1
|
Tahir D, Geolier V, Bruant H, Le Flèche-Matéos A, Mallet A, Varloud M, Civat C, Girerd-Chambaz Y, Montano S, Pion C, Ferquel E, Pavot V, Choumet V. A Lyme disease mRNA vaccine targeting Borrelia burgdorferi OspA induces strong immune responses and prevents transmission in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102514. [PMID: 40226328 PMCID: PMC11986965 DOI: 10.1016/j.omtn.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato, is one of the most common tick-borne diseases in the northern hemisphere. Given its increasing global incidence, LB remains a major public health concern and the development of an effective vaccine is recognized as a key component of the overall disease prevention strategy. Here, we present results obtained with newly developed lipid nanoparticle-encapsulated mRNA vaccine candidates encoding the outer surface protein A (OspA) of B. burgdorferi sensu stricto (Bbss) serotype 1 (mRNA-OspA) with or without a secretion signal (SS) or a transmembrane domain. We evaluated the immunogenicity and protective efficacy of the mRNA-OspA vaccine candidates in a tick-fed mouse challenge model compared with an adjuvanted OspA protein subunit vaccine and the licensed canine vaccine Recombitek Lyme. At the doses tested, the mRNA-OspA vaccines induced significantly higher OspA-specific immunoglobulin G titers than the protein-based vaccines, as well as functional antibodies measured by serum bactericidal assay against Bbss strain B31. Complete protection against transmission was observed in the group immunized with the mRNA-OspA without SS. Overall, these data demonstrate that an mRNA-OspA vaccine can be effective against LB infection and could be used in the future for the prevention of Lyme disease.
Collapse
Affiliation(s)
- Djamel Tahir
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, Ultrastructural Bio-Imaging Core Facility, 75015 Paris, France
| | - Virginie Geolier
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Hugo Bruant
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Anne Le Flèche-Matéos
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Adeline Mallet
- Institut Pasteur, Ultrastructural Bio-Imaging Core Facility, 75015 Paris, France
| | - Marie Varloud
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - Céline Civat
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | | | - Sandrine Montano
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Corinne Pion
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Elisabeth Ferquel
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Vincent Pavot
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Valérie Choumet
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
2
|
Otranto D, Carbonara M, Baneth G, Dantas-Torres F, Lappin MR, Barrs VR. Feline vector-borne diseases: from local risks to global concerns. Trends Parasitol 2025:S1471-4922(25)00103-5. [PMID: 40393891 DOI: 10.1016/j.pt.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Although vector-borne pathogens infect cats worldwide, historical research efforts on this topic have been hampered by the belief that cats are less susceptible than dogs to these infections. Additionally, limited data are available on the epidemiology, clinical presentation and zoonotic importance of feline vector-borne diseases (FVBDs). This review discusses and updates the current geographical distribution of FVBDs, along with their clinical features, diagnosis, treatments, and prevention measures, highlighting the key differences between these diseases in cats and dogs and identifying the research needed to address existing knowledge gaps.
Collapse
Affiliation(s)
- Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China.
| | | | - Gad Baneth
- Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
| | | | - Michael R Lappin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Vanessa R Barrs
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Prullage J, Dumont P, Nair A, Liu M, DiCosty U, Süssenberger R. The ability of an oral combination of afoxolaner, moxidectin and pyrantel to protect dogs from Borrelia burgdorferi infections transmitted by Ixodes scapularis. Parasit Vectors 2025; 18:147. [PMID: 40259302 PMCID: PMC12010565 DOI: 10.1186/s13071-025-06753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/08/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Two studies were conducted to determine whether treatment with NexGard® Plus (NP), a combination of afoxolaner, moxidectin, and pyrantel, prevents transmission of Borrelia burgdorferi to dogs by naturally infected Ixodes scapularis. METHODS For each study, 20 dogs were randomly assigned to two groups (n = 10/group): NP and negative control. Twenty-eight days post-treatment, each dog was infested with approximately 50 I. scapularis that had a 60% B. burgdorferi infection rate in study 1 and a 38.5% infection rate in study 2. Five days post-infestation, ticks were counted and removed. The B. burgdorferi-specific C6 antibody was tested for using the SNAP® 4Dx® test (IDEXX) and the Lyme Quant C6 test with serum collected before treatment and infestation and 21, 35, 49, 63, and 75 days post-infestation. Skin biopsies were collected 76 days post-infestation and quantitative polymerase chain reaction (qPCR) conducted to detect B. burgdorferi DNA. RESULTS On the day of count and removal, no ticks were found on treated dogs, while control dogs had an average of 25.1 ticks in study 1 and 19.6 ticks in study 2, for efficacy of 100% (P ≤ 0.0001). All dogs were seronegative before infestation. The first dog in the control groups became seropositive 21 days post-infestation in study 1 and 35 days post-infestation in study 2 by the SNAP 4Dx test and by 21 days post-infestation by the Lyme Quant C6 test in both studies. Ten of 10 dogs in the control group in both studies seroconverted by the end of the study. None of the skin biopsies from treated dogs were positive for B. burgdorferi DNA, while at least three of the four skin biopsies from each of the control dogs tested positive at the end of the studies. No clinical signs of Lyme disease were detected in any of the dogs. CONCLUSIONS The results of these studies indicate that NexGard® Plus administered at a dose close to the minimum recommended dose of 2.5 mg/kg afoxolaner is effective 28 days after a single treatment in the prevention of B. burgdorferi transmission from naturally infected I. scapularis ticks to dogs.
Collapse
Affiliation(s)
- Joseph Prullage
- Boehringer Ingelheim Animal Health, Missouri Research Center, 6498 Jade Rd., Fulton, MO, 65251, USA.
| | - Pascal Dumont
- Boehringer Ingelheim Animal Health, Georgia Research Center, 3239 Satellite Boulevard, Duluth, GA, 30096, USA
| | - Arathy Nair
- Boehringer Ingelheim Animal Health, Georgia Research Center, 3239 Satellite Boulevard, Duluth, GA, 30096, USA
| | - Manyun Liu
- Boehringer Ingelheim Animal Health, Georgia Research Center, 3239 Satellite Boulevard, Duluth, GA, 30096, USA
| | - Utami DiCosty
- TRS Labs, Inc., 215 Paradise Blvd, Athens, GA, 30607, USA
| | - Ricarda Süssenberger
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| |
Collapse
|
4
|
Cervone M, Chabanne L, Krafft É, Cadoré JL. Clinical presentation, diagnostic findings, and outcome in dogs with presumptive primary and reactive immune-mediated polyarthritis in France. Vet J 2025; 312:106355. [PMID: 40222410 DOI: 10.1016/j.tvjl.2025.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Limited data exist regarding immune-mediated polyarthritis in dogs, particularly regarding reactive immune-mediated polyarthritis. The aim of this study was to describe the clinical presentations, the diagnostic findings, and the outcome of dogs diagnosed with presumptive primary and reactive immune-mediated polyarthritis in France, and to evaluate potential biomarkers for assessing treatment response. Medical records were retrospectively reviewed for dogs diagnosed with immune-mediated polyarthritis between June 2004 and January 2020. Fifty-eight dogs were included, of which 43 diagnosed with primary and 15 with reactive immune-mediated polyarthritis. Associated diseases in dogs with reactive immune-mediated polyarthritis included leishmaniosis (7), digestive disorders (3), eosinophilic bronchopneumopathy (3), bacterial infection (1), and gossypiboma (1). Overall, dogs showed a combination of joint swelling, pain, or heat. Anaemia (30 %), leucocytosis (47 %), high serum CRP (90 %) and low serum albumin (61 %) concentrations were the most frequent bloodwork abnormalities. Most dogs (74 %) experiencing complete clinical remission, and the mean time to remission was 37 days. Serum albumin, total proteins and globulins concentrations appeared as potential predictors for the time to remission. Clinical presentation and diagnostic features are not specific in dogs with immune-mediated polyarthritis. Overall, most dogs achieve clinical remission, but the time to achieve remission may be long. Serum albumin, total proteins and globulins concentrations may be predictors for the time to remission.
Collapse
Affiliation(s)
- Mario Cervone
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Département des Animaux de Compagnie de Loisir et de Sport, 1 Av. Bourgelat, Marcy L'Etoile 69280, France.
| | - Luc Chabanne
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Département des Animaux de Compagnie de Loisir et de Sport, 1 Av. Bourgelat, Marcy L'Etoile 69280, France
| | - Émilie Krafft
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Département des Animaux de Compagnie de Loisir et de Sport, 1 Av. Bourgelat, Marcy L'Etoile 69280, France
| | - Jean-Luc Cadoré
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Département des Animaux de Compagnie de Loisir et de Sport, 1 Av. Bourgelat, Marcy L'Etoile 69280, France
| |
Collapse
|
5
|
Pfeifle A, Anderson-Duvall R, Tamming LA, Zhang W, Thulasi Raman SN, Gravel C, Wu J, Coatsworth H, Voordouw MJ, Zhang X, Johnston MJW, Chen W, Sauve S, Wang L, Li X. Borrelia burgdorferi Strain-Specific Differences in Mouse Infectivity and Pathology. Pathogens 2025; 14:352. [PMID: 40333117 PMCID: PMC12029986 DOI: 10.3390/pathogens14040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Lyme disease (LD), caused by infection with the tick-borne bacteria, Borrelia burgdorferi, is associated with a wide array of symptoms in human patients. Variations in clinical manifestations are thought to be influenced by genetic differences among B. burgdorferi strains. In this study, we evaluated the infectivity, tissue bacterial load, pathology, and immunogenicity of five strains of B. burgdorferi sensu stricto (297 Ah130, Bb16-54, B31-A3, Bb16-126, JD1) in female C3H/HeN mice at three infectious doses (104, 105, 106 spirochetes). We found that strains Bb16-126 and JD1 were the most infectious, resulting in 100% infection across all the tested doses. Strain Bb16-126 caused the highest bacterial burden in the heart tissue and significant carditis, whereas JD1 exhibited the lowest spirochete load in the heart and minimal carditis. In comparison, strain B31-A3 demonstrated the highest abundance in the tibiotarsal joint. Infection with all the strains induced severe lymph node hyperplasia, with JD1 producing the greatest increase in cellularity. Using a diagnostic C6 peptide ELISA, all the strains induced significant anti-C6 IgM and IgG antibody titers at 14 days post-infection; however, strain B31-A3 elicited the highest anti-C6 IgM titers. Our findings demonstrate the importance of strain diversity in shaping B. burgdorferi pathogenesis in a mouse model and provide insights for developing strain-specific diagnostic, therapeutic, and vaccine strategies.
Collapse
Affiliation(s)
- Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Rose Anderson-Duvall
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Levi A. Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Jianguo Wu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Heather Coatsworth
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada;
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1N 1J1, Canada;
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
6
|
Picado R, Baptista CJ, Meneses A, Legatti S, Fonseca J, Belas A. Lyme disease in companion animals: an updated state-of-art and current situation in Portugal. Vet Res Commun 2024; 48:3551-3561. [PMID: 39259416 PMCID: PMC11538231 DOI: 10.1007/s11259-024-10532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Lyme disease (LD) is a globally distributed zoonotic multisystemic condition caused by gram-negative spirochete bacteria of the Borrelia burgdorferi complex, transmitted through tick bites. Research on LD in domestic animals in Portugal is limited, potentially leading to underestimating its prevalence. This disease affects many species, including humans, making it a critical public health issue. In domestic animals, LD often presents subclinically or with non-specific clinical signs, complicating its diagnosis. Nevertheless, veterinarians should always consider LD in cases with a history of tick exposure and compatible clinical signs. Diagnostic confirmation can be achieved through serological and other complementary tests. Treatment involves eradicating the bacterial infection and managing clinical signs using a combination of antibiotics, analgesics, anti-inflammatories, and other medications. Effective prevention primarily relies on tick control measures. This review aims to provide an up-to-date state-of-the-art LD, particularly in Portugal.
