1
|
Laine S, Sjöros T, Garthwaite T, Honka MJ, Löyttyniemi E, Norha J, Eskola O, Koivumäki M, Vähä-Ypyä H, Sievänen H, Vasankari T, Hirvonen J, Laitinen K, Houttu N, Kalliokoski KK, Saunavaara V, Knuuti J, Heinonen IHA. Effects of reducing sedentary behavior on liver insulin sensitivity, liver fat content, and liver enzyme levels: a six-month randomized controlled trial. Am J Physiol Endocrinol Metab 2025; 328:E756-E771. [PMID: 40244864 DOI: 10.1152/ajpendo.00446.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
Metabolic syndrome increases the risk of developing noncommunicable diseases such as metabolic dysfunction-associated steatotic liver disease. The aim was to investigate the effects of sedentary behavior (SB) reduction on liver glucose uptake (LGU), endogenous glucose production (EGP), liver fat content (LFC), and liver enzyme levels [alanine aminotransferase (ALT), aspartate aminotransferase, and γ-glutamyltransferase]. Forty-four sedentary (daily SB time ≥ 10 h), physically inactive middle-aged adults with metabolic syndrome were randomized into intervention (INT; n = 23, 21 completed) and control (CON; n = 21, 19 completed) groups. For 6 mo, INT aimed to limit SB by 1 h/day, whereas CON aimed to maintain usual habits. SB and physical activity (PA) were measured continuously with hip-worn accelerometers. Before and at the end of the intervention, LGU was measured using positron emission tomography during the hyperinsulinemic-euglycemic clamp. EGP was calculated, and LFC was measured by magnetic resonance spectroscopy. INT reduced SB by 51 [95% confidence interval (CI): 22, 78] min/day and increased moderate-to-vigorous physical activity (MVPA) by 22 (95% CI: 12, 33) min/day, with no significant change in CON. Differences in liver health markers between the groups were not significant. However, according to the exploratory analyses among participants who successfully reduced SB, ALT decreased (-1.1 [95% CI: 0.93, 1.36] U/L) compared with the continuously sedentary participants (+0.8 [95% CI: 0.65, 1.05] U/L) (group × time, P = 0.006). To enhance liver health, reducing SB for longer durations and/or increasing the intensity of PA may be necessary. However, successfully reducing SB may lead to better levels of circulating ALT liver enzymes.NEW & NOTEWORTHY Aiming to reduce sedentary behavior (SB) by 1 h/day did not significantly influence liver health markers, suggesting that more substantial reductions or a different approach might be necessary to see improvements. However, achieving the desired behavioral change could lead to improvements in ALT levels. This study is the first to analyze how reducing SB and replacing it with nonguided physical activity impacts liver health in adults with metabolic syndrome, offering insights for future intervention strategies.
Collapse
Affiliation(s)
- Saara Laine
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Tanja Sjöros
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Taru Garthwaite
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Miikka-Juhani Honka
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Jooa Norha
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Henri Vähä-Ypyä
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Tommi Vasankari
- The UKK Institute for Health Promotion Research, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine and Nutrition and Food Research Center, University of Turku, Turku, Finland
| | - Noora Houttu
- Institute of Biomedicine and Nutrition and Food Research Center, University of Turku, Turku, Finland
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
- Division of Medical Imaging, Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Ilkka H A Heinonen
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
French SJ, Kanter M, Maki KC, Rust BM, Allison DB. The harms of high protein intake: conjectured, postulated, claimed, and presumed, but shown? Am J Clin Nutr 2025:S0002-9165(25)00254-0. [PMID: 40339907 DOI: 10.1016/j.ajcnut.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
High protein diets and protein supplemented foods and beverages have become increasingly popular in adults due to potential benefits relating to appetite, energy intake, body weight and body composition, and questions have been posed regarding whether current dietary recommendations for protein are too low. At the same time, health concerns relating to high protein diets have been widespread in the literature for more than 60 years. However, the conjectured harms of high protein diets, which remain prevalent in the lay, and sometimes, academic literature are often without strong scientific evidence or may actually be contradicted to a reasonable degree of certainty by scientific evidence. In this perspectives article, we discuss several of the postulated harms cited in academic and lay publications and investigate the strength of evidence to support or refute these asserted harms. We highlight areas of caution relating to experimental design and interpretation of results and propose areas of research that would be helpful to better determine the potential risks associated with high dietary protein intake.
Collapse
Affiliation(s)
- Stephen J French
- Indiana University School of Public Health-Bloomington, 1025 E 7th Street, PH 111, Bloomington, IN, 47405.
| | - Mitchell Kanter
- Mitchell Kanter Health and Nutrition Insights, LLC, Excelsior, MN
| | - Kevin C Maki
- Indiana University School of Public Health-Bloomington, 1025 E 7th Street, PH 111, Bloomington, IN, 47405; Midwest Biomedical Research, 211 E. Lake St., Suite 3, Addison, IL 60101
| | - Bret M Rust
- Indiana University School of Public Health-Bloomington, 1025 E 7th Street, PH 111, Bloomington, IN, 47405
| | - David B Allison
- Indiana University School of Public Health-Bloomington, 1025 E 7th Street, PH 111, Bloomington, IN, 47405.
| |
Collapse
|
3
|
Shariq A, Khan S, Usmani SUR. The Role of Dietary Protein in Mitigating the Risk of Nonalcoholic Fatty Liver Disease. Nutr Rev 2025:nuae229. [PMID: 39921657 DOI: 10.1093/nutrit/nuae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disease, mainly associated with excessive accumulation of fat in the liver. It has become a global health concern. The diagnosis of NAFLD is often done through liver biopsy; however, noninvasive methods have their own advantages. Dietary intervention, especially increased dietary protein alongside managing overall body weight, have been shown to be a promising strategy to lessen the impact of NAFLD. Dietary protein has been shown to reduce fat accumulation in the liver by increasing liver metabolism, eliciting satiety, improving insulin sensitivity, and enhancing muscle mass retention, collectively aiding in weight management. Both animal and plant proteins have benefits; however, plant proteins have demonstrated more metabolic advantages, while animal proteins have more downsides. Bridging the protein gap is critical, particularly in areas with limited availability to high-quality protein or in populations where dietary protein intake is inadequate. This commentary highlights the importance of obtaining sufficient protein from readily available and sustainable food sources. Furthermore, diets high in protein, like the Mediterranean diet, have proven to delay the advancement and likelihood of NAFLD. In conclusion, adequate dietary protein plays a crucial part in diminishing the risk of NAFLD, and efforts in public health should concentrate on addressing protein deficiency to decrease the growing burden of liver disease.
Collapse
Affiliation(s)
- Abia Shariq
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Sarosh Khan
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
4
|
Rajewski P, Cieściński J, Rajewski P, Suwała S, Rajewska A, Potasz M. Dietary Interventions and Physical Activity as Crucial Factors in the Prevention and Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:217. [PMID: 39857800 PMCID: PMC11760440 DOI: 10.3390/biomedicines13010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide and affects nearly 30% of the adult population and 10% of the pediatric population. It is estimated that this number will double by 2030. MASLD is one of the leading causes of hepatocellular carcinoma, cirrhosis, and liver transplantation, as well as a significant risk factor for cardiovascular disease and mortality. Due to the ever-increasing number of patients, the long-term asymptomatic course of the disease, serious complications, and lack of preventive programs, as well as insufficient awareness of the disease among patients and doctors themselves, MASLD is a growing interdisciplinary problem and a real challenge for modern medicine. The main cause of MASLD is an inappropriate lifestyle-inadequate nutrition and insufficient physical activity, which lead to various components of metabolic syndrome. Lifestyle changes-appropriate diet, weight reduction, and systematic physical activity-are also the basis for the prevention and treatment of MASLD. Hence, in recent years, so much importance has been attached to lifestyle medicine, to non-pharmacological treatment as prevention of lifestyle diseases. The narrative review presents possible therapeutic options for non-pharmacological management in the prevention and treatment of MASLD. The best documented and available diets used in MASLD were discussed, focusing on the benefits and drawbacks of the Mediterranean, high-protein, ketogenic, and intermittent fasting diets. In addition, the most recent recommendations regarding physical activity are summarized.
Collapse
Affiliation(s)
- Paweł Rajewski
- Department of Internal and Infectious Diseases, Provincial Infectious Disease Hospital, 85-030 Bydgoszcz, Poland
- Faculty of Health Sciences, University of Health Sciences in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Jakub Cieściński
- Department of Radiology, Provincial Infectious Disease Hospital, 85-030 Bydgoszcz, Poland;
| | - Piotr Rajewski
- Department of Neurology, Collegium Medicum—Faculty of Medicine, Nicolaus Copernicus University in Toruń, 85-094 Bygoszcz, Poland;
| | - Szymon Suwała
- Department of Endocrinology and Diabetology, Collegium Medicum—Faculty of Medicine, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Alicja Rajewska
- University Clinical Hospital, 60-355 Poznań, Poland; (A.R.); (M.P.)
| | - Maciej Potasz
- University Clinical Hospital, 60-355 Poznań, Poland; (A.R.); (M.P.)
| |
Collapse
|
5
|
Zeng XF, Varady KA, Wang XD, Targher G, Byrne CD, Tayyem R, Latella G, Bergheim I, Valenzuela R, George J, Newberry C, Zheng JS, George ES, Spearman CW, Kontogianni MD, Ristic-Medic D, Peres WAF, Depboylu GY, Yang W, Chen X, Rosqvist F, Mantzoros CS, Valenti L, Yki-Järvinen H, Mosca A, Sookoian S, Misra A, Yilmaz Y, Kim W, Fouad Y, Sebastiani G, Wong VWS, Åberg F, Wong YJ, Zhang P, Bermúdez-Silva FJ, Ni Y, Lupsor-Platon M, Chan WK, Méndez-Sánchez N, de Knegt RJ, Alam S, Treeprasertsuk S, Wang L, Du M, Zhang T, Yu ML, Zhang H, Qi X, Liu X, Pinyopornpanish K, Fan YC, Niu K, Jimenez-Chillaron JC, Zheng MH. The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: An international multidisciplinary expert consensus. Metabolism 2024; 161:156028. [PMID: 39270816 DOI: 10.1016/j.metabol.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of chronic liver disease worldwide. Optimal dietary intervention strategies for MAFLD are not standardized. This study aimed to achieve consensus on prevention of MAFLD through dietary modification. A multidisciplinary panel of 55 international experts, including specialists in hepatology, gastroenterology, dietetics, endocrinology and other medical specialties from six continents collaborated in a Delphi-based consensus development process. The consensus statements covered aspects ranging from epidemiology to mechanisms, management, and dietary recommendations for MAFLD. The recommended dietary strategies emphasize adherence to a balanced diet with controlled energy intake and personalized nutritional interventions, such as calorie restriction, high-protein, or low-carbohydrate diets. Specific dietary advice encouraged increasing the consumption of whole grains, plant-based proteins, fish, seafood, low-fat or fat-free dairy products, liquid plant oils, and deeply colored fruits and vegetables. Concurrently, it advised reducing the intake of red and processed meats, saturated and trans fats, ultra-processed foods, added sugars, and alcohol. Additionally, maintaining the Mediterranean or DASH diet, minimizing sedentary behavior, and engaging in regular physical activity are recommended. These consensus statements lay the foundation for customized dietary guidelines and proposing avenues for further research on nutrition and MAFLD.
