1
|
Jiang H, Tang Y, Liu A, Ren C, Lin W, Liu K, Zhao X, Li Y. Elucidating the preventive and therapeutic effects of cardiac telocytes paracrine microRNAs on ischemic heart disease. Front Cardiovasc Med 2025; 12:1540051. [PMID: 40236257 PMCID: PMC11997980 DOI: 10.3389/fcvm.2025.1540051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 04/17/2025] Open
Abstract
Telocytes (TCs), a newly identified type of mesenchymal cell since 2010, possess substantial potential in maintaining tissue homeostasis, orchestrating organ development, and facilitating tissue regeneration. Their distribution in blood, the adventitia of blood vessels, and the intima implies a close association with vascular function. Ischemic heart disease (IHD), a significant challenge in cardiovascular disease, is characterized by the occlusion of major vessels, obstruction of collateral circulation, and disruption of the capillary network-pathological features closely linked to endothelial cell damage. Myocardial tissue is rich in cardiac telocytes (cTCs), which, following myocardial injury, can secrete numerous miRNAs that promote angiogenesis, including miR-let-7e, miR-10a, and miR-126-3p. This indicates that cTCs may have therapeutic potential for IHD. The primary mechanism by which cTCs-derived exosomes exert paracrine effects is through reducing endothelial cell injury, suggesting that enhancing the production of cTCs could offer a novel therapeutic approach for treating IHD.
Collapse
Affiliation(s)
- Hugang Jiang
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yan Tang
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ai Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunzhen Ren
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wenyan Lin
- Daytime Diagnosis and Treatment Center, Gansu Provincial People’s Hospital, Lanzhou, Gansu, China
| | - Kai Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xinke Zhao
- Cardiovascular Clinical Medical Center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yingdong Li
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Mitrofanova L, Popov S. Editorial: Interplay between the heart and the immune system: Focus on heart rhythm regulation. Front Physiol 2022; 13:981499. [PMID: 36035479 PMCID: PMC9399915 DOI: 10.3389/fphys.2022.981499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Lubov Mitrofanova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- *Correspondence: Lubov Mitrofanova,
| | - Sergey Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
3
|
Cucu I, Nicolescu MI, Busnatu ȘS, Manole CG. Dynamic Involvement of Telocytes in Modulating Multiple Signaling Pathways in Cardiac Cytoarchitecture. Int J Mol Sci 2022; 23:5769. [PMID: 35628576 PMCID: PMC9143034 DOI: 10.3390/ijms23105769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac interstitium is a complex and dynamic environment, vital for normal cardiac structure and function. Telocytes are active cellular players in regulating main events that feature myocardial homeostasis and orchestrating its involvement in heart pathology. Despite the great amount of data suggesting (microscopically, proteomically, genetically, etc.) the implications of telocytes in the different physiological and reparatory/regenerative processes of the heart, understanding their involvement in realizing the heart's mature cytoarchitecture is still at its dawn. Our scrutiny of the recent literature gave clearer insights into the implications of telocytes in the WNT signaling pathway, but also TGFB and PI3K/AKT pathways that, inter alia, conduct cardiomyocytes differentiation, maturation and final integration into heart adult architecture. These data also strengthen evidence for telocytes as promising candidates for cellular therapies in various heart pathologies.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Ștefan-Sebastian Busnatu
- Department of Cardiology-“Bagdasar Arseni” Emergency Clinical Hospital, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 041915 Bucharest, Romania
| | - Cătălin Gabriel Manole
- Department of Cellular & Molecular Biology and Histology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Laboratory of Ultrastructural Pathology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
4
|
Aschacher T, Aschacher O, Schmidt K, Enzmann FK, Eichmair E, Winkler B, Arnold Z, Nagel F, Podesser BK, Mitterbauer A, Messner B, Grabenwöger M, Laufer G, Ehrlich MP, Bergmann M. The Role of Telocytes and Telocyte-Derived Exosomes in the Development of Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms23094730. [PMID: 35563123 PMCID: PMC9099883 DOI: 10.3390/ijms23094730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022] Open
Abstract
A hallmark of thoracic aortic aneurysms (TAA) is the degenerative remodeling of aortic wall, which leads to progressive aortic dilatation and resulting in an increased risk for aortic dissection or rupture. Telocytes (TCs), a distinct type of interstitial cells described in many tissues and organs, were recently observed in the aortic wall, and studies showed the potential regulation of smooth muscle cell (SMC) homeostasis by TC-released shed vesicles. The purpose of the present work was to study the functions of TCs in medial degeneration of TAA. During aneurysmal formation an increase of aortic TCs was identified in human surgical specimens of TAA-patients, compared to healthy thoracic aortic (HTA)-tissue. We found the presence of epithelial progenitor cells in the adventitial layer, which showed increased infiltration in TAA samples. For functional analysis, HTA- and TAA-telocytes were isolated, characterized, and compared by their protein levels, mRNA- and miRNA-expression profiles. We detected TC and TC-released exosomes near SMCs. TAA-TC-exosomes showed a significant increase of the SMC-related dedifferentiation markers KLF-4-, VEGF-A-, and PDGF-A-protein levels, as well as miRNA-expression levels of miR-146a, miR-221 and miR-222. SMCs treated with TAA-TC-exosomes developed a dedifferentiation-phenotype. In conclusion, the study shows for the first time that TCs are involved in development of TAA and could play a crucial role in SMC phenotype switching by release of extracellular vesicles.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
- Correspondence: ; Tel.: +43-1-277-00-74316
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Florian K. Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eva Eichmair
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Zsuzsanna Arnold
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Felix Nagel
- Department of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (F.N.); (B.K.P.)
| | - Bruno K. Podesser
- Department of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (F.N.); (B.K.P.)
| | - Andreas Mitterbauer
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.); (M.B.)
| | - Barbara Messner
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Marek P. Ehrlich
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.); (M.B.)
| |
Collapse
|
5
|
Aleksandrovych V, Bereza T, Ulatowska-Białas M, Pasternak A, Walocha JA, Pityński K, Gil K. Identification of PDGFRα+ cells in uterine fibroids - link between angiogenesis and uterine telocytes. Arch Med Sci 2022; 18:1329-1337. [PMID: 36160340 PMCID: PMC9479735 DOI: 10.5114/aoms.2019.86795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Telocytes (TCs), also called interstitial Cajal-like cells (ICLC), CD34+ cells or PDGFRα+ cells (platelet-derived growth factor receptor α positive cells), a new type of cell of mesenchymal origin, were described over one decade ago. The unique nature of these cells still deserves attention from the scientific community. Telocytes make homo- and heterocellular contact with myocytes, immunocytes and nerves, have their own immunohistochemical and secretome profiles and thus might regulate local regenerative processes including angiogenesis and fibrosis. The aim of our study was to observe the missing link between angiogenesis and telocytes in leiomyoma, the most common benign tumors affecting women of reproductive age. MATERIAL AND METHODS We observed uterine tissue samples from leiomyoma, adjacent myometrium and unchanged tissue from patients with leiomyoma and control subjects using routine histology, histochemistry, immunofluorescence (CD117, CD31, CD34, PDGFRα, tryptase, sFlt-1) and image analysis methods. RESULTS The decline of the telocyte density in the foci of fibroids correlated with poor vascularization inside the leiomyoma. Moreover, the expression of sFlt-1 (anti-angiogenic-related factor) significantly increased inside a fibroid. In leiomyoma the decrease of telocyte and blood micro-vessel density was accompanied by prevalence of collagen deposits, unlike the unchanged myometrium. CONCLUSIONS Our results demonstrate TCs in human uterine fibroids and highlight their possible involvement in the pathogenesis of myometrial pathology in the context of angiogenesis.
Collapse
Affiliation(s)
| | - Tomasz Bereza
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Artur Pasternak
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy A. Walocha
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Aleksandrovych V, Gil K. Telocytes in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:205-216. [PMID: 34664241 DOI: 10.1007/978-3-030-73119-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There are several theories explaining the communication between cells in the context of tumor development. Over the years, interactions between normal and transformed cells have been observed. Generally, all types of cells make equal contributions to the formation of the tumor microenvironment - a location of primary oncogenesis. To date, several studies have reported the role of telocytes in cancer development, and many publications have emphasized the direct and indirect involvement of telocytes in angiogenesis; signaling through the secretion of extracellular vesicles, growth factors, and bioactive molecules; fibrosis development and extracellular matrix production; tissue repair and regeneration; and immune responses. Considering the main components of the tumor microenvironment, we will discuss the features of telocytes and their possible involvement in local tissue homeostasis.