Collapse
Affiliation(s)
- Rita Picado
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Catarina Jota Baptista
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
- Centre for the Research and Technology of Agro-Enviromental and Biological Sciences (CITAB- Inov4Agro), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - André Meneses
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
- Animal and Veterinary Research Center (CECAV), Lusófona University- Lisbon University Centre, Lisbon, Portugal
- I-MVET- Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Lisbon, Portugal
| | - Sabrina Legatti
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Joana Fonseca
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
- School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusofonia (IPLUSO), Lisbon, Portugal
| | - Adriana Belas
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal.
- Animal and Veterinary Research Center (CECAV), Lusófona University- Lisbon University Centre, Lisbon, Portugal.
- I-MVET- Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Lisbon, Portugal.
- School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusofonia (IPLUSO), Lisbon, Portugal.
| |
Collapse
|
7
|
Chambers GZ, Chambers KMF, Marconi RT. A single immunization of Borreliella burgdorferi-infected mice with Vanguard crLyme elicits robust antibody responses to diverse strains and variants of outer surface protein C. Infect Immun 2024; 92:e0039624. [PMID: 39436053 PMCID: PMC11556006 DOI: 10.1128/iai.00396-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Lyme disease, caused by Borreliella burgdorferi and related species, is a growing health threat to companion animals across North America and Europe. Vaccination is an important preventive tool used widely in dogs living in, or near, endemic regions. In this report, we assessed anti-outer surface protein (Osp) A and anti-OspC antibody responses in B. burgdorferi-infected and -naïve mice (C3H/HeN) after immunization with a murine-optimized single dose of the Lyme disease subunit vaccine, Vanguard crLyme. crLyme is comprised of OspA and an OspC chimeritope-based immunogen designated as CH14. Mice that were infected and immunized developed higher levels of anti-OspC antibodies (Abs) than those infected only or that received one vaccine dose. The anti-OspC Abs that developed in the infected/immunized mice bound to all OspC variants tested (n = 22), whereas OspC Abs in serum from infected mice bound predominantly to the OspC variant (type A) produced by the infecting B. burgdorferi strain. Consistent with the absence of OspA expression in infected mammals, none of the infected mice developed Abs to OspA and did not develop anti-OspA Abs after single dose immunization. Lastly, serum from infected/immunized mice displayed significantly higher and broader killing activity than serum from non-immunized infected mice. The results of this study demonstrate that a single vaccination of actively infected mice results in strong anti-OspC Ab responses. This study contributes to our understanding of Ab responses to vaccination in actively infected mammals.
Collapse
Affiliation(s)
- Gavin Z. Chambers
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Kathryn M. F. Chambers
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
8
|
Ellis J, Marziani E, Aziz C, Brown CM, Cohn LA, Lea C, Moore GE, Taneja N. 2022 AAHA Canine Vaccination Guidelines (2024 Update). J Am Anim Hosp Assoc 2024; 60:1-19. [PMID: 39480742 DOI: 10.5326/jaaha-ms-7468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Vaccination is a cornerstone of canine preventive healthcare and one of the most cost-effective ways of maintaining a dog's health, longevity, and quality of life. Canine vaccination also serves a public health function by forming a barrier against several zoonotic diseases affecting dogs and humans. Canine vaccines are broadly categorized as containing core and noncore immunizing antigens, with administration recommendations based on assessment of individual patient risk factors. The guidelines include a comprehensive table listing canine core and noncore vaccines and a recommended vaccination and revaccination schedule for each vaccine. The guidelines explain the relevance of different vaccine formulations, including those containing modified-live virus, inactivated, and recombinant immunizing agents. Factors that potentially affect vaccine efficacy are addressed, including the patient's prevaccination immune status and vaccine duration of immunity. Because animal shelters are one of the most challenging environments for prevention and control of infectious diseases, the guidelines also provide recommendations for vaccination of dogs presented at or housed in animal shelters, including the appropriate response to an infectious disease outbreak in the shelter setting. The guidelines explain how practitioners can interpret a patient's serological status, including maternally derived antibody titers, as indicators of immune status and suitability for vaccination. Other topics covered include factors associated with postvaccination adverse events, vaccine storage and handling to preserve product efficacy, interpreting product labeling to ensure proper vaccine use, and using client education and healthcare team training to raise awareness of the importance of vaccinations.
Collapse
Affiliation(s)
- John Ellis
- University of Saskatchewan, Department of Veterinary Microbiology, Saskatoon, Saskatchewan (J.E.)
| | | | - Chumkee Aziz
- Association of Shelter Veterinarians, Houston, Texas (C.A.)
| | - Catherine M Brown
- Massachusetts Department of Public Health, Boston, Massachusetts (C.M.B.)
| | - Leah A Cohn
- University of Missouri, Columbia, Missouri (L.A.C.)
| | | | - George E Moore
- Purdue University, College of Veterinary Medicine, West Lafayette, Indiana (G.E.M.)
| | - Neha Taneja
- A Paw Partnership, Veterinary Well-being Advocate, Centreville, Virginia (N.T.)
| |
Collapse
|
9
|
Gutierrez MDLP, Huckaby AB, Yang E, Weaver KL, Hall JM, Hudson M, Dublin SR, Sen-Kilic E, Rocuskie-Marker CM, Miller SJ, Pritchett CL, Mummadisetti MP, Zhang Y, Driscoll T, Barbier M. Antibody-mediated immunological memory correlates with long-term Lyme veterinary vaccine protection in mice. Vaccine 2024; 42:126084. [PMID: 38937181 DOI: 10.1016/j.vaccine.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne illness in the United States. Despite the rise in Lyme disease incidence, there is no vaccine against B. burgdorferi approved for human use. Little is known about the immune correlates of protection needed to prevent Lyme disease. In this work, a mouse model was used to characterize the immune response and compare the protection provided by two USDA-approved vaccines for use in canines: Duramune (bacterin vaccine) and Vanguard crLyme (subunit vaccine composed of two outer surface proteins, OspA and OspC). C3H/HeNCrl mice were immunized with two doses of either Duramune or Vanguard, and immune responses and protection against B. burgdorferi were assessed in short (35 days) and long-term (120 days) studies. Flow cytometry, ELISPOT detection of antibody-producing cells, and antibody affinity studies were performed to identify correlates of vaccine-mediated protection. Both vaccines induced humoral responses, with high IgG titers against B. burgdorferi. However, the levels of anti-B. burgdorferi antibodies decayed over time in Vanguard-vaccinated mice. While both vaccines triggered the production of antibodies against both OspA and OspC, antibody levels against these proteins were also lower in Vanguard-vaccinated mice 120 days post-vaccination. Both vaccines only provided partial protection against B. burgdorferi at the dose used in this model. The protection provided by Duramune was superior to Vanguard 120 days post-vaccination, and was characterized by higher antibody titers, higher abundance of long-lived plasma cells, and higher avidity antibodies than Vanguard. Overall, these studies provide insights into the importance of the humoral memory response to veterinary vaccines against Lyme disease and will help inform the development of future human vaccines.
Collapse
Affiliation(s)
- Maria de la Paz Gutierrez
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Annalisa B Huckaby
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Evita Yang
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Kelly L Weaver
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Joshua M Hall
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Matthew Hudson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Spencer R Dublin
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Carleena M Rocuskie-Marker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Sarah Jo Miller
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | | | | | - Ying Zhang
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Timothy Driscoll
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
10
|
Pretsch PK, Tyrlik-Olk K, Sandborn H, Giandomenico DA, Barbarin AM, Williams C, Delamater PL, Qurollo B, van der Westhuizen S, Boyce RM. Rapid Increase in Seroprevalence of Borrelia burgdorferi Antibodies among Dogs, Northwestern North Carolina, USA, 2017-2021 1. Emerg Infect Dis 2024; 30:2047-2055. [PMID: 39320158 PMCID: PMC11431894 DOI: 10.3201/eid3010.240526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
We evaluated spatial-temporal risk for Lyme disease in northwestern North Carolina, USA, by using individual-level canine Borrelia burgdorferi seroprevalence data collected during 2017-2021 at routine veterinary screenings for tickborne diseases. Seroprevalence in dogs increased from 2.2% (47/2,130) in 2017 to 11.2% (339/3,033) in 2021. The percentage of incident seropositivity increased from 2.1% (45/2,130) in 2017 to 7.6% (231/3,033) in 2021. Exploratory geographic analyses found canine seroprevalence shifted from clustered (2017, Moran's I = 0.30) to dispersed (2021, Moran's I = -0.20). Elevation, slope, aspect, and forest land cover density were associated with canine seroprevalence within various household buffer regions in 2017. Slope was associated with seroprevalence at the household level in 2021. Results support the use of individual-level canine seroprevalence data for monitoring human risk for Lyme disease. Establishing sentinel veterinary clinics within Lyme disease-emergent communities might promote prevention and control efforts and provide opportunities for educational and behavioral interventions.
Collapse
|
11
|
Ownagh A, Rajabi SA, Enferadi A, Hadian M. Molecular detection and phylogenetic analysis of Borrelia Spp. In blood samples of cats and dogs by the nested-PCR method in West Azerbaijan Province, Iran. Braz J Microbiol 2024; 55:2915-2922. [PMID: 38819772 PMCID: PMC11405608 DOI: 10.1007/s42770-024-01401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
The objective of this study was to investigate the presence and genetic attributes of Borrelia spp. in cats and dogs from the West Azerbaijan Province, located in the northwest of Iran. A total of 250 blood samples from cats and 300 blood samples from dogs were collected, and information regarding their age, sex, breed, ownership status, sampling time and region was recorded. The identification of positive samples was accomplished through nested-PCR and sequencing, with subsequent analysis of the gene sequences conducted using BioEdit software. The gene sequences for Borrelia spp. in this study showed 100% similarity to reference sequences in the GenBank® database. Phylogenetic trees were built using MEGA11. The outcomes indicated that among 250 blood samples from cats, 48 (19.2%) tested positive for Borrelia spp. gene, with a CI from 14.8 to 24.53% for cats. Similarly, out of 300 blood samples from dogs, 45 (15%) tested positive for the Borrelia spp. gene, with a CI from 11.4 to 19.48% for dogs.
Collapse
Affiliation(s)
| | | | - Ahmad Enferadi
- Department of Microbiology, Urmia University, Urmia, Iran
| | - Mojtaba Hadian
- Department of Internal Medicine and Clinical Pathology, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Fraser E, Iwasawa S, Chahil N, Lee MK, Lo T, Morshed M, Colapinto N, Keil K, Porter A. Passive tick surveillance and detection of Borrelia burgdorferi in ticks from companion animals in British Columbia: 2018 to 2020. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2024; 65:569-573. [PMID: 38827591 PMCID: PMC11132171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Objective The present study was designed to identify tick species and determine prevalence of Borrelia burgdorferi infection in ticks obtained from companion animals in British Columbia. Animals and samples Ticks were submitted by British Columbia veterinarians from client-owned companion animals over a 31-month period. Procedure Each tick was identified and PCR testing for B. burgdorferi undertaken on all Ixodes species identified by the Zoonotic Diseases and Emerging Pathogens Section of British Columbia Centre for Disease Control Public Health Laboratory (BCCDC PHL). Results Overall, 85% (n = 300) of ticks submitted were Ixodes spp., with the majority known to transmit B. burgdorferi. Furthermore, 0.8% (95% confidence interval: 0.094 to 2.78%) of these ticks were PCR-positive for B. burgdorferi. Conclusion and clinical relevance Although the B. burgdorferi positivity rate in this study was low, it remains important for veterinary professionals to inform pet owners that ticks are present and can pose a risk to pets and humans. In eastern North America, B. burgdorferi infection risk has increased rapidly, underscoring the importance of ongoing surveillance in British Columbia to understand current and future distributions of ticks and tick-borne pathogens, especially in the context of climate change.
