1
|
Skelton RP, Buttner D, Potts AJ. Mixed hydraulic responses to drought in six common woody species from a dry evergreen sclerophyll forest in South Africa. TREE PHYSIOLOGY 2025; 45:tpaf045. [PMID: 40238083 PMCID: PMC12106281 DOI: 10.1093/treephys/tpaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Despite the emergence of a general conceptual framework for woody tree response to drought, few studies link variation in functional traits of coexisting species to drought outcomes in diverse plant communities. We use a natural drought event to test an ecological prediction from the embolism avoidance hypothesis: that co-existing species of a single growth form (woody trees) will converge upon traits that avoid embolism during all but the most severe droughts. We evaluated hydraulic traits and drought responses of six common woody tree species from South Africa's Albany Subtropical Thicket. For each species, we measured laboratory-based xylem vulnerability and Pressure-Volume curves, and in situ minimum water potentials and four metrics of drought canopy damage during a dry period as well as a subsequent wetter period. We also quantified leaf construction and plant architecture traits, including tree height, Huber value and leaf mass per area (LMA). Species varied in the water potential associated with 50% loss of xylem function (P50), and turgor loss point, leading to between-species variation in stomatal and hydraulic safety margins. All species were shown to withstand leaf xylem water potentials more negative than -4.5 MPa before experiencing embolism. Predicted percent embolism during the dry period was associated with whole-plant drought damage but only following recovery. The LMA, modulus of elasticity, Huber value and tree height were also associated with drought damage, albeit less predictably so. Our results provide support for the embolism avoidance hypothesis and demonstrate how knowledge of species' hydraulic traits can predict canopy dieback during drought events. However, our study also reveals mixed functional responses to drought within a single major growth form (i.e., woody trees) within a community that is composed of multiple growth forms, highlighting the complexity of predicting drought outcomes in diverse communities.
Collapse
Affiliation(s)
- Robert P Skelton
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand and South African Environmental Observation Network (SAEON), 1 Jan Smuts Ave., Johannesburg 2001, South Africa
| | - Daniel Buttner
- Botany Department, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Alastair J Potts
- Botany Department, Nelson Mandela University, Gqeberha 6031, South Africa
| |
Collapse
|
2
|
Özçelik MS, Poyatos R. Water-use strategies in pines and oaks across biomes are modulated by soil water availability. TREE PHYSIOLOGY 2025; 45:tpaf031. [PMID: 40089894 DOI: 10.1093/treephys/tpaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Quercus and Pinus are amongst the most economically and ecologically relevant genera of woody species across northern hemisphere forests. Mixed pine-oak woodlands are also abundant in temperate and Mediterranean regions. The recent shift towards dominance of oaks to the detriment of pines-reported in several regions-could be partly driven by differential drought responses between genera and associated with climate change. In this study, we synthesize water-use strategies across pine and oak species globally to elucidate whether water-saver and water-spender strategies are consistently found for pines and oak species, respectively, and to what extent these strategies are determined by species traits and site characteristics. Pines showed a water-saver strategy when soils are dry but a comparatively water-spender strategy when soils are wet. These patterns still hold when pines and oaks grow in the same site and thus are not affected by species interactions between them. Oak species have higher stem hydraulic conductivity and a deeper maximum rooting depth, supporting their higher capacity to withdraw soil water. Water-use regulation was more related to traits in pines, showing more water-spender strategies at low absolute values of predawn leaf water potentials, without necessarily increasing hydraulic risk, as a result of adjustments in sapwood-to-leaf area ratio (Huber value) and xylem hydraulic conductivity. Climate and vegetation structure were more related to water-use strategies in pines than in oaks. Our results show that-despite these trait adjustments-drought severely constrains water (and carbon) acquisition in pines, which would tend to favour oak species in drought-prone environments.
Collapse
Affiliation(s)
- Mehmet S Özçelik
- Isparta University of Applied Sciences, Faculty of Forestry, Department of Forest Engineering, 32260, Çünür, Isparta, Türkiye
| | - Rafael Poyatos
- CREAF, Edifici C Campus UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Department of Animal Biology, Plant Biology and Ecology, Edifici C Campus UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| |
Collapse
|
3
|
Miettinen I, Zhang C, Alonso L, Fernández‐Marín B, García‐Plazaola JI, Grebe S, Porcar‐Castell A, Atherton J. Hyperspectral Imaging Reveals Differential Carotenoid and Chlorophyll Temporal Dynamics and Spatial Patterns in Scots Pine Under Water Stress. PLANT, CELL & ENVIRONMENT 2025; 48:1535-1554. [PMID: 39462945 PMCID: PMC11695750 DOI: 10.1111/pce.15225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Drought-related die-off events have been observed throughout Europe in Scots pine (Pinus sylvestris L.). Such events are exacerbated by carbon starvation that is, an imbalance of photosynthetic productivity and resource usage. Recent evidence suggests that optically measurable photosynthetic pigments such as chlorophylls and carotenoids respond to water stress (WS). However, there is a lack of measurements using imaging spectroscopy, and the mechanisms linking xanthophyll-related changes in reflectance captured by the photochemical reflectance index (PRI) and chlorophyll changes in red edge position (REP) to WS are not understood. To probe this, we conducted a greenhouse experiment where 3-year-old Pinus sylvestris saplings were subjected to water limitation and followed using hyperspectral imaging (HSI) spectroscopy, water status and photosynthetic measurements. Carotenoids (e.g., xanthophyll cycle) and chlorophylls responded to WS, which was observed using the HSI-derived indices PRI and REP respectively. The spatial-temporal response in these two pigment-reflectance groupings differed. The spatial distribution of PRI represented the light intensity around the time of the measurement, whereas REP reflected the daily averaged light intensity over the experimental course. A further difference was noted upon rewatering, where the carotenoid-related PRI partially recovered but the chlorophyll-related REP did not.
Collapse
Affiliation(s)
- Iiro Miettinen
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR)Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiUusimaaFinland
| | - Chao Zhang
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR)Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiUusimaaFinland
| | - Luis Alonso
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR)Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiUusimaaFinland
- Fundanción CEAMPaternaValenciaSpain
| | - Beatriz Fernández‐Marín
- Department of Plant Biology and EcologyUniversity of the Basque Country (UPV/EHU)LeioaBasque CountrySpain
| | - José I. García‐Plazaola
- Department of Plant Biology and EcologyUniversity of the Basque Country (UPV/EHU)LeioaBasque CountrySpain
| | - Steffen Grebe
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR)Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiUusimaaFinland
| | - Albert Porcar‐Castell
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR)Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiUusimaaFinland
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR)Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiUusimaaFinland
| |
Collapse
|
4
|
Ruehr NK, Nadal-Sala D. Legacies from early-season hot drought: how growth cessation alters tree water dynamics and modifies stress responses in Scots pine. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39812157 DOI: 10.1111/plb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψleaf) to assess the impacts of stress timing on drought resilience in Scots pine saplings. The early summer hot drought had peak temperatures of 36.5 °C, while the late summer hot drought peaked at 38.2 °C. Soil water content during both periods declined to ca. 50% of control values. The early-season hot drought caused growth cessation already at Ψleaf - 1.1 MPa, visible as an almost 30 days earlier end to needle elongation, resulting in needles 2.7 cm shorter, on average. This reduction in leaf area decreased productivity, resulting in a reduction of 50% in seasonal transpiration. However, the reduced water use of early-stressed saplings appeared to enhance resistance to a late-season drought, as reflected in a smaller decline in Ψleaf and lower tree water deficit compared to saplings that did not experience early-season stress. In summary, we observed persistant drought legacy effects from early-season hot-drought stress, as evident in a 35% reduction of leaf area, which impacted tree water use, stress resistance, and productivity. These structural adjustments of leaf development and reduced bud mass from early-season stress could be critical in evergreen conifers, whose long-lived foliage influences future water use and growth potential.
Collapse
Affiliation(s)
- N K Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - D Nadal-Sala
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Ecology Section, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Huo J, Li C, Zhao Y, Han G, Li X, Zhang Z. Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats. PLANT PHYSIOLOGY 2024; 196:2450-2462. [PMID: 39268873 DOI: 10.1093/plphys/kiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/15/2024]
Abstract
The growth and survival of woody plant species is mainly driven by evolutionary and environmental factors. However, little is known about the hydraulic mechanisms that respond to growth limitation and enable desert shrub survival in arid habitats. To shed light on these hydraulic mechanisms, 9-, 31-, and 56-yr-old Caragana korshinskii plants that had been grown under different soil water conditions at the southeast edge of the Tengger Desert, Ningxia, China, were used in this study. The growth of C. korshinskii was mainly limited by soil water rather than shrub age in nonwatered habitats, which indicated the importance of maintaining shrub survival prior to growth under drought. Meanwhile, higher vessel density, narrower vessels, and lower xylem hydraulic conductivity indicated that shrubs enhanced hydraulic safety and reduced their hydraulic efficiency in arid conditions. Importantly, xylem hydraulic conductivity is mediated by variation in xylem hydraulic architecture-regulated photosynthetic carbon assimilation and growth of C. korshinskii. Our study highlights that the synergistic variation in xylem hydraulic safety and hydraulic efficiency is the hydraulic mechanism of limiting growth and maintaining survival in C. korshinskii under drought, providing insights into the strategies for growth and survival of desert shrubs in arid habitats.
Collapse
Affiliation(s)
- Jianqiang Huo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengyi Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environmental of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoling Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhishan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Hesse BD, Hikino K, Gebhardt T, Buchhart C, Dervishi V, Goisser M, Pretzsch H, Häberle KH, Grams TEE. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175805. [PMID: 39197757 DOI: 10.1016/j.scitotenv.2024.175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor-Mendel-Straße 33, 1180 Vienna, Austria.
| | - Kyohsuke Hikino
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeå, Sweden
| | - Timo Gebhardt
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Forest and Agroforest Systems, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Claudia Buchhart
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Vjosa Dervishi
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Michael Goisser
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Thorsten E E Grams
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| |
Collapse
|
7
|
Walthert L, Etzold S, Carminati A, Saurer M, Köchli R, Zweifel R. Coordination between degree of isohydricity and depth of root water uptake in temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174346. [PMID: 38944298 DOI: 10.1016/j.scitotenv.2024.174346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In an increasingly dry environment, it is crucial to understand how tree species use soil water and cope with drought. However, there is still a knowledge gap regarding the relationships between species-specific stomatal behaviour, spatial root distribution, and root water uptake (RWU) dynamics. Our study aimed to investigate above- and below-ground aspects of water use during soil drying periods in four temperate tree species that differ in stomatal behaviour: two isohydric tracheid-bearing conifers, Scots pine and Norway spruce, and two more anisohydric deciduous species, the diffuse-porous European beech, and the ring-porous Downy oak. From 2015 to 2020, soil-tree-atmosphere-continuum parameters were measured for each species in monospecific forests where trees had no access to groundwater. The hourly time series included data on air temperature, vapor pressure deficit, soil water potential, soil hydraulic conductivity, and RWU to a depth of 2 m. Analysis of drought responses included data on stem radius, leaf water potential, estimated osmotically active compounds, and drought damage. Our study reveals an inherent coordination between stomatal regulation, fine root distribution and water uptake. Compared to conifers, the more anisohydric water use of oak and beech was associated with less strict stomatal closure, greater investment in deep roots, four times higher maximum RWU, a shift of RWU to deeper soil layers as the topsoil dried, and a more pronounced soil drying below 1 m depth. Soil hydraulic conductivity started to limit RWU when values fell below 10-3 to 10-5 cm/d, depending on the soil. As drought progressed, oak and beech may also have benefited from their leaf osmoregulatory capacity, but at the cost of xylem embolism with around 50 % loss of hydraulic conductivity when soil water potential dropped below -1.25 MPa. Consideration of species-specific water use is crucial for forest management and vegetation modelling to improve forest resilience to drought.
