1
|
Tao B, Li X, Hao M, Tian T, Li Y, Li X, Yang C, Li Q, Feng Q, Zhou H, Zhao Y, Wang D, Liu W. Organoid-Guided Precision Medicine: From Bench to Bedside. MedComm (Beijing) 2025; 6:e70195. [PMID: 40321594 PMCID: PMC12046123 DOI: 10.1002/mco2.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 05/08/2025] Open
Abstract
Organoid technology, as an emerging field within biotechnology, has demonstrated transformative potential in advancing precision medicine. This review systematically outlines the translational trajectory of organoids from bench to bedside, emphasizing their construction methodologies, key regulatory factors, and multifaceted applications in personalized healthcare. By recapitulating physiological architectures and disease phenotypes through three-dimensional culture systems, organoids leverage natural and synthetic scaffolds, stem cell sources, and spatiotemporal cytokine regulation to model tissue-specific microenvironments. Diverse organoid types-including skin, intestinal, lung, and tumor organoids-have facilitated breakthroughs in modeling tissue development, drug efficacy and toxicity screening, disease pathogenesis studies, and patient-tailored diagnostics. For instance, patient-derived tumor organoids preserve tumor heterogeneity and genomic profiles, serving as predictive platforms for individualized chemotherapy responses. In precision medicine, organoid-guided multiomics analyses identify actionable biomarkers and resistance mechanisms, while clustered regularly interspaced short palindromic repeats-based functional screens optimize therapeutic targeting. Despite preclinical successes, challenges persist in standardization, vascularization, and ethical considerations. Future integration of artificial intelligence, microfluidics, and spatial transcriptomics will enhance organoid scalability, reproducibility, and clinical relevance. By bridging molecular insights with patient-specific therapies, organoids are poised to revolutionize precision medicine, offering dynamic platforms for drug development, regenerative strategies, and individualized treatment paradigms.
Collapse
Affiliation(s)
- Boqiang Tao
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Xiaolan Li
- Laboratory of Allergy and Precision MedicineChengdu Institute of Respiratory Healththe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| | - Ming Hao
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Tian Tian
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Chun Yang
- College of Basic MedicineBeihua UniversityJilinChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Yicheng Zhao
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Zhichuang Gene Editing Animal Model Research CenterWenzhou Institute of TechnologyWenzhouChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| |
Collapse
|
2
|
Wang X, Tian Y, Chen H, Hou H, Hu Q. Airway organoids: 3D toxicology evaluation models in vitro of heated tobacco products for health risk. Toxicol In Vitro 2025; 104:105995. [PMID: 39667640 DOI: 10.1016/j.tiv.2024.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Cigarette smoking poses significant health risks, particularly to the airway, which consists predominantly of basal, club, and ciliated cells that are highly susceptible to damage from exogenous stimuli. Traditional in vitro toxicology relies on 2D cell cultures, which lack the structural complexity and functional relevance of airway architecture. As a novel category of tobacco products, the health implications of heated tobacco products (HTPs) remain largely unknown. To address this, 3D airway organoids were developed as a more physiologically relevant in vitro model for evaluating the toxicity of HTPs. Airway organoids derived from mouse lungs were induced to differentiate into various airway cell types and exposed to HTP aerosols. The exposure impaired organoid growth, reduced cell viability, and altered the proportions of secretory, basal, and ciliated cells, effectively replicating the complex cellular damage observed in vivo. Additionally, typical adverse outcomes, such as oxidative stress, inflammation, and genetic toxicity, were induced, paralleling findings from conventional 2D models. These results established the airway organoids as a viable alternative to animal testing for toxicological studies and offer critical insights into the respiratory health risks associated with HTPs.
Collapse
Affiliation(s)
- Xianglong Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102209, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102209, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102209, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102209, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102209, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| |
Collapse
|
3
|
Matsuura Y, Onuma K, Coppo R, Uematsu H, Kondo J, Miyagawa‐Hayashino A, Takeda‐Miyata N, Kameyama K, Furuya T, Okada S, Shimomura M, Inoue M, Inoue M. Dynamic change of polarity in spread through air spaces of pulmonary malignancies. J Pathol 2025; 265:260-273. [PMID: 39804150 PMCID: PMC11794978 DOI: 10.1002/path.6382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 02/06/2025]
Abstract
Spread through air spaces (STAS) is a histological finding of lung tumours where tumour cells exist within the air space of the lung parenchyma beyond the margin of the main tumour. Although STAS is an important prognostic factor, the pathobiology of STAS remains unclear. Here, we investigated the mechanism of STAS by analysing the relationship between STAS and polarity switching in vivo and in vitro. Histopathological analysis revealed that apical membranes were observed outside the STAS lesions around colorectal cancer (CRC) lung metastases and lung adenocarcinomas. When apical-out CRC organoids were administered intratracheally to mice, the organoids had greater metastatic potential than did single cells. To investigate the pathobiology of STAS, we established an in vitro model of STAS in which CRC or lung cancer organoids were co-cultured with 2D-cultured mouse airway epithelial organoids (2D-MAOs). Adhesion of cancer organoids to 2D-MAOs was much less than to type I collagen or endothelial cells, suggesting a protective role of the airway epithelium against adhesion. Loss of the apical membrane of CRC organoids at the contact surface with 2D-MAOs after adhesion was responsible for establishing adhesion. When airway epithelium was stimulated by transforming growth factor beta 1 (TGF-β1), adhesion of CRC organoids was enhanced. Among TGF-β1-induced genes in airway epithelium, follistatin-like protein 1 (FSTL1) increased CRC organoid adhesion by promoting loss of the apical membrane. These results suggested that TGF-β1-induced FSTL1 may promote metastatic progression of STAS by altering the polarity status. Elucidating the mechanism of STAS could contribute to the improvement of survival in patients with pulmonary malignancies associated with STAS. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- 21cm0106203h0006 Japan Agency for Medical Research and Development
- 18H02648 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 20H03772 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 20K08286 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 22K08982 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 23K07395 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Yoshiaki Matsuura
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Kunishige Onuma
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Roberto Coppo
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroyuki Uematsu
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- KBBM Inc.KyotoJapan
| | - Jumpei Kondo
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Molecular Biology and Clinical Investigation, Graduate School of MedicineOsaka UniversityOsakaJapan
| | | | - Naoko Takeda‐Miyata
- Department of Surgical PathologyKyoto Prefectural University of MedicineKyotoJapan
| | - Kenji Kameyama
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tatsuo Furuya
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Satoru Okada
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masanori Shimomura
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masayoshi Inoue
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Inoue
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
4
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
5
|
Banerjee P, Senapati S. Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. Stem Cell Rev Rep 2024; 20:1441-1458. [PMID: 38758462 DOI: 10.1007/s12015-024-10733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
6
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
7
|
Yu Y, Chen Z, Zheng B, Huang M, Li J, Li G. Molecular distinctions of bronchoalveolar and alveolar organoids under differentiation conditions. Physiol Rep 2024; 12:e16057. [PMID: 38825580 PMCID: PMC11144550 DOI: 10.14814/phy2.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
The bronchoalveolar organoid (BAO) model is increasingly acknowledged as an ex-vivo platform that accurately emulates the structural and functional attributes of proximal airway tissue. The transition from bronchoalveolar progenitor cells to alveolar organoids is a common event during the generation of BAOs. However, there is a pressing need for comprehensive analysis to elucidate the molecular distinctions characterizing the pre-differentiated and post-differentiated states within BAO models. This study established a murine BAO model and subsequently triggered its differentiation. Thereafter, a suite of multidimensional analytical procedures was employed, including the morphological recognition and examination of organoids utilizing an established artificial intelligence (AI) image tracking system, quantification of cellular composition, proteomic profiling and immunoblots of selected proteins. Our investigation yielded a detailed evaluation of the morphologic, cellular, and molecular variances demarcating the pre- and post-differentiation phases of the BAO model. We also identified of a potential molecular signature reflective of the observed morphological transformations. The integration of cutting-edge AI-driven image analysis with traditional cellular and molecular investigative methods has illuminated key features of this nascent model.