Collapse
Affiliation(s)
- Erin Fraser
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Stefan Iwasawa
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Navdeep Chahil
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Min-Kuang Lee
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Teresa Lo
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Muhammad Morshed
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Nicole Colapinto
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Kathy Keil
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| | - Aimee Porter
- Public Health Response, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Fraser, Iwasawa); Centre for Coastal Health, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5 (Iwasawa); BC Centre for Disease Control Public Health Laboratory, 655 West 12th Avenue, Vancouver, British Columbia V5Z 4R4 (Chahil, Lee, Lo, Morshed); Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 1Z7 (Morshed); Merck Animal Health, 16750 Trans-Canada Hwy, Kirkland, Quebec H9H 4M7 (Colapinto, Keil, Porter)
| |
Collapse
|
13
|
Gordin E, Viitanen S, Gordin D, Szlosek D, Peterson S, Spillmann T, Labato MA. A Clinical Study on Urinary Clusterin and Cystatin B in Dogs with Spontaneous Acute Kidney Injury. Vet Sci 2024; 11:200. [PMID: 38787172 PMCID: PMC11125966 DOI: 10.3390/vetsci11050200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Novel biomarkers are needed in diagnosing reliably acute kidney injury (AKI) in dogs and in predicting morbidity and mortality after AKI. Our hypothesis was that two novel tubular biomarkers, urinary clusterin (uClust) and cystatin B (uCysB), are elevated in dogs with AKI of different etiologies. In a prospective, longitudinal observational study, we collected serum and urine samples from 18 dogs with AKI of different severity and of various etiology and from 10 healthy control dogs. Urinary clusterin and uCysB were compared at inclusion between dogs with AKI and healthy controls and remeasured one and three months later. Dogs with AKI had higher initial levels of uClust (median 3593 ng/mL; interquartile range [IQR]; 1489-10,483) and uCysB (554 ng/mL; 29-821) compared to healthy dogs (70 ng/mL; 70-70 and 15 ng/mL; 15-15; p < 0.001, respectively). Initial uCysB were higher in dogs that died during the one-month follow-up period (n = 10) (731 ng/mL; 517-940), compared to survivors (n = 8) (25 ng/mL; 15-417 (p = 0.009). Based on these results, uClust and especially uCysB are promising biomarkers of AKI. Further, they might reflect the severity of tubular injury, which is known to be central to the pathology of AKI.
Collapse
Affiliation(s)
- Emilia Gordin
- Internal Medicine Section, Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.V.); (T.S.)
| | - Sanna Viitanen
- Internal Medicine Section, Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.V.); (T.S.)
| | - Daniel Gordin
- Department of Nephrology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland;
- Minerva Institute for Medical Research, 00220 Helsinki, Finland
| | - Donald Szlosek
- IDEXX Laboratories, Inc., One IDEXX Drive, Westbrook, ME 04092, USA; (D.S.); (S.P.)
| | - Sarah Peterson
- IDEXX Laboratories, Inc., One IDEXX Drive, Westbrook, ME 04092, USA; (D.S.); (S.P.)
| | - Thomas Spillmann
- Internal Medicine Section, Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.V.); (T.S.)
| | - Mary Anna Labato
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Foster Hospital for Small Animals, Tufts University, North Grafton, MA 01536, USA;
| |
Collapse
|
14
|
Squires RA, Crawford C, Marcondes M, Whitley N. 2024 guidelines for the vaccination of dogs and cats - compiled by the Vaccination Guidelines Group (VGG) of the World Small Animal Veterinary Association (WSAVA). J Small Anim Pract 2024; 65:277-316. [PMID: 38568777 DOI: 10.1111/jsap.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Affiliation(s)
- R A Squires
- Formerly, Discipline of Veterinary Science, James Cook University, Townsville, QLD, 4814, Australia
| | - C Crawford
- College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - M Marcondes
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University, Rua Sergipe 575, ap. 32, São Paulo, 01243-001, SP, Brazil
| | - N Whitley
- Internal Medicine, Davies Veterinary Specialists, Manor Farm Business Park, Higham Gobion, Hertfordshire, SG5 3HR, UK
| |
Collapse
|
15
|
Cramer NA, Socarras KM, Earl J, Ehrlich GD, Marconi RT. Borreliella burgdorferi factor H-binding proteins are not required for serum resistance and infection in mammals. Infect Immun 2024; 92:e0052923. [PMID: 38289123 PMCID: PMC10929407 DOI: 10.1128/iai.00529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024] Open
Abstract
The causative agent of Lyme disease (LD), Borreliella burgdorferi, binds factor H (FH) and other complement regulatory proteins to its surface. B. burgdorferi B31 (type strain) encodes five FH-binding proteins (FHBPs): CspZ, CspA, and the OspE paralogs OspEBBN38, OspEBBL39, and OspEBBP38. This study assessed potential correlations between the production of individual FHBPs, FH-binding ability, and serum resistance using a panel of infectious B. burgdorferi clonal populations recovered from dogs. FHBP production was assessed in cultivated spirochetes and by antibody responses in naturally infected humans, dogs, and eastern coyotes (wild canids). FH binding specificity and sensitivity to dog and human serum were also assessed and compared. No correlation was observed between the production of individual FHBPs and FH binding with serum resistance, and CspA was determined to not be produced in animals. Notably, one or more clones isolated from dogs lacked CspZ or the OspE proteins (a finding confirmed by genome sequence determination) and did not bind FH derived from canines. The data presented do not support a correlation between FH binding and the production of individual FHBPs with serum resistance and infectivity. In addition, the limited number and polymorphic nature of cp32s in B. burgdorferi clone DRI85A that were identified through genome sequencing suggest no strict requirement for a defined set of these replicons for infectivity. This study reveals that the immune evasion mechanisms employed by B. burgdorferi are diverse, complex, and yet to be fully defined.
Collapse
Affiliation(s)
- Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Kalya M. Socarras
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Earl
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Garth D. Ehrlich
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
16
|
Krcatovich EH, Workman J, Stasiak K, Goldstein RE. Comparative evaluation of Borrelia burgdorferi antibody detection between the VetScan Flex4 and SNAP 4Dx Plus. Top Companion Anim Med 2024; 59:100862. [PMID: 38508488 DOI: 10.1016/j.tcam.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/11/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Two studies were developed to compare Borrelia burgdorferi antibody detection between the VetScan Flex4 and SNAP 4Dx Plus tests. The objective of the first study was to evaluate the diagnostic sensitivity (Se) and specificity (Sp) of VetScan Flex4 and SNAP 4Dx Plus B. burgdorferi results using field sourced samples compared to a Western Blot reference method. The sensitivity and specificity of VetScan Flex4 were 81.9 % (95 % CI: 71.9 %-89.5 %) and 89.3 % (95 % CI: 85.2 %-92.9 %) respectively, and SNAP 4Dx Plus's sensitivity and specificity were 80.7 % (95 % CI: 70.6 %-88.6 %) and 92.8 % (95 % CI: 89.1 %-95.5 %) respectively. When comparing VetScan Flex4 and Snap 4Dx Plus, the Simple Kappa Coefficient estimate was 0.76 (95 % CI: 0.69-0.84) indicating substantial agreement between the two methods. McNemar's Test revealed concordance between the two methods was not statistically significant (P = 0.05). The objective of the second study was to evaluate whether VetScan Flex4 differentiates between B. burgdorferi antibodies derived from infection versus vaccination with commonly used canine Lyme vaccines. The sensitivity and specificity of the VetScan Flex4 in differentiating canine Lyme vaccination from infection with Borrelia burgdorferi were 100 % (Se 95 % CI: 78.2 %-100 %; Sp 95 % CI: 91.2 %-100 %). In conclusion, the VetScan Flex4 is a reliably sensitive and specific point-of-care test that is similar to Snap 4Dx Plus, can differentiate between infection and Lyme vaccination, and can be utilized by veterinarians for Lyme disease diagnosis and surveillance of B. burgdorferi exposure.
Collapse
Affiliation(s)
- Elise H Krcatovich
- Zoetis Global Diagnostics Medical Affairs (Krcatovich, Stasiak, Goldstein), Zoetis Global Diagnostics Veterinary Medical Research and Development (Workman), MI, USA
| | - Jason Workman
- Zoetis Global Diagnostics Medical Affairs (Krcatovich, Stasiak, Goldstein), Zoetis Global Diagnostics Veterinary Medical Research and Development (Workman), MI, USA
| | - Karen Stasiak
- Zoetis Global Diagnostics Medical Affairs (Krcatovich, Stasiak, Goldstein), Zoetis Global Diagnostics Veterinary Medical Research and Development (Workman), MI, USA.
| | - Richard E Goldstein
- Zoetis Global Diagnostics Medical Affairs (Krcatovich, Stasiak, Goldstein), Zoetis Global Diagnostics Veterinary Medical Research and Development (Workman), MI, USA
| |
Collapse
|
17
|
Probst J, Springer A, Fingerle V, Strube C. Frequency of Anaplasma phagocytophilum, Borrelia spp., and coinfections in Ixodes ricinus ticks collected from dogs and cats in Germany. Parasit Vectors 2024; 17:87. [PMID: 38395915 PMCID: PMC10893606 DOI: 10.1186/s13071-024-06193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Changing geographical and seasonal activity patterns of ticks may increase the risk of tick infestation and tick-borne pathogen (TBP) transmission for both humans and animals. METHODS To estimate TBP exposure of dogs and cats, 3000 female I. ricinus from these hosts were investigated for Anaplasma phagocytophilum and Borrelia species. RESULTS qPCR inhibition, which was observed for ticks of all engorgement stages but not questing ticks, was eliminated at a template volume of 2 µl. In ticks from dogs, A. phagocytophilum and Borrelia spp. prevalence amounted to 19.0% (285/1500) and 28.5% (427/1500), respectively, while ticks from cats showed significantly higher values of 30.9% (464/1500) and 55.1% (827/1500). Accordingly, the coinfection rate with both A. phagocytophilum and Borrelia spp. was significantly higher in ticks from cats (17.5%, 262/1500) than dogs (6.9%, 104/1500). Borrelia prevalence significantly decreased with increasing engorgement duration in ticks from both host species, whereas A. phagocytophilum prevalence decreased only in ticks from dogs. While A. phagocytophilum copy numbers in positive ticks did not change significantly over the time of engorgement, those of Borrelia decreased initially in dog ticks. In ticks from cats, copy numbers of neither A. phagocytophilum nor Borrelia spp. were affected by engorgement. Borrelia species differentiation was successful in 29.1% (365/1254) of qPCR-positive ticks. The most frequently detected species in ticks from dogs were B. afzelii (39.3% of successfully differentiated infections; 70/178), B. miyamotoi (16.3%; 29/178), and B. valaisiana (15.7%; 28/178), while B. afzelii (40.1%; 91/227), B. spielmanii (21.6%; 49/227), and B. miyamotoi (14.1%; 32/227) occurred most frequently in ticks from cats. CONCLUSIONS The differences in pathogen prevalence and Borrelia species distribution between ticks collected from dogs and cats may result from differences in habitat overlap with TBP reservoir hosts. The declining prevalence of A. phagocytophilum with increasing engorgement duration, without a decrease in copy numbers, could indicate transmission to dogs over the time of attachment. The fact that this was not observed in ticks from cats may indicate less efficient transmission. In conclusion, the high prevalence of A. phagocytophilum and Borrelia spp. in ticks collected from dogs and cats underlines the need for effective acaricide tick control to protect both animals and humans from associated health risks.