Collapse
Affiliation(s)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
7
|
Aschacher T, Schmidt K, Aschacher O, Eichmair E, Baranyi U, Winkler B, Grabenwoeger M, Spittler A, Enzmann F, Messner B, Riebandt J, Laufer G, Bergmann M, Ehrlich M. Telocytes in the human ascending aorta: Characterization and exosome-related KLF-4/VEGF-A expression. J Cell Mol Med 2021; 25:9697-9709. [PMID: 34562312 PMCID: PMC8505852 DOI: 10.1111/jcmm.16919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Telocytes (TCs), a novel interstitial cell entity promoting tissue regeneration, have been described in various tissues. Their role in inter‐cellular signalling and tissue remodelling has been reported in almost all human tissues. This study hypothesizes that TC also contributes to tissue remodelling and regeneration of the human thoracic aorta (HTA). The understanding of tissue homeostasis and regenerative potential of the HTA is of high clinical interest as it plays a crucial role in pathogenesis from aortic dilatation to lethal dissection. Therefore, we obtained twenty‐five aortic specimens of heart donors during transplantation. The presence of TCs was detected in different layers of aortic tissue and characterized by immunofluorescence and transmission electron microscopy. Further, we cultivated and isolated TCs in highly differentiated form identified by positive staining for CD34 and c‐kit. Aortic‐derived TC was characterized by the expression of PDGFR‐α, PDGFR‐β, CD29/integrin β‐1 and αSMA and the stem cell markers Nanog and KLF‐4. Moreover, TC exosomes were isolated and characterized for soluble angiogenic factors by Western blot. CD34+/c‐kit+ TCs shed exosomes containing the soluble factors VEGF‐A, KLF‐4 and PDGF‐A. In summary, TC occurs in the aortic wall. Correspondingly, exosomes, derived from aortic TCs, contain vasculogenesis‐relevant proteins. Understanding the regulation of TC‐mediated aortic remodelling may be a crucial step towards designing strategies to promote aortic repair and prevent adverse remodelling.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Katy Schmidt
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Eichmair
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Winkler
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Martin Grabenwoeger
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Andreas Spittler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek Ehrlich
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Pineda S, Nikolova-Krstevski V, Leimena C, Atkinson AJ, Altekoester AK, Cox CD, Jacoby A, Huttner IG, Ju YK, Soka M, Ohanian M, Trivedi G, Kalvakuri S, Birker K, Johnson R, Molenaar P, Kuchar D, Allen DG, van Helden DF, Harvey RP, Hill AP, Bodmer R, Vogler G, Dobrzynski H, Ocorr K, Fatkin D. Conserved Role of the Large Conductance Calcium-Activated Potassium Channel, K Ca1.1, in Sinus Node Function and Arrhythmia Risk. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003144. [PMID: 33629867 DOI: 10.1161/circgen.120.003144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KCNMA1 encodes the α-subunit of the large-conductance Ca2+-activated K+ channel, KCa1.1, and lies within a linkage interval for atrial fibrillation (AF). Insights into the cardiac functions of KCa1.1 are limited, and KCNMA1 has not been investigated as an AF candidate gene. METHODS The KCNMA1 gene was sequenced in 118 patients with familial AF. The role of KCa1.1 in normal cardiac structure and function was evaluated in humans, mice, zebrafish, and fly. A novel KCNMA1 variant was functionally characterized. RESULTS A complex KCNMA1 variant was identified in 1 kindred with AF. To evaluate potential disease mechanisms, we first evaluated the distribution of KCa1.1 in normal hearts using immunostaining and immunogold electron microscopy. KCa1.1 was seen throughout the atria and ventricles in humans and mice, with strong expression in the sinus node. In an ex vivo murine sinoatrial node preparation, addition of the KCa1.1 antagonist, paxilline, blunted the increase in beating rate induced by adrenergic receptor stimulation. Knockdown of the KCa1.1 ortholog, kcnma1b, in zebrafish embryos resulted in sinus bradycardia with dilatation and reduced contraction of the atrium and ventricle. Genetic inactivation of the Drosophila KCa1.1 ortholog, slo, systemically or in adult stages, also slowed the heartbeat and produced fibrillatory cardiac contractions. Electrophysiological characterization of slo-deficient flies revealed bursts of action potentials, reflecting increased events of fibrillatory arrhythmias. Flies with cardiac-specific overexpression of the human KCNMA1 mutant also showed increased heart period and bursts of action potentials, similar to the KCa1.1 loss-of-function models. CONCLUSIONS Our data point to a highly conserved role of KCa1.1 in sinus node function in humans, mice, zebrafish, and fly and suggest that KCa1.1 loss of function may predispose to AF.
Collapse
Affiliation(s)
- Santiago Pineda
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Vesna Nikolova-Krstevski
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Christiana Leimena
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Andrew J Atkinson
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.)
| | - Ann-Kristin Altekoester
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Arie Jacoby
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Inken G Huttner
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Yue-Kun Ju
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Magdalena Soka
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Monique Ohanian
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Gunjan Trivedi
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Sreehari Kalvakuri
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Katja Birker
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Peter Molenaar
- Faculty of Health, Queensland University of Technology (P.M.).,School of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, Australia (P.M.)
| | - Dennis Kuchar
- Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| | - David G Allen
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Dirk F van Helden
- University of Newcastle and Hunter Medical Research Institute, NSW, Australia (D.F.v.H.)
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Rolf Bodmer
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Georg Vogler
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.).,Jagiellonian University Medical College, Cracow, Poland (H.D.)
| | - Karen Ocorr
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| |
Collapse
|
9
|
Selviler-Sizer S, Kabak YB, Kabak M. Telocytes in the hearts of Saanen goats. Microsc Res Tech 2020; 84:548-554. [PMID: 33017500 DOI: 10.1002/jemt.23612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
Telocytes, new interstitial cells that have received significant attention in recent years, have been detected in many organs, including the heart. The distinction between telocytes and other interstitial cells can only be made based on their ultrastructural characterization and immunophenotypic features. In this study, we examined the interstitial cells in the healthy heart tissues of Saanen goats to determine whether they are telocytes or not, by using a scanning electron microscope (SEM) and immunohistochemical and immunofluorescence staining methods. The SEM revealed oval and round telocytes with two to four telopodes. Some telopodes also had podoms. The staining for immunohistochemical and immunofluorescence methods used for CD34, c-kit (CD117), and vimentin antibodies. Positive cells were detected in the heart muscle and heart valves by immunohistochemical staining. As these antigens can also be expressed by other non-telocyte cells, we used double immunofluorescence staining with CD34/c-kit and CD34/vimentin antibodies to identify true telocytes. Telocytes were determined in the right atrium and aortic valve. While telocytes were CD34+/c-kit+ and CD34+/vimentin+, fibroblasts were CD34-/vimentin+. These results confirm the presence of telocytes in the hearts of Saanen goats.
Collapse
Affiliation(s)
- Sedef Selviler-Sizer
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yonca Betil Kabak
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Murat Kabak
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
10
|
Podzolkov VI, Tarzimanova AI, Frolova AS. Telocytes and Atrial Fibrillation: From Basic Research to Clinical Practice. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2020. [DOI: 10.20996/1819-6446-2020-08-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The emergence of new research methods makes it possible to study the tissue, structural, cellular, and molecular causes of atrial fibrillation (AF). Recently, the role of interstitial telocyte cells in the pathogenesis of AF has been actively discussed. Telocytes are a special type of interstitial cells identified in many organs and tissues, including the heart. The roles of telocytes in the myocardium are diverse: they have pacemaker activity, and carry out structural and coordination communication between cells. The ability of these cells to change the speed of the electrical pulse in the atrial and ventricular myocardium has been proven. Telocytes form "atypical" connections with almost all types of cells in the human heart, which collects them in an integrated network. Using electron microscopy, it was found that interstitial cells have different types of connections in the network and can integrate "information" from the vascular and nervous systems, interstitial, immune system, stem cells, progenitor cells, and contractile cardiomyocytes. Currently, the results of studies have been obtained that prove both positive and negative effects of telocytes on the occurrence of various diseases of the cardiovascular system. The role of telocytes in AF arrhythmogenesis remains a subject of discussion. The unique properties of telocytes in providing intercellular contacts, transmitting genetic information, and their ability to regenerate heart tissue are undoubtedly the most promising areas of modern cardiology. There is evidence of both direct and indirect effects of telocytes on the electrophysiological properties of the myocardium. There is no doubt that the development of this area opens up new therapeutic targets for the prevention and treatment of AF.
