1
|
Zorger BB, Matos IS, Bondi L, Nunes Y, Moraes YC, Amorim TA, Rosado BHP. Vegetation vulnerability is driven by either higher drought sensitivity or lower fog exposure in tropical cloud ecosystems. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40377627 DOI: 10.1111/plb.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Both reduced precipitation and reduced fog uplift increase drought-driven plant mortality. However, it is still unclear how plant vulnerability to drought in cloud ecosystems depends on the role of fog in relieving water stress via foliar water uptake (FWU). To investigate how plants in contrasting montane vegetation rely on fog to alleviate drought impacts, we measured 11 morpho-physiological traits in 10 phylogenetic pairs of plants in a montane grassland (~2000 m a.s.l.) and in a submontane forest (~700 m a.s.l.), both in southeast Brazil. Forest species are more sensitive to drought (i.e., lower conservative trait values, lower resistance to embolism, and lower FWU) than grassland species. Nonetheless, decreased frequency of fog events in the montane grassland may expose these species to a higher risk of dehydration, despite higher FWU capacity. Both forest and grassland vegetation are vulnerable to drought, but the vulnerability is attributable to different causes: higher sensitivity to drought in forests and lower fog exposure in grasslands. Therefore, for a more accurate description of plant responses to drought, we recommend introduction of theoretical-experimental models to assess drought vulnerability to changes in both atmospheric and soil water availability.
Collapse
Affiliation(s)
- B B Zorger
- School of Biological Sciences, Aline W. Skaggs Biology Building (ASB), The University of Utah, Salt Lake City, Utah, USA
| | - I S Matos
- Macrosystems Ecology Laboratory, Department of Environmental Science, Policy and Management, University of Callifornia Berkeley, Berkeley, California, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - L Bondi
- Abt. Allgemeine und Spezielle Botanik, Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| | - Y Nunes
- Department of Ecology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Y C Moraes
- Department of Ecology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - T A Amorim
- Department of Botany, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - B H P Rosado
- Department of Ecology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Yang Q, Zhang Z, Zhang H, Yang H, Pandey S, John R. The contributions of rainfall and fog to leaf water of tree and epiphyte communities in a tropical cloud forest. FRONTIERS IN PLANT SCIENCE 2024; 15:1488163. [PMID: 39483678 PMCID: PMC11524870 DOI: 10.3389/fpls.2024.1488163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Introduction Tropical cloud forest ecosystems are expected to face reduced water inputs due to climatic changes. Methods Here, we study the ecophysiological responses of trees and epiphytes within in an Asian cloud forest to investigate the contributions of rainfall, fog, and soil to leaf water in 60 tree and 30 vascular epiphyte species. We measured multiple functional traits, and δ2H, and δ18O isotope ratios for leaf water, soil water, rainfall, and fog in the wettest (July) and driest (February) months. Using a Bayesian stable isotope mixing model, we quantified the relative contributions of soil water, fog, and rainfall to leaf water. Results and discussion Rainfall contributes almost all the leaf water of the epiphytes in July, whereas fog is the major source in February. Epiphytes cannot tap xylem water from host trees, and hence depended on fog water when rainfall was low. Most of leaf water was absorbed from soil water in July, while fog was an important source for leaf water in February despite the soil moisture content value was high. In February, lower temperatures, along with reduced photosynthesis and transpiration rates, likely contributed to decreased soil water uptake, while maintaining higher soil moisture levels despite the limited rainfall. These contrasting contributions of different water sources to leaf water under low and high rainfall and for different plant groups outline the community-level ecophysiological responses to changes in rainfall. While direct measurements of water flux, particularly in roots and stems, are needed, our results provide valuable insights on tropical cloud forest hydrology under scenarios of decreased fog immersion due to climatic changes.