Collapse
Affiliation(s)
- Yan Yu
- Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Bin Zheng
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Min Huang
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Junlang Li
- Guangzhou No.3 High SchoolGuangzhouChina
| | - Gang Li
- Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Zabihi M, Khadim A, Schäfer TM, Alexopoulos I, Bartkuhn M, El Agha E, Vazquez-Armendariz AI, Herold S. An Optimized Protocol for the Generation of Alveolospheres from Wild-Type Mice. Cells 2024; 13:922. [PMID: 38891054 PMCID: PMC11171706 DOI: 10.3390/cells13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Organoid models have become an integral part of the research methodology in the lung field. These systems allow for the study of progenitor and stem cell self-renewal, self-organization, and differentiation. Distinct models of lung organoids mimicking various anatomical regions of mature lungs have emerged in parallel to the increased gain of knowledge regarding epithelial stem and progenitor cell populations and the corresponding mesenchymal cells that populate the in vivo niche. In the distal lung, type 2 alveolar epithelial cells (AEC2s) represent a stem cell population that is engaged in regenerative mechanisms in response to various insults. These cells self-renew and give rise to AEC1s that carry out gas exchange. Multiple experimental protocols allowing the generation of alveolar organoids, or alveolospheres, from murine lungs have been described. Among the drawbacks have been the requirement of transgenic mice allowing the isolation of AEC2s with high viability and purity, and the occasional emergence of bronchiolar and bronchioalveolar organoids. Here, we provide a refined gating strategy and an optimized protocol for the generation of alveolospheres from wild-type mice. Our approach not only overcomes the need for transgenic mice to generate such organoids, but also yields a pure culture of alveolospheres that is devoid of bronchiolar and bronchioalveolar organoids. Our protocol contributes to the standardization of this important research tool.
Collapse
Affiliation(s)
- Mahsa Zabihi
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ali Khadim
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Theresa M. Schäfer
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany;
| | - Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ana I. Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| |
Collapse
|
9
|
Peters S, Mohort K, Claus H, Stigloher C, Schubert-Unkmeir A. Interaction of Neisseria meningitidis carrier and disease isolates of MenB cc32 and MenW cc22 with epithelial cells of the nasopharyngeal barrier. Front Cell Infect Microbiol 2024; 14:1389527. [PMID: 38756230 PMCID: PMC11096551 DOI: 10.3389/fcimb.2024.1389527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Katherina Mohort
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
10
|
Candeli N, Dayton T. Investigating pulmonary neuroendocrine cells in human respiratory diseases with airway models. Dis Model Mech 2024; 17:dmm050620. [PMID: 38813849 DOI: 10.1242/dmm.050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Despite accounting for only ∼0.5% of the lung epithelium, pulmonary neuroendocrine cells (PNECs) appear to play an outsized role in respiratory health and disease. Increased PNEC numbers have been reported in a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma. Moreover, PNECs are the primary cell of origin for lung neuroendocrine cancers, which account for 25% of aggressive lung cancers. Recent research has highlighted the crucial roles of PNECs in lung physiology, including in chemosensing, regeneration and immune regulation. Yet, little is known about the direct impact of PNECs on respiratory diseases. In this Review, we summarise the current associations of PNECs with lung pathologies, focusing on how new experimental disease models, such as organoids derived from human pluripotent stem cells or tissue stem cells, can help us to better understand the contribution of PNECs to respiratory diseases.
Collapse
Affiliation(s)
- Noah Candeli
- European Molecular Biology Laboratory (EMBL) Barcelona, Tissue Biology and Disease Modelling, 08003, Barcelona, Spain
| | - Talya Dayton
- European Molecular Biology Laboratory (EMBL) Barcelona, Tissue Biology and Disease Modelling, 08003, Barcelona, Spain
| |
Collapse
|
11
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Mulaudzi PE, Abrahamse H, Crous A. Insights on Three Dimensional Organoid Studies for Stem Cell Therapy in Regenerative Medicine. Stem Cell Rev Rep 2024; 20:509-523. [PMID: 38095787 PMCID: PMC10837234 DOI: 10.1007/s12015-023-10655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Regenerative medicine has developed as a promising discipline that utilizes stem cells to address limitations in traditional therapies, using innovative techniques to restore and repair damaged organs and tissues. One such technique is the generation of three-dimensional (3D) organoids in stem cell therapy. Organoids are 3D constructs that resemble specific organs' structural and functional characteristics and are generated from stem cells or tissue-specific progenitor cells. The use of 3D organoids is advantageous in comparison to traditional two-dimensional (2D) cell culture by bridging the gap between in vivo and in vitro research. This review aims to provide an overview of the advancements made towards regenerative medicine using stem cells to generate organoids, explore the techniques used in generating 3D organoids and their applications and finally elucidate the challenges and future directions in regenerative medicine using 3D organoids.
Collapse
Affiliation(s)
- Precious Earldom Mulaudzi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
13
|
Mo C, Yan M, Tang XX, Shichino S, Bagnato G. Editorial: Cellular and molecular mechanisms of lung regeneration, repair, and fibrosis. Front Cell Dev Biol 2024; 11:1346875. [PMID: 38259517 PMCID: PMC10801291 DOI: 10.3389/fcell.2023.1346875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mengli Yan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Gianluca Bagnato
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Mishra I, Gupta K, Mishra R, Chaudhary K, Sharma V. An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles. Curr Pharm Biotechnol 2024; 25:1000-1020. [PMID: 37807405 DOI: 10.2174/0113892010273024230925075231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures. OBJECTIVES This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research. METHODS The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases. CONCLUSION The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Komal Gupta
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
15
|
Ren B, Chiaravalloti TR, Belony NL, Romero DI, Chai W, Leon C, Wu L, Lamango NS, Offringa IA, Huang Y. Design and Realization of Lung Organoid Cultures for COVID-19 Applications. Biodes Manuf 2023; 6:646-660. [PMID: 38993804 PMCID: PMC11238720 DOI: 10.1007/s42242-023-00255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading globally and threatening public health. Advanced in vitro models that recapitulate the architecture and functioning of specific tissues and organs are in high demand for COVID-19-related pathology studies and drug screening. Three-dimensional (3D) in vitro cultures such as self-assembled and engineered organoid cultures surpass conventional two-dimensional (2D) cultures and animal models with respect to the increased cellular complexity, better human-relevant environment, and reduced cost, thus presenting as promising platforms for understanding viral pathogenesis and developing new therapeutics. This review highlights the recent advances in self-assembled and engineered organoid technologies that are used for COVID-19 studies. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
| | | | - Nadine L Belony
- College of Pharmacy, University of Florida, Gainesville, FL 32611
| | - Diana I Romero
- College of Pharmacy, University of Florida, Gainesville, FL 32611
| | - Wenxuan Chai
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
| | - Christopher Leon
- Norris Comprehensive Cancer Center, Departments of Surgery and of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611
| | - Nazarius S Lamango
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307
| | - Ite A Offringa
- Norris Comprehensive Cancer Center, Departments of Surgery and of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
16
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
17
|
Blutt SE, Coarfa C, Neu J, Pammi M. Multiomic Investigations into Lung Health and Disease. Microorganisms 2023; 11:2116. [PMID: 37630676 PMCID: PMC10459661 DOI: 10.3390/microorganisms11082116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases of the lung account for more than 5 million deaths worldwide and are a healthcare burden. Improving clinical outcomes, including mortality and quality of life, involves a holistic understanding of the disease, which can be provided by the integration of lung multi-omics data. An enhanced understanding of comprehensive multiomic datasets provides opportunities to leverage those datasets to inform the treatment and prevention of lung diseases by classifying severity, prognostication, and discovery of biomarkers. The main objective of this review is to summarize the use of multiomics investigations in lung disease, including multiomics integration and the use of machine learning computational methods. This review also discusses lung disease models, including animal models, organoids, and single-cell lines, to study multiomics in lung health and disease. We provide examples of lung diseases where multi-omics investigations have provided deeper insight into etiopathogenesis and have resulted in improved preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josef Neu
- Department of Pediatrics, Section of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Mohan Pammi
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
18
|
Beri P, Woo YJ, Schierenbeck K, Chen K, Barnes SW, Ross O, Krutil D, Quackenbush D, Fang B, Walker J, Barnes W, Toyama EQ. A high-throughput cigarette smoke-treated bronchosphere model for disease-relevant phenotypic compound screening. PLoS One 2023; 18:e0287809. [PMID: 37384771 PMCID: PMC10310037 DOI: 10.1371/journal.pone.0287809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Cigarette smoking (CS) is the leading cause of COPD, and identifying the pathways that are driving pathogenesis in the airway due to CS exposure can aid in the discovery of novel therapies for COPD. An additional barrier to the identification of key pathways that are involved in the CS-induced pathogenesis is the difficulty in building relevant and high throughput models that can recapitulate the phenotypic and transcriptomic changes associated with CS exposure. To identify these drivers, we have developed a cigarette smoke extract (CSE)-treated bronchosphere assay in 384-well plate format that exhibits CSE-induced decreases in size and increase in luminal secretion of MUC5AC. Transcriptomic changes in CSE-treated bronchospheres resemble changes that occur in human smokers both with and without COPD compared to healthy groups, indicating that this model can capture human smoking signature. To identify new targets, we ran a small molecule compound deck screening with diversity in target mechanisms of action and identified hit compounds that attenuated CSE induced changes, either decreasing spheroid size or increasing secreted mucus. This work provides insight into the utility of this bronchopshere model to examine human respiratory disease impacted by CSE exposure and the ability to screen for therapeutics to reverse the pathogenic changes caused by CSE.