Collapse
Affiliation(s)
- V. I. Podzolkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Frolova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
11
|
Romano E, Rosa I, Fioretto BS, Lucattelli E, Innocenti M, Ibba-Manneschi L, Matucci-Cerinic M, Manetti M. A Two-Step Immunomagnetic Microbead-Based Method for the Isolation of Human Primary Skin Telocytes/CD34+ Stromal Cells. Int J Mol Sci 2020; 21:ijms21165877. [PMID: 32824287 PMCID: PMC7461544 DOI: 10.3390/ijms21165877] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Telocytes (TCs), commonly referred to as TCs/CD34+ stromal cells, are a peculiar type of interstitial cells with distinctive morphologic traits that are supposed to exert several biological functions, including tissue homeostasis regulation, cell-to-cell signaling, immune surveillance, and reparative/regenerative effects. At present, the majority of studies investigating these cells are mainly descriptive and focus only on their morphology, with a consequent paucity of functional data. To gain relevant insight into the possible functions of TCs, in vitro analyses are clearly required, but currently, the protocols for TC isolation are only at the early stages and not fully standardized. In the present in vitro study, we describe a novel methodology for the purification of human primary skin TCs through a two-step immunomagnetic microbead-based cell separation (i.e., negative selection for CD31 followed by positive selection for CD34) capable of discriminating these cells from other connective tissue-resident cells on the basis of their different immunophenotypic features. Our experiments clearly demonstrated that the proposed method allows a selective purification of cells exhibiting the peculiar TC morphology. Isolated TCs displayed very long cytoplasmic extensions with a moniliform silhouette (telopodes) and presented an immunophenotypic profile (CD31−/CD34+/PDGFRα+/vimentin+) that unequivocally differentiates them from endothelial cells (CD31+/CD34+/PDGFRα−/vimentin+) and fibroblasts (CD31−/CD34−/PDGFRα+/vimentin+). This novel methodology for the isolation of TCs lays the groundwork for further research aimed at elucidating their functional properties and possible translational applications, especially in the field of regenerative medicine.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Elena Lucattelli
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50134 Florence, Italy; (E.L.); (M.I.)
| | - Marco Innocenti
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50134 Florence, Italy; (E.L.); (M.I.)
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
- Correspondence: ; Tel.: +39-055-2758077
| |
Collapse
|
12
|
Soucy JR, Askaryan J, Diaz D, Koppes AN, Annabi N, Koppes RA. Glial cells influence cardiac permittivity as evidenced through in vitro and in silico models. Biofabrication 2019; 12:015014. [PMID: 31593932 PMCID: PMC11062241 DOI: 10.1088/1758-5090/ab4c0a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Excitation-contraction (EC) coupling in the heart has, until recently, been solely accredited to cardiomyocytes. The inherent complexities of the heart make it difficult to examine non-muscle contributions to contraction in vivo, and conventional in vitro models fail to capture multiple features and cellular heterogeneity of the myocardium. Here, we report on the development of a 3D cardiac μTissue to investigate changes in the cellular composition of native myocardium in vitro. Cells are encapsulated within micropatterned gelatin-based hydrogels formed via visible light photocrosslinking. This system enables spatial control of the microarchitecture, perturbation of the cellular composition, and functional measures of EC coupling via video microscopy and a custom algorithm to quantify beat frequency and degree of coordination. To demonstrate the robustness of these tools and evaluate the impact of altered cell population densities on cardiac μTissues, contractility and cell morphology were assessed with the inclusion of exogenous non-myelinating Schwann cells (SCs). Results demonstrate that the addition of exogenous SCs alter cardiomyocyte EC, profoundly inhibiting the response to electrical pacing. Computational modeling of connexin-mediated coupling suggests that SCs impact cardiomyocyte resting potential and rectification following depolarization. Cardiac μTissues hold potential for examining the role of cellular heterogeneity in heart health, pathologies, and cellular therapies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | | | | | | | | | | |
Collapse
|
13
|
Morsiani C, Bacalini MG, Santoro A, Garagnani P, Collura S, D'Errico A, de Eguileor M, Grazi GL, Cescon M, Franceschi C, Capri M. The peculiar aging of human liver: A geroscience perspective within transplant context. Ageing Res Rev 2019; 51:24-34. [PMID: 30772626 DOI: 10.1016/j.arr.2019.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
An appraisal of recent data highlighting aspects inspired by the new Geroscience perspective are here discussed. The main findings are summarized as follows: i) liver has to be considered an immunological organ, and new studies suggest a role for the recently described cells named telocytes; ii) the liver-gut axis represents a crucial connection with environment and life style habits and may influence liver diseases onset; iii) the physiological aging of liver shows relatively modest alterations. Nevertheless, several molecular changes appear to be relevant: a) an increase of microRNA-31-5p; -141-3p; -200c-3p expressions after 60 years of age; b) a remodeling of genome-wide DNA methylation profile evident until 60 years of age and then plateauing; c) changes in transcriptome including the metabolic zones of hepatocyte lobules; d) liver undergoes an accelerated aging in presence of chronic inflammation/liver diseases in a sort of continuum, largely as a consequence of unhealthy life styles and exposure to environmental noxious agents. We argue that chronic liver inflammation has all the major characteristics of "inflammaging" and likely sustains the onset and progression of liver diseases. Finally, we propose to use a combination of parameters, mostly obtained by omics such as transcriptomics and epigenomics, to evaluate in deep both the biological age of liver (in comparison with the chronological age) and the effects of donor-recipient age-mismatches in the context of liver transplant.
Collapse
Affiliation(s)
- Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | | | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Salvatore Collura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Magda de Eguileor
- DBSV-Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | | | - Matteo Cescon
- DIMEC-Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, Russian Federation
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; CSR-Centro di Studio per la Ricerca dell'Invecchiamento, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Iancu CB, Rusu MC, Mogoantă L, Hostiuc S, Grigoriu M. Myocardial Telocyte-Like Cells: A Review Including New Evidence. Cells Tissues Organs 2019; 206:16-25. [PMID: 30879002 DOI: 10.1159/000497194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/17/2019] [Indexed: 11/19/2022] Open
Abstract
Telocytes (TCs) are a controversial cell type characterized by the presence of a particular kind of prolongations, known as telopodes, which are long, thin, and moniliform. A number of attempts has been made to establish the molecular phenotype of cardiac TCs (i.e., expression of c-kit, CD34, vimentin, PDGRFα, PDGRFβ, etc.). We designed an immunohistochemical study involving cardiac tissue samples obtained from 10 cadavers with the aim of determining whether there are TC-like interstitial cells that populate the interstitial space other than the mural microvascular cells. We applied the markers for CD31, CD34, PDGRFα, CD117/c-kit, and α-smooth muscle actin (α-SMA). We found that, in relation to two-dimensional cuts, the endothelial tubes could be misidentified as TC-like cells, the difference being the positive identification of endothelial lumina. Moreover, we found that cardiac pericytes express PDGRFα, CD117/c-kit, and α-SMA, and that they could also be misidentified as TCs when using light microscopy. We reviewed the respective values of the previously identified markers for achieving a clear-cut identification of cardiac TCs, highlighting the critical lack of specificity.
Collapse
Affiliation(s)
- Cristian B Iancu
- Division of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,
| | - Laurenţiu Mogoantă
- Department of Histology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Sorin Hostiuc
- Department of Legal Medicine and Bioethics, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Grigoriu
- Division of Surgery, University Emergency Hospital Bucharest, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
15
|
Critical review: Cardiac telocytes vs cardiac lymphatic endothelial cells. Ann Anat 2018; 222:40-54. [PMID: 30439414 DOI: 10.1016/j.aanat.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
The study of cardiac interstitial Cajal-like cells (ICLCs) began in 2005 and continued until 2010, when these cells were renamed as telocytes (TCs). Since then, numerous papers on cardiac ICLCs and TCs have been published. However, in the initial descriptions upon which further research was based, lymphatic endothelial cells (LECs) and initial lymphatics were not considered. No specific antibodies for LECs (such as podoplanin or LYVE-1) were used in cardiac TC studies, although ultrastructurally, LECs and TCs have similar morphological traits, including the lack of a basal lamina. When tissues are longitudinally cut, migrating LECs involved in adult lymphangiogenesis have an ICLC or TC morphology, both in light and transmission electron microscopy. In this paper, we present evidence that at least some cardiac TCs are actually LECs. Therefore, a clear-cut distinction should be made between TCs and LECs, at both the molecular and the ultrastructural levels, in order to avoid obtaining invalid data.