Collapse
Affiliation(s)
- Qingqing Yang
- School of Ecology, Hainan University, Haikou, China
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
- Key Laboratory of Tropical Forestry Resources Monitoring and Application of Hainan Province, Haikou, China
| | - Zijing Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Rainforest Trees and Ornamental Plants (Hainan University), Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hui Zhang
- Hainan Institute of National Park, Haikou, China
| | - Huai Yang
- Institute of Tropical Bamboo, Rattan & Flower, Sanya Research Base, International Center for Bamboo and Rattan, Sanya, China
| | - Shree Pandey
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Rainforest Trees and Ornamental Plants (Hainan University), Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Robert John
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Rainforest Trees and Ornamental Plants (Hainan University), Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
3
|
Ossola R, Rossell RK, Riches M, Osburn C, Farmer D. Development of a sampling protocol for collecting leaf surface material for multiphase chemistry studies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1008-1021. [PMID: 38770594 PMCID: PMC11188671 DOI: 10.1039/d4em00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Plant leaves and water drops residing on them interact with atmospheric oxidants, impacting the deposition and emission of trace gases and mediating leaf damage from air pollution. Characterizing the chemical composition and reactivity of the water-soluble material on leaf surfaces is thus essential for improving our understanding of atmosphere-biosphere interactions. However, the limited knowledge of sources and nature of these chemicals challenges sampling decisions. This work investigates how sampling variables and environmental factors impact the quantity and composition of water-soluble material sampled from wet leaves and proposes a flexible protocol for its collection. The ratio of solvent volume-to-leaf area, the solvent-to-leaf contact time, and environmental parameters - including the occurrence of rain, plant location and its metabolism - drive solute concentration in leaf soaks. Despite minor variations, UV-vis absorption spectra of leaf soaks are comparable to authentic raindrops collected from the same tree and share features with microbial dissolved organic matter - including overall low aromaticity, low chromophore content, and low average molecular weight. In addition to guiding the development of a sampling protocol, our data corroborate recent hypotheses on the amount, origin, nature, and reactivity of water-soluble organics on wet leaves, providing new directions of research into this highly interdisciplinary topic.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Rose K Rossell
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Mj Riches
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Cameron Osburn
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Delphine Farmer
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| |
Collapse
|
4
|
Garcia-Tejera O, Ritter A, Regalado CM. The combined effect of diffuse radiation and leaf wetness on functional traits and transpiration efficiency on a cloud forest species. TREE PHYSIOLOGY 2024; 44:tpae050. [PMID: 38700996 DOI: 10.1093/treephys/tpae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Cloud forests are unique biomes that thrive in foggy environments for a substantial part of the season. Fog in cloud forests plays two critical roles: it reduces incoming radiation and creates a humid environment, leading to the wetting of the canopy. This paper aims to investigate the combined effect of both radiation and wetness on Myrica faya Wilbur-a cloud forest species present in subtropical regions-both directly in plants and through simulations. Experiments consisted of a controlled environment with two levels of radiation and leaf wetness: low radiation/wet conditions, and high radiation/no-wetness; and three treatments: continuous low radiation and wetness, continuous high radiation and no wetness and alternate high low radiation and alternate wetness. The results revealed that a combination of low radiation and leaf wetness significantly improves leaf stomata conductance and increases the specific leaf area (SLA). Changes in SLA were driven by leaf size changes. However, the minimum leaf conductance (gmin) did not respond to any of the treatments. The simulations focused on exploring the impact of radiation and canopy wetness on transpiration efficiency (TE), i.e. the ratio between photosynthesis (An) and transpiration (Tc). The simulations demonstrated that TE increased exponentially as the canopy was gradually wetted, regardless of the radiation environment. This increase in TE results from Tc approaching zero while An maintains positive values. Overall, this study provides an integrated understanding of how fog alters M. faya functioning and, potentially, other cloud forest tree species.