Collapse
Affiliation(s)
- Pranjali Beri
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Young Jae Woo
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Katie Schierenbeck
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Kaisheng Chen
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - S. Whitney Barnes
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Olivia Ross
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Douglas Krutil
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Doug Quackenbush
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Bin Fang
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - John Walker
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - William Barnes
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Erin Quan Toyama
- Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| |
Collapse
|
19
|
Gandhi NN, Inzana TJ, Rajagopalan P. Bovine Airway Models: Approaches for Investigating Bovine Respiratory Disease. ACS Infect Dis 2023; 9:1168-1179. [PMID: 37257116 DOI: 10.1021/acsinfecdis.2c00618] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bovine respiratory disease (BRD) is a multifactorial condition where different genera of bacteria, such as Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis, and viruses, like bovine respiratory syncytial virus, bovine viral diarrhea virus, and bovine herpes virus-1, infect the lower respiratory tract of cattle. These pathogens can co-infect cells in the respiratory system, thereby making specific treatment very difficult. Currently, the most common models for studying BRD include a submerged tissue culture (STC), where monolayers of epithelial cells are typically covered either in cellular or spent biofilm culture medium. Another model is an air-liquid interface (ALI), where epithelial cells are exposed on their apical side and allowed to differentiate. However, limited work has been reported on the study of three-dimensional (3D) bovine models that incorporate multiple cell types to represent the architecture of the respiratory tract. The roles of different defense mechanisms in an infected bovine respiratory system, such as mucin production, tight junction barriers, and the production of antimicrobial peptides in in vitro cultures require further investigation in order to provide a comprehensive understanding of the disease pathogenesis. In this report, we describe the different aspects of BRD, including the most implicated pathogens and the respiratory tract, which are important to incorporate in disease models assembled in vitro. Although current advancements of bovine respiratory cultures have led to knowledge of the disease, 3D multicellular organoids that better recapitulate the in vivo environment exhibit potential for future investigations.
Collapse
Affiliation(s)
- Neeti N Gandhi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York 11548, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
20
|
Ahmed TA, Eldaly B, Eldosuky S, Elkhenany H, El-Derby AM, Elshazly MF, El-Badri N. The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy. Stem Cell Res Ther 2023; 14:114. [PMID: 37118810 PMCID: PMC10144893 DOI: 10.1186/s13287-023-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Bassant Eldaly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Shadwa Eldosuky
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Muhamed F Elshazly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
21
|
Su A, Yan M, Pavasutthipaisit S, Wicke KD, Grassl GA, Beineke A, Felmy F, Schmidt S, Esser KH, Becher P, Herrler G. Infection Studies with Airway Organoids from Carollia perspicillata Indicate That the Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruses. Microbiol Spectr 2023; 11:e0309822. [PMID: 36916937 PMCID: PMC10100918 DOI: 10.1128/spectrum.03098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
Bats are a natural reservoir for many viruses and are considered to play an important role in the interspecies transmission of viruses. To analyze the susceptibility of bat airway cells to infection by viruses of other mammalian species, we developed an airway organoid culture model derived from airways of Carollia perspicillata. Application of specific antibodies for fluorescent staining indicated that the cell composition of organoids resembled those of bat trachea and lungs as determined by immunohistochemistry. Infection studies indicated that Carollia perspicillata bat airway organoids (AOs) from the trachea or the lung are highly susceptible to infection by two different porcine influenza A viruses. The bat AOs were also used to develop an air-liquid interface (ALI) culture system of filter-grown epithelial cells. Infection of these cells showed the same characteristics, including lower virulence and enhanced replication and release of the H1N1/2006 virus compared to infection with H3N2/2007. These observations agreed with the results obtained by infection of porcine ALI cultures with these two virus strains. Interestingly, lectin staining indicated that bat airway cells only contain a small amount of alpha 2,6-linked sialic acid, the preferred receptor determinant for mammalian influenza A viruses. In contrast, large amounts of alpha 2,3-linked sialic acid, the preferred receptor determinant for avian influenza viruses, are present in bat airway epithelial cells. Therefore, bat airway cells may be susceptible not only to mammalian but also to avian influenza viruses. Our culture models, which can be extended to other parts of the airways and to other species, provide a promising tool to analyze virus infectivity and the transmission of viruses both from bats to other species and from other species to bats. IMPORTANCE We developed an organoid culture system derived from the airways of the bat species Carollia perspicillata. Using this cell system, we showed that the airway epithelium of these bats is highly susceptible to infection by influenza viruses of other mammalian species and thus is not a barrier for interspecies transmission. These organoids provide an almost unlimited supply of airway epithelial cells that can be used to generate well-differentiated epithelial cells and perform infection studies. The establishment of the organoid model required only three animals, and can be extended to other epithelia (nose, intestine) as well as to other species (bat and other animal species). Therefore, organoids promise to be a valuable tool for future zoonosis research on the interspecies transmission of viruses (e.g., bat → intermediate host → human).
Collapse
Affiliation(s)
- Ang Su
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Miaomiao Yan
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Suvarin Pavasutthipaisit
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Kathrin D. Wicke
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sabine Schmidt
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Esser
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Herrler
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
22
|
Boroojerdi MH, Al Jabry T, Mirarefin SMJ, Albalushi H. Insights into organoid-based modeling of COVID-19 pathology. Virol J 2023; 20:37. [PMID: 36841795 PMCID: PMC9959938 DOI: 10.1186/s12985-023-01996-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Since December 2019, various types of strategies have been applied due to the emergent need to investigate the biology and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to discover a functional treatment. Different disease modeling systems, such as mini-organ technology, have been used to improve our understanding of SARS-CoV-2 physiology and pathology. During the past 2 years, regenerative medicine research has shown the supportive role of organoid modeling in controlling coronavirus disease 2019 (COVID-19) through optimal drug and therapeutic approach improvement. Here, we overview some efforts that have been made to study SARS-CoV-2 by mimicking COVID-19 using stem cells. In addition, we summarize a perspective of drug development in COVID-19 treatment via organoid-based studies.