Collapse
|
16
|
Ma R, Wu P, Shi Q, Song D, Fang H. Telocytes promote VEGF expression and alleviate ventilator-induced lung injury in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 50:817-825. [PMID: 29924305 DOI: 10.1093/abbs/gmy066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 01/17/2023] Open
Abstract
Mechanical ventilation (MV) is an important procedure for the treatment of patients with acute lung injury or acute respiratory distress syndrome in a clinical setting; however, MV can lead to severe complications, including ventilator-induced lung injury (VILI). Telocytes (TCs) can promote tissue repair following injury in the heart, kidneys, and other organs. The aim of this study was to investigate the role of TCs in VILI in mice and the associated mechanisms. By using in vivo studies in mice and in vitro studies in cells, we demonstrated that an airway injection of TCs can reduce the pulmonary inflammatory response and improve the lung function in mice with VILI and promote the proliferation of pulmonary vascular endothelial cells. We also demonstrated that the impact of TCs on VILI repair might partially due to vascular endothelial growth factor (VEGF) secreted by TCs upon VILI stimulation, and that VEGF could induce the proliferation of hemangioendothelioma endothelial cells (EOMA). Collectively, our results revealed novel functions of TCs in VILA repair and shed light on the complications that are caused by MV.
Collapse
Affiliation(s)
- Ruihua Ma
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pinwen Wu
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiqing Shi
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Dongli Song
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Manta L, Rusu M, Pop F. What podoplanin tells us about cells with telopodes. Ann Anat 2018; 218:124-128. [DOI: 10.1016/j.aanat.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/25/2022]
|
18
|
Hostiuc S, Marinescu M, Costescu M, Aluaș M, Negoi I. Cardiac telocytes. From basic science to cardiac diseases. II. Acute myocardial infarction. Ann Anat 2018; 218:18-27. [PMID: 29604385 DOI: 10.1016/j.aanat.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/28/2018] [Accepted: 02/04/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The purpose of this study was to evaluate the scientific evidence regarding a potential role of telocytes in myocardial infarction. MATERIALS AND METHODS To this purpose, we performed a systematic review of relevant scientific literature, indexed in PubMed, Web of Science, and Scopus. RESULTS AND DISCUSSIONS We found six articles containing relevant studies aimed at liking myocardial infarction and telocytes. The studies that were analysed in this review failed to show, beyond a reasonable doubt, that telocytes do actually have significant roles in myocardial regeneration after myocardial infarction. The main issues to be addressed in future studies are a correct characterization of telocytes, and a differentiation from other cell types that either have similar morphologies (using electron microscopy) or similar immunophenotypes, with emphasis on endothelial progenitors, which were previously shown to have similar morphology, and functions in cardiac regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Mihai Marinescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihnea Costescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Aluaș
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ionut Negoi
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
19
|
Jiang XJ, Cretoiu D, Shen ZJ, Yang XJ. An in vitro investigation of telocytes-educated macrophages: morphology, heterocellular junctions, apoptosis and invasion analysis. J Transl Med 2018; 16:85. [PMID: 29615057 PMCID: PMC5883889 DOI: 10.1186/s12967-018-1457-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Telocytes (TCs), a recently discovered novel type of interstitial cells, were also found in a wide variety of human and mammalian reproductive organs/tissues, including uterus, oviduct and placenta. Previously, we demonstrated that TCs-conditioned media was capable of activating peritoneal macrophages (pMACs) through paracrine effects. This study investigates the hypothesis that direct interaction of TCs with pMACs will also play a significant role in immunoregulation of pMACs. METHODS TCs and pMACs were derived from the uterus and intraperitoneal cavity of female BALB/c mice, respectively. TCs were identified by immunofluorescence and then co-cultured directly with pMACs for 24 h without added cytokines, to observe the in vitro biological behavior of pMACs. We used histochemical staining to study morphology and mitochondrial metabolism of pMACs, scanning electron microscopy to study heterocellular junctions, flow cytometry to investigate mitochondrial membrane potential (ΔΨm) and apoptosis, and transwell chambers to study invasion ability. Student-t test was used accordingly. RESULTS Presently, TCs with typical structure and immunophenotype of double CD-34-positive/vimentin-positive were successfully isolated. pMACs co-cultured with TCs showed obviously morphological activation, with enhanced energy metabolism (P < 0.05). Meanwhile, direct physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs. Furthermore, TCs treatment markedly reduced the depletion of ΔΨm in co-cultured pMACs (all P < 0.05), and inhibited their apoptosis (P < 0.05). Functionally, pMACs co-cultured with TCs showed enhanced invasion ability (P < 0.05). CONCLUSIONS Direct physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs, presumably responsible for the observed novel efficient way of pMACs activation via mitochondrial signaling pathway. TCs-educated pMACs might be a promising way to restore the defective immunosurveillance in endometriosis (EMs), led to the enhanced treatment efficacy of EMs in a simple and clinically feasible fashion.
Collapse
Affiliation(s)
- Xiao-Juan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute of Mother and Child Health, Bucharest, Romania
| | - Zong-Ji Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Jiangsu Province People’s Republic of China
| |
Collapse
|
20
|
A Tale of Two Cells: Telocyte and Stem Cell Unique Relationship. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 913:359-376. [PMID: 27796899 DOI: 10.1007/978-981-10-1061-3_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telocytes have been identified as a distinctive type of interstitial cells and have been recognized in most tissues and organs. Telocytes are characterized by having extraordinary long cytoplasmic processes, telopodes, that extend to form three-dimensional networks and commonly constitute specialized forms of cell-to-cell junctions with other neighboring cells. Telocytes have been localized in the stem cell niche of different organs such as the heart, lung, skeletal muscle, and skin. Electron microscopy and electron tomography revealed a specialized link between telocytes and stem cells that postulates a potential role for telocytes during tissue regeneration and repair. In this review, the distribution of telocytes in different stem cell niches will be explored, highlighting the intimate relationship between the two types of cells and their possible functional relationship.
Collapse
|
21
|
Ibba-Manneschi L, Rosa I, Manetti M. Telocytes in Chronic Inflammatory and Fibrotic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 913:51-76. [PMID: 27796880 DOI: 10.1007/978-981-10-1061-3_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Telocytes are a peculiar stromal (interstitial) cell type implicated in tissue homeostasis and development, as well as in the pathophysiology of several disorders. Severe damage and reduction of telocytes have been reported during fibrotic remodeling of multiple organs in various diseases, including scleroderma, Crohn's disease, ulcerative colitis, and liver fibrosis, as well as in chronic inflammatory lesions like those of primary Sjögren's syndrome and psoriasis. Owing to their close relationship with stem cells, telocytes are also supposed to contribute to tissue repair/regeneration. Indeed, telocytes are universally considered as "connecting cells" mostly oriented to intercellular signaling. On the basis of recent promising experimental findings, in the near future, telocyte transplantation might represent a novel therapeutic opportunity to control the evolution of chronic inflammatory and fibrotic diseases. Notably, there is evidence to support that telocytes could help in preventing abnormal activation of immune cells and fibroblasts, as well as in attenuating the altered matrix organization during the fibrotic process. By targeting telocytes alone or in tandem with stem cells, we might be able to promote regeneration and prevent the evolution to irreversible tissue injury. Besides exogenous transplantation, exploring pharmacological or non-pharmacological methods to enhance the growth and/or survival of telocytes could be an additional therapeutic strategy for many disorders.
Collapse
Affiliation(s)
- Lidia Ibba-Manneschi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy.
| |
Collapse
|
22
|
Radu BM, Banciu A, Banciu DD, Radu M, Cretoiu D, Cretoiu SM. Calcium Signaling in Interstitial Cells: Focus on Telocytes. Int J Mol Sci 2017; 18:ijms18020397. [PMID: 28208829 PMCID: PMC5343932 DOI: 10.3390/ijms18020397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
- Engineering Faculty, Constantin Brancusi University, Calea Eroilor 30, Targu Jiu 210135, Romania.