Collapse
Affiliation(s)
- Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Roger Köchli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
8
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Potkay A, Feng X. Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles. AOB PLANTS 2023; 15:plad044. [PMID: 37899972 PMCID: PMC10601388 DOI: 10.1093/aobpla/plad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 10/31/2023]
Abstract
Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants' lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective 'fitness factors' or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical 'memory' of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| |
Collapse
|
10
|
Carluccio G, Greco D, Sabella E, Vergine M, De Bellis L, Luvisi A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens 2023; 12:825. [PMID: 37375515 DOI: 10.3390/pathogens12060825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The maintenance of an intact water column in the xylem lumen several meters above the ground is essential for woody plant viability. In fact, abiotic and biotic factors can lead to the formation of emboli in the xylem, interrupting sap flow and causing consequences on the health status of the plant. Anyway, the tendency of plants to develop emboli depends on the intrinsic features of the xylem, while the cyto-histological structure of the xylem plays a role in resistance to vascular pathogens, as in the case of the pathogenic bacterium Xylella fastidiosa. Analysis of the scientific literature suggests that on grapevine and olive, some xylem features can determine plant tolerance to vascular pathogens. However, the same trend was not reported in citrus, indicating that X. fastidiosa interactions with host plants differ by species. Unfortunately, studies in this area are still limited, with few explaining inter-cultivar insights. Thus, in a global context seriously threatened by X. fastidiosa, a deeper understanding of the relationship between the physical and mechanical characteristics of the xylem and resistance to stresses can be useful for selecting cultivars that may be more resistant to environmental changes, such as drought and vascular pathogens, as a way to preserve agricultural productions and ecosystems.
Collapse
Affiliation(s)
- Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
11
|
Potkay A, Feng X. Do stomata optimize turgor-driven growth? A new framework for integrating stomata response with whole-plant hydraulics and carbon balance. THE NEW PHYTOLOGIST 2023; 238:506-528. [PMID: 36377138 DOI: 10.1111/nph.18620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Every existing optimal stomatal model uses photosynthetic carbon assimilation as a proxy for plant evolutionary fitness. However, assimilation and growth are often decoupled, making assimilation less ideal for representing fitness when optimizing stomatal conductance to water vapor and carbon dioxide. Instead, growth should be considered a closer proxy for fitness. We hypothesize stomata have evolved to maximize turgor-driven growth, instead of assimilation, over entire plants' lifetimes, improving their abilities to compete and reproduce. We develop a stomata model that dynamically maximizes whole-stem growth following principles from turgor-driven growth models. Stomata open to assimilate carbohydrates that supply growth and osmotically generate turgor, while stomata close to prevent losses of turgor and growth due to negative water potentials. In steady state, the growth optimization model captures realistic stomatal, growth, and carbohydrate responses to environmental cues, reconciles conflicting interpretations within existing stomatal optimization theories, and explains patterns of carbohydrate storage and xylem conductance observed during and after drought. Our growth optimization hypothesis introduces a new paradigm for stomatal optimization models, elevates the role of whole-plant carbon use and carbon storage in stomatal functioning, and has the potential to simultaneously predict gross productivity, net productivity, and plant mortality through a single, consistent modeling framework.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
12
|
Lovreškov L, Radojčić Redovniković I, Limić I, Potočić N, Seletković I, Marušić M, Jurinjak Tušek A, Jakovljević T, Butorac L. Are Foliar Nutrition Status and Indicators of Oxidative Stress Associated with Tree Defoliation of Four Mediterranean Forest Species? PLANTS (BASEL, SWITZERLAND) 2022; 11:3484. [PMID: 36559596 PMCID: PMC9788295 DOI: 10.3390/plants11243484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Mediterranean forest ecosystems in Croatia are of very high significance because of the ecological functions they provide. This region is highly sensitive to abiotic stresses such as air pollution, high sunlight, and high temperatures alongside dry periods; therefore, it is important to monitor the state of these forest ecosystems and how they respond to these stresses. This study was conducted on trees in situ and focused on the four most important forest species in the Mediterranean region in Croatia: pubescent oak (Quercus pubescens Willd.), holm oak (Quercus ilex L.), Aleppo pine (Pinus halepensis Mill.) and black pine (Pinus nigra J. F. Arnold.). Trees were selected and divided into two groups: trees with defoliation of >25% (defoliated) and trees with defoliation of ≤25% (undefoliated). Leaves and needles were collected from selected trees. Differences in chlorophyll content, hydrogen peroxide content, lipid peroxidation and enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, non-specific peroxidase), and nutrient content between the defoliated and undefoliated trees of the examined species were determined. The results showed that there were significant differences for all species between the defoliated and undefoliated trees for at least one of the examined parameters. A principal component analysis showed that the enzyme ascorbate peroxidase can be an indicator of oxidative stress caused by ozone. By using oxidative stress indicators, it is possible to determine whether the trees are under stress even before visual damage occurs.
Collapse
Affiliation(s)
- Lucija Lovreškov
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | | | - Ivan Limić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Nenad Potočić
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Ivan Seletković
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Mia Marušić
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tamara Jakovljević
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Lukrecija Butorac
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
13
|
Haberstroh S, Werner C, Grün M, Kreuzwieser J, Seifert T, Schindler D, Christen A. Central European 2018 hot drought shifts scots pine forest to its tipping point. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1186-1197. [PMID: 35869655 DOI: 10.1111/plb.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of hot drought, i.e. low water availability and simultaneous high air temperature, represents a severe threat to ecosystems. Here, we investigated how the 2018 hot drought in Central Europe caused a tipping point in tree and ecosystem functioning in a Scots pine (Pinus sylvestris L.) forest in southwest Germany. Measurements of stress indicators, such as needle water potential, carbon assimilation and volatile organic compound (VOC) emissions, of dominant P. sylvestris trees were deployed to evaluate tree functioning during hot drought. Ecosystem impact and recovery were assessed as ecosystem carbon exchange, normalized difference vegetation index (NDVI) from satellite data and tree mortality data. During summer 2018, needle water potentials of trees dropped to minimum values of -7.5 ± 0.2 MPa, which implied severe hydraulic impairment of P. sylvestris. Likewise, carbon assimilation and VOC emissions strongly declined after mid-July. Decreasing NDVI values from August 2018 onwards were detected, along with severe defoliation in P. sylvestris, impairing ecosystem carbon flux recovery in 2019, shifting the forest into a year-round carbon source. A total of 47% of all monitored trees (n = 368) died by September 2020. NDVI recovered to pre-2018 levels in 2019, likely caused by emerging broadleaved understorey species. The 2018 hot drought had severe negative impacts on P. sylvestris. The co-occurrence of unfavourable site-specific conditions with recurrent severe droughts resulted in accelerated mortality. Thus, the 2018 hot drought pushed the P. sylvestris stand towards its tipping point, with a subsequent vegetation shift to a broadleaf-dominated forest.
Collapse
Affiliation(s)
- S Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - C Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - M Grün
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - J Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - T Seifert
- Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Matieland, South Africa
| | - D Schindler
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - A Christen
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
McDowell NG, Ball M, Bond‐Lamberty B, Kirwan ML, Krauss KW, Megonigal JP, Mencuccini M, Ward ND, Weintraub MN, Bailey V. Processes and mechanisms of coastal woody-plant mortality. GLOBAL CHANGE BIOLOGY 2022; 28:5881-5900. [PMID: 35689431 PMCID: PMC9544010 DOI: 10.1111/gcb.16297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 05/26/2023]
Abstract
Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2 , and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global change. Here, we synthesize the literature on the mechanisms that underlie coastal woody-plant mortality, with the goal of producing a testable hypothesis framework. The key emergent mechanisms underlying mortality include hypoxic, osmotic, and ionic-driven reductions in whole-plant hydraulic conductance and photosynthesis that ultimately drive the coupled processes of hydraulic failure and carbon starvation. The relative importance of these processes in driving mortality, their order of progression, and their degree of coupling depends on the characteristics of the anomalous water exposure, on topographic effects, and on taxa-specific variation in traits and trait acclimation. Greater inundation exposure could accelerate mortality globally; however, the interaction of changing inundation exposure with elevated CO2 , drought, and rising vapor pressure deficit could influence mortality likelihood. Models of coastal forests that incorporate the frequency and duration of inundation, the role of climatic drivers, and the processes of hydraulic failure and carbon starvation can yield improved estimates of inundation-induced woody-plant mortality.