Collapse
Affiliation(s)
- Xu-Fen Zeng
- Department of Clinical Nutrition, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Reema Tayyem
- Department of Human Nutrition, College of Health Science, Qatar University, Doha, Qatar
| | - Giovanni Latella
- Gastroenterology, Hepatology and Nutrition Division, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Carolyn Newberry
- Division of Gastroenterology, Weill Cornell Medical Center, New York, NY, USA
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Elena S George
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Meropi D Kontogianni
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University of Athens, Athens, Greece
| | - Danijela Ristic-Medic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Wilza Arantes Ferreira Peres
- Department of Nutrition and Dietetics, Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gamze Yurtdaş Depboylu
- Izmir Katip Celebi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İzmir, Türkiye
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden, and Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Luca Valenti
- Precision Medicine-Biological Resource Center, Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Antonella Mosca
- Hepatology and Liver Transplant Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, Translational Health Research Center (CENITRES), Maimónides University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Faculty of Health Science, Maimónides University, Buenos Aires, Argentina
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation (N-DOC), Diabetes Foundation (India) (DFI), New Delhi, India
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Fredrik Åberg
- Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Yu Jun Wong
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore; Duke-NUS Medical School, SingHealth, Singapore
| | - Pianhong Zhang
- Department of Clinical Nutrition, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Francisco-Javier Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, Málaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Yan Ni
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Monica Lupsor-Platon
- Department of Medical Imaging, Prof. Dr. Octavian Fodor Regional Institute of Gastroenterology and Hepathology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Wah Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Li Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tiejun Zhang
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, China
| | - Kaijun Niu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Josep C Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu, SJD-Barcelona Children's Hospital, Endocrine Division, Esplugues, Barcelona, Spain; Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet, Barcelona, Spain
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
6
|
Pletsch-Borba L, Wernicke C, Machann J, Meyer NM, Huong Nguyen T, Pohrt A, Hornemann S, Gerbracht C, Pfeiffer AF, Spranger J, Mai K. Increase in PUFA and protein, and decrease in carbohydrate intake improves liver fat in 12 months and the role of weight loss as a mediator: A randomized controlled trial. Clin Nutr 2024; 43:361-369. [PMID: 39577067 DOI: 10.1016/j.clnu.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND & AIMS Recently, a beneficial effect of high intake of unsaturated fatty acids (UFA) and protein on intrahepatic lipids (IHL) was demonstrated over 12 months within a randomized controlled trial (the NutriAct trial). We now aimed to explore the specific macronutrient components driving this IHL improvement within this trial in middle-aged and elderly subjects (50-80 y) at risk for age-related diseases. METHODS The NutriAct trial (n = 502) analyzed the effect of a high-protein and high-UFA diet on age related diseases including fatty liver disease. Individuals who completed 3-day food records with available IHL data both at baseline and at month 12 were included in this analysis. The impact of each macronutrient (E%) on IHL (measured by magnetic resonance spectroscopy) was analyzed by linear regression analyses and mediation analysis. Adherence in the intervention group was defined as intake at month 12 of ≥1 g protein/kg bodyweight or ≥25%E UFA intake; in the control group it was defined as intake of ≥15%E protein or ≥17%E UFA. RESULTS 248 participants were included in the analyses (34 % male, median age 66 y). Although BMI changed similarly in both groups within 12 months (mean change -0.41 kg/m2 in the control and -0.70 kg/m2 in the intervention group, p within groups <0.001, p between groups = 0.09), IHL improved more strongly in the compliant intervention participants than in compliant controls (estimate of relative change 0.21 % (95 % CI 0.01, 0.40), p = 0.03). Participants with stronger increase in protein and PUFA intake and a greater decrease in carbohydrate intake showed a stronger improvement in IHL (estimate for linear relative change -0.04 % (95%CI -0.06, -0.02), estimate 4th quartile vs. 1st quartile -0.40 % (95%CI -0.65, -0.16), and 0.32 % (95%CI 0.05, 0.59), respectively). These associations were partially mediated by BMI changes. Increase in PUFA intake was also directly associated with IHL improvement independently of BMI changes (estimate for linear relative change -0.03 % (95%CI -0.05, -0.01)). CONCLUSIONS Beneficial effects of increased protein and decreased carbohydrate intake on IHL are mediated by BMI changes in middle-aged and elderly subjects. The effect of high PUFA intake on IHL improvement was partly independent of weight loss. These results give insight into the understanding of a macronutrient specific effect on IHL changes in a long-term dietary intervention. CLINICAL TRIAL REGISTRATION The trial was registered at German Clinical Trials Register (drks.de) as DRKS00010049.
Collapse
Affiliation(s)
- Laura Pletsch-Borba
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Charlotte Wernicke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
| | - Nina Mt Meyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Thu Huong Nguyen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Anne Pohrt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Germany
| | - Silke Hornemann
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Christiana Gerbracht
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Andreas Fh Pfeiffer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Max Rubner Center for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Max Rubner Center for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Bednarczyk M, Dąbrowska-Szeja N, Łętowski D, Dzięgielewska-Gęsiak S, Waniczek D, Muc-Wierzgoń M. Relationship Between Dietary Nutrient Intake and Autophagy-Related Genes in Obese Humans: A Narrative Review. Nutrients 2024; 16:4003. [PMID: 39683397 PMCID: PMC11643440 DOI: 10.3390/nu16234003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is one of the world's major public health challenges. Its pathogenesis and comorbid metabolic disorders share common mechanisms, such as mitochondrial or endoplasmic reticulum dysfunction or oxidative stress, gut dysbiosis, chronic inflammation and altered autophagy. Numerous pro-autophagy dietary interventions are being investigated for their potential obesity-preventing or therapeutic effects. We summarize current data on the relationship between autophagy and obesity, and discuss various dietary interventions as regulators of autophagy-related genes in the prevention and ultimate treatment of obesity in humans, as available in scientific databases and published through July 2024. Lifestyle modifications (such as calorie restriction, intermittent fasting, physical exercise), including following a diet rich in flavonoids, antioxidants, specific fatty acids, specific amino acids and others, have shown a beneficial role in the induction of this process. The activation of autophagy through various nutritional interventions tends to elicit a consistent response, characterized by the induction of certain kinases (including AMPK, IKK, JNK1, TAK1, ULK1, and VPS34) or the suppression of others (like mTORC1), the deacetylation of proteins, and the alleviation of inhibitory interactions between BECN1 and members of the Bcl-2 family. Significant health/translational properties of many nutrients (nutraceuticals) can affect chronic disease risk through various mechanisms that include the activation or inhibition of autophagy. The role of nutritional intervention in the regulation of autophagy in obesity and its comorbidities is not yet clear, especially in obese individuals.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Nicola Dąbrowska-Szeja
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Dariusz Łętowski
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Zhang W, Zhang M, Sun Y, Liu S. Factors affecting the quality and nutritional value of donkey meat: a comprehensive review. Front Vet Sci 2024; 11:1460859. [PMID: 39309032 PMCID: PMC11412950 DOI: 10.3389/fvets.2024.1460859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Donkey meat is characterized by a high content of proteins, essential amino acids, and unsaturated fatty acids and is low in fat, cholesterol, and calories. Thus, it is considered a high-quality source of meat. Based on the data from PubMed and Web of science within past 10 years, this review summarizes the factors affecting the quality of donkey meat and its nutritional value, including breed, genetics, gender, age, muscle type, feeding regimen, storage and processing conditions. Breed, gender, age, and feeding regimen mainly affect the quality of donkey meat by influencing its intramuscular fat content and carcass quality. Meanwhile, the tenderness and flavor of donkey meat depend on the muscle type, storage and processing conditions. Genetics, on the other hand, fundamentally affect donkey meat quality by influencing the polymorphism of genes. These findings provide valuable insights and guidance for producers, consumers, and decision-makers in the donkey meat industry, promoting the development of more effective marketing strategies and the improvement of meat quality, thereby enabling the expansion and progress of the entire industry.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Min Zhang
- Shandong Provincial Animal Husbandry Station, Jinan, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Gene Bank of Equine Genetic Resources, Qingdao, China
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Gene Bank of Equine Genetic Resources, Qingdao, China
| |
Collapse
|
9
|
Sharma V, Patial V. Insights into the molecular mechanisms of malnutrition-associated steatohepatitis: A review. Liver Int 2024; 44:2156-2173. [PMID: 38775001 DOI: 10.1111/liv.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 08/10/2024]
Abstract
Malnutrition is a public health epidemic mainly targeting poverty-stricken people, young ones, older people, pregnant women, and individuals with metabolic disorders. Severe malnutrition is linked with several metabolic defects, such as hepatic dysfunction, hypertension, cardiovascular disease, and osteoarthritis. The proper functioning of the liver plays a crucial role in ensuring the supply of nutrients to the body. Consequently, inadequate nutrition can lead to severe periportal hepatic steatosis due to compromised mitochondrial and peroxisome functions. Reduced protein intake disrupts essential metabolic processes like the TCA cycle, oxidative phosphorylation, and β-oxidation, ultimately affecting ATP production. Furthermore, this can trigger a cascade of events, including disturbances in amino acid metabolism, iron metabolism, and gut microbiota, which activate genes involved in de novo lipogenesis, leading to the accumulation of lipids in the liver. The condition, in prolonged cases, progresses to steatohepatitis and liver fibrosis. Limited therapeutic solutions are available; however, few dietary supplements and drugs have demonstrated positive effects on the growth and health of malnourished individuals. These supplements improve parameters such as inflammatory and oxidative status, reduce triglyceride accumulation, enhance insulin sensitivity, and downregulate gene expression in hepatic lipid metabolism. This review elucidates the various mechanisms involved in malnutrition-associated steatohepatitis and provides an overview of the available approaches for treating this condition.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Liu Z, Jin P, Liu Y, Zhang Z, Wu X, Weng M, Cao S, Wang Y, Zeng C, Yang R, Liu C, Sun P, Tian C, Li N, Zeng Q. A comprehensive approach to lifestyle intervention based on a calorie-restricted diet ameliorates liver fat in overweight/obese patients with NAFLD: a multicenter randomized controlled trial in China. Nutr J 2024; 23:64. [PMID: 38872173 PMCID: PMC11170812 DOI: 10.1186/s12937-024-00968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a globally increasing health epidemic. Lifestyle intervention is recommended as the main therapy for NAFLD. However, the optimal approach is still unclear. This study aimed to evaluate the effects of a comprehensive approach of intensive lifestyle intervention (ILI) concerning enhanced control of calorie-restricted diet (CRD), exercise, and personalized nutrition counseling on liver steatosis and extrahepatic metabolic status in Chinese overweight and obese patients with NAFLD. METHODS This study was a multicenter randomized controlled trial (RCT) conducted across seven hospitals in China. It involved 226 participants with a body mass index (BMI) above 25. These participants were randomly assigned to two groups: the ILI group, which followed a low carbohydrate, high protein CRD combined with exercise and intensive counseling from a dietitian, and a control group, which adhered to a balanced CRD along with exercise and standard counseling. The main measure of the study was the change in the fat attenuation parameter (FAP) from the start of the study to week 12, analyzed within the per-protocol set. Secondary measures included changes in BMI, liver stiffness measurement (LSM), and the improvement of various metabolic indexes. Additionally, predetermined subgroup analyses of the FAP were conducted based on variables like gender, age, BMI, ethnicity, hyperlipidemia, and hypertension. RESULTS A total of 167 participants completed the whole study. Compared to the control group, ILI participants achieved a significant reduction in FAP (LS mean difference, 16.07 [95% CI: 8.90-23.25] dB/m) and BMI (LS mean difference, 1.46 [95% CI: 1.09-1.82] kg/m2) but not in LSM improvement (LS mean difference, 0.20 [95% CI: -0.19-0.59] kPa). The ILI also substantially improved other secondary outcomes (including ALT, AST, GGT, body fat mass, muscle mass and skeletal muscle mass, triglyceride, fasting blood glucose, fasting insulin, HbA1c, HOMA-IR, HOMA-β, blood pressure, and homocysteine). Further subgroup analyses showed that ILI, rather than control intervention, led to more significant FAP reduction, especially in patients with concurrent hypertension (p < 0.001). CONCLUSION In this RCT, a 12-week intensive lifestyle intervention program led to significant improvements in liver steatosis and other metabolic indicators in overweight and obese Chinese patients suffering from nonalcoholic fatty liver disease. Further research is required to confirm the long-term advantages and practicality of this approach. TRIAL REGISTRATION This clinical trial was registered on ClinicalTrials.gov (registration number: NCT03972631) in June 2019.