Collapse
Affiliation(s)
- Omar Garcia-Tejera
- Dep. de Ingeniería Agraria y del Medio Natural, Universidad de La Laguna, Ctra General Geneto, 2, La Laguna 38200 Tenerife, Spain
| | - Axel Ritter
- Área de Ingeniería Agroforestal, Universidad de La Laguna, Ctra General Geneto, 2, La Laguna 38200 Tenerife, Spain
| | - Carlos M Regalado
- Dep. Producción Vegetal en Zonas Tropicales y Subtropicales, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra. de El Boquerón s/n, Valle Guerra, La Laguna 38270, Tenerife, Spain
| |
Collapse
|
5
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
6
|
Jiao L, Kosugi Y, Sakabe A, Sempuku Y, Chang TW, Chen S. Wet canopy photosynthesis in a temperate Japanese cypress forest. TREE PHYSIOLOGY 2024; 44:tpae041. [PMID: 38598321 DOI: 10.1093/treephys/tpae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
This study aimed to reveal the mechanism and significance of wet canopy photosynthesis during and after rainfall in temperate coniferous ecosystems by evaluating the influence of abaxial leaf interception on wet canopy photosynthesis. We used the eddy covariance method in conjunction with an enclosed-path gas analyser to conduct continuous ecosystem CO2 flux observations in a Japanese cypress forest within the temperate Asian monsoon area over 3 years. The observation shows that wet-canopy CO2 uptake predominantly occurred during the post-rainfall canopy-wet period rather than the during-rainfall period. Then, the measured canopy-wet net ecosystem exchange was compared with the soil-vegetation-atmosphere transfer multilayer model simulations under different parameter settings of the abaxial (lower) leaf surface wet area ratio. The multilayer model predicted net ecosystem exchange most accurately when it assumed the wet area ratio of the abaxial surface was 50% both during and after rainfall. For the wet canopy both during and after rainfall, the model overestimated CO2 uptake when it assumed no abaxial interception in the simulation, but underestimated CO2 uptake when it assumed that the entire abaxial leaf surface was wet. These results suggest that the abaxial surface of the Japanese cypress leaf is only partly wet to maintain stomatal openness and a low level of photosynthesis. These results allow for an evaluation of the effect of rainfall on forest carbon circulation under a changing climate, facilitating an improvement of ecosystem carbon exchange models.
Collapse
Affiliation(s)
- Linjie Jiao
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| | - Yoshiko Kosugi
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ayaka Sakabe
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Yuichi Sempuku
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- East Nippon Expressway Company Ltd. Kanto Branch, Chiba, Management Office Chiba, Chiba 263-0001, Japan
| | - Ting-Wei Chang
- Laboratory of Plant and Environmental Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka 422-8526, Japan
| | - Siyu Chen
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Araújo KC, Souza BC, Carvalho ECD, Freire RS, Teixeira AS, Muniz CR, Martins FR, Oliveira RS, Eller CB, Soares AA. The multiple roles of trichomes in two Croton species. PLANT, CELL & ENVIRONMENT 2024; 47:1685-1700. [PMID: 38282477 DOI: 10.1111/pce.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Trichomes are common in plants from dry environments, and despite their recognized role in protection and defense, little is known about their role as absorptive structures and in other aspects of leaf ecophysiology. We combine anatomical and ecophysiological data to evaluate how trichomes affect leaf gas exchange and water balance during drought. We studied two congeneric species with pubescent leaves which co-occur in Brazilian Caatinga: Croton blanchetianus (dense trichomes) and Croton adenocalyx (sparse trichomes). We found a novel foliar water uptake (FWU) pathway in C. blanchetianus composed of stellate trichomes and underlying epidermal cells and sclereids that interconnect the trichomes from both leaf surfaces. The water absorbed by these trichomes is redistributed laterally by pectin protuberances on mesophyll cell walls. This mechanism enables C. blanchetianus leaves to absorb water more efficiently than C. adenocalyx. Consequently, the exposure of C. blanchetianus to dew during drought improved its leaf gas exchange and water status more than C. adenocalyx. C. blanchetianus trichomes also increase their leaf capacity to reflect light and maintain lower temperatures during drought. Our results emphasize the multiple roles that trichomes might have on plant functioning and the importance of FWU for the ecophysiology of Caatinga plants during drought.