Collapse
Affiliation(s)
- Nate G. McDowell
- Atmospheric Sciences and Global Change DivisionPacific Northwest National LabRichlandWashingtonUSA
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Marilyn Ball
- Plant Science Division, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Ben Bond‐Lamberty
- Joint Global Change Research Institute, Pacific Northwest National LaboratoryCollege ParkMarylandUSA
| | - Matthew L. Kirwan
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research CenterLafayetteLouisianaUSA
| | | | - Maurizio Mencuccini
- ICREA, Passeig Lluís Companys 23BarcelonaSpain
- CREAFCampus UAB, BellaterraBarcelonaSpain
| | - Nicholas D. Ward
- Marine and Coastal Research LaboratoryPacific Northwest National LaboratorySequimWashingtonUSA
- School of OceanographyUniversity of WashingtonSeattleWashingtonUSA
| | - Michael N. Weintraub
- Department of Environmental SciencesUniversity of ToledoToledoOhioUSA
- Biological Sciences DivisionPacific Northwest National LaboratoryWashingtonUSA
| | - Vanessa Bailey
- Biological Sciences DivisionPacific Northwest National LaboratoryWashingtonUSA
| |
Collapse
|
15
|
Gantois J. New tree-level temperature response curves document sensitivity of tree growth to high temperatures across a US-wide climatic gradient. GLOBAL CHANGE BIOLOGY 2022; 28:6002-6020. [PMID: 35733243 DOI: 10.1111/gcb.16313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Temperature is a key climate indicator, whose distribution is expected to shift right in a warming world. However, the high-temperature tolerance of trees is less widely understood than their drought tolerance, especially when it comes to sub-lethal impacts of temperature on tree growth. I use a large data set of annual tree ring widths, combined with a flexible degree day model, to estimate the relationship between temperature and tree radial growth. I find that tree radial growth responds non-linearly to temperature across many ecoregions of the United States: across temperate and/or dry ecoregions, spring-summer temperature increases are beneficial or mostly neutral for tree growth up to around 25-30°C in humid climates and 10-15°C in dry climates, beyond which temperature increases suppress growth. Thirty additional degree days above the optimal temperature breakpoint lead to an average decrease in tree ring width of around 1%-5%, depending on ecoregions, seasons, and inclusion or exclusion of temperature-mediated drought impacts. High temperatures have legacy effects across a 5-year horizon in dry ecoregions, but none in the temperate-humid South-East or among temperature-sensitive trees. I find limited evidence that trees acclimatize to high temperatures within their lifetime: local variation in early exposure to high temperatures, which stems from local variation in the timing of tree birth, does not significantly impact the response to high temperatures, although temperature-sensitive trees acquire some heightened sensitivity from early exposure. I also find some evidence that trees adapt to high temperatures in the long run: across humid ecoregions of the United States, high temperatures are 40% less harmful to tree growth, where their average incidence is one standard deviation above average. Overall, these results highlight the strength of a new methodology which, applied to representative tree ring data, could contribute to predicting forest carbon uptake potential and composition under global change.
Collapse
Affiliation(s)
- Joséphine Gantois
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
- School of International and Public Affairs, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, Gimeno TE, Wujeska-Klause A, Mu M, Yang J. Predicting resilience through the lens of competing adjustments to vegetation function. PLANT, CELL & ENVIRONMENT 2022; 45:2744-2761. [PMID: 35686437 DOI: 10.1111/pce.14376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco-evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2 ] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2 ]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short-lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.
Collapse
Affiliation(s)
- Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Andy J Pitman
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
- Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Teresa E Gimeno
- CREAF, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Agnieszka Wujeska-Klause
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Urban Studies, School of Social Sciences, Penrith, New South Wales, Australia
| | - Mengyuan Mu
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jinyan Yang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
17
|
Li W, McDowell NG, Zhang H, Wang W, Mackay DS, Leff R, Zhang P, Ward ND, Norwood M, Yabusaki S, Myers-Pigg AN, Pennington SC, Pivovaroff AL, Waichler S, Xu C, Bond-Lamberty B, Bailey VL. The influence of increasing atmospheric CO 2 , temperature, and vapor pressure deficit on seawater-induced tree mortality. THE NEW PHYTOLOGIST 2022; 235:1767-1779. [PMID: 35644021 DOI: 10.1111/nph.18275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO2 concentration, temperature, and vapor pressure deficit (VPD) on seawater-induced tree mortality is uncertain. We examined the mechanisms of seawater-induced mortality under varying climate scenarios using a photosynthetic gain and hydraulic cost optimization model validated against observations in a mature stand of Sitka spruce (Picea sitchensis) trees in the Pacific Northwest, USA, that were dying from recent seawater exposure. The simulations matched well with observations of photosynthesis, transpiration, nonstructural carbohydrates concentrations, leaf water potential, the percentage loss of xylem conductivity, and stand-level mortality rates. The simulations suggest that seawater-induced mortality could decrease by c. 16.7% with increasing atmospheric CO2 levels due to reduced risk of carbon starvation. Conversely, rising VPD could increase mortality by c. 5.6% because of increasing risk of hydraulic failure. Across all scenarios, seawater-induced mortality was driven by hydraulic failure in the first 2 yr after seawater exposure began, with carbon starvation becoming more important in subsequent years. Changing CO2 and climate appear unlikely to have a significant impact on coastal tree mortality under rising sea levels.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - D Scott Mackay
- Department of Geography and Department of Environment & Sustainability, University at Buffalo, Buffalo, NY, 14261, USA
| | - Riley Leff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peipei Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- CAS Key Laboratory of Mountain Ecological Restoration, Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Nicholas D Ward
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
- School of Oceanography, University of Washington, Seattle, WA, 98105, USA
| | - Matt Norwood
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Allison N Myers-Pigg
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Stephanie C Pennington
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, 20740, USA
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chonggang Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ben Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, 20740, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
18
|
Gomez‐Gallego M, Galiano L, Martínez‐Vilalta J, Stenlid J, Capador‐Barreto HD, Elfstrand M, Camarero JJ, Oliva J. Interaction of drought- and pathogen-induced mortality in Norway spruce and Scots pine. PLANT, CELL & ENVIRONMENT 2022; 45:2292-2305. [PMID: 35598958 PMCID: PMC9546048 DOI: 10.1111/pce.14360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Pathogenic diseases frequently occur in drought-stressed trees. However, their contribution to the process of drought-induced mortality is poorly understood. We combined drought and stem inoculation treatments to study the physiological processes leading to drought-induced mortality in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) saplings infected with Heterobasidion annosum s.s. We analysed the saplings' water status, gas exchange, nonstructural carbohydrates (NSCs) and defence responses, and how they related to mortality. Saplings were followed for two growing seasons, including an artificially induced 3-month dormancy period. The combined drought and pathogen treatment significantly increased spruce mortality; however, no interaction between these stressors was observed in pine, although individually each stressor caused mortality. Our results suggest that pathogen infection decreased carbon reserves in spruce, reducing the capacity of saplings to cope with drought, resulting in increased mortality rates. Defoliation, relative water content and the starch concentration of needles were predictors of mortality in both species under drought and pathogen infection. Infection and drought stress create conflicting needs for carbon to compartmentalize the pathogen and to avoid turgor loss, respectively. Heterobasidion annosum reduces the functional sapwood area and shifts NSC allocation patterns, reducing the capacity of trees to cope with drought.
Collapse
Affiliation(s)
- Mireia Gomez‐Gallego
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
- Université de Lorraine, INRAE, IAMNancyFrance
| | - Lucia Galiano
- CREAF, Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès)CataloniaSpain
| | - Jordi Martínez‐Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès)CataloniaSpain
| | - Jan Stenlid
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Hernán D. Capador‐Barreto
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Jonàs Oliva
- Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain
- Joint Research Unit CTFC‐AGROTECNIOLleidaSpain
| |
Collapse
|
19
|
Encinas-Valero M, Esteban R, Hereş AM, Becerril JM, García-Plazaola JI, Artexe U, Vivas M, Solla A, Moreno G, Curiel Yuste J. Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs. TREE PHYSIOLOGY 2022; 42:208-224. [PMID: 33611551 DOI: 10.1093/treephys/tpab006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Dehesas, human-shaped savannah-like ecosystems, where the overstorey is mainly dominated by the evergreen holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.), are classified as a global conservation priority. Despite being Q. ilex a species adapted to the harsh Mediterranean environmental conditions, recent decades have witnessed worrisome trends of climate-change-induced holm oak mortality. Holm oak decline is evidenced by tree vigour loss, gradual defoliation and ultimately, death. However, before losing leaves, trees undergo leaf-level physiological adjustments in response to stress that may represent a promising field to develop biochemical early markers of holm oak decline. This study explored holm oak photoprotective responses (pigments, tocopherols and photosynthetic performance) in 144 mature holm oak trees with different health statuses (i.e., crown defoliation percentages) from healthy to first-stage declining individuals. Our results indicate differential photochemical performance and photoprotective compounds concentration depending on the trees' health status. Declining trees showed higher energy dissipation yield, lower photochemical efficiency and enhanced photoprotective compounds. In the case of total violaxanthin cycle pigments (VAZ) and tocopherols, shifts in leaf contents were significant at very early stages of crown defoliation, even before visual symptoms of decline were evident, supporting the value of these biochemical compounds as early stress markers. Linear mixed-effects models results showed an acute response, both in the photosynthesis performance index and in the concentration of foliar tocopherols, during the onset of tree decline, whereas VAZ showed a more gradual response along the defoliation gradient of the crown. These results collectively demonstrate that once a certain threshold of leaf physiological damage is surpassed, that leaf cannot counteract oxidative stress and progressive loss of leaves occurs. Therefore, the use of both photosynthesis performance indexes and the leaf tocopherols concentration as early diagnostic tools might predict declining trends, facilitating the implementation of preventive measures to counteract crown defoliation.
Collapse
Affiliation(s)
- Manuel Encinas-Valero
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Raquel Esteban
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Ana-Maria Hereş
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven-1, 500123 Braşov, Romania
| | - José María Becerril
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Unai Artexe
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - María Vivas
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Gerardo Moreno
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for SciencePlaza Euskadi 548009 Bilbao, Bizkaia, Spain
| |
Collapse
|
20
|
Sánchez-Pinillos M, D'Orangeville L, Boulanger Y, Comeau P, Wang J, Taylor AR, Kneeshaw D. Sequential droughts: A silent trigger of boreal forest mortality. GLOBAL CHANGE BIOLOGY 2022; 28:542-556. [PMID: 34606657 DOI: 10.1111/gcb.15913] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Despite great concern for drought-driven forest mortality, the effects of frequent low-intensity droughts have been largely overlooked in the boreal forest because of their negligible impacts over the short term. In this study, we used data from 6876 permanent plots distributed across most of the Canadian boreal zone to assess the effects of repeated low-intensity droughts on forest mortality. Specifically, we compared the relative impact of sequential years under low-intensity dry conditions with the effects of variables related to the intensity of dry conditions, stand characteristics, and local climate. Then, we searched for thresholds in forest mortality as a function of the number of years between two forest surveys affected by dry conditions of any intensity. Our results showed that, in general, frequent low-intensity dry conditions had stronger effects on forest mortality than the intensity of the driest conditions in the plot. Frequent low-intensity dry conditions acted as an inciting factor of forest mortality exacerbated by stand characteristics and environmental conditions. Overall, the mortality of forests dominated by shade-tolerant conifers was significantly and positively related to frequent low-intensity dry conditions, supporting, in some cases, the existence of thresholds delimiting contrasting responses to drought. In mixtures with broadleaf species, however, sequential dry conditions had a negligible impact. The effects of frequent dry conditions on shade-intolerant forests mainly depended on local climate, inciting or mitigating the mortality of forests located in wet places and dominated by broadleaf species or jack pine, respectively. Our results highlight the importance of assessing not only climate-driven extreme events but also repeated disturbances of low intensity. In the long term, the smooth response of forests to dry conditions might abruptly change leading to disproportional mortality triggered by accumulated stress conditions. Forest and wildlife managers should consider the cumulative effects of climate change on mortality to avoid shortfalls in timber and habitat.