Collapse
Affiliation(s)
- Zhong Liu
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Piaopiao Jin
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuping Liu
- Department of Health Management, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Zhimian Zhang
- Health Management Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiangming Wu
- Zhejiang Nutriease Health Technology Company Limited, Hangzhou, 311121, China
| | - Min Weng
- Department of Nutrition, The First Affiliated Hospital, Kunming Medical University, Kunming, 650034, China
| | - Suyan Cao
- Health Management Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Wang
- Health Management Center, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rui Yang
- Healthcare Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenbing Liu
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ping Sun
- Department of Health Management, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Cuihuan Tian
- Health Management Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Nan Li
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiang Zeng
- Health Management Institute, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
11
|
Yu Y, Li X, Zheng M, Zhou L, Zhang J, Wang J, Sun B. The potential benefits and mechanisms of protein nutritional intervention on bone health improvement. Crit Rev Food Sci Nutr 2024; 64:6380-6394. [PMID: 36655469 DOI: 10.1080/10408398.2023.2168250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Osteoporosis commonly occurs in the older people and severe patients, with the main reason of the imbalance of bone metabolism (the rate of bone resorption exceeding the rate of bone formation), resulting in a decrease in bone mineral density and destruction of bone microstructure and further leading to the increased risk of fragility fracture. Recent studies indicate that protein nutritional support is beneficial for attenuating osteoporosis and improving bone health. This review summarized the classical mechanisms of protein intervention for alleviating osteoporosis on both suppressing bone resorption and regulating bone formation related pathways (promoting osteoblasts generation and proliferation, enhancing calcium absorption, and increasing collagen and mineral deposition), as well as the potential novel mechanisms via activating autophagy of osteoblasts, altering bone related miRNA profiles, regulating muscle-bone axis, and modulating gut microbiota abundance. Protein nutritional intervention is expected to provide novel approaches for the prevention and adjuvant therapy of osteoporosis.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Mengjun Zheng
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
12
|
Guan H, Xiao L, Hao K, Zhang Q, Wu D, Geng Z, Duan B, Dai H, Xu R, Feng X. SLC25A28 Overexpression Promotes Adipogenesis by Reducing ATGL. J Diabetes Res 2024; 2024:5511454. [PMID: 38736904 PMCID: PMC11088465 DOI: 10.1155/2024/5511454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Lin Xiao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Kaikai Hao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Dongliang Wu
- Department of Cardiology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| | - Zhanyi Geng
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Bowen Duan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Hui Dai
- Department of Clinical Medicine, Gansu Medical College, Pingliang 744000, China
| | - Ruifen Xu
- Department of Anesthesiology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Xuyang Feng
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
- Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| |
Collapse
|
13
|
Xu Y, Zhou C, Zong M, Zhu J, Guo X, Sun Z. High-protein high-konjac glucomannan diets changed glucose and lipid metabolism by modulating colonic microflora and bile acid profiles in healthy mouse models. Food Funct 2024; 15:4446-4461. [PMID: 38563504 DOI: 10.1039/d4fo00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
High protein and fiber diets are becoming increasingly popular for weight loss; however, the benefits or risks of high protein and fiber diets with a normal calorie level for healthy individuals still need to be elucidated. In this study, we explored the role and mechanisms of long-term high protein and/or konjac glucomannan diets on the metabolic health of healthy mouse models. We found that high konjac glucomannan contents improved the glucose tolerance of mice and both high protein and high konjac glucomannan contents improved the serum lipid profile but increased the TNF-α levels. In the liver, high dietary protein contents reduced the expression of the FASN gene related to fatty acid synthesis. Interactions of dietary protein and fiber were shown in the signaling pathways related to lipid and glucose metabolism of the liver and the inflammatory status of the colon, wherein the high protein and high konjac glucomannan diet downregulated the expression of the SREBF1 and FXR genes in the liver and downregulated the expression of TNF-α genes in the colon compared to the high protein diet. High konjac glucomannan contents reduced the colonic secondary bile acid levels including DCA and LCA; this was largely associated with the changed microbiota profile and also contributed to improved lipid and glucose homeostasis. In conclusion, high protein diets improved lipid homeostasis and were not a risk to metabolic health, while high fiber diets improved glucose and lipid homeostasis by modulating colonic microbiota and bile acid profiles, and a high protein diet supplemented with konjac glucomannan might improve hepatic lipid homeostasis and colonic inflammation in healthy mouse models through long-term intervention.
Collapse
Affiliation(s)
- Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Minyue Zong
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Junwei Zhu
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Xutong Guo
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
14
|
Vidal-Cevallos P, Sorroza-Martínez AP, Chávez-Tapia NC, Uribe M, Montalvo-Javé EE, Nuño-Lámbarri N. The Relationship between Pathogenesis and Possible Treatments for the MASLD-Cirrhosis Spectrum. Int J Mol Sci 2024; 25:4397. [PMID: 38673981 PMCID: PMC11050641 DOI: 10.3390/ijms25084397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.
Collapse
Affiliation(s)
- Paulina Vidal-Cevallos
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | | | - Norberto C. Chávez-Tapia
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | - Eduardo E. Montalvo-Javé
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
| |
Collapse
|
15
|
Botella J, Shaw CS, Bishop DJ. Autophagy and Exercise: Current Insights and Future Research Directions. Int J Sports Med 2024; 45:171-182. [PMID: 37582398 DOI: 10.1055/a-2153-9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Autophagy is a cellular process by which proteins and organelles are degraded inside the lysosome. Exercise is known to influence the regulation of autophagy in skeletal muscle. However, as gold standard techniques to assess autophagy flux in vivo are restricted to animal research, important gaps remain in our understanding of how exercise influences autophagy activity in humans. Using available datasets, we show how the gene expression profile of autophagy receptors and ATG8 family members differ between human and mouse skeletal muscle, providing a potential explanation for their differing exercise-induced autophagy responses. Furthermore, we provide a comprehensive view of autophagy regulation following exercise in humans by summarizing human transcriptomic and phosphoproteomic datasets that provide novel targets of potential relevance. These newly identified phosphorylation sites may provide an explanation as to why both endurance and resistance exercise lead to an exercise-induced reduction in LC3B-II, while possibly divergently regulating autophagy receptors, and, potentially, autophagy flux. We also provide recommendations to use ex vivo autophagy flux assays to better understand the influence of exercise, and other stimuli, on autophagy regulation in humans. This review provides a critical overview of the field and directs researchers towards novel research areas that will improve our understanding of autophagy regulation following exercise in humans.
Collapse
Affiliation(s)
- Javier Botella
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
16
|
Zou P, Wang L. Dietary pattern and hepatic lipid metabolism. LIVER RESEARCH 2023; 7:275-284. [PMID: 39958775 PMCID: PMC11791920 DOI: 10.1016/j.livres.2023.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2025]
Abstract
The liver is the leading site for lipid metabolism, involving not only fatty acid beta-oxidation but also de novo synthesis of endogenous triglycerides and ketogenesis. The liver maintains systemic lipid homeostasis by regulating lipid synthesis, catabolism, and transportation. Dysregulation of hepatic lipid metabolism precipitates disorders, such as non-alcoholic fatty liver disease (NAFLD), affecting the whole body. Thus, comprehending and studying hepatic lipid metabolism is crucial for preventing and treating metabolic liver diseases. Traditionally, researchers have investigated the impact of a single nutrient on hepatic lipid metabolism. However, real-life dietary patterns encompass diverse nutrients rather than single components. In recent years, there have been increased studies and notable progress regarding the effects of distinct dietary patterns on hepatic lipid metabolism. This review summarizes the influence of diverse dietary patterns on hepatic lipid metabolism, elucidating underlying molecular mechanisms and appraising the therapeutic potential of dietary patterns in managing hepatic steatosis.
Collapse
Affiliation(s)
- Peng Zou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
17
|
Ziamanesh F, Mohammadi M, Ebrahimpour S, Tabatabaei-Malazy O, Mosallanejad A, Larijani B. Unraveling the link between insulin resistance and Non-alcoholic fatty liver disease (or metabolic dysfunction-associated steatotic liver disease): A Narrative Review. J Diabetes Metab Disord 2023; 22:1083-1094. [PMID: 37975107 PMCID: PMC10638269 DOI: 10.1007/s40200-023-01293-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/24/2023] [Indexed: 11/19/2023]
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming a significant global health concern, representing the leading cause of chronic liver disease and posing a substantial public health challenge. NAFLD is associated with higher insulin resistance (IR) levels, a key pathophysiological mechanism contributing to its development and progression. To counter this growing trend, it is crucial to raise awareness about NAFLD and promote healthy lifestyles to mitigate the impact of this disease. Methods Relevant studies regarding IR and NAFLD published until May 30, 2023, were extracted from Google PubMed, Scopus, and Web Of Science web databases. The following keywords were used: IR, diabetes mellitus, Non-alcoholic fatty liver disease, and metabolic syndrome. Results IR leads to an accumulation of fatty acids within liver cells, resulting from increased glycolysis and decreased apolipoprotein B-100. Furthermore, the manifestations of NAFLD extend beyond liver-related morbidity and mortality, affecting multiple organs and giving rise to various non-communicable disorders such as diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, obstructive sleep apnea, and cardiovascular disease. Although lifestyle modification remains the primary treatment approach for NAFLD, alternative therapies, including pharmacological, herbal, and surgical interventions, may be considered. By implementing early and simple measures, cirrhosis, end-stage liver disease, and hepatocellular carcinoma can be prevented. Conclusions There is a clear association between NAFLD and elevated levels of IR. Several metabolic conditions, such as obesity, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome, are closely interrelated with NAFLD and IR. Raising awareness about NAFLD and promoting a healthy lifestyle are crucial steps to reverse the impact of this disease.
Collapse
Affiliation(s)
- Fateme Ziamanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Younossi ZM, Zelber-Sagi S, Henry L, Gerber LH. Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:708-722. [PMID: 37402873 DOI: 10.1038/s41575-023-00800-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dynamic chronic liver disease that develops in close association with metabolic irregularities. Between 2016 and 2019, the global prevalence among adults was reported as 38% and among children and adolescents it was about 10%. NAFLD can be progressive and is associated with increased mortality from cardiovascular disease, extrahepatic cancers and liver complications. Despite these numerous adverse outcomes, no pharmacological treatments currently exist to treat nonalcoholic steatohepatitis, the progressive form of NAFLD. Therefore, the main treatment is the pursuit of a healthy lifestyle for both children and adults, which includes a diet rich in fruits, nuts, seeds, whole grains, fish and chicken and avoiding overconsumption of ultra-processed food, red meat, sugar-sweetened beverages and foods cooked at high heat. Physical activity at a level where one can talk but not sing is also recommended, including leisure-time activities and structured exercise. Avoidance of smoking and alcohol is also recommended. Policy-makers, community and school leaders need to work together to make their environments healthy by developing walkable and safe spaces with food stores stocked with culturally appropriate and healthy food items at affordable prices as well as providing age-appropriate and safe play areas in both schools and neighbourhoods.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA.