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
| | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania.
| | - Dragos Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| | - Sanda Maria Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
23
|
Yang P, Ahmad N, Hunag Y, Ullah S, Zhang Q, Waqas Y, Liu Y, Li Q, Hu L, Chen Q. Telocytes: novel interstitial cells present in the testis parenchyma of the Chinese soft-shelled turtle Pelodiscus sinensis. J Cell Mol Med 2016; 19:2888-99. [PMID: 26769239 PMCID: PMC4687711 DOI: 10.1111/jcmm.12731] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
Telocytes (TCs) are novel interstitial cells that have been found in various organs, but the existence of TCs in the testes has not yet been reported. The present ultrastructural and immunohistochemical study revealed the existence of TCs and differentiate these cells from the peritubular cells (Pc) in contact with the surrounding structures in the testes. Firstly, our results confirmed the existence of two cell types surrounding seminiferous tubules; these were Pc (smooth muscle like characteristics) and TCs (as an outer layer around Pc). Telocytes and their long thin prolongations called telopodes (Tps) were detected as alternations of thin segments (podomers) and thick bead-like portions (podoms), the latter of which accommodate the mitochondria and vesicles. The spindle and irregularly shaped cell bodies were observed with small amounts of cytoplasm around them. In contrast, the processes of Pc contained abundant actin filaments with focal densities, irregular spine-like outgrowths and nuclei that exhibited irregularities similar to those of smooth muscle cells. The TCs connected with each other via homocellular and heterocellular junctions with Pc, Leydig cells and blood vessels. The Tps of the vascular TCs had bands and shed more vesicles than the other TCs. Immunohistochemistry (CD34) revealed strong positive expression within the TC cell bodies and Tps. Our data confirmed the existence and the contact of TCs with their surroundings in the testes of the Chinese soft-shelled turtle Pelodiscus sinensis, which may offer new insights for understanding the function of the testes and preventing and treating testicular disorders.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nisar Ahmad
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yufei Hunag
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shakeeb Ullah
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yasir Waqas
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Quanfu Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lisi Hu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiusheng Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Cretoiu D, Radu BM, Banciu A, Banciu DD, Cretoiu SM. Telocytes heterogeneity: From cellular morphology to functional evidence. Semin Cell Dev Biol 2016; 64:26-39. [PMID: 27569187 DOI: 10.1016/j.semcdb.2016.08.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Telocytes (TCs), located ubiquitously in the internal organs of vertebrates, are a heterogeneous, recently described, cell population of the stromal space. Characterized by lengthy cytoplasmic extensions that can reach tens of microns and are called telopodes (Tps), TCs are difficult to see using conventional microscopes. It was the electron microscopy which led to their first identification and Popescu's team the first responsible for the reconstructions indicating TCs 'organization' in a three-dimensional (3D) network that is believed to be accountable for the complex roles of TCs. Gradually, it became increasingly evident that TCs are difficult to characterize in terms of immunophenotype and that their phenotype is different depending on the location and needs of the tissue at one time. This review discusses the growing body of evidence accumulated since TCs were discovered and highlights how the complex interplay between TCs and stem cells might be of importance for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania; 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania
| | - Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Sanda Maria Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania; 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
25
|
Kostin S. Cardiac telocytes in normal and diseased hearts. Semin Cell Dev Biol 2016; 55:22-30. [PMID: 26912117 DOI: 10.1016/j.semcdb.2016.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022]
|
26
|
Cretoiu D, Gherghiceanu M, Hummel E, Zimmermann H, Simionescu O, Popescu LM. FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med 2016; 19:714-22. [PMID: 25823591 PMCID: PMC4395186 DOI: 10.1111/jcmm.12578] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/15/2015] [Indexed: 12/19/2022] Open
Abstract
We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Victor Babeș National Institute of Pathology, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
27
|
Li YY, Lu SS, Xu T, Zhang HQ, Li H. Comparative Analysis of Telomerase Activity in CD117⁺ CD34⁺ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes. Chin Med J (Engl) 2016; 128:1942-7. [PMID: 26168836 PMCID: PMC4717931 DOI: 10.4103/0366-6999.160560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Methods: Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Results: Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117+CD34+ cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117+CD34+ cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Conclusions: Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Hua Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
28
|
Xiao J, Chen P, Qu Y, Yu P, Yao J, Wang H, Fu S, Bei Y, Chen Y, Che L, Xu J. Telocytes in exercise-induced cardiac growth. J Cell Mol Med 2016; 20:973-9. [PMID: 26987685 PMCID: PMC4831349 DOI: 10.1111/jcmm.12815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise‐induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet‐derived growth factor (PDGF) receptor‐α and CD34/PDGF receptor‐β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Ping Chen
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Department of Geriatrics, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Yi Qu
- Department of Geriatrics, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Pujiao Yu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbao Wang
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyi Fu
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yan Chen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Ibba-Manneschi L, Rosa I, Manetti M. Telocyte implications in human pathology: An overview. Semin Cell Dev Biol 2016; 55:62-9. [PMID: 26805444 DOI: 10.1016/j.semcdb.2016.01.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022]
Abstract
Telocytes are a recently described interstitial cell population widely distributed in the stromal compartment of many organs in vertebrates, including humans. Owing to their close spatial relationship with multiple cell types, telocytes are universally considered as 'connecting cells' mostly committed to intercellular signaling by converting the interstitium into an integrated system that drives organ development and contributes to the maintenance of local tissue homeostasis. Increasing evidence indicates that telocytes may cooperate with tissue-resident stem cells to foster organ repair and regeneration, and that telocyte damage and dysfunction may occur in several disorders. The goal of this review is to provide an overview of the most recent findings concerning the implication of telocytes in a variety of pathologic conditions in humans, including heart disease, chronic inflammation and multiorgan fibrosis. Based on recent promising experimental data, there is realistic hope that by targeting telocytes alone or in tandem with stem cells, we might be able to promote organ regeneration and/or prevent irreversible end-stage organ damage in different pathologies.
Collapse
Affiliation(s)
- Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
30
|
Banciu DD, Banciu A, Radu BM. Electrophysiological Features of Telocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:287-302. [PMID: 27796895 DOI: 10.1007/978-981-10-1061-3_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Telocytes (TCs) are interstitial cells described in multiple structures, including the gastrointestinal tract, respiratory tract, urinary tract, uterus, and heart. Several studies have indicated the possibility that TCs are involved in the pacemaker potential in these organs. It is supposed that TCs are interacting with the neighboring muscular cells and their network contributes to the initiation and propagation of the electrical potentials. In order to understand the contribution of TCs to various excitability mechanisms, it is necessary to analyze the plasma membrane proteins (e.g., ion channels) functionally expressed in these cells. So far, potassium, calcium, and chloride currents, but not sodium currents, have been described in TCs in primary cell culture from different tissues. Moreover, TCs have been described as sensors for mechanical stimuli (e.g., contraction, extension, etc.). In conclusion, TCs might play an essential role in gastrointestinal peristalsis, in respiration, in pregnant uterus contraction, or in miction, but further highlighting studies are necessary to understand the molecular mechanisms and the cell-cell interactions by which TCs contribute to the tissue excitability and pacemaker potentials initiation/propagation.
Collapse
Affiliation(s)
- Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania. .,Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona, 37134, Italy.
| |
Collapse
|
31
|
Shim W. Myocardial Telocytes: A New Player in Electric Circuitry of the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:241-251. [PMID: 27796892 DOI: 10.1007/978-981-10-1061-3_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The heart is an electrically conducting organ with networked bioelectric currents that transverse a large segment of interstitial space interspersed with the muscular parenchyma. Non-excitable connective cells in the interstitial space contributed importantly to many structural, biochemical, and physiological activities of cardiac homeostasis. However, contribution of interstitial cells in the cardiac niche has long been neglected. Telocyte is recently recognized as a distinct class of interstitial cell that resides in a wide array of tissues including in the epicardium, myocardium, and endocardium of the heart. They are increasingly described to conduct ionic currents that may have significant implications in bioelectric signaling. In this review, we highlight the significance of telocytes in such connectivity and conductivity within the interstitial bioelectric network in tissue homeostasis.
Collapse
Affiliation(s)
- Winston Shim
- National Heart Research Institute Singapore, 5 Hospital Drive, National Heart Centre Singapore, Singapore, 169609, Singapore.
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
32
|
Abstract
Telocytes (TCs), a novel peculiar interstitial cell found in many tissues and organs, play pivotal roles in maintaining tissue homeostasis and regulating tissue and organ development and immune surveillance. In recent years, the existence of TCs in liver has been confirmed. In this chapter, we evaluate the role of TCs on promoting liver regeneration and the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Yingying Zhao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China.