Collapse
Affiliation(s)
- Martina Sánchez-Pinillos
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Loïc D'Orangeville
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Yan Boulanger
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
| | - Phil Comeau
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jiejie Wang
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Anthony R Taylor
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Daniel Kneeshaw
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Li W, Zhang H, Wang W, Zhang P, Ward ND, Norwood M, Myers-Pigg A, Zhao C, Leff R, Yabusaki S, Waichler S, Bailey VL, McDowell NG. Changes in carbon and nitrogen metabolism during seawater-induced mortality of Picea sitchensis trees. TREE PHYSIOLOGY 2021; 41:2326-2340. [PMID: 34014270 DOI: 10.1093/treephys/tpab073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/13/2021] [Indexed: 05/13/2023]
Abstract
Increasing seawater exposure is causing mortality of coastal forests, yet the physiological response associated with seawater-induced tree mortality, particularly in non-halophytes, is poorly understood. We investigated the shifts in carbon and nitrogen (N) metabolism of mature Sitka-spruce trees that were dying after an ecosystem-scale manipulation of tidal seawater exposure. Soil porewater salinity and foliar ion concentrations increased after seawater exposure and were strongly correlated with the percentage of live foliated crown (PLFC; e.g., crown 'greenness', a measure of progression to death). Co-occurring with decreasing PLFC was decreasing photosynthetic capacity, N-investment into photosynthesis, N-resorption efficiency and non-structural carbohydrate (soluble sugars and starch) concentrations, with the starch reserves depleted to near zero when PLFC dropped below 5%. Combined with declining PLFC, these changes subsequently decreased total carbon gain and thus exacerbated the carbon starvation process. This study suggests that an impairment in carbon and N metabolism during the mortality process after seawater exposure is associated with the process of carbon starvation, and provides critical knowledge necessary to predict sea-level rise impacts on coastal forests.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Peipei Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Nicholas D Ward
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA
| | - Matt Norwood
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Allison Myers-Pigg
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Chuanyan Zhao
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Riley Leff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
22
|
Erbilgin N, Zanganeh L, Klutsch JG, Chen SH, Zhao S, Ishangulyyeva G, Burr SJ, Gaylord M, Hofstetter R, Keefover-Ring K, Raffa KF, Kolb T. Combined drought and bark beetle attacks deplete non-structural carbohydrates and promote death of mature pine trees. PLANT, CELL & ENVIRONMENT 2021; 44:3636-3651. [PMID: 34612515 DOI: 10.1111/pce.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
How carbohydrate reserves in conifers respond to drought and bark beetle attacks are poorly understood. We investigated changes in carbohydrate reserves and carbon-dependent diterpene defences in ponderosa pine trees that were experimentally subjected to two levels of drought stress (via root trenching) and two types of biotic challenge treatments (pheromone-induced bark beetle attacks or inoculations with crushed beetles that include beetle-associated fungi) for two consecutive years. Our results showed that trenching did not influence carbohydrates, whereas both biotic challenges reduced amounts of starch and sugars of trees. However, only the combined trenched-bark beetle attacked trees depleted carbohydrates and died during the first year of attacks. While live trees contained higher carbohydrates than dying trees, amounts of constitutive and induced diterpenes produced did not vary between live and beetle-attacked dying trees, respectively. Based on these results we propose that reallocation of carbohydrates to diterpenes during the early stages of beetle attacks is limited in drought-stricken trees, and that the combination of biotic and abiotic stress leads to tree death. The process of tree death is subsequently aggravated by beetle girdling of phloem, occlusion of vascular tissue by bark beetle-vectored fungi, and potential exploitation of host carbohydrates by bark beetle symbionts as nutrients.
Collapse
Affiliation(s)
- Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Leila Zanganeh
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Department of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Department of Forestry, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - Shih-Hsuan Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Shiyang Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J Burr
- Forest Health Protection, USDA Forest Service, Milwaukee, Wisconsin, USA
| | - Monica Gaylord
- Forest Health Protection, USDA Forest Service, Flagstaff, Arizona, USA
| | - Richard Hofstetter
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas Kolb
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
23
|
Zhang H, Li X, Wang W, Pivovaroff AL, Li W, Zhang P, Ward ND, Myers-Pigg A, Adams HD, Leff R, Wang A, Yuan F, Wu J, Yabusaki S, Waichler S, Bailey VL, Guan D, McDowell NG. Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. PLANT PHYSIOLOGY 2021; 187:873-885. [PMID: 34608959 PMCID: PMC8981213 DOI: 10.1093/plphys/kiab295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 05/29/2023]
Abstract
Sea-level rise is one of the most critical challenges facing coastal ecosystems under climate change. Observations of elevated tree mortality in global coastal forests are increasing, but important knowledge gaps persist concerning the mechanism of salinity stress-induced nonhalophytic tree mortality. We monitored progressive mortality and associated gas exchange and hydraulic shifts in Sitka-spruce (Picea sitchensis) trees located within a salinity gradient under an ecosystem-scale change of seawater exposure in Washington State, USA. Percentage of live foliated crown (PLFC) decreased and tree mortality increased with increasing soil salinity during the study period. A strong reduction in gas exchange and xylem hydraulic conductivity (Ks) occurred during tree death, with an increase in the percentage loss of conductivity (PLC) and turgor loss point (πtlp). Hydraulic and osmotic shifts reflected that hydraulic function declined from seawater exposure, and dying trees were unable to support osmotic adjustment. Constrained gas exchange was strongly related to hydraulic damage at both stem and leaf levels. Significant correlations between foliar sodium (Na+) concentration and gas exchange and key hydraulic parameters (Ks, PLC, and πtlp) suggest that cellular injury related to the toxic effects of ion accumulation impacted the physiology of these dying trees. This study provides evidence of toxic effects on the cellular function that manifests in all aspects of plant functioning, leading to unfavourable osmotic and hydraulic conditions.
Collapse
Affiliation(s)
- Hongxia Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| | - Wenzhi Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute
of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu
610041, China
| | - Alexandria L. Pivovaroff
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Weibin Li
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs,
College of Pastoral Agriculture Science and Technology, Lanzhou University,
Lanzhou 730020, China
| | - Peipei Zhang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Nicholas D. Ward
- Marine Sciences Laboratory, Pacific Northwest National
Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle,
Washington 98195, USA
| | - Allison Myers-Pigg
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs,
College of Pastoral Agriculture Science and Technology, Lanzhou University,
Lanzhou 730020, China
| | - Henry D. Adams
- School of the Environment, Washington State University, Pullman,
Washington 99164-2812, USA
| | - Riley Leff
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory,
Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory,
Richland, Washington 99354, USA
| | - Vanessa L. Bailey
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Nate G. McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University,
Pullman, Washington 99164-4236, USA
| |
Collapse
|
24
|
Potkay A, Trugman AT, Wang Y, Venturas MD, Anderegg WRL, Mattos CRC, Fan Y. Coupled whole-tree optimality and xylem hydraulics explain dynamic biomass partitioning. THE NEW PHYTOLOGIST 2021; 230:2226-2245. [PMID: 33521942 DOI: 10.1111/nph.17242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Trees partition biomass in response to resource limitation and physiological activity. It is presumed that these strategies evolved to optimize some measure of fitness. If the optimization criterion can be specified, then allometry can be modeled from first principles without prescribed parameterization. We present the Tree Hydraulics and Optimal Resource Partitioning (THORP) model, which optimizes allometry by estimating allocation fractions to organs as proportional to their ratio of marginal gain to marginal cost, where gain is net canopy photosynthesis rate, and costs are senescence rates. Root total biomass and profile shape are predicted simultaneously by a unified optimization. Optimal partitioning is solved by a numerically efficient analytical solution. THORP's predictions agree with reported tree biomass partitioning in response to size, water limitations, elevated CO2 and pruning. Roots were sensitive to soil moisture profiles and grew down to the groundwater table when present. Groundwater buffered against water stress regardless of meteorology, stabilizing allometry and root profiles as deep as c. 30 m. Much of plant allometry can be explained by hydraulic considerations. However, nutrient limitations cannot be fully ignored. Rooting mass and profiles were synchronized with hydrological conditions and groundwater even at considerable depths, illustrating that the below ground shapes whole-tree allometry.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yujie Wang
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Martin D Venturas
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Caio R C Mattos
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| |
Collapse
|
25
|
Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations. FORESTS 2021. [DOI: 10.3390/f12050603] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Forest ecosystems in the Mediterranean Basin are mostly situated in the north of the Basin (mesic). In the most southern and dry areas, the forest can only exist where topography and/or altitude favor a sufficient availability of water to sustain forest biomass. We have conducted a thorough review of recent literature (2000–2021) that clearly indicates large direct and indirect impacts of increasing drought conditions on the forests of the Mediterranean Basin, their changes in surface and distribution areas, and the main impacts they have suffered. We have focused on the main trends that emerge from the current literature and have highlighted the main threatens and management solution for the maintenance of these forests. The results clearly indicate large direct and indirect impacts of increasing drought conditions on the forests of the Mediterranean Basin. These increasing drought conditions together with over-exploitation, pest expansion, fire and soil degradation, are synergistically driving to forest regression and dieback in several areas of this Mediterranean Basin. These environmental changes have triggered responses in tree morphology, physiology, growth, reproduction, and mortality. We identified at least seven causes of the changes in the last three decades that have led to the current situation and that can provide clues for projecting the future of these forests: (i) The direct effect of increased aridity due to more frequent and prolonged droughts, which has driven Mediterranean forest communities to the limit of their capacity to respond to drought and escape to wetter sites, (ii) the indirect effects of drought, mainly by the spread of pests and fires, (iii) the direct and indirect effects of anthropogenic activity associated with general environmental degradation, including soil degradation and the impacts of fire, species invasion and pollution, (iv) human pressure and intense management of water resources, (v) agricultural land abandonment in the northern Mediterranean Basin without adequate management of new forests, (vi) very high pressure on forested areas of northern Africa coupled with the demographic enhancement, the expansion of crops and higher livestock pressure, and the more intense and overexploitation of water resources uses on the remaining forested areas, and (vii) scarcity and inequality of human management and policies, depending on the national and/or regional governments and agencies, being unable to counteract the previous changes. We identified appropriate measures of management intervention, using the most adequate techniques and processes to counteract these impacts and thus to conserve the health, service capacity, and biodiversity of Mediterranean forests. Future policies should, moreover, promote research to improve our knowledge of the mechanisms of, and the effects on, nutrient and carbon plant-soil status concurrent with the impacts of aridity and leaching due to the effects of current changes. Finally, we acknowledge the difficulty to obtain an accurate quantification of the impacts of increasing aridity rise that warrants an urgent investment in more focused research to further develop future tools in order to counteract the negative effects of climate change on Mediterranean forests.