Collapse
Affiliation(s)
- Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
18
|
Beckwith-Cohen B, Petersen-Jones SM. Manifestations of systemic disease in the retina and fundus of cats and dogs. Front Vet Sci 2024; 11:1337062. [PMID: 38444779 PMCID: PMC10912207 DOI: 10.3389/fvets.2024.1337062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
The fundus is unique in that it is the only part of the body that allows for a noninvasive and uninterrupted view of vasculature and nervous tissue. Utilization of this can be a powerful tool in uncovering salient incidental findings which point to underlying systemic diseases, and for monitoring response to therapy. Retinal venules and arterioles allow the clinician to assess changes in vascular color, diameter, outline, and tortuosity. The retina and optic nerve may exhibit changes associated with increased or decreased thickness, inflammatory infiltrates, hemorrhages, and detachments. While some retinal manifestations of systemic disease may be nonspecific, others are pathognomonic, and may be the presenting sign for a systemic illness. The examination of the fundus is an essential part of the comprehensive physical examination. Systemic diseases which may present with retinal abnormalities include a variety of disease classifications, as represented by the DAMNIT-V acronym, for Degenerative/Developmental, Anomalous, Metabolic, Neoplastic, Nutritional, Inflammatory (Infectious/Immune-mediated/ischemic), Toxic, Traumatic and Vascular. This review details systemic illnesses or syndromes that have been reported to manifest in the fundus of companion animals and discusses key aspects in differentiating their underlying cause. Normal variations in retinal anatomy and morphology are also considered.
Collapse
Affiliation(s)
- Billie Beckwith-Cohen
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Silvestrini P, Lloyd-Bradley B, Glanemann B, Barker EN, Badham H, Tappin S, Pascual M, Haines A, Mas A, Roura X, Piviani M. Clinical presentation, diagnostic investigations, treatment protocols and outcomes of dogs diagnosed with tick-borne diseases living in the United Kingdom: 76 cases (2005-2019). J Small Anim Pract 2023; 64:392-400. [PMID: 36727469 DOI: 10.1111/jsap.13592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To report the presence of tick-borne diseases in dogs living in the United Kingdom. MATERIALS AND METHODS Dogs with a final diagnosis of tick-borne diseases made between January 2005 and August 2019 at seven referral institutions in the United Kingdom were included in the study. RESULTS Seventy-six dogs were included: 25 were diagnosed with ehrlichiosis, 23 with babesiosis, eight with Lyme borreliosis and six with anaplasmosis. Fourteen dogs had co-infections with two or three pathogens. Except for those dogs with anaplasmosis and Lyme borreliosis, most dogs with tick-borne diseases had a history of travel to or from endemic countries. However, three dogs with ehrlichiosis, and one dog each infected with Babesia canis and Babesia vulpes did not have any history of travel. A variety of non-specific clinical signs and laboratory abnormalities were reported. Targeted treatment was successful at achieving clinical remission in 64 (84%) dogs. CLINICAL SIGNIFICANCE Even in non-endemic areas, veterinary surgeons should consider tick-borne diseases in dogs with compatible clinical presentation and laboratory findings and especially where there is a history of travel. As autochthonous transmission of tick-borne-pathogens does occur, an absence of travel should not rule out tick-borne diseases. Specific diagnostic testing is required to confirm infection, and this enables prompt targeted treatment and often a positive outcome.
Collapse
Affiliation(s)
- P Silvestrini
- Ryan Veterinary Hospital, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - B Lloyd-Bradley
- Small Animal Teaching Hospital, University of Liverpool, Neston, UK
- Dick White Referrals, Six Mile Bottom, UK
| | - B Glanemann
- Queen Mother Hospital for Animals, Royal Veterinary College - University of London, Hatfield, UK
| | - E N Barker
- Small Animal Hospital, Langford Vets, University of Bristol, Langford, UK
| | - H Badham
- Davies Veterinary Specialists, Hitchin, UK
| | - S Tappin
- Dick White Referrals, Six Mile Bottom, UK
| | - M Pascual
- Dick White Referrals, Six Mile Bottom, UK
| | - A Haines
- Animal Health Trust, Newmarket, UK
| | - A Mas
- Anderson Moores Veterinary Specialists, Winchester, UK
| | - X Roura
- Hospital Clinic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Piviani
- Ryan Veterinary Hospital, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Liberska JA, Michalik JF, Dabert M. Exposure of dogs and cats to Borrelia miyamotoi infected Ixodes ricinus ticks in urban areas of the city of Poznań, west-central Poland. Ticks Tick Borne Dis 2023; 14:102188. [PMID: 37172512 DOI: 10.1016/j.ttbdis.2023.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Borrelia miyamotoi is an emerging human pathogen that causes a relapsing fever-like disease named B. miyamotoi disease. The bacterium belongs to the relapsing fever borreliae, and similar to spirochetes of the Borrelia burgdorferi sensu lato group, it is transmitted only by hard ticks of the Ixodes ricinus complex. To date, B. miyamotoi has not been demonstrated to cause illness in dogs or cats, and is poorly documented in veterinary medicine. The aim of this study was to determine the B. miyamotoi presence in (i) host-seeking ticks and (ii) engorged Ixodes sp. ticks collected from dogs and cats during their inspection in veterinary clinics of the city of Poznań, west-central Poland. Host-seeking ticks were sampled in dog walking areas localized in urban forested recreational sites of the city. In this study, 1,059 host-seeking and 837 engorged I. ricinus ticks collected from 680 tick-infested animals (567 dogs and 113 cats) were screened. Additionally, 31 I. hexagonus ticks (one larva, 13 nymphs, and 17 females) were collected from three cats; one larva and one nymph were collected from two dogs; and one dog was infested with a single Dermacentor reticulatus female. Borrelia DNA was identified by the amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene and flaB gene fragments. DNA of B. miyamotoi was detected in 22 (2.1%) of the host-seeking ticks (in all developmental tick stages and in all study areas). In addition, the engorged I. ricinus ticks exhibited a similar B. miyamotoi presence (1.8%). Fifteen I. ricinus ticks collected from animals tested positive for the presence of B. miyamotoi DNA, and the DNA of B. miyamotoi was observed in three (9.1%; one female and two nymphs) I. hexagonus ticks. The single D. reticulatus female collected from a dog tested PCR-negative for the bacterium. The results of this study demonstrated the establishment and broad presence of the bacterium in tick populations from different urban ecosystems of the city of Poznań. The lack of difference in the mean infection presence of animal-derived and host-seeking I. ricinus ticks suggests that the systematic surveillance of pets may be useful for the evaluation of human exposure to B. miyamotoi infected ticks in urban areas. Additional studies are required to further elucidate the role of domestic and wild carnivores in the epidemiology of B. miyamotoi, which remains unknown.
Collapse
Affiliation(s)
- Justyna Anna Liberska
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University Poznań, Poland.
| | | | - Mirosława Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University Poznań, Poland
| |
Collapse
|
21
|
Nichol GK, Weese JS, Clow KM. Isolation and multilocus sequence typing of Borrelia burgdorferi from Ixodes scapularis collected from dogs in Ontario, Canada. BMC Res Notes 2023; 16:43. [PMID: 36997986 PMCID: PMC10061846 DOI: 10.1186/s13104-023-06315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVE To identify the multilocus sequence typing (MLST) sequence types of Borrelia burgdorferi from Ixodes scapularis in Ontario, Canada. RESULTS One hundred and eighty-five I. scapularis ticks were submitted from 134 dogs via participating clinics from April 1, 2019, to March 31, 2020. Seventeen MLST sequence types of B. burgdorferi were detected from fifty-eight cultured isolates from 21 ticks. The most common MLST sequence types were 12 and 16. Mixed infections of two MLST sequence types were detected in four ticks. Three sequence types (48, 317, 639) were new detections in Ontario.
Collapse
Affiliation(s)
- Grace K Nichol
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - J Scott Weese
- Department of Pathobiology & the Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
22
|
Seroexposure to Zoonotic Anaplasma and Borrelia in Dogs and Horses That Are in Contact with Vulnerable People in Italy. Pathogens 2023; 12:pathogens12030470. [PMID: 36986392 PMCID: PMC10054474 DOI: 10.3390/pathogens12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Equine and canine anaplasmosis and borreliosis are major tick-borne zoonotic diseases caused by Anaplasma phagocytophilum and various species of Borrelia (the most important being Borrelia burgdorferi s.l.), respectively. This study evaluated the seroexposure to Anaplasma and Borrelia in dogs and horses used in Animal-Assisted Interventions or living in contact with children, elderly people or immunocompromised persons. A total of 150 horses and 150 dogs living in Italy were equally divided into clinically healthy animals and animals with at least one clinical sign compatible with borreliosis and/or anaplasmosis (present at clinical examination or reported in the medical history). Serum samples were tested with ELISA and immunoblot for the presence of antibodies against A. phagocytophilum and B. burgdorferi s.l., and the association between seropositivity and possible risk factors was analyzed using multivariate and univariate tests. Overall, 13 dogs (8.7%) and 19 horses (12.7%) were positive for at least one of the two pathogens. In addition, 1 dog (0.7%) and 12 horses (8%) were positive for antibodies against A. phagocytophilum, while 12 dogs (8.0%) and 10 horses (6.7%) had antibodies against B. burgdorferi s.l. Tick infestation in the medical history of the dogs was significantly associated with seropositivity to at least one pathogen (p = 0.027; OR 7.398). These results indicate that, in Italy, ticks infected with A. phagocytophilum and/or B. burgdorferi circulate in places where horses and dogs are in contact with people at risk of developing severe diseases. Awareness should be increased, and adequate control plans need to be developed to protect human and animal health, especially where vulnerable, at-risk individuals are concerned.
Collapse
|
23
|
DeWinter S, Bauman C, Peregrine A, Weese JS, Clow KM. Assessing the spatial and temporal patterns and risk factors for acquisition of Ixodes spp. by companion animals across Canada. Ticks Tick Borne Dis 2023; 14:102089. [PMID: 36423538 DOI: 10.1016/j.ttbdis.2022.102089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Climatic and land use changes have contributed to substantial changes in the abundance, distribution, and activity patterns of ticks in Canada, which have led to an increased risk of tick bites and tick-borne pathogen exposure for companion animals. The objectives of this study were to describe current spatial and temporal patterns of Ixodes spp. on companion animals in Canada and explore the association between tick bites and dog and cat demographic factors. Ticks were collected for one year (April 2019 - March 2020) from 94 veterinary clinics. Included with each submission was a short questionnaire containing owner-reported information on travel history, date of removal and suspected location of tick acquisition, and animal-specific demographic factors. Ticks were identified morphologically using a stereomicroscope, standard keys, and through PCR analyses. Mixed effect multivariable logistic regression models were built to explore the association between an Ixodes scapularis bite and animal demographic factors; veterinary clinic was included as a random effect. Approximately 2300 submissions were received from clinics across Canada, totalling 4425 ticks. The most common Ixodes spp. was I. scapularis (n = 2168), followed by Ixodes pacificus (n = 172) and Ixodes cookei (n = 155). Ixodes scapularis were well distributed in regions across central and eastern Canada. Ixodes cookei was found in eastern Canada, with the greatest numbers from Quebec and New Brunswick. Ixodes pacificus submissions were restricted to British Columbia. Across eastern Canada, dogs of the herding, mixed breed (large and small), sporting, working, terrier, and toy breed groups, and spayed cats were all found to have higher odds of acquiring I. scapularis, compared to other tick species. For the dog model, significant interactions were found between predictor variables age and sex. Regional information on tick distribution, seasonality, and risk factors for acquisition contribute to evidence-based veterinary practices for tick and tick-borne disease control in Canada.