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA.
- Inova Medicine, Inova Health System, Falls Church, VA, USA.
| | | | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| | - Lynn H Gerber
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| |
Collapse
|
19
|
Pappe CL, Peters B, Dommisch H, Woelber JP, Pivovarova-Ramich O. Effects of reducing free sugars on 24-hour glucose profiles and glycemic variability in subjects without diabetes. Front Nutr 2023; 10:1213661. [PMID: 37850088 PMCID: PMC10577299 DOI: 10.3389/fnut.2023.1213661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Background The Western diet, especially beverages and high processed food products, is high in sugars which are associated with the development of obesity and diabetes. The reduction of refined carbohydrates including free and added sugars improves glycemic control in individuals with diabetes, but the data regarding effects in subjects without diabetes are limited. Objective This study aimed to evaluate the effects of reducing free sugar intake on 24-h glucose profiles and glycemic variability using continuous glucose monitoring (CGM). Methods In the randomized controlled study, 21 normal weight and overweight/obese subjects (BMI 18-40 kg/m2) without diabetes were assigned to a 4-week reduced-sugar (RS) diet or control diet after a 2-week baseline phase. During the baseline phase, all participants were advised not to change their habitual diet. During the intervention phase, RS participants were asked to avoid added sugar and white flour products, whereas participants of the control group were requested to proceed their habitual diet. Anthropometric parameters and HbA1c were assessed before and at the end of the intervention phase. Interstitial glucose was measured using continuous glucose monitoring (CGM), and the food intake was documented by dietary records for 14 consecutive days during the baseline phase and for the first 14 consecutive days during the intervention phase. Mean 24-h glucose as well as intra- and inter-day indices of glucose variability, i.e., standard deviation (SD) around the sensor glucose level, coefficient of variation in percent (CV), mean amplitude of glucose excursions (MAGE), continuous overlapping net glycemic action (CONGA), and mean absolute glucose (MAG), were calculated for the baseline and intervention phases. Results During the intervention, the RS group decreased the daily intake of sugar (i.e., -22.4 ± 20.2 g, -3.28 ± 3.61 EN %), total carbohydrates (-6.22 ± 6.92 EN %), and total energy intake (-216 ± 108 kcal) and increased the protein intake (+2.51 ± 1.56 EN %) compared to the baseline values, whereby this intervention-induced dietary changes differed from the control group. The RS group slightly reduced body weight (-1.58 ± 1.33 kg), BMI, total fat, and visceral fat content and increased muscle mass compared to the baseline phase, but these intervention-induced changes showed no differences in comparison with the control group. The RS diet affected neither the 24-h mean glucose levels nor intra- and inter-day indices of glucose variability, HbA1c, or diurnal glucose pattern in the within- and between-group comparisons. Conclusion The dietary reduction of free sugars decreases body weight and body fat which may be associated with reduced total energy intake but does not affect the daily mean glucose and glycemic variability in individuals without diabetes. Clinical trial registration German Clinical Trials Register (DRKS); identifier: DRKS00026699.
Collapse
Affiliation(s)
- Christina Laeticia Pappe
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Beeke Peters
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Oberschleißheim, Germany
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Periodontology, Health Science Center, University of Washington, Seattle, WA, United States
| | - Johan Peter Woelber
- Policlinic of Operative Dentistry, Periodontology, and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Oberschleißheim, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Cogorno L, Formisano E, Vignati A, Prigione A, Tramacere A, Borgarelli C, Sukkar SG, Pisciotta L. Non-alcoholic fatty liver disease: Dietary and nutraceutical approaches. LIVER RESEARCH 2023; 7:216-227. [PMID: 39958388 PMCID: PMC11791914 DOI: 10.1016/j.livres.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD), defined as the presence of fat accumulation in imaging or histology in more than 5% of hepatocytes and exclusion of other causes for secondary hepatic fat accumulation, is one of the major causes of chronic liver disease worldwide. Metabolic syndrome is associated with an increased risk of progression from NAFLD to non-alcoholic steatohepatitis (NASH), fibrosis, and forthcoming liver failure. Also, genetic predisposition contributes to the risk of NAFLD development. This review explores the role of diets and nutraceuticals in delaying the development and the evolution of NAFLD to chronic liver disease. The Mediterranean diet, high-protein diet, low-carbohydrate/high-fat diet, high-carbohydrate/low-fat diet, and intermittent fasting are the dietary approaches investigated given the presence of relevant literature data. Moreover, this review focused on nutraceuticals with proven efficacy in ameliorating NAFLD and grouped them into four different categories: plant-based nutraceuticals (Ascophyllum nodosum and Fucus vesiculosus, Silymarin, Berberine, Curcumin, Resveratrol, Nigella sativa, Quercetin), vitamin-like substances (vitamin E, vitamin D, vitamin C, coenzyme Q10, inositol), fatty acids (omega-3), and microbiota-management tools (probiotics).
Collapse
Affiliation(s)
- Ludovica Cogorno
- Department of Experimental Medicine-Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Elena Formisano
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Andrea Vignati
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Amalia Prigione
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| |
Collapse
|
21
|
Li X, Zheng K, Gu W, Hou X, Guan Y, Liu L, Hou L, Geng J, Song G. Serum Fibroblast Growth Factor 21 Level After an Oral Fat Tolerance Test is Related to Postprandial Free Fatty Acid Level. Diabetes Metab Syndr Obes 2023; 16:1567-1576. [PMID: 37283621 PMCID: PMC10241254 DOI: 10.2147/dmso.s410457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose The relationship between blood lipids and fibroblast growth factor (FGF) 21 in the postprandial period remains unclear. To investigate this, we observed the changes in blood lipid levels after an oral fat tolerance test (OFTT) and examined the short-term effects on FGF21. Patients and Methods A total of 158 non-diabetic adult volunteers who underwent OFTT were randomly recruited from the Hebei General Hospital. Participants were stratified into three groups according to fasting and 4-h postprandial triglyceride levels: normal fat tolerance (NFT), impaired fat tolerance (IFT), and hypertriglyceridemia (HTG). Blood samples were collected at 2-h intervals for 6 h. Circulating total cholesterol levels, triglycerides, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, free fatty acids (FFA), and FGF21 were assessed. Results Fasting FGF21 levels increased progressively in the NFT, IFT, and HTG groups and were strongly correlated with FFA levels (r = 0.531, P < 0.001). During the OFTT, the FFA and FGF21 levels decreased and then increased after reaching a nadir at 2 and 4 h, respectively. After adjusting for potential risk factors, the FFA incremental area under the curve (iAUC) was an independent influencing factor of FGF21 iAUC (P = 0.005). Conclusion Fasting FGF21 levels showed a strong positive correlation with FFA. During OFTT, changes in FGF21 levels were closely associated with alterations in FFA exogenously changed by OFTT. Moreover, they were linearly related to each other. Therefore, the serum FGF21 level is positively correlated to the FFA level in the postprandial period.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Kunjie Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Wei Gu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lifang Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, People’s Republic of China
| | - Liping Hou
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Jianlin Geng
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
22
|
Lee HJ, Shon J, Park YJ. Association of NAFLD with FGF21 Polygenic Hazard Score, and Its Interaction with Protein Intake Level in Korean Adults. Nutrients 2023; 15:2385. [PMID: 37242268 PMCID: PMC10220598 DOI: 10.3390/nu15102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that participates in the regulation of energy homeostasis and is induced by dietary protein restriction. Preclinical studies have suggested that FGF21 induction exerts a protective effect against non-alcoholic fatty liver disease (NAFLD), while human studies have revealed elevated levels of and potential resistance to FGF21 in patients with NAFLD. However, whether the FGF21 pathway also contributes to NAFLD risk at the genetic level remains uncertain. A few attempts to investigate the impact of individual genetic variants at the loci encoding FGF21 and its receptors on NAFLD risk have failed to establish a clear association due to a limited effect size. Therefore, this study aimed to (1) develop a polygenic hazard score (PHS) for FGF21-related loci that are associated with NAFLD risk and (2) investigate the effect of its interaction with protein intake level on NAFLD risk. Data on 3501 participants of the Korean Genome Epidemiology Study (Ansan-Ansung) were analyzed. Eight single-nucleotide polymorphisms of fibroblast growth factor receptors and beta-klotho were selected for PHS determination using forward stepwise analysis. The association between the PHS and NAFLD was validated (p-trend: 0.0171 for men and <0.0001 for women). Moreover, the association was significantly modulated by the protein intake level in all participants as well as women (p-interaction = 0.0189 and 0.0131, respectively) but not in men. In particular, the women with the lowest PHS values and a protein intake lower than the recommended nutrient intake (RNI) exhibited a greater NAFLD risk (HR = 2.021, p-trend = 0.0016) than those with an intake equal to or greater than the RNI; however, those with higher PHS values had a high risk, regardless of protein intake level. These findings demonstrate the contribution of FGF21-related genetic variants and restricted protein intake to NAFLD incidence.
Collapse
Affiliation(s)
- Hae Jin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinyoung Shon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
23
|
Tsamos G, Vasdeki D, Koufakis T, Michou V, Makedou K, Tzimagiorgis G. Therapeutic Potentials of Reducing Liver Fat in Non-Alcoholic Fatty Liver Disease: Close Association with Type 2 Diabetes. Metabolites 2023; 13:metabo13040517. [PMID: 37110175 PMCID: PMC10141666 DOI: 10.3390/metabo13040517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most widespread chronic liver disease worldwide, confers a significant burden on health systems and leads to increased mortality and morbidity through several extrahepatic complications. NAFLD comprises a broad spectrum of liver-related disorders, including steatosis, cirrhosis, and hepatocellular carcinoma. It affects almost 30% of adults in the general population and up to 70% of people with type 2 diabetes (T2DM), sharing common pathogenetic pathways with the latter. In addition, NAFLD is closely related to obesity, which acts in synergy with other predisposing conditions, including alcohol consumption, provoking progressive and insidious liver damage. Among the most potent risk factors for accelerating the progression of NAFLD to fibrosis or cirrhosis, diabetes stands out. Despite the rapid rise in NAFLD rates, identifying the optimal treatment remains a challenge. Interestingly, NAFLD amelioration or remission appears to be associated with a lower risk of T2DM, indicating that liver-centric therapies could reduce the risk of developing T2DM and vice versa. Consequently, assessing NAFLD requires a multidisciplinary approach to identify and manage this multisystemic clinical entity early. With the continuously emerging new evidence, innovative therapeutic strategies are being developed for the treatment of NAFLD, prioritizing a combination of lifestyle changes and glucose-lowering medications. Based on recent evidence, this review scrutinizes all practical and sustainable interventions to achieve a resolution of NAFLD through a multimodal approach.