Collapse
|
26
|
Matallana-Ramirez LP, Whetten RW, Sanchez GM, Payn KG. Breeding for Climate Change Resilience: A Case Study of Loblolly Pine ( Pinus taeda L.) in North America. FRONTIERS IN PLANT SCIENCE 2021; 12:606908. [PMID: 33995428 PMCID: PMC8119900 DOI: 10.3389/fpls.2021.606908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 05/25/2023]
Abstract
Earth's atmosphere is warming and the effects of climate change are becoming evident. A key observation is that both the average levels and the variability of temperature and precipitation are changing. Information and data from new technologies are developing in parallel to provide multidisciplinary opportunities to address and overcome the consequences of these changes in forest ecosystems. Changes in temperature and water availability impose multidimensional environmental constraints that trigger changes from the molecular to the forest stand level. These can represent a threat for the normal development of the tree from early seedling recruitment to adulthood both through direct mortality, and by increasing susceptibility to pathogens, insect attack, and fire damage. This review summarizes the strengths and shortcomings of previous work in the areas of genetic variation related to cold and drought stress in forest species with particular emphasis on loblolly pine (Pinus taeda L.), the most-planted tree species in North America. We describe and discuss the implementation of management and breeding strategies to increase resilience and adaptation, and discuss how new technologies in the areas of engineering and genomics are shaping the future of phenotype-genotype studies. Lessons learned from the study of species important in intensively-managed forest ecosystems may also prove to be of value in helping less-intensively managed forest ecosystems adapt to climate change, thereby increasing the sustainability and resilience of forestlands for the future.
Collapse
Affiliation(s)
- Lilian P. Matallana-Ramirez
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Georgina M. Sanchez
- Center for Geospatial Analytics, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Kitt G. Payn
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| |
Collapse
|
27
|
Zhang P, McDowell NG, Zhou X, Wang W, Leff RT, Pivovaroff AL, Zhang H, Chow PS, Ward ND, Indivero J, Yabusaki SB, Waichler S, Bailey VL. Declining carbohydrate content of Sitka-spruce treesdying from seawater exposure. PLANT PHYSIOLOGY 2021; 185:1682-1696. [PMID: 33893814 PMCID: PMC8133543 DOI: 10.1093/plphys/kiab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 05/13/2023]
Abstract
Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.
Collapse
Affiliation(s)
- Peipei Zhang
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Author for communication:
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Riley T Leff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Pak S Chow
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA
| | - Julia Indivero
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Steven B Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
28
|
Dang H, Zhang X, Han H, Chen S, Li M. Water Use by Chinese Pine Is Less Conservative but More Closely Regulated Than in Mongolian Scots Pine in a Plantation Forest, on Sandy Soil, in a Semi-Arid Climate. FRONTIERS IN PLANT SCIENCE 2021; 12:635022. [PMID: 33897726 PMCID: PMC8062886 DOI: 10.3389/fpls.2021.635022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The diversity of plant water use patterns among species and ecosystems is a matter of widespread debate. In this study, Chinese pine (Pinus tabuliformis, CP) and Mongolian Scots pine (Pinus sylvestris var. mongolica, MP), which is co-exist in the shelterbelt plantations in the Horqin Sandyland in northern China, were chosen for comparison of water use traits by monitoring xylem sap flow alongside recordings of the associated environmental factors over four growing seasons. Continuous sap flux density measurements were converted into crown projected area transpiration intensity (Tr) and canopy stomatal conductance (Gs). The results indicated that MP showed a higher canopy transpiration intensity than in CP, with Tr daily means (±standard deviation) of 0.84 ± 0.36 and 0.79 ± 0.43 mm⋅d-1, respectively (p = 0.07). However, the inter-annual variability of daily Tr in MP was not significant, varying only approximately a 1.1-fold (p = 0.29), while inter-annual variation was significant for CP, with 1.24-fold variation (p < 0.01). In particular, the daily mean Tr value for CP was approximately 1.7-times higher than that of MP under favorable soil moisture conditions, with values for relative extractable soil water within the 0-1.0 m soil layer (REW) being above 0.4. However, as the soil dried out, the value of Tr for CP decreased more sharply, falling to only approximately 0.5-times the value for MP when REW fell to < 0.2. The stronger sensitivity of Tr and/or Gs to REW, together with the more sensitive response of Gs to VPD in CP, confirms that CP exhibits less conservation of soil water utilization but features a stronger ability to regulate water use. Compared with MP, CP can better adapt to the dry conditions associated with climate change.
Collapse
Affiliation(s)
- Hongzhong Dang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Xueli Zhang
- Institute of Sandy Land Management and Utilization, Shenyang, China
| | - Hui Han
- Institute of Sandy Land Management and Utilization, Shenyang, China
| | - Shuai Chen
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Mingyang Li
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
29
|
Wang W, English NB, Grossiord C, Gessler A, Das AJ, Stephenson NL, Baisan CH, Allen CD, McDowell NG. Mortality predispositions of conifers across western USA. THE NEW PHYTOLOGIST 2021; 229:831-844. [PMID: 32918833 DOI: 10.1111/nph.16864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Conifer mortality rates are increasing in western North America, but the physiological mechanisms underlying this trend are not well understood. We examined tree-ring-based radial growth along with stable carbon (C) and oxygen (O) isotope composition (δ13 C and δ18 O, respectively) of dying and surviving conifers at eight old-growth forest sites across a strong moisture gradient in the western USA to retrospectively investigate mortality predispositions. Compared with surviving trees, lower growth of dying trees was detected at least one decade before mortality at seven of the eight sites. Intrinsic water-use efficiency increased over time in both dying and surviving trees, with a weaker increase in dying trees at five of the eight sites. C starvation was a strong correlate of conifer mortality based on a conceptual model incorporating growth, δ13 C, and δ18 O. However, this approach does not capture processes that occur in the final months of survival. Ultimately, C starvation may lead to increased mortality vulnerability, but hydraulic failure or biotic attack may dominate the process during the end stages of mortality in these conifers.
Collapse
Affiliation(s)
- Wenzhi Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu,, 610041, China
| | - Nathan B English
- School of Health, Medical and Applied Science, Central Queensland University, Townsville, QLD, 4810, Australia
| | - Charlotte Grossiord
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne,, CH-1015, Switzerland
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne,, CH-1015, Switzerland
| | - Arthur Gessler
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne,, CH-1015, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, Zurich, 8092, Switzerland
| | - Adrian J Das
- Western Ecological Research Center, US Geological Survey, Three Rivers, CA, 93271, USA
| | - Nathan L Stephenson
- Western Ecological Research Center, US Geological Survey, Three Rivers, CA, 93271, USA
| | | | - Craig D Allen
- Fort Collins Science Center, New Mexico Landscapes Field Station, US Geological Survey, Los Alamos, NM,, 87544, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| |
Collapse
|
30
|
Disentangling Mechanisms of Drought-Induced Dieback in Pinus nigra Arn. from Growth and Wood Isotope Patterns. FORESTS 2020. [DOI: 10.3390/f11121339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The increased frequency and intensity of warming-induced droughts have triggered dieback episodes affecting many forest types and tree species worldwide. Tree plantations are not exempt as they can be more vulnerable to drought than natural forests because of their lower structural and genetic diversity. Therefore, disentangling the physiological mechanisms leading to growth decline and tree mortality can provide tools to adapt forest management to climate change. In this study, we investigated a Pinus nigra Arn. plantation situated in northern Spain, in which some trees showed canopy dieback and radial-growth decline. We analyzed how radial growth and its responses to drought events differed between non-declining (ND) and declining (D) trees showing low and high canopy defoliation, respectively, in combination with carbon (δ13C) and oxygen (δ18O) isotope ratios in tree rings. The radial growth of P. nigra was constrained by water availability during the growing season and the previous autumn. The radial growth of D trees showed higher sensitivity to drought than ND trees. This fact is in accordance with the lower drought resilience and negative growth trends observed in D trees. Both tree classes differed in their growth from 2012 onwards, with D trees showing a reduced growth compared to ND trees. The positive δ13C-δ18O relationship together with the uncoupling between growth and intrinsic water-use efficiency suggest that D trees have less tight stomatal regulation than ND trees, which could involve a high risk of xylem embolism in the former class. Our results suggest that different water use strategies between coexisting ND and D trees were behind the differences in growth patterns and point to hydraulic failure as a possible mechanism triggering dieback and growth decline.
Collapse
|
31
|
Peters RL, Miranda JC, Schönbeck L, Nievergelt D, Fonti MV, Saurer M, Stritih A, Fonti P, Wermelinger B, von Arx G, Lehmann MM. Tree physiological monitoring of the 2018 larch budmoth outbreak: preference for leaf recovery and carbon storage over stem wood formation in Larix decidua. TREE PHYSIOLOGY 2020; 40:1697-1711. [PMID: 32722795 DOI: 10.1093/treephys/tpaa087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Insect defoliation impacts forest productivity worldwide, highlighting the relevance of plant-insect interactions. The larch budmoth (Zeiraphera griseana Hübner) is one of the most extensively studied defoliators, where numerous tree ring-based analyses on its host (Larix decidua Mill.) have aided in identifying outbreak dynamics over the past millennia. Yet, outbreaks have been widely absent after the early 1980s, and little is known about the in situ tree physiological responses and the allocation of carbon resources during and after defoliation. In summer 2018, we tracked an ongoing larch budmoth outbreak in a well-studied larch forest in the Swiss Alps. We performed biweekly monitoring on an affected and unaffected site using a unique combination of xylogenesis observations, measurements of non-structural carbohydrates, isotopic analysis of needle assimilates and ground-based and remote-sensed leaf trait observations. The budmoth induced a defoliation that lasted 40 days and could be detected by satellite observations. Soluble sugars significantly decreased in needles and stem phloem of the defoliated trees, while starch levels remained stable in the stem and root xylem compared to the control. Carbon and oxygen isotope ratios in needle assimilates indicated that neither photosynthetic assimilation rates nor stomatal conductance was different between sites before, during and after the outbreak. Defoliated trees ceased cell wall thickening 17 days earlier than unaffected trees, showing the earliest halt of ring formation recorded from 2007 untill 2013 and causing significant thinner cell walls, particularly in the latewood. No significant differences were found for cell enlargement rates and ring width. Our study revealed that an outbreak causes a downregulation of cell wall thickening first, while no starch is mobilized or leaf physiology is adjusted to compensate for the reduced carbon source due to defoliation. Our observations suggest that affected larch trees prioritize leaf recovery and carbon storage over wood biomass development.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent B-9000, Belgium
| | - Jose Carlos Miranda
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Forest Genetics and Ecophysiology Research Group, School of Forestry Engineering, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Daniel Nievergelt
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Marina V Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Ana Stritih
- ETH Zurich, Institute for Landscape and Spatial Development, Planning of Landscape and Urban Systems (PLUS), Stefano-Franscini Platz 5, Zürich 8093, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos Dorf 7260, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Beat Wermelinger
- Forest Health and Biotic Interactions, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Georg von Arx
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
32
|
Timofeeva G, Treydte K, Bugmann H, Salmon Y, Rigling A, Schaub M, Vollenweider P, Siegwolf R, Saurer M. How does varying water supply affect oxygen isotope variations in needles and tree rings of Scots pine? TREE PHYSIOLOGY 2020; 40:1366-1380. [PMID: 32589748 DOI: 10.1093/treephys/tpaa082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/01/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In many regions, drought is suspected to be a cause of Scots pine decline and mortality, but the underlying physiological mechanisms remain unclear. Because of their relationship to ecohydrological processes, δ18O values in tree rings are potentially useful for deciphering long-term physiological responses and tree adaptation to increasing drought. We therefore analyzed both needle- and stem-level isotope fractionations in mature trees exposed to varying water supply. In a first experiment, we investigated seasonal δ18O variations in soil and needle water of Scots pine in a dry inner Alpine valley in Switzerland, comparing drought-stressed trees with trees that were irrigated for more than 10 years. In a second experiment, we analyzed twentieth-century δ18O variations in tree rings of the same forest, including a group of trees that had recently died. We observed less 18O enrichment in needle water of drought-stressed compared with irrigated trees. We applied different isotope fractionation models to explain these results, including the Péclet and the two-pool correction, which considers the ratio of unenriched xylem water in the needles to total needle water. Based on anatomical measurements, we found this ratio to be unchanged in drought-stressed needles, although they were shorter. The observed lower 18O enrichment in needles of stressed trees was therefore likely caused by increased effective path length for water movement within the leaf lamina. In the tree-ring study, we observed lower δ18O values in tree rings of dead trees compared with survivors during several decades prior to their death. These lower values in declining trees are consistent with the lower needle water 18O enrichment observed for drought-stressed compared with irrigated trees, suggesting that this needle-level signal is reflected in the tree rings, although changes in rooting depth could also play a role. Our study demonstrates that long-term effects of drought are reflected in the tree-ring δ18O values, which helps to provide a better understanding of past tree physiological changes of Scots pine.
