbas C, von Bergen M, Yakimov MM, Ferrer M, Golyshin PN. Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 2015; 15:3508-20. [PMID: 26201687 PMCID: PMC4973819 DOI: 10.1002/pmic.201400614] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/21/2015] [Accepted: 07/20/2015] [Indexed: 11/24/2022]
Abstract
Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.
Collapse
Affiliation(s)
- Rafael Bargiela
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | - Florian-Alexander Herbst
- Department of Proteomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Jana Seifert
- Department of Proteomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Animal Science, Universität Hohenheim, Stuttgart, Germany
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Simone Cappello
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | - María Genovese
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | | | - Renata Denaro
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Martin von Bergen
- Department of Proteomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Metabolomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Manuel Ferrer
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | | |
Collapse
|
43
|
de Oliveira GB, Favarin L, Luchese RH, McIntosh D. Psychrotrophic bacteria in milk: How much do we really know? Braz J Microbiol 2015; 46:313-21. [PMID: 26273245 PMCID: PMC4507522 DOI: 10.1590/s1517-838246220130963] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/19/2014] [Indexed: 02/07/2023] Open
Abstract
The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know?
Collapse
Affiliation(s)
- Gislene B de Oliveira
- Universidade Federal Rural do Rio de Janeiro, Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil, Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Luciana Favarin
- Universidade Federal Rural do Rio de Janeiro, Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil, Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Rosa H Luchese
- Universidade Federal Rural do Rio de Janeiro, Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil, Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Douglas McIntosh
- Universidade Federal Rural do Rio de Janeiro, Parasitologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil, Parasitologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
44
|
Wang Y, Lv M, Zhang Y, Xiao X, Jiang T, Zhang W, Hu C, Gao C, Ma C, Xu P. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production. Sci Rep 2014; 4:6939. [PMID: 25373400 PMCID: PMC4221787 DOI: 10.1038/srep06939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022] Open
Abstract
As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent D-lactate dehydrogenase activity was prepared and used in L-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent L-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important L-2-hydroxy-carboxylates (L-lactate and L-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Min Lv
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Yingxin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Xieyue Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Wen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chunhui Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Ping Xu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China [2] State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
45
|
Moreno R, Rojo F. Features of pseudomonads growing at low temperatures: another facet of their versatility. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:417-426. [PMID: 25646532 DOI: 10.1111/1758-2229.12150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonads are a diverse and ecologically successful group of γ-proteobacteria present in many environments (terrestrial, freshwater and marine), either free living or associated with plants or animals. Their success is at least partly based on their ability to grow over a wide range of temperatures, their capacity to withstand different kinds of stress and their great metabolic versatility. Although the optimal growth temperature of pseudomonads is usually close to 25–30°C, many strains can also grow between 5°C and 10°C, and some of them even close to 0°C. Such low temperatures strongly affect the physicochemical properties of macromolecules, forcing cells to evolve traits that optimize growth and help them withstand cold-induced stresses such as increased levels of reactive oxygen species, reduced membrane fluidity and enzyme activity, cold-induced protein denaturation and the greater stability of DNA and RNA secondary structures. This review gathers the information available on the strategies used by pseudomonads to adapt to low temperature growth, and briefly describes some of the biotechnological applications that might benefit from cold-adapted bacterial strains and enzymes, e.g., biotransformation or bioremediation processes to be performed at low temperatures.
Collapse
|
46
|
Moreno R, Rojo F. The contribution of proteomics to the unveiling of the survival strategies used by Pseudomonas putida
in changing and hostile environments. Proteomics 2013; 13:2822-30. [DOI: 10.1002/pmic.201200503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Renata Moreno
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología; CSIC Madrid Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología; CSIC Madrid Spain
| |
Collapse
|
47
|
Arvizu-Gómez JL, Hernández-Morales A, Aguilar JRP, Álvarez-Morales A. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol 2013; 13:81. [PMID: 23587016 PMCID: PMC3639832 DOI: 10.1186/1471-2180-13-81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. RESULTS A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. CONCLUSIONS From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development.