Collapse
Affiliation(s)
- Georgios Tsamos
- Division of Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Vassiliki Michou
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
24
|
Zhang J, Schäfer SM, Kabisch S, Csanalosi M, Schuppelius B, Kemper M, Markova M, Meyer NMT, Pivovarova-Ramich O, Keyhani-Nejad F, Rohn S, Pfeiffer AFH. Implication of sugar, protein and incretins in excessive glucagon secretion in type 2 diabetes after mixed meals. Clin Nutr 2023; 42:467-476. [PMID: 36857956 DOI: 10.1016/j.clnu.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
AIMS Amino acids powerfully release glucagon but their contribution to postprandial hyperglucagonemia in type 2 diabetes remains unclear. Exogenously applied GIP stimulates, while GLP-1 inhibits, glucagon secretion in humans. However, their role in mixed meals is unclear, which we therefore characterized. METHODS In three experiments, participants with type 2 diabetes and obese controls randomly received different loads of sugars and/or proteins. In the first experiment, participants ingested the rapidly cleaved saccharose (SAC) or slowly cleaved isomaltulose (ISO) which is known to elicit opposite profiles of GIP and GLP-1 secretion. In the second one participants received test meals which contained saccharose or isomaltulose in combination with milk protein. The third set of participants underwent randomized oral protein tests with whey protein or casein. Incretins, glucagon, C-peptide, and insulin were profiled by specific immunological assays. RESULTS 50 g of the sugars alone suppressed glucagon in controls but slightly less in type 2 diabetes patients. Participants with type 2 diabetes showed excessive glucagon responses within 15 min and lasting over 3 h, while the obese controls showed small initial and delayed greater glucagon responses to mixed meals. The release of GIP was significantly faster and greater with SAC compared to ISO, while GLP-1 showed an inverse pattern. The glucagon responses to whey or casein were only moderately increased in type 2 diabetes patients without a left shift of the dose response curve. CONCLUSIONS The rapid hypersecretion of glucagon after mixed meals in type 2 diabetes patients compared to controls is unaffected by endogenous incretins. The defective suppression of glucagon by glucose combined with hypersecretion to protein is required for the exaggerated response. CLINICAL TRIALS NUMBERS NCT03806920, NCT02219295, NCT04564391.
Collapse
Affiliation(s)
- Jiudan Zhang
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sylva Mareike Schäfer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Institute of Nutritional Science, Justus-Liebig University of Giessen, Giessen, Germany
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Marta Csanalosi
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Bettina Schuppelius
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Nina Marie Tosca Meyer
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Olga Pivovarova-Ramich
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Reseach Group Molecular Nutritional Medicine, Dept. of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany; Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
25
|
Stefano JT, Duarte SMB, Ribeiro Leite Altikes RG, Oliveira CP. Non-pharmacological management options for MAFLD: a practical guide. Ther Adv Endocrinol Metab 2023; 14:20420188231160394. [PMID: 36968655 PMCID: PMC10031614 DOI: 10.1177/20420188231160394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Lifestyle changes should be the main basis for any treatment for metabolic dysfunction-associated fatty liver disease (MAFLD), aiming to increase energy expenditure, reduce energy intake and improve the quality of nutrients consumed. As it is a multifactorial disease, approaches such as physical exercise, a better dietary pattern, and possible pharmacological intervention are shown to be more efficient when used simultaneously to the detriment of their applications. The main treatment for MAFLD is a lifestyle change consisting of diet, activity, exercise, and weight loss. The variables for training prescription such as type of physical exercise (aerobic or strength training), the weekly frequency, and the intensity most indicated for the treatment of MAFLD remain uncertain, that is, the recommendations must be adapted to the clinical conditions comorbidities, and preferences of each subject in a way individual. This review addresses recent management options for MAFLD including diet, nutrients, gut microbiota, and physical exercise.
Collapse
Affiliation(s)
- José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sebastião Mauro Bezerra Duarte
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar no
255, Instituto Central, # 9159, Sao Paulo 05403-000, Brazil
- Departament of Gastroenterology, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Kosmalski M, Frankowski R, Ziółkowska S, Różycka-Kosmalska M, Pietras T. What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD). J Clin Med 2023; 12:jcm12051852. [PMID: 36902639 PMCID: PMC10003344 DOI: 10.3390/jcm12051852] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious health problem due to its high incidence and consequences. In view of the existing controversies, new therapeutic options for NAFLD are still being sought. Therefore, the aim of our review was to evaluate the recently published studies on the treatment of NAFLD patients. We searched for articles in the PubMed database using appropriate terms, including "non-alcoholic fatty liver disease", "nonalcoholic fatty liver disease", "NAFLD", "diet", "treatment", "physical activity", "supplementation", "surgery", "overture" and "guidelines". One hundred forty-eight randomized clinical trials published from January 2020 to November 2022 were used for the final analysis. The results show significant benefits of NAFLD therapy associated with the use of not only the Mediterranean but also other types of diet (including low-calorie ketogenic, high-protein, anti-inflammatory and whole-grain diets), as well as enrichment with selected food products or supplements. Significant benefits in this group of patients are also associated with moderate aerobic physical training. The available therapeutic options indicate, above all, the usefulness of drugs related to weight reduction, as well as the reduction in insulin resistance or lipids level and drugs with anti-inflammatory or antioxidant properties. The usefulness of therapy with dulaglutide and the combination of tofogliflozin with pioglitazone should be emphasized. Based on the results of the latest research, the authors of this article suggest a revision of the therapeutic recommendations for NAFLD patients.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
- Correspondence: ; Tel.: +48-728-358-504
| | - Rafał Frankowski
- Students’ Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
27
|
Wernicke C, Pohrt A, Pletsch-Borba L, Apostolopoulou K, Hornemann S, Meyer N, Machann J, Gerbracht C, Tacke F, Pfeiffer AF, Spranger J, Mai K. Effect of unsaturated fat and protein intake on liver fat in people at risk of unhealthy aging: 1-year results of a randomized controlled trial. Am J Clin Nutr 2023; 117:785-793. [PMID: 36804020 DOI: 10.1016/j.ajcnut.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Short-term trials indicate improvement of intrahepatic lipids (IHLs) and metabolism by dietary protein or unsaturated fatty acids (UFAs) beyond weight loss. OBJECTIVES We aimed to assess the effect of a dietary intervention high in protein and UFAs on IHLs and metabolic outcome after 12 mo, as long-term effects of such a combined intervention are unknown. METHODS Within a 36-mo randomized controlled trial, eligible subjects (aged 50 to 80 y, ≥1 risk factor for unhealthy aging) were randomly assigned to either intervention group (IG) with high intake of mono-/poly-UFAs [15-20 percent of total energy (%E)/10%-15%E, respectively], plant protein (15%-25%E), and fiber (≥30 g/d), or control group [CG, usual care, dietary recommendations of the German Nutrition Society (fat 30%E/carbohydrates 55%E/protein 15%E)]. Stratification criteria were sex, known cardiovascular disease, heart failure, arterial hypertension, type 2 diabetes, and cognitive or physical impairment. Nutritional counseling and supplementation of foods mirroring the intended dietary pattern were performed in the IG. Diet-induced effects on IHLs, analyzed by magnetic resonance spectroscopy, as well as on lipid and glucose metabolism were predefined secondary endpoints. RESULTS IHL content was analyzed in 346 subjects without significant alcohol consumption at baseline and in 258 subjects after 12 mo. Adjusted for weight loss, sex, and age, we observed a comparable decline of IHLs in IG and CG (-33.3%; 95% CI: -49.3, -12.3%; n = 128 compared with -21.8%; 95% CI: -39.7, 1.5%; n = 130; P = 0.179), an effect that became significant by comparing adherent IG subjects to adherent CG subjects (-42.1%; 95% CI: -58.1, -20.1%; n = 88 compared with -22.2%; 95% CI: -40.7, 2.0%; n = 121; P = 0.013). Compared with the CG, decline of LDL cholesterol (LDL-C) and total cholesterol (TC) was stronger in the IG (for LDL-C P = 0.019, for TC P = 0.010). Both groups decreased in triglycerides and insulin resistance (P for difference between groups P = 0.799 and P = 0.124, respectively). CONCLUSIONS Diets enriched with protein and UFAs have beneficial long-term effects on liver fat and lipid metabolism in adherent older subjects. This study was registered at the German Clinical Trials Register, https://www.drks.de/drks_web/setLocale_EN.do, DRKS00010049. Am J Clin Nutr 20XX;xx:xx-xx.
Collapse
Affiliation(s)
- Charlotte Wernicke
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Anne Pohrt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Germany
| | - Laura Pletsch-Borba
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Konstantina Apostolopoulou
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Silke Hornemann
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Nina Meyer
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Jürgen Machann
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
| | - Christiana Gerbracht
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hepatology and Gastroenterology, 10117 Berlin, Germany
| | - Andreas Fh Pfeiffer
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| | - Knut Mai
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
28
|
Tagkou NM, Goossens N. Stéatose hépatique non alcoolique : diagnostic et traitement en 2022. SCHWEIZER GASTROENTEROLOGIE 2023; 4:27-37. [PMCID: PMC9990575 DOI: 10.1007/s43472-023-00091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 08/30/2023]
Abstract
La NAFLD (Non Alcoholic Fatty Liver Disease ) est la manifestation hépatique d’un trouble métabolique multisystémique. Elle est la principale cause de maladie hépatique au niveau mondial, avec une prévalence croissante. Bien qu’il s’agisse principalement d’une maladie silencieuse à évolution lente, certains patients présentent un risque élevé de progression de la maladie et d’issues plus graves telles que la cirrhose, le carcinome hépatocellulaire et la transplantation hépatique. Malgré les multiples études menées et les nombreux essais cliniques en cours, il n’existe pas de médicaments approuvés pour la NAFLD/NASH (Non Alcoholic Steato-Hepatitis ), et le traitement doit donc se fonder sur des stratégies de modification du mode de vie. Cette revue explorera la définition et l’épidémiologie courantes de la NAFLD et de la NASH ainsi que les facteurs de risque et les conséquences de la maladie, tout en résumant les recommandations existantes pour le diagnostic, la stratification du risque et la prise en charge de la maladie.
Collapse
Affiliation(s)
- Nikoletta Maria Tagkou
- Service de Gastroentérologie et d’Hépatologie, Hôpitaux Universitaires de Genève (HUG), Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Suisse
| | - Nicolas Goossens
- Service de Gastroentérologie et d’Hépatologie, Hôpitaux Universitaires de Genève (HUG), Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Suisse
| |
Collapse
|
29
|
Plasma FGF21 Levels Are Not Associated with Weight Loss or Improvements in Metabolic Health Markers upon 12 Weeks of Energy Restriction: Secondary Analysis of an RCT. Nutrients 2022; 14:nu14235061. [PMID: 36501091 PMCID: PMC9735516 DOI: 10.3390/nu14235061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Recent studies suggest that circulating fibroblast growth factor 21 (FGF21) may be a marker of metabolic health status. We performed a secondary analysis of a 12-week randomized controlled trial to investigate the effects of two energy restriction (ER) diets on fasting and postprandial plasma FGF21 levels, as well as to explore correlations of plasma FGF21 with metabolic health markers, (macro)nutrient intake and sweet-taste preference. Abdominally obese subjects aged 40-70 years (n = 110) were randomized to one of two 25% ER diets (high-nutrient-quality diet or low-nutrient-quality diet) or a control group. Plasma FGF21 was measured in the fasting state and 120 min after a mixed meal. Both ER diets did not affect fasting or postprandial plasma FGF21 levels despite weight loss and accompanying health improvements. At baseline, the postprandial FGF21 response was inversely correlated to fasting plasma glucose (ρ = -0.24, p = 0.020) and insulin (ρ = -0.32, p = 0.001), HOMA-IR (ρ = -0.34, p = 0.001), visceral adipose tissue (ρ = -0.24, p = 0.046), and the liver enzyme aspartate aminotransferase (ρ = -0.23, p = 0.021). Diet-induced changes in these markers did not correlate to changes in plasma FGF21 levels upon intervention. Baseline higher habitual polysaccharide intake, but not mono- and disaccharide intake or sweet-taste preference, was related to lower fasting plasma FGF21 (p = 0.022). In conclusion, we found no clear evidence that fasting plasma FGF21 is a marker for metabolic health status. Circulating FGF21 dynamics in response to an acute nutritional challenge may reflect metabolic health status better than fasting levels.