Collapse
Affiliation(s)
- Galina Timofeeva
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| | - Kerstin Treydte
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - Harald Bugmann
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| | - Yann Salmon
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Andreas Rigling
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - Marcus Schaub
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - Pierre Vollenweider
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - Rolf Siegwolf
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - Matthias Saurer
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| |
Collapse
|
33
|
DeSoto L, Cailleret M, Sterck F, Jansen S, Kramer K, Robert EMR, Aakala T, Amoroso MM, Bigler C, Camarero JJ, Čufar K, Gea-Izquierdo G, Gillner S, Haavik LJ, Hereş AM, Kane JM, Kharuk VI, Kitzberger T, Klein T, Levanič T, Linares JC, Mäkinen H, Oberhuber W, Papadopoulos A, Rohner B, Sangüesa-Barreda G, Stojanovic DB, Suárez ML, Villalba R, Martínez-Vilalta J. Low growth resilience to drought is related to future mortality risk in trees. Nat Commun 2020; 11:545. [PMID: 31992718 PMCID: PMC6987235 DOI: 10.1038/s41467-020-14300-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/05/2019] [Indexed: 11/23/2022] Open
Abstract
Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
Collapse
Affiliation(s)
- Lucía DeSoto
- Estación Experimental de Zonas Áridas, Spanish National Research Council (EEZA-CSIC), Almería, Spain.
- Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal.
| | - Maxime Cailleret
- INRAE, Université Aix-Marseille, UMR Recover, Aix-en-Provence, France
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Koen Kramer
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
- Land Life Company, Amsterdam, Netherlands
| | - Elisabeth M R Robert
- CREAF, Bellaterrra (Cerdanyola del Vallès), Catalonia, Spain
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
| | - Tuomas Aakala
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Mariano M Amoroso
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Universidad Nacional de Río Negro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Christof Bigler
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología, Spanish National Research Council (IPE-CSIC), Zaragoza, Spain
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Guillermo Gea-Izquierdo
- Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Sten Gillner
- Institute of Forest Botany and Forest Zoology, TU Dresden, Dresden, Germany
| | | | - Ana-Maria Hereş
- Department of Forest Sciences, Transilvania University of Brasov, Brasov, Romania
- BC3 - Basque Centre for Climate Change, Leioa, Spain
| | - Jeffrey M Kane
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| | - Vyacheslav I Kharuk
- Sukachev Institute of Forest, Siberian Division of the Russian Academy of Sciences (RAS), Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Thomas Kitzberger
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bariloche, Argentina
- Department of Ecology, Universidad Nacional del Comahue, Río Negro, Argentina
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Levanič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Juan C Linares
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
| | - Harri Mäkinen
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Brigitte Rohner
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Dejan B Stojanovic
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Maria Laura Suárez
- Grupo Ecología Forestal, CONICET - INTA, EEA Bariloche, Bariloche, Argentina
| | - Ricardo Villalba
- Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza, Argentina
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterrra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterrra (Cerdanyola del Vallès), Catalonia, Spain
| |
Collapse
|
34
|
Sperlich D, Chang CT, Peñuelas J, Sabaté S. Responses of photosynthesis and component processes to drought and temperature stress: are Mediterranean trees fit for climate change? TREE PHYSIOLOGY 2019; 39:1783-1805. [PMID: 31553458 DOI: 10.1093/treephys/tpz089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/19/2019] [Accepted: 08/15/2019] [Indexed: 05/24/2023]
Abstract
Global warming is raising concerns about the acclimatory capacity of trees and forests, especially in Mediterranean-type ecosystems. The sensitivity of photosynthesis to temperature is a key uncertainty for projecting the magnitude of terrestrial feedbacks on future climate change. While boreal, temperate and tropical species have been comparatively well investigated, our study provides the first comprehensive overview of the seasonal acclimatory responses of photosynthesis and its component processes to temperature in four Mediterranean climax species under natural conditions. We quantified seasonal changes in the responses of net photosynthesis (Anet), stomatal conductance (gs), mesophyllic conductance (gm) and electron-transport rate (Jcf), and investigated their sensitivity to drought and temperature stress in sunlit and shaded leaves of four Mediterranean tree species (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.). Sunlit leaves, but not shaded leaves, showed a pronounced seasonality in the temperature responses of Anet, gs, gm and Jcf. All four species and variables showed a remarkably dynamic and consistent acclimation of the thermal optimum (Topt), reaching peaks in summer ~29-32 °C. Changes in the shape of the response curves were, however, highly species-specific. Under severe drought, Topt of all variables were on average 22-29% lower. This was accompanied by narrower response curves above all in P. halepensis, reducing the optimal range for photosynthesis to the cooler morning or evening periods. Wider temperature-response curves and less strict stomatal control under severe drought were accompanied by wilting and drought-induced leaf shedding in Q. ilex and Q. pubescens and by additional branch dieback in A. unedo. Mild winter conditions led to a high Topt (~19.1-22.2 °C), benefitting the evergreen species, especially P. halepensis. Seasonal acclimation of Anet was explained better by gs and gm being less pronounced in Jcf. Drought was thus a key factor, in addition to growth temperature, to explain seasonal acclimation of photosynthesis. Severe drought periods may exceed more frequently the high acclimatory capacity of Mediterranean trees to high ambient temperatures, which could lead to reduced growth, increased leaf shedding and, for some species such as A. unedo, increased mortality risk.
Collapse
Affiliation(s)
- D Sperlich
- Chair of Forestry Economics and Forest Planning, Faculty of Environment and Natural Resources, University of Freiburg, 79085 Freiburg im Breisgau, Tennenbacherstr. 4, Germany
| | - C T Chang
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), University of Barcelona (UB), Av. Diagonal 643, 08028 Barcelona
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - J Peñuelas
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - S Sabaté
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), University of Barcelona (UB), Av. Diagonal 643, 08028 Barcelona
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
Drought-Induced Reductions and Limited Recovery in the Radial Growth, Transpiration, and Canopy Stomatal Conductance of Mongolian Scots Pine (Pinus sylvestris var. mongolica Litv): A Five-Year Observation. FORESTS 2019. [DOI: 10.3390/f10121143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Determining plant–water relationships in response to drought events can provide important information about the adaptation of trees to climate change. The Mongolian Scots pine (Pinus sylvestris var. mongolica Litv), as one of the major tree species to control soil loss and desertification in northern China, has experienced severe degradation in recent decades. Here, we aimed to examine the impacts of a two-year consecutive drought and another year of drought on the radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pine over a five-year period, especially in terms of its recovery after drought. The study period during 2013–2017 consisted of a ‘normal’ year, a ‘dry year’, a ‘very dry’ year, a ‘wet’ year, and a ‘dry’ year, according to annual precipitation and soil moisture conditions. Based on measurements of the sap flow and diameters at breast height of 11 sample trees as well as the concurrent environmental factors, we quantified the reductions in tree radial growth, transpiration, and canopy stomatal conductance during the drought development as well as their recovery after the drought. The results showed that the tree radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pines decreased by 33.8%, 51.9%, and 51.5%, respectively, due to the two consecutive years of drought. Moreover, these reductions did not fully recover after the two-year drought was relieved. The minimum difference of these parameters between before and after the two-year consecutive drought period was 8.5% in tree radial growth, 45.1% in transpiration levels, and 42.4% in canopy stomatal conductance. We concluded that the two consecutive years of drought resulted in not only large reductions in tree radial growth and water use, but also their lagged and limited recoveries after drought. The study also highlighted the limited resilience of Mongolian Scots pine trees to prolonged drought in semi-arid sandy environmental conditions.
Collapse
|
36
|
Lazarus BE, Germino MJ, Richardson BA. Freezing resistance, safety margins, and survival vary among big sagebrush populations across the western United States. AMERICAN JOURNAL OF BOTANY 2019; 106:922-934. [PMID: 31294835 DOI: 10.1002/ajb2.1320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Physiological responses to temperature extremes are considered strong drivers of species' demographic responses to climate variability. Plants are typically classified as either avoiders or tolerators in their freezing-resistance mechanism, but a gradient of physiological-threshold freezing responses may exist among individuals of a species. Moreover, adaptive significance of physiological freezing responses is poorly characterized, particularly under warming conditions that relax selection on cold hardiness. METHODS Freezing responses were measured in winter and again for new foliage in spring for 14 populations of Artemisia tridentata collected throughout its range and planted in a warm common garden. The relationships of the freezing responses to survival were evaluated in the warm garden and in two colder gardens. RESULTS Winter and spring freezing resistance were not correlated and appeared to be under differing selection regimes, as evident in correlations with different population climate of origin variables. All populations resisted considerably lower temperatures in winter than in spring, with populations from more continental climates showing narrower freezing safety margins (difference in temperatures at which ice-nucleation occurs and 50% reduction in chlorophyll fluorescence occurs) in spring. Populations with greater winter freezing resistance had lower survivorship in the warmest garden, while populations with greater spring freezing resistance had lower survivorship in a colder garden. CONCLUSIONS These survivorship patterns relative to physiological thresholds suggest excess freezing resistance may incur a survival cost that likely relates to a trade-off between carbon gain and freezing resistance during critical periods of moisture availability. This cost has implications for seed moved from cooler to warmer environments and for plants growing in warming environments.