| |
Collapse
|
33
|
Abstract
Telocytes (TCs) are a novel type of interstitial cells, with extremely long and thin cellular prolongations termed telopodes (Tps). TCs were first identified by Popescu et al. and described their finding as "cells with telopodes." The presence of TCs has been reported in the majority of tissues and organs (for details please visit www.telocytes.com ). TCs have been ignored or overlooked for a long time due to our inability to observe these cells via a light microscopy. TCs represent a distinct cell population, different from other types of interstitial cells, based on their distinct (ultra)structure, immunophenotype, microRNA profile, gene feature, proteome signature, and secretome features. As TCs have been suggested as new cellular targets for forthcoming therapies, developing specific methods to modulate TC numbers represents an important objective.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| |
Collapse
|
34
|
Song D, Cretoiu D, Zheng M, Qian M, Zhang M, Cretoiu SM, Chen L, Fang H, Popescu LM, Wang X. Comparison of Chromosome 4 gene expression profile between lung telocytes and other local cell types. J Cell Mol Med 2015; 20:71-80. [PMID: 26678350 PMCID: PMC4717865 DOI: 10.1111/jcmm.12746] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
Telocytes (TCs) are new cellular entities of mesenchymal origin described almost ubiquitously in human and mammalian organs (www.telocytes.com). Different subtypes of TCs were described, all forming networks in the interstitial space by homo- and heterocellular junctions. Previous studies analysed the gene expression profiles of chromosomes 1, 2, 3, 17 and 18 of murine pulmonary TCs. In this study, we analysed by bioinformatics tools the gene expression profiles of chromosome 4 for murine pulmonary TCs and compared it with mesenchymal stem cells (MSCs), fibroblasts (Fbs), alveolar type II cells (ATII), airway basal cells, proximal airway cells, CD8(+) T cells from bronchial lymph nodes (T-BL) and CD8(+) T cells from lungs (T-L). Key functional genes were identified with the aid of the reference library of the National Center for Biotechnology Information Gene Expression Omnibus database. Seventeen genes were up-regulated and 56 genes were down-regulated in chromosome 4 of TCs compared with other cells. Four genes (Akap2, Gpr153, Sdc3 and Tbc1d2) were up-regulated between one and fourfold and one gene, Svep1, was overexpressed over fourfold. The main functional networks were identified and analysed, pointing out to a TCs involvement in cellular signalling, regulation of tissue inflammation and cell expansion and movement.
Collapse
Affiliation(s)
- Dongli Song
- Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Department of Morphological Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Victor Babeş National Institute of Pathology, Bucharest, Romania
| | - Minghuan Zheng
- Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Mengjia Qian
- Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Miaomiao Zhang
- Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Sanda M Cretoiu
- Division of Cellular and Molecular Biology and Histology, Department of Morphological Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Victor Babeş National Institute of Pathology, Bucharest, Romania
| | - Luonan Chen
- State Key Lab of Systems Biology, Chinese Academy of Science, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital and Jinshan Hospital of Fudan University, Shanghai, China
| | - Laurentiu M Popescu
- Division of Cellular and Molecular Biology and Histology, Department of Morphological Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Victor Babeş National Institute of Pathology, Bucharest, Romania
| | - Xiangdong Wang
- Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| |
Collapse
|
35
|
Ja KPMM, Miao Q, Zhen Tee NG, Lim SY, Nandihalli M, Ramachandra CJA, Mehta A, Shim W. iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium. J Cell Mol Med 2015; 20:323-32. [PMID: 26612359 PMCID: PMC4727567 DOI: 10.1111/jcmm.12725] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
We investigate the effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)‐derived progenitors and cardiomyocytes into acutely infarcted myocardium in severe combined immune deficiency mice. A total of 2 × 105 progenitors, cardiomyocytes or cell‐free saline were injected into peri‐infarcted anterior free wall. Sham‐operated animals received no injection. Myocardial function was assessed at 2‐week and 4‐week post‐infarction by using echocardiography and pressure‐volume catheterization. Early myocardial remodelling was observed at 2‐week with echocardiography derived stroke volume (SV) in saline (20.45 ± 7.36 μl, P < 0.05) and cardiomyocyte (19.52 ± 3.97 μl, P < 0.05) groups, but not in progenitor group (25.65 ± 3.61 μl), significantly deteriorated as compared to sham control group (28.41 ± 4.41 μl). Consistently, pressure–volume haemodynamic measurements showed worsening chamber dilation in saline (EDV: 23.24 ± 5.01 μl, P < 0.05; ESV: 17.08 ± 5.82 μl, P < 0.05) and cardiomyocyte (EDV: 26.45 ± 5.69 μl, P < 0.05; ESV: 18.03 ± 6.58 μl, P < 0.05) groups by 4‐week post‐infarction as compared to control (EDV: 15.26 ± 2.96 μl; ESV: 8.41 ± 2.94 μl). In contrast, cardiac progenitors (EDV: 20.09 ± 7.76 μl; ESV: 13.98 ± 6.74 μl) persistently protected chamber geometry against negative cardiac remodelling. Similarly, as compared to sham control (54.64 ± 11.37%), LV ejection fraction was preserved in progenitor group from 2‐(38.68 ± 7.34%) to 4‐week (39.56 ± 13.26%) while cardiomyocyte (36.52 ± 11.39%, P < 0.05) and saline (35.34 ± 11.86%, P < 0.05) groups deteriorated early at 2‐week. Improvements of myocardial function in the progenitor group corresponded to increased vascularization (16.12 ± 1.49/mm2 to 25.48 ± 2.08/mm2 myocardial tissue, P < 0.05) and coincided with augmented networking of cardiac telocytes in the interstitial space of infarcted zone.
Collapse
Affiliation(s)
- K P Myu Mia Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Qingfeng Miao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nicole Gui Zhen Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sze Yun Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Manasi Nandihalli
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | | | - Ashish Mehta
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore.,DUKE-NUS Graduate Medical School
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore.,DUKE-NUS Graduate Medical School
| |
Collapse
|
36
|
Dawidowicz J, Szotek S, Matysiak N, Mielańczyk Ł, Maksymowicz K. Electron microscopy of human fascia lata: focus on telocytes. J Cell Mol Med 2015; 19:2500-6. [PMID: 26311620 PMCID: PMC4594691 DOI: 10.1111/jcmm.12665] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022] Open
Abstract
From the histological point of view, fascia lata is a dense connective tissue. Although extracellular matrix is certainly the most predominant fascia's feature, there are also several cell populations encountered within this structure. The aim of this study was to describe the existence and characteristics of fascia lata cell populations viewed through a transmission electron microscope. Special emphasis was placed on telocytes as a particular interstitial cell type, recently discovered in a wide variety of tissues and organs such as the heart, skeletal muscles, skin, gastrointestinal tract, uterus and urinary system. The conducted study confirmed the existence of a telocyte population in fascia lata samples. Those cells fulfil main morphological criteria of telocytes, namely, the presence of very long, thin cell processes (telopodes) extending from a relatively small cell body. Aside from telocytes, we have found fibroblasts, mast cells and cells with features of myofibroblastic differentiation. This is the first time it has been shown that telocytes exist in human fascia. Currently, the exact role of those cells within the fascia is unknown and definitely deserves further attention. One can speculate that fascia lata telocytes likewise telocytes in other organs may be involved in regeneration, homeostasis and intracellular signalling.
Collapse
Affiliation(s)
| | - Sylwia Szotek
- Faculty of Mechanical Engineering, Wrocław University of TechnologyWrocław, Poland
| | - Natalia Matysiak
- School of Medicine with the Division of Dentistry in Zabrze, Department of Histology and Embryology, Medical University of SilesiaZabrze, Poland
| | - Łukasz Mielańczyk
- School of Medicine with the Division of Dentistry in Zabrze, Department of Histology and Embryology, Medical University of SilesiaZabrze, Poland
| | | |
Collapse
|
37
|
Kang Y, Zhu Z, Zheng Y, Wan W, Manole CG, Zhang Q. Skin telocytes versus fibroblasts: two distinct dermal cell populations. J Cell Mol Med 2015; 19:2530-9. [PMID: 26414534 PMCID: PMC4627559 DOI: 10.1111/jcmm.12671] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022] Open
Abstract
It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations - telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines - epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 - were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines - interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin - being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile.