Collapse
|
30
|
Wang K, Zhou M, Gong X, Zhou Y, Chen J, Ma J, Zhang P. Starch-protein interaction effects on lipid metabolism and gut microbes in host. Front Nutr 2022; 9:1018026. [PMID: 36466418 PMCID: PMC9709417 DOI: 10.3389/fnut.2022.1018026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 07/20/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of different starch and protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 160 male mice were randomly assigned to sixteen groups and fed a 4 × 4 Latin square design with dietary protein concentrations of 16, 18, 20, and 22%, and starch concentrations of 50, 52, 54, and 56%, respectively. The results of the study showed that different proportions of starch and protein had obvious effects on the liver index of mice, and there was a significant interaction between starch and protein on the liver index (p = 0.005). Compared with other protein ratio diets, 18% protein diet significantly increased the serum TBA concentration of mice (p < 0.001), and different starch ratio diets had no effect on serum TBA concentration (p = 0.442). It was proved from the results of ileal tissue HE staining that the low protein diet and the low starch diet were more favorable. There was a significant interaction between diets with different starch and protein levels on Bacteroidetes, Firmicutes and Proteobacteria abundance in feces of mice (p < 0.001). Compared with 16 and 18% protein ratio diets, both 20 and 22% protein diets significantly decreased the Parabacteroides and Alistipes abundance in feces of mice (p < 0.05), and 52% starch ratio diet significantly decreased the Parabacteroides and Alistipes abundance than 50% starch ratio diet of mice (p < 0.05). There was a significant interaction between diets with different starch and protein levels on Parabacteroides (p = 0.014) and Alistipes (p = 0.001) abundance in feces of mice. Taken together, our results suggest that a low protein and starch diet can alter lipid metabolism and gut microbes in mice.
Collapse
Affiliation(s)
- Kaijun Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyu Gong
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuqiao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiayi Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peihua Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
31
|
Qian Z, Zhang Y, Yang N, Nie H, Yang Z, Luo P, Wei X, Guan Y, Huang Y, Yan J, Ruan L, Zhang C, Zhang L. Close association between lifestyle and circulating FGF21 levels: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:984828. [PMID: 36093108 PMCID: PMC9453313 DOI: 10.3389/fendo.2022.984828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background The impact of lifestyle factors on circulating fibroblast growth factor 21 (cFGF21) remains unclear. We conducted this systematic review and meta-analysis to evaluate the association between lifestyle factors and cFGF21 levels. Methods We included studies that evaluated the effects of different lifestyles on cFGF21 concentration in adults, which included smoking, exercise, diets, alcohol consumption and weight loss. Random effects models or fixed effects models were used for meta-analysis to calculate the standardized mean difference (SMD) and 95% confidence interval according to the heterogeneity among studies. Study quality was assessed using the Newcastle-Ottawa Scale for cohort studies, the Joanna Briggs Institution Checklist for cross-sectional studies, and the PEDro scale for experimental studies. Results A total of 50 studies with 1438 individuals were included. Overall, smoking, a hypercaloric carbohydrate-rich diet, a hypercaloric fat-rich diet, amino acid or protein restriction, excessive fructose intake and alcohol consumption significantly upregulated cFGF21 levels (p<0.05), whereas fish oil intake and calorie restriction with sufficient protein intake significantly decreased cFGF21 (p<0.05). Compared to the preexercise cFGF21 level, the cFGF21 level significantly increased within 3 hours postexercise (p<0.0001), while it significantly decreased in the blood sampled >6 h postexercise (p=0.01). Moreover, higher exercise intensity resulted in higher upregulation of cFGF21 at 1-hour post exercise (p=0.0006). Conclusion FGF21 could serve as a potential biomarker for the assessment of different lifestyle interventions. When it is used for this purpose, a standard study protocol needs to be established, especially taking into consideration the intervention types and the sampling time post-intervention. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021254758, identifier CRD42021254758.
Collapse
Affiliation(s)
- Zonghao Qian
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yucong Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Ni Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Hao Nie
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Zhen Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Pengcheng Luo
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Xiuxian Wei
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yuqi Guan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yi Huang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Jinhua Yan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Lei Ruan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Cuntai Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| |
Collapse
|
32
|
Zelber-Sagi S, Grinshpan LS, Ivancovsky-Wajcman D, Goldenshluger A, Gepner Y. One size does not fit all; practical, personal tailoring of the diet to NAFLD patients. Liver Int 2022; 42:1731-1750. [PMID: 35675167 DOI: 10.1111/liv.15335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/13/2023]
Abstract
Different dietary regimens for weight loss have developed over the years. Since the most evidenced treatment for non-alcoholic fatty liver disease (NAFLD) is weight reduction, it is not surprising that more diets targeting obesity are also utilized for NAFLD treatment. However, beyond the desired weight loss effects, one should not ignore the dietary composition of each diet, which may not necessarily be healthy or safe over the long term for hepatic and extrahepatic outcomes, especially cardiometabolic outcomes. Some of these diets are rich in saturated fat and red meat, are very strict, and require close medical supervision. Some may also be very difficult to adhere to for long periods, thus reducing the patient's motivation. The evidence for a direct benefit to NAFLD by restrictive diets such as very-low-carb, ketogenic, very-low-calorie diets, and intermittent fasting is scarce, and the long-term safety has not been tested. Nowadays, the approach is that the diet should be tailored to the patient's cultural and personal preferences. There is strong evidence for the independent protective association of NAFLD with a diet based on healthy eating patterns of minimally-processed foods, low in sugar and saturated fat, high in polyphenols, and healthy types of fats. This leads to the conclusion that a Mediterranean diet should serve as a basis that can be restructured into other kinds of diets. This review will elaborate on the different diets and their role in NAFLD. It will provide a practical guide to tailor the diet to the patients without compromising its composition and safety.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Department of Gastroenterology Tel Aviv Medical Center, Tel Aviv, Israel
| | - Laura Sol Grinshpan
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Department of Gastroenterology Tel Aviv Medical Center, Tel Aviv, Israel
| | - Dana Ivancovsky-Wajcman
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Department of Gastroenterology Tel Aviv Medical Center, Tel Aviv, Israel
| | - Ariela Goldenshluger
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
33
|
Wang K, Peng X, Yang A, Huang Y, Tan Y, Qian Y, Lv F, Si H. Effects of Diets With Different Protein Levels on Lipid Metabolism and Gut Microbes in the Host of Different Genders. Front Nutr 2022; 9:940217. [PMID: 35782952 PMCID: PMC9240812 DOI: 10.3389/fnut.2022.940217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of different protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 60 mice (30 female and 30 male) were randomly assigned to six groups and fed female mice with low protein diet (FLP), basal protein diet (FBD), and high protein diet (FHP). Similarly, the male mice fed with low protein diet (MLP), basal protein diet (MBD), and high protein diet (MHP). The low protein diet contained 14% CP, the basal diet contained 20% CP, and the high protein diet contained 26% CP. The results of the study showed that both basal and high protein diets significantly reduced the perirenal adipose tissues (PEAT) index in male mice compared to low protein diet (p < 0.05). For the gut, the FHP significantly increased the relative gut weight compared to the FBD and FLP (p < 0.05). At the same time, the FHP also significantly increased the relative gut length compared with the FBD and FLP (p < 0.05). The MHP significantly increased TC concentration compared with the MLP (p < 0.05), and the MBD tended to increase TC concentration compared with the MLP in serum (p = 0.084). The histomorphology result of the jejunum and ileum showed that a low protein diet was beneficial to the digestion and absorption of nutrients in the small intestine of mice. While different protein levels had no effect on the total number of fecal microbial species in mice, different protein levels had a significant effect on certain fecal microbes in mice, the absolute abundance of Verrucomicrobia in the feces of male mice was significantly higher in both high and basal protein diets than in the low protein diet (p < 0.05). The high protein diet significantly reduced the absolute abundance of Patescibacteria in the feces of female mice compared to both the basal and low protein diets (p < 0.05). The absolute abundance of Patescibacteria in male feces was not affected by dietary protein levels (p > 0.05). Taken together, our results suggest that a low protein diet can alter fat deposition and lipid metabolism in mice, and that it benefited small intestinal epithelial structure and microbes.
Collapse
Affiliation(s)
- Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yiqin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxiao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yajing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|
34
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 537] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
35
|
Prevention of NAFLD-associated HCC: Role of lifestyle and chemoprevention. J Hepatol 2021; 75:1217-1227. [PMID: 34339764 DOI: 10.1016/j.jhep.2021.07.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
In many countries worldwide, the burden of hepatocellular carcinoma (HCC) associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is increasing. Preventive strategies are needed to counteract this trend. In this review, we provide an overview of the evidence on preventive strategies in NAFLD-associated HCC. We consider the impact of lifestyle factors such as weight loss, physical activity, smoking, dietary patterns and food items, including coffee and alcohol, on both HCC and NAFLD/NASH. Furthermore, evidence on chemopreventive treatments, including aspirin, antidiabetic treatments and statins is summarised. The role of adjuvant therapies for tertiary prevention of HCC is briefly reviewed.
Collapse
|
36
|
Sargeant TJ, Bensalem J. Human autophagy measurement: an underappreciated barrier to translation. Trends Mol Med 2021; 27:1091-1094. [PMID: 34629294 DOI: 10.1016/j.molmed.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
Preclinical research shows that autophagy is a modifiable process that holds promise for preventing human age-related disease. However, this knowledge has not been clinically translated. Here, we discuss recent developments in the ability to measure human autophagy, and why it is a critical step for translation.
Collapse
Affiliation(s)
- Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
37
|
Semmler G, Datz C, Reiberger T, Trauner M. Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver Int 2021; 41:2249-2268. [PMID: 34328248 PMCID: PMC9292198 DOI: 10.1111/liv.15024] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022]
Abstract
Lifestyle represents the most relevant factor for non-alcoholic fatty liver disease (NAFLD) as the hepatic manifestation of the metabolic syndrome. Although a tremendous body of clinical and preclinical data on the effectiveness of dietary and lifestyle interventions exist, the complexity of this topic makes firm and evidence-based clinical recommendations for nutrition and exercise in NAFLD difficult. The aim of this review is to guide readers through the labyrinth of recent scientific findings on diet and exercise in NAFLD and non-alcoholic steatohepatitis (NASH), summarizing "obvious" findings in a holistic manner and simultaneously highlighting stimulating aspects of clinical and translational research "beyond the obvious". Specifically, the importance of calorie restriction regardless of dietary composition and evidence from low-carbohydrate diets to target the incidence and severity of NAFLD are discussed. The aspect of ketogenesis-potentially achieved via intermittent calorie restriction-seems to be a central aspect of these diets warranting further investigation. Interactions of diet and exercise with the gut microbiota and the individual genetic background need to be comprehensively understood in order to develop personalized dietary concepts and exercise strategies for patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Christian Datz
- Department of Internal MedicineGeneral Hospital OberndorfTeaching Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
38
|
Roeb E. Excess Body Weight and Metabolic (Dysfunction)-Associated Fatty Liver Disease (MAFLD). Visc Med 2021; 37:273-280. [PMID: 34540943 PMCID: PMC8406344 DOI: 10.1159/000515445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) describes a continuum of liver abnormalities from simple nonalcoholic fatty liver (NAFL) to nonalcoholic fatty liver hepatitis or steatohepatitis (NASH) to NASH fibrosis. It has a variable course, but just like alcoholic fatty liver disease, it can lead to liver cirrhosis and cancer (hepatocellular carcinoma). SUMMARY NAFLD is a clinical entity characterized by the presence of liver steatosis, which affects at least 5% of hepatocytes. Affected are people who consume little or no alcohol and who have no secondary cause of liver steatosis such as viral hepatitis, drug intake (e.g., tamoxifen, amiodarone, methotrexate, etc.), or lipodystrophy. NAFLD is, nowadays, the most common liver disease in Europe, with an estimated prevalence of 25%. The currently widely recognized recommendation for the therapy of NAFLD is a lifestyle modification with the goal of weight loss. Although no drugs are currently approved for the treatment of NAFLD, several candidates are in clinical trials. Besides weight loss and physical activity, corresponding single active ingredients or combination therapies are intended to stop the progression of the disease and, in the best case, reverse it. The newly propagated name MAFLD (metabolic-associated fatty liver disease) should indicate that the disease is associated with metabolic disorders. The term MAFLD also implies multiple overlapping causes and drivers of this soaring disease. KEY MESSAGES The prevalence of NAFLD continues to rise worldwide. NAFLD, NASH, and fibrosis in NAFLD occur predominantly in patients with obesity and type 2 diabetes (T2DM) or else precede these conditions. The progression of NAFLD is highly dependent on changes in glucose, lipid metabolism, and fibrogenesis. A new definition and nomenclature of fatty liver disease, "metabolic associated fatty liver disease" (MAFLD), should be discussed carefully, since around 40% of the global population with NAFLD are classified as non-obese and almost 1/5 as lean. Since the pathogenesis of fatty liver disease, obesity, and glucose and lipid metabolism diseases are very closely related, it is important to continue to look for mechanisms that these diseases have in common and develop new therapeutic approaches.