Collapse
Affiliation(s)
- Brynne E Lazarus
- U. S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 S. Lusk Street, Boise, ID, 83706, USA
| | - Matthew J Germino
- U. S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 S. Lusk Street, Boise, ID, 83706, USA
| | - Bryce A Richardson
- USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main St., Moscow, ID, 83843, USA
| |
Collapse
|
37
|
Barba J, Bradford MA, Brewer PE, Bruhn D, Covey K, van Haren J, Megonigal JP, Mikkelsen TN, Pangala SR, Pihlatie M, Poulter B, Rivas-Ubach A, Schadt CW, Terazawa K, Warner DL, Zhang Z, Vargas R. Methane emissions from tree stems: a new frontier in the global carbon cycle. THE NEW PHYTOLOGIST 2019; 222:18-28. [PMID: 30394559 DOI: 10.1111/nph.15582] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Tree stems from wetland, floodplain and upland forests can produce and emit methane (CH4 ). Tree CH4 stem emissions have high spatial and temporal variability, but there is no consensus on the biophysical mechanisms that drive stem CH4 production and emissions. Here, we summarize up to 30 opportunities and challenges for stem CH4 emissions research, which, when addressed, will improve estimates of the magnitudes, patterns and drivers of CH4 emissions and trace their potential origin. We identified the need: (1) for both long-term, high-frequency measurements of stem CH4 emissions to understand the fine-scale processes, alongside rapid large-scale measurements designed to understand the variability across individuals, species and ecosystems; (2) to identify microorganisms and biogeochemical pathways associated with CH4 production; and (3) to develop a mechanistic model including passive and active transport of CH4 from the soil-tree-atmosphere continuum. Addressing these challenges will help to constrain the magnitudes and patterns of CH4 emissions, and allow for the integration of pathways and mechanisms of CH4 production and emissions into process-based models. These advances will facilitate the upscaling of stem CH4 emissions to the ecosystem level and quantify the role of stem CH4 emissions for the local to global CH4 budget.
Collapse
Affiliation(s)
- Josep Barba
- Plant and Soil Sciences Department, University of Delaware, Newark, DE, 19711, USA
| | - Mark A Bradford
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Paul E Brewer
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Kristofer Covey
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Environmental Studies and Sciences Program, Skidmore College, NY, 12866, USA
- Skidmore College, Dana Science Center, Saratoga Springs, NY, 12866, USA
| | - Joost van Haren
- Biosphere 2 and Honors College, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Teis Nørgaard Mikkelsen
- Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Sunitha R Pangala
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK
| | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, 00014, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, 00560, Helsinki, Finland
| | - Ben Poulter
- Biospheric Sciences Laboratory, NASA GSFC, Greenbelt, MD, 20771, USA
| | - Albert Rivas-Ubach
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kazuhiko Terazawa
- Department of Northern Biosphere Agriculture, Tokyo University of Agriculture, 099-2493, Abashiri, Japan
| | - Daniel L Warner
- Plant and Soil Sciences Department, University of Delaware, Newark, DE, 19711, USA
| | - Zhen Zhang
- Department of Geographical Sciences, University of Maryland, College Park, MD, 20740, USA
| | - Rodrigo Vargas
- Plant and Soil Sciences Department, University of Delaware, Newark, DE, 19711, USA
| |
Collapse
|
38
|
Gessler A, Grossiord C. Coordinating supply and demand: plant carbon allocation strategy ensuring survival in the long run. THE NEW PHYTOLOGIST 2019; 222:5-7. [PMID: 30815948 DOI: 10.1111/nph.15583] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Arthur Gessler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, 8092, Switzerland
| | - Charlotte Grossiord
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
39
|
Barba J, Poyatos R, Vargas R. Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers. Sci Rep 2019; 9:4005. [PMID: 30850622 PMCID: PMC6408546 DOI: 10.1038/s41598-019-39663-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/29/2019] [Indexed: 11/19/2022] Open
Abstract
Tree stems exchange CO2, CH4 and N2O with the atmosphere but the magnitudes, patterns and drivers of these greenhouse gas (GHG) fluxes remain poorly understood. Our understanding mainly comes from static-manual measurements, which provide limited information on the temporal variability and magnitude of these fluxes. We measured hourly CO2, CH4 and N2O fluxes at two stem heights and adjacent soils within an upland temperate forest. We analyzed diurnal and seasonal variability of fluxes and biophysical drivers (i.e., temperature, soil moisture, sap flux). Tree stems were a net source of CO2 (3.80 ± 0.18 µmol m-2 s-1; mean ± 95% CI) and CH4 (0.37 ± 0.18 nmol m-2 s-1), but a sink for N2O (-0.016 ± 0.008 nmol m-2 s-1). Time series analysis showed diurnal temporal correlations between these gases with temperature or sap flux for certain days. CO2 and CH4 showed a clear seasonal pattern explained by temperature, soil water content and sap flux. Relationships between stem, soil fluxes and their drivers suggest that CH4 for stem emissions could be partially produced belowground. High-frequency measurements demonstrate that: a) tree stems exchange GHGs with the atmosphere at multiple time scales; and b) are needed to better estimate fluxes magnitudes and understand underlying mechanisms of GHG stem emissions.
Collapse
Affiliation(s)
- Josep Barba
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, 19716, USA
| | - Rafael Poyatos
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, 19716, USA.
| |
Collapse
|
40
|
Peters RL, Fonti P, Frank DC, Poyatos R, Pappas C, Kahmen A, Carraro V, Prendin AL, Schneider L, Baltzer JL, Baron-Gafford GA, Dietrich L, Heinrich I, Minor RL, Sonnentag O, Matheny AM, Wightman MG, Steppe K. Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. THE NEW PHYTOLOGIST 2018; 219:1283-1299. [PMID: 29862531 DOI: 10.1111/nph.15241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Trees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole-tree water-use estimates. Yet, different data processing to calculate whole-tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties in conifer sap flux density (Fd ) and stand water use caused by commonly applied methods for deriving zero-flow conditions, dampening and sensor calibration. Their contribution has been assessed using a stem segment calibration experiment and 4 yr of TDM measurements in Picea abies and Larix decidua growing in contrasting environments. Uncertainties were then projected on TDM data from different conifers across the northern hemisphere. Commonly applied methods mostly underestimated absolute Fd . Lacking a site- and species-specific calibrations reduced our stand water-use measurements by 37% and induced uncertainty in northern hemisphere Fd . Additionally, although the interdaily variability was maintained, disregarding dampening and/or applying zero-flow conditions that ignored night-time water use reduced the correlation between environment and Fd . The presented ensemble of calibration curves and proposed dampening correction, together with the systematic quantification of data-processing uncertainties, provide crucial steps in improving whole-tree water-use estimates across spatial and temporal scales.
Collapse
Affiliation(s)
- Richard L Peters
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Patrick Fonti
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - David C Frank
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Laboratory of Tree-Ring Research, 1215 E. Lowell Street, Tucson, AZ, 8572, USA
- Oeschger Centre for Climate Change Research, Falkenplatz 16, CH-3012, Bern, Switzerland
| | - Rafael Poyatos
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Christoforos Pappas
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montréal, QC, H2V 2B8, Canada
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Vinicio Carraro
- Department TeSAF Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, PD, Italy
| | - Angela Luisa Prendin
- Department TeSAF Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, PD, Italy
- Department of Bioscience, Ecoinformatic & Biodiversity, Aarhus University, Ny Munkegade 116, Building 1540, DK-8000, Aarhus C, Denmark
| | - Loïc Schneider
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Jennifer L Baltzer
- Biology Department, Wilfrid Laurier University, 75 University Ave. W, Waterloo, ON, N2L 3C5, Canada
| | - Greg A Baron-Gafford
- School of Geography and Development, University of Arizona, 1064 E Lowell St, Tucson, AZ, 85719, USA
| | - Lars Dietrich
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Ingo Heinrich
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473, Potsdam, Germany
| | - Rebecca L Minor
- School of Geography and Development, University of Arizona, 1064 E Lowell St, Tucson, AZ, 85719, USA
| | - Oliver Sonnentag
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montréal, QC, H2V 2B8, Canada
| | - Ashley M Matheny
- Department of Geological Sciences, Jackson School of Geosciences, 2305 Speedway Stop, C1160, Austin, TX, USA
| | - Maxwell G Wightman
- College of Forestry, Oregon State University, 1500 SW Jefferson St, Corvallis, OR, 97331, USA
| | - Kathy Steppe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
41
|
Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case of the Mediterranean-Temperate Transition in South-Western Europe. SUSTAINABILITY 2018. [DOI: 10.3390/su10093065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impacts of climate change are likely to be marked in areas with steep climatic transitions. Species turnover, spread of invasive species, altered productivity, and modified processes such as fire regimes can all spread rapidly along ecotones, which challenge the current paradigms of ecosystem management. We conducted a literature review at a continental-wide scale of South-Western European forests, where the drier and warmer conditions of the Mediterranean have been widely used as examples of what is expected in more temperate areas. Results from the literature point to: (a) an expansion of slow-growing evergreen hardwood trees; (b) increased dieback and mortality episodes in forests (both natural and planted) mostly related to competition and droughts, and mainly affecting conifers; and (c) an increase in emergent diseases and pests of keystone-trees used in agroforestry zones. There is no consensus in the literature that fire regimes are directly increasing due to climate change, but available satellite data of fire intensity in the last 17 years has been lower in zones where agroforestry practices are dominant compared to unmanaged forests. In contrast, there is agreement in the literature that the current spread of fire events is probably related to land abandonment patterns. The practice of agroforestry, common in all Mediterranean countries, emerges as a frequent recommendation in the literature to cope with drought, reduce fire risk, and maintain biodiverse landscapes and rural jobs. However, it is unknown the extent to which the open vegetation resulting from agroforestry is of interest to forest managers in temperate areas used to exploiting closed forest vegetation. Hence, many transitional areas surrounding the Mediterranean Basin may be left unmanaged with potentially higher climate-change risks, which require active monitoring in order to understand and help ongoing natural adaptation processes.
Collapse
|
42
|
Fernández-de-Uña L, Aranda I, Rossi S, Fonti P, Cañellas I, Gea-Izquierdo G. Divergent phenological and leaf gas exchange strategies of two competing tree species drive contrasting responses to drought at their altitudinal boundary. TREE PHYSIOLOGY 2018; 38:1152-1165. [PMID: 29718459 DOI: 10.1093/treephys/tpy041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.