Collapse
Affiliation(s)
- Sydney DeWinter
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Canada.
| | - Cathy Bauman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Canada
| | - Andrew Peregrine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Canada
| |
Collapse
|
24
|
Lyme Borreliosis in Dogs: Background, Epidemiology, Diagnostics, Treatment and Prevention. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
Lyme borreliosis (LB) is a multisystemic tick-borne disease that can affect many organs and have various clinical manifestations in dogs. We attempted to summarise various aspects of Lyme disease: i. e., pathogenesis, epidemiology, benefits and risks of diagnostic approaches, treatment options, and prevention in dogs. Several diagnostic bottlenecks for LB in dogs and humans are compared. Because the occurrence of LB in both humans and dogs is closely related, monitoring its prevalence in dogs as sentinel animals is an excellent aid in assessing the risk of Lyme disease in a given geographic area. Although clinical symptoms in humans help clinicians diagnose LB, they are ineffective in dogs because canines rarely exhibit LB symptoms. Despite significant differences in sensitivity and specificity, sero-logical two-step detection of antibodies against Borrelia spp. (ELISA and Western blot) is the most commonly used method in humans and dogs. The limitations of the assay highlight the need for further research to develop new clinical markers and more accurate diagnostic tests. Due to the lack of a specific all-encompassing LB test, a definitive diagnosis of LB remains a difficult and time-consuming process in human and veterinary medicine. Understanding the disease prevalence and diagnostics, as well as preventing its spread with effective and timely treatment, are fundamental principles of good disease management.
Collapse
|
25
|
Infestation patterns of Ixodes scapularis and Dermacentor variabilis on dogs and cats across Canada. PLoS One 2023; 18:e0281192. [PMID: 36730362 PMCID: PMC9894407 DOI: 10.1371/journal.pone.0281192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Due to recent climatic and land use changes, Canada has experienced changes in tick populations, leading to an increased risk of tick bites and tick-borne pathogen exposure, especially in eastern Canada. Preventative recommendations for companion animals from veterinary professionals include regular use of tick prevention products and tick checks. Tick checks, specifically, should target regions of an animal's body which are deemed to be high risk for tick attachment. However, tick species-specific infestation patterns on dogs and cats are largely understudied, and additional research is needed to help guide targeted tick checks. The objective of this study was to identify tick species-specific infestation patterns on dogs and cats. Ticks were collected for one year (April 2019 -March 2020) from 94 veterinary clinics across Canada as part of the Canadian Pet Tick Survey. All ticks were identified to species, and data on the location of tick attachment were ascertained with each submission. To examine the association between location of attachment (outcome) and tick species (explanatory variable), specifically Ixodes scapularis and Dermacentor variabilis, mixed effects univariable models were built. Two thousand three hundred and six submissions were received from 1925 dogs and 381 cats across Canada. Of these submissions, 1377 comprised Ixodes scapularis, and 620 comprised Dermacentor variabilis. Clear tick species-specific infestation patterns for dogs were present, with I. scapularis being significantly more likely to be found on the shoulders, and D. variabilis more likely to be found on the ears and neck. Dermacentor variabilis was more likely to be found on the cranial aspect of cats' limbs, compared to I. scapularis. Up-to-date information on infestation patterns can be used to inform veterinary professionals and pet owners of common attachment sites based on established ticks in their region and thus conduct targeted tick checks.
Collapse
|
26
|
Sykes JE. Tick-Borne Diseases. Vet Clin North Am Small Anim Pract 2023; 53:141-154. [DOI: 10.1016/j.cvsm.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Bedoya F, Beugnet F, Tobias E, Garcia-Mendizabal E, Hay-Parker S, Montes N, Uribe J, Mondaca E. Geographical analysis of seroprevalence of Ehrlichia spp., Anaplasma spp ., Borrelia burgdorferi and Dirofilaria immitis, in clinics and dog shelters in different Mexican states. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 3:100112. [PMID: 36687783 PMCID: PMC9852277 DOI: 10.1016/j.crpvbd.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
This study aimed to determine the seroprevalence and geographical distribution of Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi and Dirofilaria immitis in dogs in Mexico, including owned dogs from veterinary clinics with regular medical care and shelter dogs. The Mexican territory was divided into eight geographical regions; 22 out of 32 states were included; 110 veterinary clinics and 53 dog shelters participated. SNAP® 4Dx Plus® (IDEXX® Laboratories) was used to detect antibodies against Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi and Dirofilaria immitis antigens. A total of 3522 apparently healthy dogs were tested, 1648 from clinics and 1874 from shelters. The highest seroprevalence of infection/exposure was found for Ehrlichia spp. (30.9%), followed by Anaplasma spp. (14.6%), D. immitis (5.3%) and B. burgdorferi (0.1%). Significantly more positive dogs were older than 3 years. Regarding differences between facility types, there were only differences for D. immitis which was more prevalent in clinics than in shelters (OR = 1.97; 95% CI: 1.45-2.69; P < 0.0001). Co-infections were detected in 38.4% of the positive samples. Dogs from Mexican states located on the Atlantic and the Pacific coast were significantly more at risk for Ehrlichia spp. and Anaplasma spp. infections than dogs from interior states. Dogs in Atlantic coastal states were more at risk for Dirofilaria immitis infection.
Collapse
Affiliation(s)
- Felipe Bedoya
- Boehringer Ingelheim Animal Health Mexico, Calle Maíz No. 49, Xaltocan, Xochimilco, Mexico City, 16090, Mexico
| | - Frederic Beugnet
- Boehringer Ingelheim Animal Health, Lyon, France
- Corresponding author.
| | - Emilia Tobias
- Boehringer Ingelheim Animal Health Mexico, Calle Maíz No. 49, Xaltocan, Xochimilco, Mexico City, 16090, Mexico
| | - Erick Garcia-Mendizabal
- Boehringer Ingelheim Animal Health Mexico, Calle Maíz No. 49, Xaltocan, Xochimilco, Mexico City, 16090, Mexico
| | - Samantha Hay-Parker
- Boehringer Ingelheim Animal Health Mexico, Calle Maíz No. 49, Xaltocan, Xochimilco, Mexico City, 16090, Mexico
| | - Nancy Montes
- Boehringer Ingelheim Animal Health Mexico, Calle Maíz No. 49, Xaltocan, Xochimilco, Mexico City, 16090, Mexico
| | - Jose Uribe
- Boehringer Ingelheim Animal Health Mexico, Calle Maíz No. 49, Xaltocan, Xochimilco, Mexico City, 16090, Mexico
| | | |
Collapse
|
28
|
A Retrospective Study with a Commercial Vaccine against Lyme Borreliosis in Dogs Using Two Different Vaccination Schedules: Characterization of the Humoral Immune Response. Vaccines (Basel) 2022; 11:vaccines11010043. [PMID: 36679888 PMCID: PMC9867253 DOI: 10.3390/vaccines11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Lyme borreliosis, a multisystemic disease caused by spirochetes of the genus Borrelia, is the most common tick-borne disease in the northern hemisphere. Differently from human medicine, several vaccines are available for dogs. To provide the best protection possible, vaccination schemes should be adapted regularly to meet the needs resulting from an increased tick exposure risk due to an inescapable climate change. In this retrospective study, a total of 183 vaccinations were performed with a commercial, multivalent vaccine against Lyme borreliosis, and vaccinated dogs were monitored over an observation period of 13 months. Dogs were either vaccinated on days 0 and 21 and a booster on day 365 (standard vaccination schedule), or with an additional booster vaccination on day 180. Canine serum samples were then tested for their borrelia-specific antibody levels using a two-tiered test system consisting of a kinetic ELISA followed by a line immunoassay. Dogs vaccinated with the standard vaccination schedule displayed decreasing antibody levels between days 120 and 360, which is probably insufficient to prevent an infection with borreliae. In contrast, the additional booster vaccination received on day 180 intercepts this decline in antibody levels between days 225 and 360, providing a sufficient immunity to prevent infection. The results from this retrospective study allow us to recommend a basic vaccination schedule with an additional booster vaccination on day 180 to ensure the best possible protection for dogs against Lyme borreliosis.
Collapse
|
29
|
Jacob AE, Weese JS, Rosseau J, Clow KM. Spatial patterns of Borrelia burgdorferi, Borrelia miyamotoi and Anaplasma phagocytophilum detected in Ixodes spp. ticks from Canadian companion animals, 2019-2020. Zoonoses Public Health 2022; 69:944-955. [PMID: 35982297 DOI: 10.1111/zph.12992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Increasing temperatures due to climate change have contributed to a northward range expansion of Ixodes scapularis ticks in Canada. These ticks harbour pathogens of public and animal health significance, including Borrelia burgdorferi and Anaplasma phagocytophilum, which cause Lyme disease and anaplasmosis, respectively, in humans, dogs and horses, and Borrelia miyamotoi, which causes a flu-like relapsing fever in humans. To address the risks associated with these vector-borne zoonotic diseases, continuous tick surveillance is advised. This study examined spatial patterns of B. burgdorferi, B. miyamotoi and A. phagocytophilum from ticks submitted through a national study on ticks of companion animals. From 1 April 2019 to 31 March 2020, we received a total of 1541 eligible submissions from 94 veterinary clinics across Canada. Individual and pooled samples of a maximum of either 5 I. scapularis, I. pacificus or I. angustus samples from the same animal and of the same life stage were screened using real-time PCR targeting genes 23S rRNA for Borrelia spp. and msp2 for A. phagocytophilum. Confirmatory testing was conducted on all 23S rRNA positive samples using a duplex assay for ospA and flaB to differentiate B. burgdorferi and B. miyamotoi, respectively. Prevalence estimates were highest (>20%) for B. burgdorferi in southwestern Manitoba, eastern Ontario, southwestern Quebec, New Brunswick and Nova Scotia. Estimates of B. miyamotoi and A. phagocytophilum were much lower (<5%), except for higher A. phagocytophilum (>5%) estimates for southern Manitoba, eastern Ontario and Prince Edward Island. Findings from this study, combined with other surveillance approaches, can be used to guide veterinary and public health approaches for ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Anna E Jacob
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Institute for Medical Information Processing, Bioinformatics and Epidemiology, Ludwig Maximilian University, Munich, Germany
| | - Jeffrey Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joyce Rosseau
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
30
|
Ellis J, Marziani E, Aziz C, Brown CM, Cohn LA, Lea C, Moore GE, Taneja N. 2022 AAHA Canine Vaccination Guidelines. J Am Anim Hosp Assoc 2022; 58:213-230. [PMID: 36049241 DOI: 10.5326/jaaha-ms-canine-vaccination-guidelines] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
These guidelines are an update and extension of previous AAHA peer-reviewed canine vaccination guidelines published in 2017. Vaccination is a cornerstone of canine preventive healthcare and one of the most cost-effective ways of maintaining a dog's health, longevity, and quality of life. Canine vaccination also serves a public health function by forming a barrier against several zoonotic diseases affecting dogs and humans. Canine vaccines are broadly categorized as containing core and noncore immunizing antigens, with administration recommendations based on assessment of individual patient risk factors. The guidelines include a comprehensive table listing canine core and noncore vaccines and a recommended vaccination and revaccination schedule for each vaccine. The guidelines explain the relevance of different vaccine formulations, including those containing modified-live virus, inactivated, and recombinant immunizing agents. Factors that potentially affect vaccine efficacy are addressed, including the patient's prevaccination immune status and vaccine duration of immunity. Because animal shelters are one of the most challenging environments for prevention and control of infectious diseases, the guidelines also provide recommendations for vaccination of dogs presented at or housed in animal shelters, including the appropriate response to an infectious disease outbreak in the shelter setting. The guidelines explain how practitioners can interpret a patient's serological status, including maternally derived antibody titers, as indicators of immune status and suitability for vaccination. Other topics covered include factors associated with postvaccination adverse events, vaccine storage and handling to preserve product efficacy, interpreting product labeling to ensure proper vaccine use, and using client education and healthcare team training to raise awareness of the importance of vaccinations.