Collapse
Affiliation(s)
- Mohadese Hashem Boroojerdi
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Tariq Al Jabry
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Halima Albalushi
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
23
|
Optimization of Primary Human Bronchial Epithelial 3D Cell Culture with Donor-Matched Fibroblasts and Comparison of Two Different Culture Media. Int J Mol Sci 2023; 24:ijms24044113. [PMID: 36835529 PMCID: PMC9965758 DOI: 10.3390/ijms24044113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In vitro airway models are increasingly important for pathomechanistic analyses of respiratory diseases. Existing models are limited in their validity by their incomplete cellular complexity. We therefore aimed to generate a more complex and meaningful three-dimensional (3D) airway model. Primary human bronchial epithelial cells (hbEC) were propagated in airway epithelial cell growth (AECG) or PneumaCult ExPlus medium. Generating 3D models, hbEC were airlifted and cultured on a collagen matrix with donor-matched bronchial fibroblasts for 21 days comparing two media (AECG or PneumaCult ALI (PC ALI)). 3D models were characterized by histology and immunofluorescence staining. The epithelial barrier function was quantified by transepithelial electrical resistance (TEER) measurements. The presence and function of ciliated epithelium were determined by Western blot and microscopy with high-speed camera. In 2D cultures, an increased number of cytokeratin 14-positive hbEC was present with AECG medium. In 3D models, AECG medium accounted for high proliferation, resulting in hypertrophic epithelium and fluctuating TEER values. Models cultured with PC ALI medium developed a functional ciliated epithelium with a stable epithelial barrier. Here, we established a 3D model with high in vivo-in vitro correlation, which has the potential to close the translational gap for investigations of the human respiratory epithelium in pharmacological, infectiological, and inflammatory research.
Collapse
|
24
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
25
|
Chernokal B, Gonyea CR, Gleghorn JP. Lung Development in a Dish: Models to Interrogate the Cellular Niche and the Role of Mechanical Forces in Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:29-48. [PMID: 37195525 DOI: 10.1007/978-3-031-26625-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past decade, emphasis has been placed on recapitulating in vitro the architecture and multicellular interactions found in organs in vivo [1, 2]. Whereas traditional reductionist approaches to in vitro models enable teasing apart the precise signaling pathways, cellular interactions, and response to biochemical and biophysical cues, model systems that incorporate higher complexity are needed to ask questions about physiology and morphogenesis at the tissue scale. Significant advancements have been made in establishing in vitro models of lung development to understand cell-fate specification, gene regulatory networks, sexual dimorphism, three-dimensional organization, and how mechanical forces interact to drive lung organogenesis [3-5]. In this chapter, we highlight recent advances in the rapid development of various lung organoids, organ-on-a-chip models, and whole lung ex vivo explant models currently used to dissect the roles of these cellular signals and mechanical cues in lung development and potential avenues for future investigation (Fig. 3.1).
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Cailin R Gonyea
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
26
|
Choi S, Kim EM, Kim SY, Choi Y, Choi S, Cho N, Park HJ, Kim KK. Particulate matter exposure exacerbates cellular damage by increasing stress granule formation in respiratory syncytial virus-infected human lung organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120439. [PMID: 36257563 DOI: 10.1016/j.envpol.2022.120439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Exposure to atmospheric particulate matter (PM) increases morbidity and mortality in respiratory diseases by causing various adverse health effects; however, the effects of PM exposure on cellular stress under virus-infected conditions remain unclear. The effects of PM under 10 μm (PM10) and diesel PM (DPM) on respiratory syncytial virus (RSV) infection were investigated in human two-dimensional lung epithelial cells and human three-dimensional lung organoids mimicking the lung tissue. We evaluated the formation of stress granules, which are important in cellular adaptation to various stress conditions. Furthermore, we investigated the effects of repeated exposure to PM10 and DPM on DNA damage and cell death during viral infection. PM10 and DPM did not cause stress granule formation in the absence of RSV infection but drastically increased stress granule formation and signal transduction during RSV infection in human lung epithelial cells and human lung organoids. Further, repeated exposure to PM10 and DPM caused cell death by severely damaging DNA under RSV infection conditions. Thus, PM10 and DPM induce severe lung toxicity under stress conditions, such as viral infection, suggesting that the effects of PMs under various stressful conditions should be examined to accurately predict the lung toxicity of PM.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yeongsoo Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
27
|
Chen J, Na F. Organoid technology and applications in lung diseases: Models, mechanism research and therapy opportunities. Front Bioeng Biotechnol 2022; 10:1066869. [PMID: 36568297 PMCID: PMC9772457 DOI: 10.3389/fbioe.2022.1066869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The prevalency of lung disease has increased worldwide, especially in the aging population. It is essential to develop novel disease models, that are superior to traditional models. Organoids are three-dimensional (3D) in vitro structures that produce from self-organizing and differentiating stem cells, including pluripotent stem cells (PSCs) or adult stem cells (ASCs). They can recapitulate the in vivo cellular heterogeneity, genetic characteristics, structure, and functionality of original tissues. Drug responses of patient-derived organoids (PDOs) are consistent with that of patients, and show correlations with genetic alterations. Thus, organoids have proven to be valuable in studying the biology of disease, testing preclinical drugs and developing novel therapies. In recent years, organoids have been successfully applied in studies of a variety of lung diseases, such as lung cancer, influenza, cystic fibrosis, idiopathic pulmonary fibrosis, and the recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. In this review, we provide an update on the generation of organoid models for these diseases and their applications in basic and translational research, highlighting these signs of progress in pathogenesis study, drug screening, personalized medicine and immunotherapy. We also discuss the current limitations and future perspectives in organoid models of lung diseases.
Collapse
Affiliation(s)
| | - Feifei Na
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Qian S, Mao J, Liu Z, Zhao B, Zhao Q, Lu B, Zhang L, Mao X, Cheng L, Cui W, Zhang Y, Sun X. Stem cells for organoids. SMART MEDICINE 2022; 1:e20220007. [PMID: 39188738 PMCID: PMC11235201 DOI: 10.1002/smmd.20220007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 08/28/2024]
Abstract
Organoids are three-dimensional (3D) cell culture systems that simulate the structures and functions of organs, involving applications in disease modeling, drug screening, and cellular developmental biology. The material matrix in organoids can provide a 3D environment for stem cells to differentiate into different cell types and continuously self-renew, thereby realizing the in vitro culture of organs, which has received extensive attention in recent years. However, some challenges still exist in organoids, including low maturity, high heterogeneity, and lack of spatiotemporal regulation. Therefore, in this review, we summarized the culturing protocols and various applications of stem cell-derived organoids and proposed insightful thoughts for engineering stem cells into organoids in view of the current shortcomings, to achieve the further application and clinical translation of stem cells and engineered stem cells in organoid research.
Collapse
Affiliation(s)
- Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhimo Liu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Binfan Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liying Cheng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
29
|
Organoid Technologies for SARS-CoV-2 Research. CURRENT STEM CELL REPORTS 2022; 8:151-163. [PMID: 36313938 PMCID: PMC9589566 DOI: 10.1007/s40778-022-00220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
Abstract
Purpose of Review Organoids are an emerging technology utilizing three-dimensional (3D), multi-cellular in vitro models to represent the function and physiological responses of tissues and organs. By using physiologically relevant models, more accurate tissue responses to viral infection can be observed, and effective treatments and preventive strategies can be identified. Animals and two-dimensional (2D) cell culture models occasionally result in inaccurate disease modeling outcomes. Organoids have been developed to better represent human organ and tissue systems, and accurately model tissue function and disease responses. By using organoids to study SARS-Cov-2 infection, researchers have now evaluated the viral effects on different organs and evaluate efficacy of potential treatments. The purpose of this review is to highlight organoid technologies and their ability to model SARS-Cov-2 infection and tissue responses. Recent Findings Lung, cardiac, kidney, and small intestine organoids have been examined as potential models of SARS-CoV-2 infection. Lung organoid research has highlighted that SARS-CoV-2 shows preferential infection of club cells and have shown value for the rapid screening and evaluations of multiple anti-viral drugs. Kidney organoid research suggests human recombinant soluble ACE2 as a preventative measure during early-stage infection. Using small intestine organoids, fecal to oral transmission has been evaluated as a transmission route for the virus. Lastly in cardiac organoids drug evaluation studies have found that drugs such as bromodomain, external family inhibitors, BETi, and apabetalone may be effective treatments for SARs-CoV-2 cardiac injury. Summary Organoids are an effective tool to study the effects of viral infections and for drug screening and evaluation studies. By using organoids, more accurate disease modeling can be performed, and physiological effects of infection and treatment can be better understood.