Collapse
Affiliation(s)
- Yuli Kang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zaihua Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yonghua Zheng
- Department of Respirology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Catalin G Manole
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.,"Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Zhu Y, Zheng M, Song D, Ye L, Wang X. Global comparison of chromosome X genes of pulmonary telocytes with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. J Transl Med 2015; 13:318. [PMID: 26416664 PMCID: PMC4587873 DOI: 10.1186/s12967-015-0669-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/11/2015] [Indexed: 02/05/2023] Open
Abstract
Background Telocytes (TCs) are suggested as a new type of interstitial cells with specific telopodes. Our previous study evidenced that TCs differed from fibroblasts and stem cells at the aspect of gene expression profiles. The present study aims to search the characters and patterns of chromosome X genes of TC-specific or TC-dominated gene profiles and fingerprints, investigate the network of principle genes, and explore potential functional association. Methods We compared gene expression profiles in chromosome X of pulmonary TCs with mesenchymal stem cells (MSC), fibroblasts (Fb), alveolar type II cells (ATII), airway basal cells (ABC), proximal airway cells (PAC), CD8+ T cells come from bronchial lymph nodes (T-BL), or CD8+ T cells from lungs (T-L) by global analyses, and selected the genes which were consistently up or down regulated (>1 fold) in TCs compared to other cells as TC-specific genes. The functional and characteristic networks were identified and compared by bioinformatics tools. Results We selected 31 chromosome X genes as the TC-specific or dominated genes, among which 8 up-regulated (Flna, Msn, Cfp, Col4a5, Mum1l1, Rnf128, Syn1, and Srpx2) and 23 down-regulated (Abcb7, Atf1, Ddx26b, Drp2, Fam122b, Gyk, Irak1, Lamp2, Mecp2, Ndufb11, Ogt, Pdha1, Pola1, Rab9, Rbmx2, Rhox9, Thoc2, Vbp1, Dkc1, Nkrf, Piga, Tmlhe and Tsr2), as compared with other cells. Conclusions Our data suggested that gene expressions of chromosome X in TCs are different with those in other cells in the lung tissue. According to the selected TC-specific genes, we infer that pulmonary TCs function as modulators which may enhance cellular growth and migration, resist senescence, protect cells from external stress, regulate immune responses, participate in tissue remodeling and repair, regulate neural function, and promote vessel formation. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0669-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yichun Zhu
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Minghuan Zheng
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Dongli Song
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Ling Ye
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Xiangdong Wang
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Telopodes of telocytes are influenced in vitro by redox conditions and ageing. Mol Cell Biochem 2015; 410:165-74. [PMID: 26335900 DOI: 10.1007/s11010-015-2548-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Telocytes (TCs) are a novel cell type identified among interstitial cells in various organs. TCs are characterized by very long cell processes (tens to hundreds micrometres) named telopodes (Tps) with uneven calibre: dilations (podoms) and very thin segments (podomers). However, little is known about the factors which influence Tps conformation. Recently, extracellular matrix proteins were found to influence Tps extension, adherence and spreading. Here, we show that oxidative stress and ageing influence formation of new Tps of TCs cultivated from human non-pregnant myometrium. Using real-time videomicroscopy, we found that ageing the TCs to passage 21 increased the ratio of Tps/TC number with about 50 %, whereas oxidative stress hindered formation of new Tps in both aged and young TCs (passage 7). Under oxidative stress, newly formed cell processes were up to 25 % shorter. Migration pathway length was decreased by 30-40 % for both young and aged cells in an oxidative stress environment. Contrary, addition of N-acetyl cysteine in cell culture medium shifted TCs morphology to a long and slender profile. In conclusion, we showed that TCs specific morphology in vitro is influenced by oxidative status balance, as well as ageing.
Collapse
|
40
|
Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med 2015; 19:1783-1794. [PMID: 26176909 PMCID: PMC4549029 DOI: 10.1111/jcmm.12624] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs-CSCs in co-culture using (i) high-sensitivity on-chip electrophoresis, (ii) surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and (iii) multiplex analysis by Luminex-xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)-6, VEGF, macrophage inflammatory protein 1α (MIP-1α), MIP-2 and MCP-1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL-2, IL-10, IL-13 and some chemokines like, GRO-KC. We found that VEGF, IL-6 and some chemokines (all stimulated by IL-6 signalling) are secreted by cardiac TCs and overexpressed in co-cultures with CSCs. The expression levels of MIP-2 and MIP-1α increased twofold and fourfold, respectively, when TCs were co-cultured with CSCs, while the expression of IL-2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co-culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Radu Albulescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
- National Institute for Chemical Pharmaceutical Research & DevelopmentBucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Daniela I Popescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Sanda M Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Ultrastructural Pathology, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Laurentiu M Popescu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Advanced Studies, Victor Babeş National Institute of PathologyBucharest, Romania
| |
Collapse
|
41
|
Yang J, Chi C, Liu Z, Yang G, Shen ZJ, Yang XJ. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med 2015; 19:1720-1728. [PMID: 25753567 PMCID: PMC4511368 DOI: 10.1111/jcmm.12548] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Acute salpingitis (AS) is an inflammatory disease which causes severe damage to a subset of classically described cells lining in oviduct wall and contributes to interstitial fibrosis and fertility problems. Telocytes (TCs), a newly discovered peculiar type of stromal cells, have been identified in many organs, including oviduct, with proposed multiple potential bio-functions. However, with recent increasing reports regarding TCs alterations in disease-affected tissues, there is still lack of evidence about TCs involvement in AS-affected oviduct tissues and potential pathophysiological roles. We presently identified normal TCs by their characteristic ultrastructural features and immunophenotype. However, in AS-affected oviduct tissues, TCs displayed multiple ultrastructural damage both in cellular body and prolongations, with obvious loss of TCs and development of tissue fibrosis. Furthermore, TCs lose their interstitial 3-D network connected by homocellular or heterocellular junctions between TCs and adjacent cells. And especially, TCs connected to the activated immunocytes (mononuclear cells, eosinophils) and affected local immune state (repression or activation). Meanwhile, massive neutrophils infiltration and overproduced Inducible Nitric Oxide Synthase (iNOS), COX-2, suggested mechanism of inflammatory-induced TCs damage. Consequently, TCs damage might contribute to AS-induced structural and reproductive functional abnormalities of oviduct, probably via: (i) substances, energy and functional insufficiency, presumably, e.g. TC-specific genetic material profiles, ion channels, cytoskeletal elements, Tps dynamics, etc., (ii) impaired TCs-mediated multicellular signalling, such as homeostasis/angiogenesis, tissue repair/regeneration, neurotransmission, (iii) derangement of 3-D network and impaired mechanical support for TCs-mediated multicellular signals within the stromal compartment, consequently induced interstitial fibrosis, (iv) involvement in local inflammatory process/ immunoregulation and possibly immune-mediated early pregnancy failure.
Collapse
Affiliation(s)
- Jian Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Chi Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Zhen Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Gang Yang
- Lab Center, Medical College of Soochow UniversitySuzhou, China
| | - Zong-Ji Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| |
Collapse
|
42
|
Zhou Q, Wei L, Zhong C, Fu S, Bei Y, Huică RI, Wang F, Xiao J. Cardiac telocytes are double positive for CD34/PDGFR-α. J Cell Mol Med 2015; 19:2036-42. [PMID: 26082061 PMCID: PMC4549054 DOI: 10.1111/jcmm.12615] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
Telocytes (TCs) are a distinct type of interstitial cells, which are featured with a small cellular body and long and thin elongations called telopodes (Tps). TCs have been widely identified in lots of tissues and organs including heart. Double staining for CD34/PDGFR-β (Platelet-derived growth factor receptor β) or CD34/Vimentin is considered to be critical for TC phenotyping. It has recently been proposed that CD34/PDGFR-α (Platelet-derived growth factor receptor α) is actually a specific marker for TCs including cardiac TCs although the direct evidence is still lacking. Here, we showed that cardiac TCs were double positive for CD34/PDGFR-α in primary culture. CD34/PDGFR-α positive cells (putative cardiac TCs) also existed in mice ventricle and human cardiac valves including mitral valve, tricuspid valve and aortic valve. Over 87% of cells in a TC-enriched culture of rat cardiac interstitial cells were positive for PDGFR-α, while CD34/PDGFR-α double positive cells accounted for 30.25% of the whole cell population. We show that cardiac TCs are double positive for CD34/PDGFR-α. Better understanding of the immunocytochemical phenotypes of cardiac TCs might help using cardiac TCs as a novel source in cardiac repair.
Collapse
Affiliation(s)
- Qiulian Zhou
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Lei Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Siyi Fu
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Radu-Ionuț Huică
- Department of Immunopathology, Victor Babeş National Institute of Pathology, Bucharest, Romania
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
43
|
Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med 2015; 19:1504-19. [PMID: 25991475 PMCID: PMC4511349 DOI: 10.1111/jcmm.12601] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 12/18/2022] Open
Abstract
The presence of telocytes (TCs) as distinct interstitial cells was previously documented in human dermis. TCs are interstitial cells completely different than dermal fibroblasts. TCs are interconnected in normal dermis in a 3D network and may be involved in skin homeostasis, remodelling, regeneration and repair. The number, distribution and ultrastructure of TCs were recently shown to be affected in systemic scleroderma. Psoriasis is a common inflammatory skin condition (estimated to affect about 0.1-11.8% of population), a keratinization disorder on a genetic background. In psoriasis, the dermis contribution to pathogenesis is frequently eclipsed by remarkable epidermal phenomena. Because of the particular distribution of TCs around blood vessels, we have investigated TCs in the dermis of patients with psoriasis vulgaris using immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM). IHC and IF revealed that CD34/PDGFRα-positive TCs are present in human papillary dermis. More TCs were present in the dermis of uninvolved skin and treated skin than in psoriatic dermis. In uninvolved skin, TEM revealed TCs with typical ultrastructural features being involved in a 3D interstitial network in close vicinity to blood vessels in contact with immunoreactive cells in normal and treated skin. In contrast, the number of TCs was significantly decreased in psoriatic plaque. The remaining TCs demonstrated multiple degenerative features: apoptosis, membrane disintegration, cytoplasm fragmentation and nuclear extrusion. We also found changes in the phenotype of vascular smooth muscle cells in small blood vessels that lost the protective envelope formed by TCs. Therefore, impaired TCs could be a 'missed' trigger for the characteristic vascular pathology in psoriasis. Our data explain the mechanism of Auspitz's sign, the most pathognomonic clinical sign of psoriasis vulgaris. This study offers new insights on the cellularity of psoriatic lesions and we suggest that TCs should be considered new cellular targets in forthcoming therapies.