Collapse
Affiliation(s)
- Laura Fernández-de-Uña
- INIA-CIFOR, Ctra. La Coruña, km 7.5, Madrid, Spain
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, INRA Grand Est-Nancy, Rue d'Amance, Champenoux, France
| | | | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi (QC), Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, 111 Zürcherstrasse, Birmensdorf, Switzerland
| | | | | |
Collapse
|
43
|
Water Balance of Mediterranean Quercus ilex L. and Pinus halepensis Mill. Forests in Semiarid Climates: A Review in A Climate Change Context. FORESTS 2018. [DOI: 10.3390/f9070426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forests provide many environmental services, especially those related to the water cycle. In semiarid areas where water is a limiting factor for ecosystem functioning, forested areas can have a strong impact on ground water recharge. In these areas, proper knowledge of forests’ water balance is necessary to promote management practices that may ensure ecosystem properties and environmental services like water or carbon fixation. In this article, we review several ecohydrology topics within the framework of Mediterranean water-limited environments in two representative ecosystems: Kermes oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.) forests. Both are the commonest species in countries that surround the Western Mediterranean Basin. We analysed the Blue and Green water components, i.e., green water is the water demand of forests, represented by evapotranspiration and interception; while blue water is the part of the balance involving runoff and deep percolation, which can be regarded as water directly usable by society. In general, different studies conducted in Mediterranean areas have pointed out that the water balances of Q. ilex and P. halepensis forests have low values for the Blue to Green water (B/G) ratios. Adaptive forest management like forest thinning can compensate for these ratios. Thinning has demonstrated to reduce losses by interception, but at same time, it can also increase individual tree transpiration and evaporation rates. However, these practices lead to higher B/G ratios when considering the whole stand. In future global change scenarios, in which drought conditions are expected to intensify, management practices can improve the water balance in these ecosystems by minimizing the risk of plant mortality and species replacement due to intense competence by water resources.
Collapse
|
44
|
Lloret F, Sapes G, Rosas T, Galiano L, Saura-Mas S, Sala A, Martínez-Vilalta J. Non-structural carbohydrate dynamics associated with drought-induced die-off in woody species of a shrubland community. ANNALS OF BOTANY 2018; 121:1383-1396. [PMID: 29893878 PMCID: PMC6007552 DOI: 10.1093/aob/mcy039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/13/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The relationship between plant carbon economy and drought responses of co-occurring woody species can be assessed by comparing carbohydrate (C) dynamics following drought and rain periods, relating these dynamics to species' functional traits. We studied nine woody species coexisting in a continental Mediterranean shrubland that experienced severe drought effects followed by rain. METHODS We measured total non-structural carbohydrates (NSC) and soluble sugars (SS) in roots and stems during drought and after an autumn rain pulse in plants exhibiting leaf loss and in undefoliated ones. We explored whether their dynamics were related to foliage recovery and functional traits (height [H], specific leaf area [SLA], wood density [WD]). KEY RESULTS During drought, NSC concentrations were overall lower in stems and roots of plants experiencing leaf loss, while SS decreases were smaller. Roots had higher NSC concentrations than stems. After the rain, NSC concentrations continued to decrease, while SS increased. Green foliage recovered after rain, particularly in plants previously experiencing higher leaf loss, independently of NSC concentrations during drought. Species with lower WD tended to have more SS during drought and lower SS increases after rain. In low-WD species, plants with severe leaf loss had lower NSC relative to undefoliated ones. No significant relationship was found between H or SLA and C content or dynamics. CONCLUSIONS Our community-level study reveals that, while responses were species-specific, C stocks overall diminished in plants affected by prolonged drought and did not increase after a pulse of seasonal rain. Dynamics were faster for SS than NSC. We found limited depletion of SS, consistent with their role in basal metabolic, transport and signalling functions. In a scenario of increased drought under climate change, NSC stocks in woody plants are expected to decrease differentially in coexisting species, with potential implications for their adaptive abilities and community dynamics.
Collapse
Affiliation(s)
- Francisco Lloret
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- correspondence.
| | - Gerard Sapes
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Teresa Rosas
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lucía Galiano
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Sandra Saura-Mas
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
45
|
Rogers BM, Solvik K, Hogg EH, Ju J, Masek JG, Michaelian M, Berner LT, Goetz SJ. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. GLOBAL CHANGE BIOLOGY 2018; 24:2284-2304. [PMID: 29481709 DOI: 10.1111/gcb.14107] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/12/2018] [Indexed: 05/19/2023]
Abstract
Increasing tree mortality from global change drivers such as drought and biotic infestations is a widespread phenomenon, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and improve mortality forecasts: repeat forest inventories and satellite remote sensing. Time series of tree-level growth patterns indicate that productivity declines and related temporal dynamics often precede mortality years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized difference vegetation index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 24 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range of forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited. Longer-term NDVI data and annually remeasured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites remeasured at a typical 5 year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems.
Collapse
Affiliation(s)
| | | | - Edward H Hogg
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB, Canada
| | - Junchang Ju
- Biospheric Science Laboratory (Code 618), NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Jeffrey G Masek
- Biospheric Science Laboratory (Code 618), NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Michael Michaelian
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB, Canada
| | - Logan T Berner
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Scott J Goetz
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
46
|
Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 2018; 187:343-354. [DOI: 10.1007/s00442-018-4118-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
47
|
Martínez-Sancho E, Dorado-Liñán I, Gutiérrez Merino E, Matiu M, Helle G, Heinrich I, Menzel A. Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits. GLOBAL CHANGE BIOLOGY 2018; 24:1012-1028. [PMID: 29030903 DOI: 10.1111/gcb.13937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/26/2017] [Indexed: 05/08/2023]
Abstract
In forests, the increase in atmospheric CO2 concentrations (Ca ) has been related to enhanced tree growth and intrinsic water-use efficiency (iWUE). However, in drought-prone areas such as the Mediterranean Basin, it is not yet clear to what extent this "fertilizing" effect may compensate for drought-induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960-2012 using annually resolved tree-ring width and δ13 C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci ), and consequently iWUE. Different trends in the theoretical gas-exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca , except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca . Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%-71.4%) than in oak stands (15.8%-46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the "fertilizing" effect of rising Ca , whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter-annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | - Isabel Dorado-Liñán
- Departamento de Silvicultura y Gestión de los Sistemas Forestales, CIFOR-INIA, Madrid, Spain
| | - Emilia Gutiérrez Merino
- Departament of Biological Evolution, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Michael Matiu
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | - Gerhard Helle
- Climate Dynamics and Landscape Evolution, GFZ - German Research Centre for Geosciences, Potsdam, Germany
| | - Ingo Heinrich
- Climate Dynamics and Landscape Evolution, GFZ - German Research Centre for Geosciences, Potsdam, Germany
| | - Annette Menzel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
48
|
Dai Y, Wang L, Wan X. Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought. AOB PLANTS 2018; 10:plx069. [PMID: 29367873 PMCID: PMC5774510 DOI: 10.1093/aobpla/plx069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 11/30/2017] [Indexed: 05/29/2023]
Abstract
Drought-induced tree mortality has been observed worldwide. Nevertheless, the physiological mechanisms underlying this phenomenon are still being debated. Potted Robinia pseudoacacia and Platycladus orientalis saplings were subjected to drought and their hydraulic failure and carbon starvation responses were studied. They underwent simulated fast drought (FD) and slow drought (SD) until death. The dynamics of their growth, photosynthesis, water relations and carbohydrate concentration were measured. The results showed that during drought, growth and photosynthesis of all saplings were significantly reduced in both species. The predawn water potential in both species was ~ -8 MPa at mortality. The percentage loss of conductivity (PLC) was at a maximum at mortality under both FD and SD. For R. pseudoacacia and P. orientalis, they were >95 and ~45 %, respectively. At complete defoliation, the PLC of R. pseudoacacia was ~90 % but the trees continued to survive for around 46 days. The non-structural carbohydrate (NSC) concentrations in the stems and roots of both FD and SD R. pseudoacacia declined to a very low level near death. In contrast, the NSC concentrations in the needles, stems and roots of P. orientalis at mortality under FD did not significantly differ from those of the control, whereas the NSC concentrations in SD P. orientalis stems and roots at death were significantly lower than those of the control. These results suggest that the duration of the drought affected NSC at mortality in P. orientalis. In addition, the differences in NSC between FD and SD P. orientalis did not alter mortality thresholds associated with hydraulic failure. The drought-induced death of R. pseudoacacia occurred at 95 % PLC for both FD and SD, indicating that hydraulic failure played an important role in mortality. Nevertheless, the consistent decline in NSC in R. pseudoacacia saplings following drought-induced defoliation may have also contributed to its mortality.
Collapse
Affiliation(s)
- Yongxin Dai
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, P.R. China
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
49
|
Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ, Lichstein JW, Longo M, Matheny AM, Medvigy D, Muller-Landau HC, Powell TL, Serbin SP, Sato H, Shuman JK, Smith B, Trugman AT, Viskari T, Verbeeck H, Weng E, Xu C, Xu X, Zhang T, Moorcroft PR. Vegetation demographics in Earth System Models: A review of progress and priorities. GLOBAL CHANGE BIOLOGY 2018; 24:35-54. [PMID: 28921829 DOI: 10.1111/gcb.13910] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 05/24/2023]
Abstract
Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.
Collapse
Affiliation(s)
- Rosie A Fisher
- National Center for Atmospheric Research, Boulder, CO, USA
| | | | | | | | - Michael C Dietze
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Caroline E Farrior
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - George C Hurtt
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - Ryan G Knox
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Marcos Longo
- Embrapa Agricultural Informatics, Campinas, Brazil
| | - Ashley M Matheny
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Hisashi Sato
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| | | | - Benjamin Smith
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Anna T Trugman
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| | - Toni Viskari
- Smithsonian Tropical Research Institute, Panamá, Panamá
| | - Hans Verbeeck
- Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Ensheng Weng
- Center for Climate Systems Research, Columbia University, New York, NY, USA
| | - Chonggang Xu
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Xiangtao Xu
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Tao Zhang
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
50
|
da Costa ACL, Rowland L, Oliveira RS, Oliveira AAR, Binks OJ, Salmon Y, Vasconcelos SS, Junior JAS, Ferreira LV, Poyatos R, Mencuccini M, Meir P. Stand dynamics modulate water cycling and mortality risk in droughted tropical forest. GLOBAL CHANGE BIOLOGY 2018; 24:249-258. [PMID: 28752626 DOI: 10.1111/gcb.13851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/09/2017] [Indexed: 05/25/2023]
Abstract
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long-term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.
Collapse
Affiliation(s)
| | - Lucy Rowland
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Oliver J Binks
- Research School of Biology, Australian National University, Canberra, Australia
| | - Yann Salmon
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - João A S Junior
- Instituto de Geosciências, Universidade Federal do Pará, Belém, Brasil
| | | | - Rafael Poyatos
- CREAF, Campus UAB, Cerdanyola del Vallés, Spain
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|