Collapse
|
30
|
Plebani R, Bai H, Si L, Li J, Zhang C, Romano M. 3D Lung Tissue Models for Studies on SARS-CoV-2 Pathophysiology and Therapeutics. Int J Mol Sci 2022; 23:ijms231710071. [PMID: 36077471 PMCID: PMC9456220 DOI: 10.3390/ijms231710071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has provoked more than six million deaths worldwide and continues to pose a major threat to global health. Enormous efforts have been made by researchers around the world to elucidate COVID-19 pathophysiology, design efficacious therapy and develop new vaccines to control the pandemic. To this end, experimental models are essential. While animal models and conventional cell cultures have been widely utilized during these research endeavors, they often do not adequately reflect the human responses to SARS-CoV-2 infection. Therefore, models that emulate with high fidelity the SARS-CoV-2 infection in human organs are needed for discovering new antiviral drugs and vaccines against COVID-19. Three-dimensional (3D) cell cultures, such as lung organoids and bioengineered organs-on-chips, are emerging as crucial tools for research on respiratory diseases. The lung airway, small airway and alveolus organ chips have been successfully used for studies on lung response to infection by various pathogens, including corona and influenza A viruses. In this review, we provide an overview of these new tools and their use in studies on COVID-19 pathogenesis and drug testing. We also discuss the limitations of the existing models and indicate some improvements for their use in research against COVID-19 as well as future emerging epidemics.
Collapse
Affiliation(s)
- Roberto Plebani
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Haiqing Bai
- Xellar Biosystems Inc., Cambridge, MA 02138, USA
| | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunhe Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mario Romano
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
31
|
Human alveolar progenitors generate dual lineage bronchioalveolar organoids. Commun Biol 2022; 5:875. [PMID: 36008580 PMCID: PMC9409623 DOI: 10.1038/s42003-022-03828-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Mechanisms of epithelial renewal in the alveolar compartment remain incompletely understood. To this end, we aimed to characterize alveolar progenitors. Single-cell RNA-sequencing (scRNA-seq) analysis of the HTII-280+/EpCAM+ population from adult human lung revealed subclusters enriched for adult stem cell signature (ASCS) genes. We found that alveolar progenitors in organoid culture in vitro show phenotypic lineage plasticity as they can yield alveolar or bronchial cell-type progeny. The direction of the differentiation is dependent on the presence of the GSK-3β inhibitor, CHIR99021. By RNA-seq profiling of GSK-3β knockdown organoids we identified additional candidate target genes of the inhibitor, among others FOXM1 and EGF. This gives evidence of Wnt pathway independent regulatory mechanisms of alveolar specification. Following influenza A virus (IAV) infection organoids showed a similar response as lung tissue explants which confirms their suitability for studies of sequelae of pathogen-host interaction.
Collapse
|
32
|
Sano E, Suzuki T, Hashimoto R, Itoh Y, Sakamoto A, Sakai Y, Saito A, Okuzaki D, Motooka D, Muramoto Y, Noda T, Takasaki T, Sakuragi JI, Minami S, Kobayashi T, Yamamoto T, Matsumura Y, Nagao M, Okamoto T, Takayama K. Cell response analysis in SARS-CoV-2 infected bronchial organoids. Commun Biol 2022; 5:516. [PMID: 35637255 PMCID: PMC9151746 DOI: 10.1038/s42003-022-03499-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
The development of an in vitro cell model that can be used to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research is expected. Here we conducted infection experiments in bronchial organoids (BO) and an BO-derived air-liquid interface model (BO-ALI) using 8 SARS-CoV-2 variants. The infection efficiency in BO-ALI was more than 1,000 times higher than that in BO. Among the bronchial epithelial cells, we found that ciliated cells were infected with the virus, but basal cells were not. Ciliated cells died 7 days after the viral infection, but basal cells survived after the viral infection and differentiated into ciliated cells. Fibroblast growth factor 10 signaling was essential for this differentiation. These results indicate that BO and BO-ALI may be used not only to evaluate the cell response to SARS-CoV-2 and coronavirus disease 2019 (COVID-19) therapeutic agents, but also for airway regeneration studies.
Collapse
Affiliation(s)
- Emi Sano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Ayaka Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, 253-0087, Japan
| | - Jun-Ichi Sakuragi
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, 253-0087, Japan
| | - Shohei Minami
- Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takeshi Kobayashi
- Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan.
| |
Collapse
|
33
|
Ekanger CT, Zhou F, Bohan D, Lotsberg ML, Ramnefjell M, Hoareau L, Røsland GV, Lu N, Aanerud M, Gärtner F, Salminen PR, Bentsen M, Halvorsen T, Ræder H, Akslen LA, Langeland N, Cox R, Maury W, Stuhr LEB, Lorens JB, Engelsen AST. Human Organotypic Airway and Lung Organoid Cells of Bronchiolar and Alveolar Differentiation Are Permissive to Infection by Influenza and SARS-CoV-2 Respiratory Virus. Front Cell Infect Microbiol 2022; 12:841447. [PMID: 35360113 PMCID: PMC8964279 DOI: 10.3389/fcimb.2022.841447] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has led to the initiation of unprecedented research efforts to understand the pathogenesis mediated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). More knowledge is needed regarding the cell type-specific cytopathology and its impact on cellular tropism. Furthermore, the impact of novel SARS-CoV-2 mutations on cellular tropism, alternative routes of entry, the impact of co-infections, and virus replication kinetics along the respiratory tract remains to be explored in improved models. Most applied virology models are not well suited to address the remaining questions, as they do not recapitulate the histoarchitecture and cellular composition of human respiratory tissues. The overall aim of this work was to establish from single biopsy specimens, a human adult stem cell-derived organoid model representing the upper respiratory airways and lungs and explore the applicability of this model to study respiratory virus infection. First, we characterized the organoid model with respect to growth pattern and histoarchitecture, cellular composition, and functional characteristics. Next, in situ expression of viral entry receptors, including influenza virus-relevant sialic acids and SARS-CoV-2 entry receptor ACE2 and TMPRSS2, were confirmed in organoids of bronchiolar and alveolar differentiation. We further showed successful infection by pseudotype influenza A H7N1 and H5N1 virus, and the ability of the model to support viral replication of influenza A H7N1 virus. Finally, successful infection and replication of a clinical isolate of SARS-CoV-2 were confirmed in the organoids by TCID50 assay and immunostaining to detect intracellular SARS-CoV-2 specific nucleocapsid and dsRNA. The prominent syncytia formation in organoid tissues following SARS-CoV-2 infection mimics the findings from infected human tissues in situ. We conclude that the human organotypic model described here may be particularly useful for virology studies to evaluate regional differences in the host response to infection. The model contains the various cell types along the respiratory tract, expresses respiratory virus entry factors, and supports successful infection and replication of influenza virus and SARS-CoV-2. Thus, the model may serve as a relevant and reliable tool in virology and aid in pandemic preparedness, and efficient evaluation of antiviral strategies.