Collapse
Affiliation(s)
- C G Manole
- Department of Cell Biology and Histology, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.,Laboratory of Ultrastructural Research, 'Victor Babeş' National Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Laboratory of Ultrastructural Research, 'Victor Babeş' National Institute of Pathology, Bucharest, Romania
| | - Olga Simionescu
- Department of Dermatology, Colentina University Hospital, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
44
|
Li H, Zhang H, Yang L, Lu S, Ge J. Telocytes in mice bone marrow: electron microscope evidence. J Cell Mol Med 2015; 18:975-8. [PMID: 25059385 PMCID: PMC4508138 DOI: 10.1111/jcmm.12337] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/26/2014] [Indexed: 12/27/2022] Open
Abstract
Telocytes (TCs) are a novel type of interstitial cell of whom presence has been recently documented in many tissues and organs. However, whether TCs exists in bone marrow is still not reported. This study aims to find out TCs in mice bone marrow by using scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM images showed that in mice bone marrow most of TCs have small spherical cell body (usually 4-6 μm diameter) with thin long telopodes (Tps; usually one to three). The longest Tp observed was about 70 μm, with an uneven calibre. Direct intercellular contacts exist between TCs. TEM shows mitochondria within dilations of Tps. Also, by TEM, we show the close spatial relations of Tps with blood vessels. In conclusion, this study provides ultrastructural evidence regarding the existence of TCs in mice bone marrow, in situ.
Collapse
Affiliation(s)
- Hua Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Physiology and Medicine/Cardiology, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
45
|
Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Fang H, Wang X. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med 2015; 18:1035-59. [PMID: 25059386 PMCID: PMC4508144 DOI: 10.1111/jcmm.12350] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/23/2014] [Indexed: 01/26/2023] Open
Abstract
Telocytes (TCs) are described as a particular type of cells of the interstitial space (www.telocytes.com). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2-D nano-ESI LC-MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two-sample t-test, P < 0.05) as up- or down-regulated (fold change >2). We found that in TCs there are 38 up-regulated proteins at the 5th day and 26 up-regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up-regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54-fold) and von Willebrand factor (5.74-fold). The 26 up-regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down-regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro-proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.
Collapse
Affiliation(s)
- Yonghua Zheng
- Fudan University Center for Clinical Bioinformatics, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Sun X, Zheng M, Zhang M, Qian M, Zheng Y, Li M, Cretoiu D, Chen C, Chen L, Popescu LM, Wang X. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med 2015; 18:801-10. [PMID: 24826900 PMCID: PMC4119386 DOI: 10.1111/jcmm.12302] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/21/2014] [Indexed: 01/18/2023] Open
Abstract
Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC-specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL) and CD8+ T cells from lungs (T-LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up-regulated and 70% down-regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over-expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types.
Collapse
Affiliation(s)
- Xiaoru Sun
- Department of Pulmonary Medicine, Fudan University, Zhongshan Hospital, Shanghai Respiratory Research Institute, Shanghai, China; Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine Telocytes: A Review of Current Knowledge. Biol Reprod 2015; 93:10. [PMID: 25695721 DOI: 10.1095/biolreprod.114.125906] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/10/2015] [Indexed: 01/05/2023] Open
Abstract
Telocytes (TCs), a novel cell type, are briefly defined as interstitial cells with telopodes (Tps). However, a specific immunocytochemical marker has not yet been found; therefore, electron microscopy is currently the only accurate method for identifying TCs. TCs are considered to have a mesenchymal origin. Recently proteomic analysis, microarray-based gene expression analysis, and the micro-RNA signature clearly showed that TCs are different from fibroblasts, mesenchymal stem cells, and endothelial cells. The dynamics of Tps were also revealed, and some electrophysiological properties of TCs were described (such as membrane capacitance, input resistance, membrane resting potential, and absence of action potentials correlated with different ionic currents characteristics), which can be used to distinguish uterine TCs from smooth muscle cells (SMCs). Here, we briefly present the most recent findings on the characteristics of TCs and their functions in human pregnant and nonpregnant uteri.
Collapse
Affiliation(s)
- Iurie Roatesi
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Beatrice Mihaela Radu
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dragos Cretoiu
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
48
|
Fu S, Wang F, Cao Y, Huang Q, Xiao J, Yang C, Popescu LM. Telocytes in human liver fibrosis. J Cell Mol Med 2015; 19:676-83. [PMID: 25661250 PMCID: PMC4369823 DOI: 10.1111/jcmm.12542] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022] Open
Abstract
Liver fibrosis is a wound-healing response which engages a variety of cell types to encapsulate injury. Telocyte (TC), a novel type of interstitial cell, has been identified in a variety of tissues and organs including liver. TCs have been reported to be reduced in fibrotic areas after myocardial infarction, human interstitial wall's fibrotic remodelling caused either by ulcerative colitis or Crohn's disease, and skin of systemic sclerosis. However, the role of TCs in human liver fibrosis remains unclear. Liver samples from human liver biopsy were collected. All samples were stained with Masson's trichrome to determine fibrosis. TCs were identified by several immunofluorescence stainings including double labelling for CD34 and c-kit/CD117, or vimentin, or PDGF Receptor-α, or β. We found that hepatic TCs were significantly decreased by 27%-60% in human liver fibrosis, suggesting that loss of TCs might lead to the altered organization of extracellular matrix and loss the control of fibroblast/myofibroblast activity and favour the genesis of fibrosis. Adding TCs might help to develop effective and targeted antifibrotic therapies for human liver fibrosis.
Collapse
Affiliation(s)
- Siyi Fu
- Regeneration and Ageing Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China; Innovative Drug Research Center of Shanghai University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med 2015; 19:31-45. [PMID: 25545142 PMCID: PMC4288347 DOI: 10.1111/jcmm.12509] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days-1 year), children (6-17 years) and adults (34-60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm(2) ) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52-62%; vascular smooth muscle cells and pericytes 22-28%, Schwann cells with nerve endings 6-7%, fibroblasts 3-10%, macrophages 1-8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults).
Collapse
Affiliation(s)
- Laurentiu M Popescu
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and PharmacyBucharest, Romania
- Division of Advanced Studies, ‘Victor Babeş’ National Institute of PathologyBucharest, Romania
| | - Antoanela Curici
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and PharmacyBucharest, Romania
| | - Enshi Wang
- State Key Laboratory of Cardiovascular Disease, Center for Pediatric Cardiac Surgery, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical SciencesBeijing, China
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, Center for Pediatric Cardiac Surgery, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical SciencesBeijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Center for Pediatric Cardiac Surgery, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical SciencesBeijing, China
| | - Mihaela Gherghiceanu
- Laboratory for Electron Microscopy, ‘Victor Babeş’ National Institute of PathologyBucharest, Romania
| |
Collapse
|
50
|
Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts 2014; 5:353-69. [DOI: 10.1515/bmc-2014-0029] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
AbstractTelocytes (TCs) are a novel interstitial (stromal) cell type described in many tissues and organs (www.telocytes.com). A TC is characterized by a small cell body (9–15 μm) and a variable number (one to five) of extremely long and thin telopodes (Tps), with alternating regions of podomers (∼80 nm) and podoms (250–300 nm). Tps are interconnected by homo- and heterocellular junctions and form three-dimensional networks. Moreover, Tps release three types of extracellular vesicles: exosomes, ectosomes, and multivesicular cargos, which are involved in paracrine signaling. Different techniques have been used to characterize TCs, from classical methods (light microscopy, electron microscopy) to modern ‘omics’. It is considered that electron microscopy is essential for their identification, and CD34/PDGFRα double immunohistochemistry can orientate the diagnosis. Functional evidence is accumulating that TCs may be intimately involved in the maintenance of tissue homeostasis and renewal by short- and long-distance intercellular communication. This review focuses on the most recent findings regarding TC features and locations and the principal hypotheses about their functions in normal and diseased organs. TC involvement in regenerative medicine is also considered.
Collapse
|