Collapse
Affiliation(s)
- John Ellis
- University of Saskatchewan, Department of Veterinary Microbiology, Saskatoon, Saskatchewan (J.E.)
| | | | - Chumkee Aziz
- Association of Shelter Veterinarians, Houston, Texas (C.A.)
| | - Catherine M Brown
- Massachusetts Department of Public Health, Boston, Massachusetts (C.M.B.)
| | - Leah A Cohn
- University of Missouri, Columbia, Missouri (L.A.C.)
| | | | - George E Moore
- Purdue University, College of Veterinary Medicine, West Lafayette, Indiana (G.E.M.)
| | - Neha Taneja
- A Paw Partnership, Veterinary Well-being Advocate, Centreville, Virginia (N.T.)
| |
Collapse
|
31
|
Alcon-Chino MET, De-Simone SG. Recent Advances in the Immunologic Method Applied to Tick-Borne Diseases in Brazil. Pathogens 2022; 11:pathogens11080870. [PMID: 36014992 PMCID: PMC9414916 DOI: 10.3390/pathogens11080870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Zoonotic-origin infectious diseases are one of the major concerns of human and veterinary health systems. Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. Many ticks’ transmitted infections are still endemic in the Americas, Europe, and Africa and represent approximately 17% of their infectious diseases population. Although our scientific capacity to identify and diagnose diseases is increasing, it remains a challenge in the case of tick-borne conditions. For example, in 2017, 160 cases of the Brazilian Spotted Fever (BSF, a tick-borne illness) were confirmed, alarming the notifiable diseases information system. Conversely, Brazilian borreliosis and ehrlichiosis do not require notification. Still, an increasing number of cases in humans and dogs have been reported in southeast and northeastern Brazil. Immunological methods applied to human and dog tick-borne diseases (TBD) show low sensitivity and specificity, cross-reactions, and false IgM positivity. Thus, the diagnosis and management of TBD are hampered by the personal tools and indirect markers used. Therefore, specific and rapid methods urgently need to be developed to diagnose the various types of tick-borne bacterial diseases. This review presents a brief historical perspective on the evolution of serological assays and recent advances in diagnostic tests for TBD (ehrlichiosis, BSF, and borreliosis) in humans and dogs, mainly applied in Brazil. Additionally, this review covers the emerging technologies available in diagnosing TBD, including biosensors, and discusses their potential for future use as gold standards in diagnosing these diseases.
Collapse
Affiliation(s)
- Mônica E. T. Alcon-Chino
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
- Laboratory of Epidemiology and Molecular Systematics, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: ; Tel.: +55-21-38658183
| |
Collapse
|
32
|
Panteleienko OV, Makovska IF, Tsarenko TM. Influence of ecological and climatic conditions on the spread of Borrelia burgdorferi in domestic dogs in Ukraine. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Lyme-borreliosis is a zoonotic, infectious disease that has a complex chain of transmission of the pathogen Borrelia burgdorferi sensu lato and includes the relationship between ixodid ticks, vertebrate hosts, humans and companion animals in the environment. The article shows general trends in the prevalence of canine Lyme-borreliosis in Ukraine depending on environmental, climatic and physiographic factors. The results of a comparative cartographic analysis of the prevalence of Lyme borreliosis among domestic dogs in Ukraine are presented by systematizing, mathematical and statistical processing of the data obtained by surveying veterinarians engaged in clinical veterinary practice. The paper includes generalized data on the clinical manifestations, methods of diagnosis and treatment of Lyme borreliosis in dogs. We determined the dependence of the prevalence of Lyme borreliosis in dogs on the types of physical and geographical territories – natural zones of Ukraine. Each of the natural zones differs in types of relief, climatic conditions, soil types, composition of fauna and flora, which affect the epizootic chain of Lyme disease. There is a clear correlation between the incidence of Lyme borreliosis in dogs and the types of natural areas. The highest incidence of Lyme borreliosis in dogs was observed in the forest-steppe zone and the zone of broad-leaved forests. A sharp decrease in the incidence of dogs was recorded in areas of mixed forests, the Ukrainian Carpathians and in the South of Ukraine in the steppe zone. The study also confirmed that the prevalence of Lyme disease among domestic dogs was influenced by the climatic factors, in particular: gross moisture of territories, average annual air temperature and soil temperature. In Ukraine, veterinarians in the vast majority of cases use serological diagnostic methods: immunochromatographic analysis, immunoenzymatic assay, and western blot, which are insufficient, since the presence of antibodies to the Lyme borreliosis pathogen is only a confirmation of the animal's contact with the antigen and may not indicate the presence of the disease in the clinical form. The generalized data on the use of antimicrobial drugs in the treatment of Lyme borreliosis in dogs indicate the predominant use of tetracycline antibiotics and cephalosporins. The majority of veterinarians reported symptoms of Lyme arthritis, somewhat fewer reported Lyme nephritis, neuroborreliosis, Lyme carditis and in rare cases, veterinarians observed erythema at the site of tick bite. About half of the veterinarians in Ukraine observed an increase in the incidence of Lyme disease in dogs, indicating a probable deterioration of the epizootic and epidemiological situation regarding Lyme borreliosis, especially in areas with favourable conditions for the circulation of Lyme borreliosis pathogens in natural and urban ecotopes. The results substantiate the need for the further study of the circulation of Borrelia burgdorferi sensu lato and their ability to cause disease in humans and animals, as well as the need to implement the principles of the One Health concept for the control and management of Lyme borreliosis.
Collapse
|
33
|
Seronegative Myasthenia Gravis with Concomitant SARS-CoV-2 Infection in a Dog. Vet Sci 2022; 9:vetsci9070318. [PMID: 35878335 PMCID: PMC9323121 DOI: 10.3390/vetsci9070318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is a disorder of neuromuscular transmission affecting the neuromuscular junction. The majority of cases involve an autoimmune attack against AChR, but a limited number of patients are seronegative for AChR antibodies. Viral infection is incriminated as a trigger for MG occurrence, and in a limited number of reports, infection with SARS-CoV-2 was found to be associated with MG expression in humans. In this report, we describe case of seronegative generalized MG in a 2-year-old crossbred female dog associated with SARS-CoV-2 infection due to close exposure to an infected owner.
Collapse
|
34
|
Carpenter A, Waltenburg MA, Hall A, Kile J, Killerby M, Knust B, Negron M, Nichols M, Wallace RM, Behravesh CB, McQuiston JH, the Vaccine Preventable Zoonotic Disease Working Group. Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines (Basel) 2022; 10:vaccines10070993. [PMID: 35891157 PMCID: PMC9319643 DOI: 10.3390/vaccines10070993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 01/18/2023] Open
Abstract
Zoonotic diseases represent a heavy global burden, causing important economic losses, impacting animal health and production, and costing millions of human lives. The vaccination of animals and humans to prevent inter-species zoonotic disease transmission is an important intervention. However, efforts to develop and implement vaccine interventions to reduce zoonotic disease impacts are often limited to the veterinary and agricultural sectors and do not reflect the shared burden of disease. Multisectoral collaboration, including co-development opportunities for human and animal vaccines, expanding vaccine use to include animal reservoirs such as wildlife, and strategically using vaccines to interrupt complex transmission cycles is needed. Addressing zoonoses requires a multi-faceted One Health approach, wherein vaccinating people and animals plays a critical role.
Collapse
|
35
|
Milich KA, Dong C, Rosenkrantz WS, Herrin BH. Seroprevalence of Borrelia burgdorferi in shelter dogs in Los Angeles County. Top Companion Anim Med 2022; 50:100676. [DOI: 10.1016/j.tcam.2022.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
36
|
Monitoring of ticks and their pathogens from companion animals obtained by the "tekenscanner" application in The Netherlands. Parasitol Res 2022; 121:1887-1893. [PMID: 35451704 PMCID: PMC9023694 DOI: 10.1007/s00436-022-07518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/05/2022] [Indexed: 11/07/2022]
Abstract
Ticks are vectors for many pathogens of veterinary and medical interest. In order to monitor ticks and tick-borne pathogens, the “Tekenscanner” (Dutch for Tick scanner), a citizen science project, was launched in The Netherlands. It is a smartphone application for pet-owners to get ticks from their dog or cat, identified and checked for pathogens for free. At the same time, information about the pet and the geographic location of tick infestation becomes available for research. The application was launched in 2018, and the results of the first 6 months after launch of the app were reported. Ticks were identified based on morphology, and DNA was extracted and amplified by a panel of tick-borne pathogen-specific primers. Next, the amplicons were subjected to reverse line blot with specific probes for important pathogens to determine their presence or absence. The present paper describes the results of 2019 and 2020. There were 2260 ticks collected from 871 dogs and 255 cats (26 ticks were from an unknown host) and all pet owners were informed about the results. Four species of ticks were collected: Ixodes ricinus (90.0%), Ixodes hexagonus (7.3%), Dermacentor reticulatus (2.8%) and Rhipicephalus sanguineus (0.1%). Ixodes ricinus was the tick with the most divergent pathogens: Anaplasma sp. (1.3%), Babesia sp. (0.8%), Borrelia spp. (4.8%), Neoehrlichia sp. (3.7%) and Rickettsia helvetica (12.6%). In I. hexagonus, R. helvetica (1.8%) and Babesia sp. (0.6%) were detected and Rickettsia raoultii in D. reticulatus (16.2%). One of the two nymphs of R. sanguineus was co-infected with Borrelia and R. helvetica and the other one was uninfected. The high numbers of different pathogens found in this study suggest that companion animals, by definition synanthropic animals, and their ticks can serve as sentinels for emerging tick-borne pathogens.