Collapse
Affiliation(s)
- Camilla Tvedt Ekanger
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fan Zhou
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Maria Lie Lotsberg
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Maria Ramnefjell
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Laurence Hoareau
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Gro Vatne Røsland
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Ning Lu
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Marianne Aanerud
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Fabian Gärtner
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pirjo Riitta Salminen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Mariann Bentsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Thomas Halvorsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Helge Ræder
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Cox
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | | | - James B. Lorens
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Agnete S. T. Engelsen
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- *Correspondence: Agnete S. T. Engelsen,
| |
Collapse
|
34
|
Boecking CA, Walentek P, Zlock LT, Sun DI, Wolters PJ, Ishikawa H, Jin BJ, Haggie PM, Marshall WF, Verkman AS, Finkbeiner WE. A simple method to generate human airway epithelial organoids with externally orientated apical membranes. Am J Physiol Lung Cell Mol Physiol 2022; 322:L420-L437. [PMID: 35080188 PMCID: PMC8917940 DOI: 10.1152/ajplung.00536.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organoids, which are self-organizing three-dimensional cultures, provide models that replicate specific cellular components of native tissues or facets of organ complexity. We describe a simple method to generate organoid cultures using isolated human tracheobronchial epithelial cells grown in mixed matrix components and supplemented at day 14 with the Wnt pathway agonist R-spondin 2 (RSPO2) and the bone morphogenic protein antagonist Noggin. In contrast to previous reports, our method produces differentiated tracheobronchospheres with externally orientated apical membranes without pretreatments, providing an epithelial model to study cilia formation and function, disease pathogenesis, and interaction of pathogens with the respiratory mucosa. Starting from 3 × 105 cells, organoid yield at day 28 was 1,720 ± 302. Immunocytochemistry confirmed the cellular localization of airway epithelial markers, including CFTR, Na+/K+ ATPase, acetylated-α-tubulin, E-cadherin, and ZO-1. Compared to native tissues, expression of genes related to bronchial differentiation and ion transport were similar in organoid and air-liquid interface (ALI) cultures. In matched primary cultures, mean organoid cilia length was 6.1 ± 0.2 µm, similar to that of 5.7 ± 0.1 µm in ALI cultures, and ciliary beating was vigorous and coordinated with frequencies of 7.7 ± 0.3 Hz in organoid cultures and 5.3 ± 0.8 Hz in ALI cultures. Functional measurement of osmotically induced volume changes in organoids showed low water permeability. The generation of numerous single testable units from minimal starting material complements prior techniques. This culture system may be useful for studying airway biology and pathophysiology, aiding diagnosis of ciliopathies, and potentially for high-throughput drug screening.
Collapse
Affiliation(s)
- Carolin A. Boecking
- 1Department of Pathology, University of California, San Francisco, California
| | - Peter Walentek
- 2Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California,3Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany,4CIBSS – Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Lorna T. Zlock
- 1Department of Pathology, University of California, San Francisco, California
| | - Dingyuan I. Sun
- 1Department of Pathology, University of California, San Francisco, California
| | - Paul J. Wolters
- 5Department of Medicine, University of California, San Francisco, California
| | - Hiroaki Ishikawa
- 6Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Byung-Ju Jin
- 5Department of Medicine, University of California, San Francisco, California
| | - Peter M. Haggie
- 5Department of Medicine, University of California, San Francisco, California
| | - Wallace F. Marshall
- 6Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Alan S. Verkman
- 5Department of Medicine, University of California, San Francisco, California,7Department of Physiology, University of California, San Francisco, California
| | - Walter E. Finkbeiner
- 1Department of Pathology, University of California, San Francisco, California,8Innovative Genomics Institute, University of California, Berkeley, California
| |
Collapse
|
35
|
Methods of Sputum and Mucus Assessment for Muco-Obstructive Lung Diseases in 2022: Time to “Unplug” from Our Daily Routine! Cells 2022; 11:cells11050812. [PMID: 35269434 PMCID: PMC8909676 DOI: 10.3390/cells11050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Obstructive lung diseases, such as chronic obstructive pulmonary disease, asthma, or non-cystic fibrosis bronchiectasis, share some major pathophysiological features: small airway involvement, dysregulation of adaptive and innate pulmonary immune homeostasis, mucus hyperproduction, and/or hyperconcentration. Mucus regulation is particularly valuable from a therapeutic perspective given it contributes to airflow obstruction, symptom intensity, disease severity, and to some extent, disease prognosis in these diseases. It is therefore crucial to understand the mucus constitution of our patients, its behavior in a stable state and during exacerbation, and its regulatory mechanisms. These are all elements representing potential therapeutic targets, especially in the era of biologics. Here, we first briefly discuss the composition and characteristics of sputum. We focus on mucus and mucins, and then elaborate on the different sample collection procedures and how their quality is ensured. We then give an overview of the different direct analytical techniques available in both clinical routine and more experimental settings, giving their advantages and limitations. We also report on indirect mucus assessment procedures (questionnaires, high-resolution computed tomography scanning of the chest, lung function tests). Finally, we consider ways of integrating these techniques with current and future therapeutic options. Cystic fibrosis will not be discussed given its monogenic nature.
Collapse
|
36
|
Tran BM, Grimley SL, McAuley JL, Hachani A, Earnest L, Wong SL, Caly L, Druce J, Purcell DFJ, Jackson DC, Catton M, Nowell CJ, Leonie L, Deliyannis G, Waters SA, Torresi J, Vincan E. Air-Liquid-Interface Differentiated Human Nose Epithelium: A Robust Primary Tissue Culture Model of SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:835. [PMID: 35055020 PMCID: PMC8776210 DOI: 10.3390/ijms23020835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.
Collapse
Affiliation(s)
- Bang M. Tran
- Department of Infectious Diseases, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia;
| | - Samantha L. Grimley
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - Julie L. McAuley
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - Linda Earnest
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - Sharon L. Wong
- Molecular and Integrative Cystic Fibrosis Research Centre, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.L.W.); (S.A.W.)
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (L.C.); (J.D.); (M.C.)
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (L.C.); (J.D.); (M.C.)
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - David C. Jackson
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - Mike Catton
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (L.C.); (J.D.); (M.C.)
| | - Cameron J. Nowell
- Imaging, FACS and Analysis Core, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Laura Leonie
- Melbourne Histology Platform, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Georgia Deliyannis
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - Shafagh A. Waters
- Molecular and Integrative Cystic Fibrosis Research Centre, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.L.W.); (S.A.W.)
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (S.L.G.); (J.L.M.); (A.H.); (L.E.); (D.F.J.P.); (D.C.J.); (G.D.)
| | - Elizabeth Vincan
- Department of Infectious Diseases, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia;
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (L.C.); (J.D.); (M.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
37
|
Cerimi K, Jäckel U, Meyer V, Daher U, Reinert J, Klar S. In Vitro Systems for Toxicity Evaluation of Microbial Volatile Organic Compounds on Humans: Current Status and Trends. J Fungi (Basel) 2022; 8:75. [PMID: 35050015 PMCID: PMC8780961 DOI: 10.3390/jof8010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.