Collapse
Affiliation(s)
- Elke Roeb
- Gastroenterology, Justus Liebig University and University Hospital Gießen, Gießen, Germany
| |
Collapse
|
39
|
Marin-Alejandre BA, Cantero I, Perez-Diaz-Del-Campo N, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Quiroga J, Martinez-Echeverria A, Uriz-Otano JI, Huarte-Muniesa MP, Tur JA, Martinez JA, Abete I, Zulet MA. Effects of two personalized dietary strategies during a 2-year intervention in subjects with nonalcoholic fatty liver disease: A randomized trial. Liver Int 2021; 41:1532-1544. [PMID: 33550706 DOI: 10.1111/liv.14818] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) management is focused on lifestyle modifications, but long-term maintenance is a challenge for many individuals. This study aimed to evaluate the long-term effects of two personalized energy-restricted dietary strategies on weight loss, metabolic and hepatic outcomes in overweight/obese subjects with NAFLD. METHODS Ninety-eight subjects from the Fatty Liver in Obesity (FLiO) study (NCT03183193) were randomly assigned to the American Heart Association (AHA) or the FLiO dietary group in a 2-year controlled trial. Anthropometry, body composition (DXA), biochemical parameters and hepatic status (ultrasonography, Magnetic Resonance Imaging, and elastography) were assessed at baseline, 6, 12 and 24 months. RESULTS Both the AHA and FLiO diets significantly reduced body weight at 6 (-9.7% vs -10.1%), 12 (-6.7% vs -9.6%), and 24 months (-4.8% vs -7.6%) with significant improvements in body composition, biochemical and liver determinations throughout the intervention. At the end of the follow-up, the FLiO group showed a greater decrease in ALT, liver stiffness and Fatty Liver Index, among others, compared to AHA group, although these differences were attenuated when the analyses were adjusted by weight loss percentage. The FLiO group also showed a greater increase in adiponectin compared to AHA group. CONCLUSIONS The AHA and FLiO diets were able to improve body weight and body composition, as well as metabolic and hepatic status of participants with overweight/obesity and NAFLD within a 2-year follow-up. These findings show that both strategies are suitable alternatives for NAFLD management. However, the FLiO strategy may provide more persistent benefits in metabolic and hepatic parameters.
Collapse
Affiliation(s)
- Bertha A Marin-Alejandre
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Irene Cantero
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Nuria Perez-Diaz-Del-Campo
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Jose I Monreal
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Chemistry Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Radiology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Jose I Herrero
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Radiology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Jorge Quiroga
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Department of Internal Medicine, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ana Martinez-Echeverria
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Juan I Uriz-Otano
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Maria P Huarte-Muniesa
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Balearic Islands Institute for Health Research (IDISBA), Palma, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A Martinez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria A Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Sandby K, Geiker NRW, Dalamaga M, Grønbæk H, Magkos F. Efficacy of Dietary Manipulations for Depleting Intrahepatic Triglyceride Content: Implications for the Management of Non-alcoholic Fatty Liver Disease. Curr Obes Rep 2021; 10:125-133. [PMID: 33580876 DOI: 10.1007/s13679-021-00430-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Understanding the effects of dietary manipulations on intrahepatic triglyceride (IHTG) balance will have important implications for the prevention and treatment of non-alcoholic fatty liver disease (NAFLD). RECENT FINDINGS Reducing calorie intake to induce weight loss is the most potent intervention to decrease IHTG. Carbohydrate restriction during the initial stages of weight loss may be particularly beneficial, but at later stages, the amount of weight loss predominates over diet composition. By contrast, during weight stability, restricting calories from fat seems to be optimal for depleting liver fat. The degree of dietary fat saturation and the glycemic index of the carbohydrate have inconsistent effects on IHTG. Recently, the matrix of some foods (e.g., dairy) has been inversely associated with NAFLD. Dietary macronutrients differ in their effects on liver fat depending on the energy balance and the matrix of the food in which they are consumed. Therefore, investigations into dietary approaches for managing NAFLD should shift their perspective from that of isolated nutrients to that of whole foods and diets and include useful mechanistic insights.
Collapse
Affiliation(s)
- Karoline Sandby
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Nina Rica Wium Geiker
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
41
|
Pivovarova-Ramich O, Loske J, Hornemann S, Markova M, Seebeck N, Rosenthal A, Klauschen F, Castro JP, Buschow R, Grune T, Lange V, Rudovich N, Ouwens DM. Hepatic Wnt1 Inducible Signaling Pathway Protein 1 (WISP-1/CCN4) Associates with Markers of Liver Fibrosis in Severe Obesity. Cells 2021; 10:cells10051048. [PMID: 33946738 PMCID: PMC8146455 DOI: 10.3390/cells10051048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers. Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination with LPS or transforming growth factor beta (TGF-β) and examined for fibrosis and inflammation markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated the TGF-β-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of obesity-associated liver fibrosis.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Correspondence:
| | - Jennifer Loske
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - José Pedro Castro
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - René Buschow
- Department of Microscopy & Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Tilman Grune
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), 13347 Berlin, Germany
| | - Volker Lange
- Centre for Obesity and Metabolic Surgery, Vivantes Hospital, 13509 Berlin, Germany;
- Helios Klinikum Berlin-Buch, 13125 Berlin, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Spital Bülach, 8180 Bülach, Switzerland
| | - D. Margriet Ouwens
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- German Diabetes Center, 40225 Duesseldorf, Germany
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Herpich C, Haß U, Kochlik B, Franz K, Laeger T, Klaus S, Bosy-Westphal A, Norman K. Postprandial dynamics and response of fibroblast growth factor 21 in older adults. Clin Nutr 2021; 40:3765-3771. [PMID: 34130022 DOI: 10.1016/j.clnu.2021.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Fibroblast growth factor 21 (FGF21) plays a pivotal role in glucose and lipid metabolism and has been proposed as a longevity hormone. However, elevated plasma FGF21 concentrations are paradoxically associated with mortality in higher age and little is known about the postprandial regulation of FGF21 in older adults. In this parallel group study, we investigated postprandial FGF21 dynamics and response in older (65-85 years) compared to younger (18-35 years) adults following test meals with varying macronutrient composition. METHODS Participants (n = 60 older; n = 60 younger) were randomized to one of four test meals: dextrose, high carbohydrate (HC), high fat (HF) or high protein (HP). Blood was drawn before and 15, 30, 60, 120, 240 min after meal ingestion. Postprandial dynamics were evaluated using repeated measures ANCOVA. FGF21 response was assessed by incremental area under the curve. RESULTS Fasting FGF21 concentrations were significantly higher in older adults. FGF21 dynamics were affected by test meal (p < 0.001) and age (p = 0.013), when adjusted for BMI and fasting FGF21. Postprandial FGF21 concentrations steadily declined over 240 min in both age groups after HF and HP, but not after dextrose or HC ingestion. At 240 min, FGF21 concentrations were significantly higher in older than in younger adults following dextrose (133 pg/mL, 95%CI: 103, 172 versus 91.2 pg/mL, 95%CI: 70.4, 118; p = 0.044), HC (109 pg/mL, 95%CI: 85.1, 141 versus 70.3 pg/mL, 95%CI: 55.2, 89.6; p = 0.014) and HP ingestion (45.4 pg/mL, 95%CI: 34.4, 59.9 versus 27.9 pg/mL 95%CI: 20.9, 37.1; p = 0.018). FGF21 dynamics and response to HF were similar for both age groups. CONCLUSIONS The age-specific differences in postprandial FGF21 dynamics and response in healthy adults, potentially explain higher FGF21 concentrations in older age. Furthermore, there appears to be a significant impact of acute and recent protein intake on FGF21 secretion.
Collapse
Affiliation(s)
- Catrin Herpich
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Ulrike Haß
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Bastian Kochlik
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany
| | - Kristina Franz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Geriatrics, Berlin, Germany
| | - Thomas Laeger
- University of Potsdam, Institute of Nutritional Science, Department of Physiology and Pathophysiology of Nutrition Potsdam, Germany
| | - Susanne Klaus
- University of Potsdam, Institute of Nutritional Science, Potsdam, Germany; German Institute of Human Nutrition, Potsdam-Rehbrücke, Department of Physiology of Energy Metabolism, Nuthetal, Germany
| | - Anja Bosy-Westphal
- Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kristina Norman
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, Potsdam, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Geriatrics, Berlin, Germany.
| |
Collapse
|
43
|
Vuille-Lessard É, Lange N, Riebensahm C, Dufour JF, Berzigotti A. Dietary Interventions in Liver Diseases: Focus on MAFLD and Cirrhosis. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s11901-021-00563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Purpose of Review
Dietary interventions (DI) aimed at improving overweight and metabolic abnormalities in metabolic dysfunction-associated fatty liver disease (MAFLD) and at reducing malnutrition and sarcopenia in cirrhosis should become part of routine care in hepatology. This review focuses on recent advances in this field.
Recent Findings
In patients with MAFLD, a gradual reduction, respectively, of 7–10% of body weight if overweight or of 3–5% if lean, obtained by moderately reducing caloric intake, is effective to improve liver disease. Intermittent energy restriction might be an alternative to continuous energy restriction with higher adherence. Qualitative dietary adjustments should include increased intake of unprocessed foods including fruits and vegetables, whole grains, fiber, and unsaturated fatty acids (FAs), for example, through a Mediterranean diet. Refined carbohydrates (CHOs), saturated FA (SFAs), red meat, and processed meat should be limited. DI studies in HIV-infected subjects with MAFLD are very limited, and this is a field for future research. In patients with cirrhosis, DI should aim at correcting malnutrition and improving skeletal muscle mass. Daily diet contents should aim at achieving 30–35 kcal/kg of body weight, including 1.2–1.5 g/kg proteins, and oral or enteral supplementation might be used in patients unable to achieve these targets. In some studies, branched-chain amino acids (BCAAs) proved to be effective in improving muscle mass and were associated with a lower risk of hepatic encephalopathy. Obesity requires adjustment of the above-mentioned targets, and its management is challenging. Studies looking at the efficacy of DI recommended by the existing guidelines on clinical endpoints are a field for future research.
Summary
Dietary interventions are able to improve MAFLD and show potential to reduce complications in liver disease. Despite its key importance, there are many barriers limiting the implementation of DI in patients with chronic liver disease. Patients’ empowerment is crucial and should be the focus of specific educational programs. In addition, liver clinics would benefit from multidisciplinary teams involving experts in nutrition, physical exercise, primary care physicians, and psychologists when needed.