Collapse
|
37
|
Bajer A, Kowalec M, Levytska VA, Mierzejewska EJ, Alsarraf M, Poliukhovych V, Rodo A, Wężyk D, Dwużnik-Szarek D. Tick-Borne Pathogens, Babesia spp. and Borrelia burgdorferi s.l., in Sled and Companion Dogs from Central and North-Eastern Europe. Pathogens 2022; 11:pathogens11050499. [PMID: 35631020 PMCID: PMC9144822 DOI: 10.3390/pathogens11050499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Ticks are important vectors of numerous pathogens of medical and veterinary significance. The aim of the current study was to determine the prevalence of Babesia spp. and Borrelia burgdorferi s.l. in sled and pet dogs from Central and North-Eastern Europe. Neither Babesia spp. nor Borrelia burgdorferi s.l. infections were detected in sled dogs from seven countries (Poland, Lithuania, Latvia, Estonia, Belarus, Russia and Finland). The DNA of Babesia spp. was detected in 100% of symptomatic and 5.4% of asymptomatic pet dogs from Poland. Similarly, the DNA of Babesia spp. was identified in 82% of symptomatic and 3.8% of asymptomatic pet dogs from Ukraine. The DNA of Borrelia burgdorferi s.l. was detected in 4.4% of pet dogs. Molecular typing confirmed the presence of Babesia canis and Borrelia burgdorferi sensu stricto (s.s.) in selected samples. Four dogs were co-infected by B. canis and Borrelia burgdorferi s.l. Tick-borne pathogens constitute a serious health threat to pet dogs in Central and South-Eastern Europe, but were not observed among sled dogs from the same region of Europe nor in the Baltic countries.
Collapse
Affiliation(s)
- Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.K.); (E.J.M.); (M.A.); (D.W.); (D.D.-S.)
- Correspondence: ; Tel.: +48-225-541-117
| | - Maciej Kowalec
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.K.); (E.J.M.); (M.A.); (D.W.); (D.D.-S.)
| | - Viktoriya A. Levytska
- Department of Infection and Invasive Diseases, Faculty of Veterinary Medicine and Technology in Animal Husbandry, State Agrarian and Engineering University in Podilia, 32300 Kamianets-Podilskyi, Ukraine; (V.A.L.); (V.P.)
| | - Ewa Julia Mierzejewska
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.K.); (E.J.M.); (M.A.); (D.W.); (D.D.-S.)
| | - Mustafa Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.K.); (E.J.M.); (M.A.); (D.W.); (D.D.-S.)
| | - Vasyl Poliukhovych
- Department of Infection and Invasive Diseases, Faculty of Veterinary Medicine and Technology in Animal Husbandry, State Agrarian and Engineering University in Podilia, 32300 Kamianets-Podilskyi, Ukraine; (V.A.L.); (V.P.)
| | - Anna Rodo
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences—SGGW, 02-766 Warsaw, Poland;
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.K.); (E.J.M.); (M.A.); (D.W.); (D.D.-S.)
| | - Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.K.); (E.J.M.); (M.A.); (D.W.); (D.D.-S.)
| |
Collapse
|
38
|
Preyß-Jägeler C, Hartmann K, Dorsch R. [Role of systemic infections in canine kidney diseases]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2022; 50:124-136. [PMID: 35523166 DOI: 10.1055/a-1811-6186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kidney diseases represent a common problem as well as a frequent cause of death in dogs. Infectious agents may be responsible for glomerulopathies and acute kidney injuries. Many infections commonly associated with the development of immune complex glomerulonephritis in central and southern Europe are important as travel-associated diseases in Germany. These include leishmaniosis, dirofilariosis, and ehrlichiosis. Rarely, anaplasmosis, hepatozoonosis, Lyme disease as well as babesiosis caused by small Babesia spp. are detected as cause of canine immune complex glomerulonephritis in Germany. Leptospirosis, canine infectious hepatitis, and babesiosis caused by large Babesia spp. may be responsible for the development of acute kidney injuries associated with tubulointerstitial nephritis. Therefore, further diagnostics aiming at identifying potentially causative infectious agents in dogs with renal disease is important for both prognosis and therapy of the patient.
Collapse
Affiliation(s)
- Christine Preyß-Jägeler
- Medizinische Kleintierklinik, Zentrum für klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Katrin Hartmann
- Medizinische Kleintierklinik, Zentrum für klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Roswitha Dorsch
- Medizinische Kleintierklinik, Zentrum für klinische Tiermedizin, Ludwig-Maximilians-Universität München
| |
Collapse
|
39
|
Jimenez IA, Pool RR, Fischetti AJ, Gabrielson K, Canapp SO. Neoplastic transformation of arteriopathy‐derived bone infarct into nascent osteosarcoma in the proximal tibia of a miniature schnauzer. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Isabel A. Jimenez
- Veterinary Orthopedic and Sports Medicine Group Annapolis Junction Maryland USA
- Department of Molecular and Comparative Pathobiology The Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Roy R. Pool
- Department of Veterinary Pathobiology Texas A&M College of Veterinary Medicine & Biomedical Sciences College Station Texas USA
| | | | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology The Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Sherman O. Canapp
- Veterinary Orthopedic and Sports Medicine Group Annapolis Junction Maryland USA
| |
Collapse
|
40
|
Malter KB, Tugel ME, Gil-Rodriguez M, Guardia GDL, Jackson SW, Ryan WG, Moore GE. Variability in non-core vaccination rates of dogs and cats in veterinary clinics across the United States. Vaccine 2022; 40:1001-1009. [PMID: 35034833 DOI: 10.1016/j.vaccine.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Vaccination guidelines for dogs and cats indicate that core vaccines (for dogs, rabies, distemper, adenovirus, parvovirus; for cats, feline parvovirus, herpes virus-1, calicivirus) are essential to maintain health, and that non-core vaccines be administered according to a clinician's assessment of a pet's risk of exposure and susceptibility to infection. A reliance on individual risk assessment introduces the potential for between-practice inconsistencies in non-core vaccine recommendations. A study was initiated to determine non-core vaccination rates of dogs (Leptospira, Borrelia burgdorferi, Bordetella bronchiseptica, canine influenza virus) and cats (feline leukemia virus) in patients current for core vaccines in veterinary practices across the United States. Transactional data for 5,531,866 dogs (1,670 practices) and 1,914,373 cats (1,661 practices) were retrieved from practice management systems for the period November 1, 2016 through January 1, 2020, deidentified and normalized. Non-core vaccination status was evaluated in 2,798,875 dogs and 788,772 cats that were core-vaccine current. Nationally, median clinic vaccination rates for dogs were highest for leptospirosis (70.5%) and B. bronchiseptica (68.7%), and much lower for canine influenza (4.8%). In Lyme-endemic states, the median clinic borreliosis vaccination rate was 51.8%. Feline leukemia median clinic vaccination rates were low for adult cats (34.6%) and for kittens and 1-year old cats (36.8%). Individual clinic vaccination rates ranged from 0 to 100% for leptospirosis, B. bronchiseptica and feline leukemia, 0-96% for canine influenza, and 0-94% for borreliosis. Wide variation in non-core vaccination rates between clinics in similar geographies indicates that factors other than disease risk are driving the use of non-core vaccines in pet dogs and cats, highlighting a need for veterinary practices to address gaps in patient protection. Failure to implement effective non-core vaccination strategies leaves susceptible dogs and cats unprotected against vaccine-preventable diseases.
Collapse
Affiliation(s)
| | - Mara E Tugel
- Elanco Animal Health, Greenfield, IN 46410, USA.
| | | | | | | | | | - George E Moore
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
41
|
Hart CE, Bhaskar JR, Reynolds E, Hermance M, Earl M, Mahoney M, Martinez A, Petzlova I, Esterly AT, Thangamani S. Community engaged tick surveillance and tickMAP as a public health tool to track the emergence of ticks and tick-borne diseases in New York. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000215. [PMID: 36962313 PMCID: PMC10022224 DOI: 10.1371/journal.pgph.0000215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/09/2022] [Indexed: 12/29/2022]
Abstract
A community engaged passive surveillance program was utilized to acquire ticks and associated information throughout New York state. Ticks were speciated and screened for several tick-borne pathogens. Of these ticks, only I. scapularis was commonly infected with pathogens of human relevance, including B. burgdorferi, B. miyamotoi, A. phagocytophilum, B. microti, and Powassan virus. In addition, the geographic and temporal distribution of tick species and pathogens was determined. This enabled the construction of a powerful visual analytical mapping tool, tickMAP to track the emergence of ticks and tick-borne pathogens in real-time. The public can use this tool to identify hot-spots of disease emergence, clinicians for supportive evidence during differential diagnosis, and researchers to better understand factors influencing the emergence of ticks and tick-borne diseases in New York. Overall, we have created a community-engaged tick surveillance program and an interactive visual analytical tickMAP that other regions could emulate to provide real-time tracking and an early warning for the emergence of tick-borne diseases.
Collapse
Affiliation(s)
- Charles E Hart
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Jahnavi Reddy Bhaskar
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Erin Reynolds
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Meghan Hermance
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Martin Earl
- Moonshot Team, Information Management and Technology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Matthew Mahoney
- Moonshot Team, Information Management and Technology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ana Martinez
- Moonshot Team, Information Management and Technology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ivona Petzlova
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Allen T Esterly
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
42
|
Pinello KC, Palmieri C, Ruiz J, Zaidan Dagli ML, Niza-Ribeiro J. Risks and benefits of the interaction with companion animals. One Health 2022. [DOI: 10.1016/b978-0-12-822794-7.00012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Morelli S, Diakou A, Di Cesare A, Colombo M, Traversa D. Canine and Feline Parasitology: Analogies, Differences, and Relevance for Human Health. Clin Microbiol Rev 2021; 34:e0026620. [PMID: 34378954 PMCID: PMC8404700 DOI: 10.1128/cmr.00266-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cats and dogs are treated as family members by most pet owners. Therefore, a high quality of veterinary care and preventive medicine is imperative for animal health and welfare and for the protection of humans from zoonotic pathogens. There is a general perception of cats being treated as "small dogs," especially in the field of clinical parasitology. As a result, several important differences between the two animal species are not taken into proper consideration and are often overlooked. Dogs and cats are profoundly different under evolutionary, biological, ethological, behavioral, and immunological standpoints. These differences impact clinical features, diagnosis, and control of canine and feline parasites and transmission risk for humans. This review outlines the most common parasitoses and vector-borne diseases of dogs and cats, with a focus on major convergences and divergences, and discusses parasites that have (i) evolved based on different preys for dogs and cats, (ii) adapted due to different immunological or behavioral animal profiles, and (iii) developed more similarities than differences in canine and feline infections and associated diseases. Differences, similarities, and peculiarities of canine and feline parasitology are herein reviewed in three macrosections: (i) carnivorism, vegetarianism, anatomy, genetics, and parasites, (ii) evolutionary adaptation of nematodes, including veterinary reconsideration and zoonotic importance, and (iii) behavior and immune system driving ectoparasites and transmitted diseases. Emphasis is given to provide further steps toward a more accurate evaluation of canine and feline parasitology in a changing world in terms of public health relevance and One Health approach.
Collapse
Affiliation(s)
- Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Anastasia Diakou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angela Di Cesare
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Donato Traversa
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
44
|
Beasley EA, Pessôa-Pereira D, Scorza BM, Petersen CA. Epidemiologic, Clinical and Immunological Consequences of Co-Infections during Canine Leishmaniosis. Animals (Basel) 2021; 11:3206. [PMID: 34827938 PMCID: PMC8614518 DOI: 10.3390/ani11113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Canine leishmaniosis (CanL) is a vector-borne, parasitic disease. CanL is endemic in the Mediterranean basin and South America but also found in Northern Africa, Asia, and the U.S. Regions with both competent sand fly vectors and L. infantum parasites are also endemic for additional infectious diseases that could cause co-infections in dogs. Growing evidence indicates that co-infections can impact immunologic responses and thus the clinical course of both CanL and the comorbid disease(s). The aim for this review is to summarize epidemiologic, clinical, and immunologic factors contributing to eight primary co-infections reported with CanL: Ehrlichia spp., Anaplasma spp., Borrelia spp., Babesia spp., Trypanosoma cruzi, Toxoplasma gondii, Dirofilaria immitis, Paracoccidioides braziliensis. Co-infection causes mechanistic differences in immunity which can alter diagnostics, therapeutic management, and prognosis of dogs with CanL. More research is needed to further explore immunomodulation during CanL co-infection(s) and their clinical impact.