Collapse
Affiliation(s)
- Kustrim Cerimi
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Udo Jäckel
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Ugarit Daher
- BIH Center for Regenerative Therapies (BCRT), BIH Stem Cell Core Facility, Berlin Institute of Health, Charité—Universitätsmedizin, 13353 Berlin, Germany;
| | - Jessica Reinert
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Stefanie Klar
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| |
Collapse
|
38
|
Recher G, Mombereau A, Boyreau A, Nassoy P, Andrique L. [3D Tumor organoid models produced by cellular capsules technology CCT]. Bull Cancer 2022; 109:38-48. [PMID: 34996600 DOI: 10.1016/j.bulcan.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Monolayer cultures of cell lines and derived-patient cells have long been the in vitro model of choice in oncology. In particular, these models have made it possible to decipher the mechanisms that determine tumor proliferation and invasion. However these 2D models are insufficient because they do not take into account the spatial organization of cells and their interactions with each other or with the extracellular matrix. In the context of cancer, there is a need to develop new 3D (tumoroid) models in order to gain a better understanding of the development of these pathologies but also to assess the penetration of drugs through a tissue and the associated cellular response. We present here the cell capsule technology (CCT), which allows the production of different tumoroid models: simple or more complex 3D culture models including co-culture of tumor cells with components of the microenvironment (fibroblasts, matrix, etc.). The development of these new 3D culture systems now makes it possible to propose refined physiopathological models that will allow the implementation of improved targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gaëlle Recher
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Amaël Mombereau
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Adeline Boyreau
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Pierre Nassoy
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Laëtitia Andrique
- Plateforme VoxCell, UMS TBMcore 3427, 146 rue Léo-Saignat, Bâtiment 1A 2(e) étage, 33076 Bordeaux, France.
| |
Collapse
|
39
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
40
|
Evolution of Antibacterial Drug Screening Methods: Current Prospects for Mycobacteria. Microorganisms 2021; 9:microorganisms9122562. [PMID: 34946162 PMCID: PMC8708102 DOI: 10.3390/microorganisms9122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
The increasing resistance of infectious agents to available drugs urges the continuous and rapid development of new and more efficient treatment options. This process, in turn, requires accurate and high-throughput techniques for antimicrobials’ testing. Conventional methods of drug susceptibility testing (DST) are reliable and standardized by competent entities and have been thoroughly applied to a wide range of microorganisms. However, they require much manual work and time, especially in the case of slow-growing organisms, such as mycobacteria. Aiming at a better prediction of the clinical efficacy of new drugs, in vitro infection models have evolved to closely mimic the environment that microorganisms experience inside the host. Automated methods allow in vitro DST on a big scale, and they can integrate models that recreate the interactions that the bacteria establish with host cells in vivo. Nonetheless, they are expensive and require a high level of expertise, which makes them still not applicable to routine laboratory work. In this review, we discuss conventional DST methods and how they should be used as a first screen to select active compounds. We also highlight their limitations and how they can be overcome by more complex and sophisticated in vitro models that reflect the dynamics present in the host during infection. Special attention is given to mycobacteria, which are simultaneously difficult to treat and especially challenging to study in the context of DST.
Collapse
|
41
|
van der Vaart J, Böttinger L, Geurts MH, van de Wetering WJ, Knoops K, Sachs N, Begthel H, Korving J, Lopez‐Iglesias C, Peters PJ, Eitan K, Gileles‐Hillel A, Clevers H. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep 2021; 22:e52058. [PMID: 34693619 PMCID: PMC8647008 DOI: 10.15252/embr.202052058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Patient-derived human organoids can be used to model a variety of diseases. Recently, we described conditions for long-term expansion of human airway organoids (AOs) directly from healthy individuals and patients. Here, we first optimize differentiation of AOs towards ciliated cells. After differentiation of the AOs towards ciliated cells, these can be studied for weeks. When returned to expansion conditions, the organoids readily resume their growth. We apply this condition to AOs established from nasal inferior turbinate brush samples of patients suffering from primary ciliary dyskinesia (PCD), a pulmonary disease caused by dysfunction of the motile cilia in the airways. Patient-specific differences in ciliary beating are observed and are in agreement with the patients' genetic mutations. More detailed organoid ciliary phenotypes can thus be documented in addition to the standard diagnostic procedure. Additionally, using genetic editing tools, we show that a patient-specific mutation can be repaired. This study demonstrates the utility of organoid technology for investigating hereditary airway diseases such as PCD.
Collapse
Affiliation(s)
- Jelte van der Vaart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Lena Böttinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | | | - Kèvin Knoops
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Norman Sachs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Present address:
Vertex IncSan DiegoCAUSA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Carmen Lopez‐Iglesias
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Kerem Eitan
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Alex Gileles‐Hillel
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
- Department of Paediatrics, Paediatric Pulmonology and SleepHadassah Hebrew University Medical CentreJerusalemIsrael
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| |
Collapse
|
42
|
Three-Dimensional Airway Spheroids and Organoids for Cystic Fibrosis Research. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive multi-organ disease caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, with morbidity and mortality primacy related to the lung disease. The CFTR protein, a chloride/bicarbonate channel, is expressed at the apical side of airway epithelial cells and is mainly involved in appropriate ion and fluid transport across the epithelium. Although many animal and cellular models have been developed to study the pathophysiological consequences of the lack/dysfunction of CFTR, only the three-dimensional (3D) structures termed “spheroids” and “organoids” can enable the reconstruction of airway mucosa to model organ development, disease pathophysiology, and drug screening. Airway spheroids and organoids can be derived from different sources, including adult lungs and induced pluripotent stem cells (iPSCs), each with its advantages and limits. Here, we review the major features of airway spheroids and organoids, anticipating that their potential in the CF field has not been fully shown. Further work is mandatory to understand whether they can accomplish better outcomes than other culture conditions of airway epithelial cells for CF personalized therapies and tissue engineering aims.
Collapse
|
43
|
da Silva da Costa FA, Soares MR, Malagutti-Ferreira MJ, da Silva GR, Lívero FADR, Ribeiro-Paes JT. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng Regen Med 2021; 18:735-745. [PMID: 34080133 PMCID: PMC8172328 DOI: 10.1007/s13770-021-00348-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic respiratory diseases (CRD) are a major public health problem worldwide. In the current epidemiological context, CRD have received much interest when considering their correlation with greater susceptibility to SARS-Cov-2 and severe disease (COVID-19). Increasingly more studies have investigated pathophysiological interactions between CRD and COVID-19. AREA COVERED Animal experimentation has decisively contributed to advancing our knowledge of CRD. Considering the increase in ethical restrictions in animal experimentation, researchers must focus on new experimental alternatives. Two-dimensional (2D) cell cultures have complemented animal models and significantly contributed to advancing research in the life sciences. However, 2D cell cultures have several limitations in studies of cellular interactions. Three-dimensional (3D) cell cultures represent a new and robust platform for studying complex biological processes and are a promising alternative in regenerative and translational medicine. EXPERT OPINION Three-dimensional cell cultures are obtained by combining several types of cells in integrated and self-organized systems in a 3D structure. These 3D cell culture systems represent an efficient methodological approach in studies of pathophysiology and lung therapy. More recently, complex 3D culture systems, such as lung-on-a-chip, seek to mimic the physiology of a lung in vivo through a microsystem that simulates alveolar-capillary interactions and exposure to air. The present review introduces and discusses 3D lung cultures as robust platforms for studies of the pathophysiology of CRD and COVID-19 and the mechanisms that underlie interactions between CRD and COVID-19.