Collapse
Affiliation(s)
| | - Alejandro Hernández-Morales
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, Cd. Valles, San Luis Potosí, CP 79060, Mexico
| | - Juan Ramiro Pacheco Aguilar
- Laboratorio de Plantas y Biotecnología Agrícola. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las campanas S/N, CU. Col. Las Campanas, Querétaro Qro, CP 76010, Mexico
| | - Ariel Álvarez-Morales
- Departamento de Ingeniería Genética, CINVESTAV-IPN Unidad Irapuato, Apdo Postal 629, Irapuato, Gto, CP 36821, Mexico
| |
Collapse
|
48
|
Follonier S, Escapa IF, Fonseca PM, Henes B, Panke S, Zinn M, Prieto MA. New insights on the reorganization of gene transcription in Pseudomonas putida KT2440 at elevated pressure. Microb Cell Fact 2013; 12:30. [PMID: 23537069 PMCID: PMC3621253 DOI: 10.1186/1475-2859-12-30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background Elevated pressure, elevated oxygen tension (DOT) and elevated carbon dioxide tension (DCT) are readily encountered at the bottom of large industrial bioreactors and during bioprocesses where pressure is applied for enhancing the oxygen transfer. Yet information about their effect on bacteria and on the gene expression thereof is scarce. To shed light on the cellular functions affected by these specific environmental conditions, the transcriptome of Pseudomonas putida KT2440, a bacterium of great relevance for the production of medium-chain-length polyhydroxyalkanoates, was thoroughly investigated using DNA microarrays. Results Very well defined chemostat cultivations were carried out with P. putida to produce high quality RNA samples and ensure that differential gene expression was caused exclusively by changes of pressure, DOT and/or DCT. Cellular stress was detected at 7 bar and elevated DCT in the form of heat shock and oxidative stress-like responses, and indicators of cell envelope perturbations were identified as well. Globally, gene transcription was not considerably altered when DOT was increased from 40 ± 5 to 235 ± 20% at 7 bar and elevated DCT. Nevertheless, differential transcription was observed for a few genes linked to iron-sulfur cluster assembly, terminal oxidases, glutamate metabolism and arginine deiminase pathway, which shows their particular sensitivity to variations of DOT. Conclusions This study provides a comprehensive overview on the changes occurring in the transcriptome of P. putida upon mild variations of pressure, DOT and DCT. Interestingly, whereas the changes of gene transcription were widespread, the cell physiology was hardly affected, which illustrates how efficient reorganization of the gene transcription is for dealing with environmental changes that may otherwise be harmful. Several particularly sensitive cellular functions were identified, which will certainly contribute to the understanding of the mechanisms involved in stress sensing/response and to finding ways of enhancing the stress tolerance of microorganisms.
Collapse
Affiliation(s)
- Stéphanie Follonier
- Swiss Federal Laboratories for Materials Science and Technology, Gallen, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol 2013; 13:28. [PMID: 23387904 PMCID: PMC3575345 DOI: 10.1186/1471-2180-13-28] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. RESULTS The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. CONCLUSION Significant differences (p < 0.05) observed between dead and living microbial cells for metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study advocates the use of Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas putida and Bacillus licheniformis.
Collapse
|
50
|
Jagannadham MV, Chowdhury C. Differential expression of membrane proteins helps Antarctic Pseudomonas syringae to acclimatize upon temperature variations. J Proteomics 2012; 75:2488-99. [PMID: 22418587 DOI: 10.1016/j.jprot.2012.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/15/2012] [Accepted: 02/25/2012] [Indexed: 01/16/2023]
Abstract
Antarctic bacteria are adapted to the extremely low temperature. The transcriptional and translational machineries of these bacteria are adapted to the sub-zero degrees of temperature. Studies directed towards identifying the changes in the protein profiles during changes in the growth temperatures of an Antarctic bacterium Pseudomonas syringae Lz4W may help in understanding the molecular basis of cold adaptation. In this study, subcellular fractionation methods of proteins were used for the enrichment and identification of proteins including low abundance proteins. The membrane proteins of the bacterium P. syringae Lz4W were prepared employing sucrose density gradient method. The proteins were separated through 2D gel-electrophoresis with the pH ranges 3-10, 4-7 and 5-8 using the detergent, amidosulfobetaine (ASB-14). The proteins separated on the 1D SDS PAGE and 2D gels were identified with the help of LC-ESI MS/MS and MALDI TOF TOF using bioinformatic programs MASCOT and SEQUEST. Since the genome sequence of P. syringae Lz4W is not available, the proteins are identified by using the genome database of the Pseudomonas sp. available at NCBI. The present studies focus on identifying temperature dependent expression of proteins by employing LC-MS/MS method and the functional significance of these proteins is discussed.
Collapse
|