Collapse
Affiliation(s)
- Erin A. Beasley
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Danielle Pessôa-Pereira
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna M. Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
45
|
Muz MN, Erat S, Mumcuoglu KY. Protozoan and Microbial Pathogens of House Cats in the Province of Tekirdag in Western Turkey. Pathogens 2021; 10:pathogens10091114. [PMID: 34578146 PMCID: PMC8466416 DOI: 10.3390/pathogens10091114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Domestic felines’ re-emerging infectious and neglected zoonotic diseases are a significant focus of global “One Health” efforts. This study aimed to rapidly diagnose 14 pathogens, including zoonoses by using PCR primers in 167 client-owned symptomatic cats, routinely accepted to the Veterinary Clinics of Tekirdag. The prevalence of pathogens investigated were as follows: Babesia canis canis (24%), Babesia microti (2.4%), Hepatozoon felis (10.8%), Cytauxzoon felis (6.6%), Bartonella henselae (40.1%), Anaplasma platys (30.5%), Anaplasma phagocytophilum (7.2%), Rickettsia felis (26.3%), Borrelia burgdorferi (21%), and hemotropic Mycoplasma sp. (11.4%). There was a significant difference between the prevalence of the pathogens (χ2 = 152.26, df = 9, p < 0.001). There was also a statistical difference between the gender of the cats in terms of the prevalence of all pathogens considered together (χ2 = 4.80, df = 1, p = 0.028), where the female cats showed a higher prevalence. This was not the case for the different age groups (χ2 = 2.92, df = 1, p = 0.088). The lowest infection was observed for B. microti (p < 0.001), while the highest infection was observed for B. henselae (p < 0.01). Leishmania donovani, Plasmodium spp., Ehrlichia chaffeensis, and Neoehrlichia mikurensis PCR test results were negative in all samples. In conclusion, house cats of Tekirdag are apparently highly susceptible to some neglected zoonoses important for “One Health”, and their prevalence in the region is most probably underestimated. Hence, applying PCR tests to assist fast clinic diagnosis in routine, may be an efficient option to protect the public as well as the cats from severe diseases.
Collapse
Affiliation(s)
- Mustafa Necati Muz
- Department of Parasitology, Faculty of Veterinary Medicine, University of Namik Kemal, Tekirdag 59000, Turkey
- Correspondence:
| | - Serkan Erat
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Kosta Y. Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel;
| |
Collapse
|
46
|
Vogt NA, Stevens CPG. Why the Rationale for Canine Borrelia burgdorferi Vaccination Is Unpersuasive. Front Vet Sci 2021; 8:719060. [PMID: 34458359 PMCID: PMC8385313 DOI: 10.3389/fvets.2021.719060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nadine A Vogt
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
47
|
Duplaix L, Wagner V, Gasmi S, Lindsay LR, Dibernardo A, Thivierge K, Fernandez-Prada C, Arsenault J. Exposure to Tick-Borne Pathogens in Cats and Dogs Infested With Ixodes scapularis in Quebec: An 8-Year Surveillance Study. Front Vet Sci 2021; 8:696815. [PMID: 34336980 PMCID: PMC8321249 DOI: 10.3389/fvets.2021.696815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
Cats that spend time outdoors and dogs are particularly at risk of exposure to ticks and the pathogens they transmit. A retrospective study on data collected through passive tick surveillance was conducted to estimate the risk of exposure to tick-borne pathogens in cats and dogs bitten by blacklegged ticks (Ixodes scapularis) in the province of Quebec, Canada, from 2010 to 2017. Blacklegged ticks collected from these host animals were tested by PCR for Borrelia burgdorferi sensu stricto, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti. A total of 13,733 blacklegged ticks were collected from 12,547 animals. Most ticks were adult females and partially engorged. In total, 1,774 cats were infested with ticks and 22.6 and 2.7% of these animals were bitten by at least one tick infected with B. burgdorferi and A. phagocytophilum, respectively. For the 10,773 tick infested dogs, 18.4% were exposed to B. burgdorferi positive ticks while 1.9% of infested dogs were exposed to ticks infected with A. phagocytophilum. The risk of exposure of both cats and dogs to B. miyamotoi and B. microti was lower since only 1.2 and 0.1% of ticks removed were infected with these pathogens, respectively. Traveling outside of the province of Quebec prior to tick collection was significantly associated with exposure to at least one positive tick for B. burgdorferi, A. phagocytophilum and B. microti. Animals exposed to B. burgdorferi or B. miyamotoi positive tick(s) were at higher risk of being concurrently exposed to A. phagocytophilum; higher risk of exposure to B. microti was also observed in animals concurrently exposed to B. burgdorferi. The odds of dogs having B. burgdorferi antibodies were higher when multiple ticks were collected on an animal. The testing and treatment strategies used on dogs bitten by infected ticks were diverse, and misconceptions among veterinarians regarding the treatment of asymptomatic but B. burgdorferi-seropositive dogs were noted. In conclusion, our study demonstrates that cats and dogs throughout Quebec are exposed to blacklegged ticks infected with B. burgdorferi and A. phagocytophilum, and veterinarians across the province need to be aware of this potential threat to the health of pets and their owners.
Collapse
Affiliation(s)
- Lauriane Duplaix
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Victoria Wagner
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses des Animaux de Production, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Salima Gasmi
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Policy Integration and Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Antonia Dibernardo
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Karine Thivierge
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada.,Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, QC, Canada
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses des Animaux de Production, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
48
|
Berzina I, Capligina V, Namina A, Visocka A, Ranka R. Haemotropic Mycoplasma species in pet cats in Latvia: a study, phylogenetic analysis and clinical case report. JFMS Open Rep 2021; 7:20551169211028088. [PMID: 34345434 PMCID: PMC8283089 DOI: 10.1177/20551169211028088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives The aim of this study was to evaluate whether haemotropic Mycoplasma species are detected in pet cats in Latvia, to perform a phylogenetic analysis of the detected pathogens and to report a clinical case of feline infectious anaemia. Methods Peripheral blood samples (n = 125) from pet cats were submitted; 99 samples were adequate to test for the presence of Mycoplasma species DNA by nested PCR. A clinical case was added in the later stages of the study. Positive isolates were subjected to phylogenetic analysis. Results The prevalence of ‘Candidatus Mycoplasma haemominutum’ was 15% (n = 15/99), that of Mycoplasma haemofelis was 5% (5/99) and that of ‘Candidatus Mycoplasma turicensis’ was 2% (n = 2/99). Cases of coinfection included ‘Candidatus M haemominutum’ + M haemofelis (4%; n = 4/99) and ‘Candidatus M haemominutum’ + ‘Candidatus M turicensis’ (1%; n = 1/99). This is the first published report of M haemofelis infection in the Baltic states. Two different ‘Candidatus M turicensis’ isolates were discovered after phylogenetic analysis. Conclusions and relevance This report is the first of an autochthonous feline infectious anaemia case in the Baltic region. The prevalence of Mycoplasma species was similar to that in other northern European countries. Phylogenetic analysis revealed variability of the isolates; one of the ‘Candidatus M turicensis’ genotypes was detected for the first time in Europe.
Collapse
Affiliation(s)
- Inese Berzina
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | | | - Agne Namina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alina Visocka
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
49
|
Detection of Borrelia spp., Ehrlichia canis, Anaplasma phagocytophilum, and Dirofilaria immitis in Eastern Coyotes (Canis latrans) in Nova Scotia, Canada. J Wildl Dis 2021; 57:678-682. [PMID: 33956091 DOI: 10.7589/jwd-d-20-00188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/14/2020] [Indexed: 11/20/2022]
Abstract
Borrelia burgdorferi and Borrelia miyamotoi are tickborne zoonotic pathogens in Canada. Both bacteria are vectored by ticks, Ixodes scapularis in Atlantic Canada, but require wildlife reservoir species to maintain the bacteria for retransmission to future generations of ticks. Coyotes (Canis latrans) are opportunistic feeders, resulting in frequent contact with other animals and with ticks. Because coyotes are closely related to domestic dogs (Canis lupus familiaris), it is probable that coyote susceptibility to Borrelia infection is similar to that of dogs. We collected livers and kidneys of eastern coyotes from licensed harvesters in Nova Scotia, Canada, and tested them using nested PCR for the presence of B. burgdorferi, B. miyamotoi, and Dirofilaria immitis. Blood obtained from coyote livers was also tested serologically for antibodies to B. burgdorferi, Ehrlichia canis, Anaplasma phagocytophilum, and D. immitis. Borrelia burgdorferi and D. immitis were detected by both nested PCR and serology tests. Seroreactivity to A. phagocytophilum was also found. Borrelia miyamotoi and E. canis were not detected. Our results show that coyotes in Nova Scotia have been exposed to a number of vectorborne pathogens.
Collapse
|
50
|
Camire AC, Hatke AL, King VL, Millership J, Ritter DM, Sobell N, Weber A, Marconi RT. Comparative analysis of antibody responses to outer surface protein (Osp)A and OspC in dogs vaccinated with Lyme disease vaccines. Vet J 2021; 273:105676. [PMID: 34148599 PMCID: PMC8254658 DOI: 10.1016/j.tvjl.2021.105676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
Lyme disease (LD), the most common tick-borne disease of canines and humans in N. America, is caused by the spirochete Borreliella burgdorferi. Subunit and bacterin vaccines are available for the prevention of LD in dogs. LD bacterin vaccines, which are comprised of cell lysates of two strains of B. burgdorferi, contain over 1000 different proteins and cellular constituents. In contrast, subunit vaccines are defined in composition and consist of either outer surface protein (Osp)A or OspA and an OspC chimeritope. In this study, we comparatively assessed antibody responses to OspA and OspC induced by vaccination with all canine bacterin and subunit LD vaccines that are commercially available in North America. Dogs were administered a two-dose series of the vaccine to which they were assigned (3 weeks apart): Subunit-AC, Subunit-A, Bacterin-1, and Bacterin-2. Antibody titers to OspA and OspC were determined by ELISA and the ability of each vaccine to elicit antibodies that recognize diverse OspC proteins (referred to as OspC types) assessed by immunoblot. While all of the vaccines elicited similar OspA antibody responses, only Subunit-AC triggered a robust and broadly cross-reactive antibody response to divergent OspC proteins. The data presented within provide new information regarding vaccination-induced antibody responses to key tick and mammalian phase antigens by both subunit and bacterin LD canine vaccine formulations.
Collapse
Affiliation(s)
- A C Camire
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, McGuire Hall Room 101, Richmond, VA 23298-0678, USA
| | - A L Hatke
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, McGuire Hall Room 101, Richmond, VA 23298-0678, USA
| | - V L King
- Zoetis Inc., 333 Portage Road, Kalamazoo, MI 49007-4931, USA
| | - J Millership
- Zoetis Inc., 333 Portage Road, Kalamazoo, MI 49007-4931, USA
| | - D M Ritter
- Zoetis Inc., 333 Portage Road, Kalamazoo, MI 49007-4931, USA
| | - N Sobell
- Zoetis Inc., 333 Portage Road, Kalamazoo, MI 49007-4931, USA
| | - A Weber
- Zoetis Inc., 333 Portage Road, Kalamazoo, MI 49007-4931, USA
| | - R T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, McGuire Hall Room 101, Richmond, VA 23298-0678, USA.
| |
Collapse
|