Collapse
Affiliation(s)
- Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Murilo Racy Soares
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Paranaense University - UNIPAR, Umuarama, Parana, Brazil
| | | | | |
Collapse
|
44
|
Mohammadi S, Morell-Perez C, Wright CW, Wyche TP, White CH, Sana TR, Lieberman LA. Assessing donor-to-donor variability in human intestinal organoid cultures. Stem Cell Reports 2021; 16:2364-2378. [PMID: 34450035 PMCID: PMC8452536 DOI: 10.1016/j.stemcr.2021.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Donor-to-donor variability in primary human organoid cultures has not been well characterized. As these cultures contain multiple cell types, there is greater concern that variability could lead to increased noise. In this work we investigated donor-to-donor variability in human gut adult stem cell (ASC) organoids. We examined intestinal developmental pathways during culture differentiation in ileum- and colon-derived cultures established from multiple donors, showing that differentiation patterns were consistent among cultures. This finding indicates that donor-to-donor variability in this system remains at a manageable level. Intestinal metabolic activity was evaluated by targeted analysis of central carbon metabolites and by analyzing hormone production patterns. Both experiments demonstrated similar metabolic functions among donors. Importantly, this activity reflected intestinal biology, indicating that these ASC organoid cultures are appropriate for studying metabolic processes. This work establishes a framework for generating high-confidence data using human primary cultures through thorough characterization of variability. Developmental gene expression patterns were used to assess organoid variability Organoid differentiation patterns were consistent among independent donors Metabolic state of organoids was developmentally controlled Variability of hormone secretion and metabolic activity in organoids was minimal
Collapse
Affiliation(s)
- Sina Mohammadi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA.
| | | | - Charles W Wright
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Thomas P Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Cory H White
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Theodore R Sana
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Linda A Lieberman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA.
| |
Collapse
|
45
|
Abstract
Organoids are self-organizing, expanding 3D cultures derived from stem cells. Using tissue derived from patients, these miniaturized models recapitulate various aspects of patient physiology and disease phenotypes including genetic profiles and drug sensitivities. As such, patient-derived organoid (PDO) platforms provide an unprecedented opportunity for improving preclinical drug discovery, clinical trial validation, and ultimately patient care. This article reviews the evolution and scope of organoid technology, highlights recent encouraging results using PDOs as potential patient "avatars" to predict drug response and outcomes, and discusses critical parameters for widespread clinical adoption. These include improvements in assay speed, reproducibility, standardization, and automation which are necessary to realize the translational potential of PDOs as clinical tools. The multiple entry points where PDOs may contribute valuable insights in drug discovery and lessen the risks associated with clinical trials are also discussed.
Collapse
Affiliation(s)
- Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705, USA
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705, USA
| |
Collapse
|
46
|
Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021; 54:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
The respiratory epithelium is intimately associated with the pathophysiologies of highly infectious viral contagions and chronic illnesses such as chronic obstructive pulmonary disorder, presently the third leading cause of death worldwide with a projected economic burden of £1.7 trillion by 2030. Preclinical studies of respiratory physiology have almost exclusively utilised non-humanised animal models, alongside reductionistic cell line-based models, and primary epithelial cell models cultured at an air-liquid interface (ALI). Despite their utility, these model systems have been limited by their poor correlation to the human condition. This has undermined the ability to identify novel therapeutics, evidenced by a 15% chance of success for medicinal respiratory compounds entering clinical trials in 2018. Consequently, preclinical studies require new translational efficacy models to address the problem of respiratory drug attrition. This review describes the utility of the current in vivo (rodent), ex vivo (isolated perfused lungs and precision cut lung slices), two-dimensional in vitro cell-line (A549, BEAS-2B, Calu-3) and three-dimensional in vitro ALI (gold-standard and co-culture) and organoid respiratory epithelium models. The limitations to the application of these model systems in drug discovery research are discussed, in addition to perspectives of the future innovations required to facilitate the next generation of human-relevant respiratory models.
Collapse
Affiliation(s)
- Naheem Yaqub
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Gareth Wayne
- Novel Human Genetics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Martin Birchall
- The Ear Institute, Faculty of Brain Sciences, University College London, London WC1X 8EE, UK.
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| |
Collapse
|
47
|
Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar GD, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult stem cell-derived complete lung organoid models emulate lung disease in COVID-19. eLife 2021; 10:e66417. [PMID: 34463615 PMCID: PMC8463074 DOI: 10.7554/elife.66417] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).
Collapse
Affiliation(s)
- Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - MacKenzie Fuller
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - Ayden Fonseca
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San DiegoSan DiegoUnited States
| | | | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research InstituteLa JollaUnited States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
| | - Amanraj Claire
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, University of California San DiegoSan DiegoUnited States
| | - Hana Russo
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| | - Jason Duran
- Division of Cardiology, Department of Internal Medicine, UC San Diego Medical CenterSan DiegoUnited States
| | - Laura E Crotty Alexander
- Pulmonary Critical Care Section, Veterans Affairs (VA) San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San DiegoLa Jolla, CAUnited States
| | - Ann Tipps
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| | - Grace Lin
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| | | | - Ranajoy Chattopadhyay
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
- Cell Applications Inc.La Jolla, CAUnited States
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research InstituteLa JollaUnited States
- Division of Infectious Diseases, Department of Medicine, University of California, San DiegoLa JollaUnited States
- Department of Immunology and Microbiology, The Scripps Research InstituteLa JollaUnited States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San DiegoSan DiegoUnited States
- Department of Pediatrics, University of California, San DiegoLa Jolla, CAUnited States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
- Department of Medicine, University of California, San DiegoLa Jolla, CAUnited States
| | - Soumita Das
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| |
Collapse
|
48
|
Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol 2021; 23:822-833. [PMID: 34341531 PMCID: PMC8355201 DOI: 10.1038/s41556-021-00721-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Clinical management of patients with severe complications of COVID-19 has been hindered by a lack of effective drugs and a failure to capture the extensive heterogeneity of the disease with conventional methods. Here we review the emerging roles of complex organoids in the study of SARS-CoV-2 infection, modelling of COVID-19 disease pathology and in drug, antibody and vaccine development. We discuss opportunities for COVID-19 research and remaining challenges in the application of organoids.
Collapse
Affiliation(s)
- Kevin G Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Kyeyoon Park
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Ikeo S, Yamamoto Y, Ikeda K, Sone N, Korogi Y, Tomiyama L, Matsumoto H, Hirai T, Hagiwara M, Gotoh S. Core-shell hydrogel microfiber-expanded pluripotent stem cell-derived lung progenitors applicable to lung reconstruction in vivo. Biomaterials 2021; 276:121031. [PMID: 34304138 DOI: 10.1016/j.biomaterials.2021.121031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Lung transplantation is the only treatment available for end-stage lung diseases; however, donor shortage is a global issue. The use of human pluripotent stem cells (hPSCs) for organ regeneration is a promising approach. Nevertheless, methods for the expansion of isolated hPSC-derived lung progenitors (hLPs) for transplantation purposes have not yet been reported. Herein, we established an expansion system of hLPs based on their three-dimensional culture in core-shell hydrogel microfibers, that ensures the maintenance of their bipotency for differentiation into alveolar and airway epithelial cells including alveolar type II (AT2) cells. Further, we developed an efficient in vivo transplantation method using an endoscope-assisted transtracheal administration system; the successful engraftment and in vivo differentiation of hLPs into alveolar epithelial cells (incorporated into the alveoli) was observed. Importantly, expanded hLPs in the context of microfibers were successfully transplanted into the murine lungs, opening avenues for cell-based therapies of lung diseases. Therefore, our novel method has potential regenerative medicine applications; additionally, the high-quality hLPs and AT2 cells generated via the microfiber-based technology are valuable for drug discovery purposes.
Collapse
Affiliation(s)
- Satoshi Ikeo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Yamamoto
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; HiLung Inc., Kyoto, 606-8304, Japan
| | | | - Naoyuki Sone
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yohei Korogi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Lucia Tomiyama
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
50
|
van der Vaart J, Lamers MM, Haagmans BL, Clevers H. Advancing lung organoids for COVID-19 research. Dis Model Mech 2021; 14:269286. [PMID: 34219165 PMCID: PMC8272930 DOI: 10.1242/dmm.049060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic has emphasised the need to develop effective treatments to combat emerging viruses. Model systems that poorly represent a virus' cellular environment, however, may impede research and waste resources. Collaborations between cell biologists and virologists have led to the rapid development of representative organoid model systems to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We believe that lung organoids, in particular, have advanced our understanding of SARS-CoV-2 pathogenesis, and have laid a foundation to study future pandemic viruses and develop effective treatments.
Collapse
Affiliation(s)
- Jelte van der Vaart
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Mart M Lamers
- Viroscience Department, Erasmus University Medical Centre, Rotterdam 3015 GD, The Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus University Medical Centre, Rotterdam 3015 GD, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| |
Collapse
|