Collapse
|
44
|
The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients 2021; 13:nu13041187. [PMID: 33916669 PMCID: PMC8066770 DOI: 10.3390/nu13041187] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Diets have been a central component of lifestyle modification for decades. The Low-Carbohydrate Diet (LCD), originally conceived as a treatment strategy for intractable epilepsy (due to its association with ketogenesis), became popular in the 1970s and since then has risen to prominence as a weight loss strategy. Objective: To explore the efficacy, limitations and potential safety concerns of the LCD. Data Sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the terms ‘low carbohydrate diet and metabolic health’. Results: Evidence supports the efficacy of the LCD in the short-term (up to 6-months) for reduction in fat mass and remission of Type 2 Diabetes Mellitus (T2D). However, the longer-term efficacy of the LCD is disappointing, with diminishment of weight loss potential and metabolic benefits of the LCD beyond 6-months of its adoption. Furthermore, practical limitations of the LCD include the associated restriction of food choices that restrict the acceptability of the LCD for the individual, particularly over the longer term. There are also safety concerns of the LCD that stem from nutritional imbalances (with a relative excess of dietary fat and protein intake with associated dyslipidaemia and increased risk of insulin resistance and T2D development) and ketotic effects. Finally, the LCD often results in a reduction in dietary fibre intake, with potentially serious adverse consequences for overall health and the gut microbiota. Conclusions: Although widely adopted, the LCD usually has short-lived metabolic benefits, with limited efficacy and practicality over the longer term. Dietary modification needs tailoring to the individual, with careful a priori assessments of food preferences to ensure acceptability and adherence over the longer term, with avoidance of dietary imbalances and optimization of dietary fibre intake (primarily from plant-based fruit and vegetables), and with a posteriori assessments of the highly individual responses to the LCD. Finally, we need to change our view of diets from simply an excipient for weight loss to an essential component of a healthy lifestyle.
Collapse
|
45
|
Reduced Liver Autophagy in High-Fat Diet Induced Liver Steatosis in New Zealand Obese Mice. Antioxidants (Basel) 2021; 10:antiox10040501. [PMID: 33804819 PMCID: PMC8063826 DOI: 10.3390/antiox10040501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), as a consequence of overnutrition caused by high-calorie diets, results in obesity and disturbed lipid homeostasis leading to hepatic lipid droplet formation. Lipid droplets can impair hepatocellular function; therefore, it is of utmost importance to degrade these cellular structures. This requires the normal function of the autophagic-lysosomal system and the ubiquitin-proteasomal system. We demonstrated in NZO mice, a polygenic model of obesity, which were compared to C57BL/6J (B6) mice, that a high-fat diet leads to obesity and accumulation of lipid droplets in the liver. This was accompanied by a loss of autophagy efficiency whereas the activity of lysosomal proteases and the 20S proteasome remained unaffected. The disturbance of cellular protein homeostasis was further demonstrated by the accumulation of 3-nitrotyrosine and 4-hydroxynonenal modified proteins, which are normally prone to degradation. Therefore, we conclude that fat accumulation in the liver due to a high-fat diet is associated with a failure of autophagy and leads to the disturbance of proteostasis. This might further contribute to lipid droplet stabilization and accumulation.
Collapse
|
46
|
Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence. Nutrients 2021; 13:nu13041060. [PMID: 33805161 PMCID: PMC8064070 DOI: 10.3390/nu13041060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
The alarmingly rising trend of type 2 diabetes constitutes a major global public health challenge particularly in the Middle Eastern and North African (MENA) region where the prevalence is among the highest in the world with a projection to increase by 96% by 2045. The economic boom in the MENA region over the past decades has brought exceptionally rapid shifts in eating habits characterized by divergence from the traditional Mediterranean diet towards a more westernized unhealthy dietary pattern, thought to be leading to the dramatic rises in obesity and non-communicable diseases. Research efforts have brought a greater understanding of the different pathways through which diet and obesity may affect diabetes clinical outcomes, emphasizing the crucial role of dietary interventions and weight loss in the prevention and management of diabetes. The purpose of this review is to explore the mechanistic pathways linking obesity with diabetes and to summarize the most recent evidence on the association of the intake of different macronutrients and food groups with the risk of type 2 diabetes. We also summarize the most recent evidence on the effectiveness of different macronutrient manipulations in the prevention and management of diabetes while highlighting the possible underlying mechanisms of action and latest evidence-based recommendations. We finally discuss the need to adequately integrate dietetic services in diabetes care specific to the MENA region and conclude with recommendations to improve dietetic care for diabetes in the region.
Collapse
|
47
|
Lin CW, Huang TW, Peng YJ, Lin YY, Mersmann HJ, Ding ST. A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poult Sci 2021; 100:100869. [PMID: 33516481 PMCID: PMC7936157 DOI: 10.1016/j.psj.2020.11.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver diseases, common metabolic diseases in chickens, can lead to a decrease in egg production and sudden death of chickens. To solve problems caused by the diseases, reliable chicken models of fatty liver disease are required. To generate chicken models of fatty liver, 7-week-old ISA female chickens were fed with a control diet (17% protein, 5.3% fat, and 1,300 mg/kg choline), a low protein and high fat diet (LPHF, 13% protein, 9.1% fat, and 1,300 mg/kg choline), a high cholesterol with low choline diet (CLC, 17% protein, 7.6% fat with additional 2% cholesterol, and 800 mg/kg choline), a low protein, high fat, high cholesterol, and low choline diet (LPHFCLC, 13% protein, 12.6% fat with additional 2% cholesterol, and 800 mg/kg choline) for 4 wk. Our data showed that the CLC and LPHFCLC diets induced hyperlipidemia. Histological examination and the content of hepatic lipids indicated that the CLC and LPHFCLC diets induced hepatic steatosis. Plasma dipeptidyl peptidase 4, a biomarker of fatty liver diseases in laying hens, increased in chickens fed with the CLC or LPHFCLC diets. Hepatic ballooning and immune infiltration were observed in these livers accompanied by elevated interleukin 1 beta and lipopolysaccharide induced tumor necrosis factor mRNAs suggesting that the CLC and LPHFCLC diets also caused steatohepatitis in these livers. These diets also induced hepatic steatosis in Plymouth Rock chickens. Thus, the CLC and LPHFCLC diets can be used to generate models for fatty liver diseases in different strains of chickens. In ISA chickens fed with the CLC diet, peroxisome proliferator-activated receptor γ, sterol regulatory element binding transcription factor 1, and fatty acid synthase mRNAs increased in the livers, suggesting that lipogenesis was enhanced by the CLC treatment. Our data show that treatment with CLC or LPHFCLC for 4 wk induces fatty liver disease in chickens. These diets can be utilized to rapidly generate chicken models for fatty liver research.
Collapse
Affiliation(s)
- Chiao-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Ting-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617.
| |
Collapse
|
48
|
Xu L, Schüler R, Xu C, Seebeck N, Markova M, Murahovschi V, Pfeiffer AFH. Arachidonic acid inhibits the production of angiotensin-converting enzyme in human primary adipocytes via a NF-κB-dependent pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1652. [PMID: 33490164 PMCID: PMC7812212 DOI: 10.21037/atm-20-7514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The modulating mechanism of fatty acids on angiotensin-converting enzyme production (ACE) in human adipocytes is still elusive. Diet-induced regulation of the renin angiotensin system is thought to be involved in obesity and hypertension, and several previous studies have used mouse cell lines such as 3T3-L1 to investigate this. This study was carried out in human subcutaneous adipocytes for better understanding of the mechanism. Methods Human adipose stem cells were isolated from subcutaneous adipose tissue biopsies collected from four patients during bariatric surgery and differentiated into mature adipocytes. The mRNA expression and the activity of ACE were measured under different stimuli in cell cultures. Results Arachidonic acid (AA) decreased ACE mRNA expression and ACE activity in a dose-dependent manner while palmitic acid had no effect. The decrease of ACE by 100 µM AA was reversed by the addition of 5 µM nuclear factor-κB (NF-κB) inhibitor. Furthermore, when the production of 20-hydroxyeicosatetraenoic acid, a metabolite of AA, was stopped by the specific inhibitor HET0016 (10 µM) in the culture media, the effect of AA was blocked. Conclusions This study indicated that AA can decrease the expression and activity of ACE in cultured human adipocytes, via an inflammatory NF-κB-dependent pathway. Blocking 20-hydroxyeicosatetraenoic acid attenuated the ACE-decreasing effects of AA.
Collapse
Affiliation(s)
- Li Xu
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Chenchen Xu
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Veronica Murahovschi
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
49
|
Effects of High and Low Protein Diets on Inflammatory Profiles in People with Morbid Obesity: A 3-Week Intervention Study. Nutrients 2020; 12:nu12123636. [PMID: 33256114 PMCID: PMC7759799 DOI: 10.3390/nu12123636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nutritional interventions in morbidly obese individuals that effectively reverse a pro-inflammatory state and prevent obesity-associated medical complications are highly warranted. Our aim was to evaluate the effect of high (HP) or low (LP) protein diets on circulating immune-inflammatory biomarkers, including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a), interleukin-10 (IL-10), monocyte chemoattractant protein-1 (MCP-1), chemerin, omentin, leptin, total adiponectin, high molecular weight adiponectin, and fetuin-A. With this aim, 18 people with morbid obesity were matched into two hypocaloric groups: HP (30E% protein, n = 8) and LP (10E% protein, n = 10) for three weeks. Biomarkers were measured pre and post intervention and linear mixed-effects models were used to investigate differences. Consuming HP or LP diets resulted in reduced CRP (HP: −2.2 ± 1.0 mg/L, LP: −2.3 ± 0.9 mg/L) and chemerin (HP: −17.9 ± 8.6 ng/mL, LP: −20.0 ± 7.4 ng/mL), with no statistically significant differences by diet arm. Participants following the LP diet showed a more pronounced decrease in leptin (−19.2 ± 6.0 ng/mL) and IL-6 (−0.4 ± 0.1 pg/mL) and an increase in total adiponectin (1.6 ± 0.6 µg/mL). Changes were also observed for the remaining biomarkers to a smaller degree by the HP than the LP hypocaloric diet, suggesting that a LP hypocaloric diet modulates a wider range of immune inflammatory biomarkers in morbidly obese individuals.
Collapse
|
50
|
Dashti HM, Mathew TC, Al-Zaid NS. Efficacy of Low-Carbohydrate Ketogenic Diet in the Treatment of Type 2 Diabetes. Med Princ Pract 2020; 30:223-235. [PMID: 33040057 PMCID: PMC8280429 DOI: 10.1159/000512142] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Low-carbohydrate ketogenic diet (LCKD), originally used as a treatment for childhood epilepsy is currently gaining acceptance as a nutritional therapy for obesity and type 2 diabetes. In addition, this diet has a positive effect on body weight, blood glucose level, glycosylated hemoglobin, plasma lipid profile, and neurological disorders. This review focuses on the therapeutic effectiveness, negative effects, and the rationale of using LCKD for the treatment of type 2 diabetes. It is shown that LCKD contributes to the reduction in the intake of insulin and oral antidiabetic drugs in patients with type 2 diabetes. Furthermore, the data presented in this review reveal the efficacy and cost-effectiveness of LCKD in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Hussain M Dashti
- Department of Surgery, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Thazhumpal C Mathew
- Department of MLS, Faculty of Allied Health Science, Kuwait University, Kuwait, Kuwait,
| | - Naji S Al-Zaid
- Departments of Physiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|