Collapse
Affiliation(s)
- Karina Crisóstomo Araújo
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Cruz Souza
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ellen Cristina Dantas Carvalho
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosemeyre Souza Freire
- Centro de Ciências, Central Analítica, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Adunias Santos Teixeira
- Departament of Agricultural Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Fernando Roberto Martins
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cleiton Breder Eller
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Arlete Aparecida Soares
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
8
|
Jiao K, Liu Z, Wang W, Yu K, Mcgrath MJ, Xu W. Carbon cycle responses to climate change across China's terrestrial ecosystem: Sensitivity and driving process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170053. [PMID: 38224891 DOI: 10.1016/j.scitotenv.2024.170053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Investigations into the carbon cycle and how it responds to climate change at the national scale are important for a comprehensive understanding of terrestrial carbon cycle and global change issues. Contributions of carbon fluxes to the terrestrial sink and the effects on climate change are still not fully understood. In this study, we aimed to explore the relationship between ecosystem production (GPP/SIF/NDVI) and net ecosystem carbon exchange (NEE) and to investigate the sensitivity of carbon fluxes to climate change at different spatio-temporal scales. Furthermore, we sought to delve into the carbon cycle processes driven by climate stress in China since the beginning of the 21st century. To achieve these objectives, we employed correlation and sensitivity analysis techniques, utilizing a wide range of data sources including ground-based observations, remote sensing observations, atmospheric inversions, machine learning, and model simulations. Our findings indicate that NEE in most arid regions of China is primarily driven by ecosystem production. Climate variations have a greater influence on ecosystem production than respiration. Warming has negatively impacted ecosystem production in Northeast China, as well as in subtropical and tropical regions. Conversely, increased precipitation has strengthened the terrestrial carbon sink, particularly in the northern cool and dry areas. We also found that ecosystem respiration exhibits heightened sensitivity to warming in southern China. Moreover, our analysis revealed that the control of terrestrial carbon cycle by ecosystem production gradually weakens from cold/arid areas to warm/humid areas. We identified distinct temperature thresholds (ranging from 10.5 to 13.7 °C) and precipitation thresholds (approximately 1400 mm yr-1) for the transition from production-dominated to respiration-dominated processes. Our study provides valuable insights into the complex relationship between climate change and carbon cycle in China.
Collapse
Affiliation(s)
- Kewei Jiao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China
| | - Zhihua Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China.
| | - Wenjuan Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Kailiang Yu
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| | - Matthew Joseph Mcgrath
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Wenru Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China
| |
Collapse
|
9
|
Fradera-Soler M, Mravec J, Schulz A, Taboryski R, Jørgensen B, Grace OM. Revisiting an ecophysiological oddity: Hydathode-mediated foliar water uptake in Crassula species from southern Africa. PLANT, CELL & ENVIRONMENT 2024; 47:460-481. [PMID: 37876364 DOI: 10.1111/pce.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU) through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air humidity leads to fog and/or dew formation. To investigate if hydathode-mediated FWU is operational in different Crassula species, we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques. Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and that it might be widespread across the genus. Hydathodes in Crassula serve as moisture-harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played an important role in the evolutionary history of the genus. Our observations suggest that ability for FWU is independent of geographical distribution and not restricted to arid environments under fog influence, as FWU is also operational in Crassula species from the rather humid eastern side of southern Africa. Our observations point towards no apparent link between FWU ability and overall leaf surface wettability in Crassula. Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm the ecophysiological relevance of hydathode-mediated FWU in Crassula and reassert the importance of atmospheric humidity for some arid-adapted plant groups.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Plant Science and Biodiversity Center, Nitra, Slovakia
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rafael Taboryski
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Lyngby, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Beckett HAA, Webb D, Turner M, Sheppard A, Ball MC. Bark water uptake through lenticels increases stem hydration and contributes to stem swelling. PLANT, CELL & ENVIRONMENT 2024; 47:72-90. [PMID: 37811590 DOI: 10.1111/pce.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Foliar water uptake can recharge water storage tissue and enable greater hydration than through access to soil water alone; however, few studies have explored the role of the bark in facilitating water uptake. We investigated pathways and dynamics of bark water uptake (BWU) in stems of the mangrove Avicennia marina. We provide novel evidence that specific entry points control dynamics of water uptake through the outer bark surface. Furthermore, using a fluorescent symplastic tracer dye we provide the first evidence that lenticels on the outer bark surface facilitate BWU, thus increasing stem water content by up to 3.7%. X-ray micro-computed tomography showed that BWU was sufficient to cause measurable swelling of stem tissue layers increasing whole stem cross-sectional area by 0.83 mm2 or 2.8%, implicating it as a contributor to the diel patterns of water storage recharge that buffer xylem water potential and maintain hydration of living tissue.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, Australia
| | - Michael Turner
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Adrian Sheppard
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
11
|
Sun X, Amelung W, Klumpp E, Walk J, Mörchen R, Böhm C, Moradi G, May SM, Tamburini F, Wang Y, Bol R. Fog controls biological cycling of soil phosphorus in the Coastal Cordillera of the Atacama Desert. GLOBAL CHANGE BIOLOGY 2024; 30:e17068. [PMID: 38273559 DOI: 10.1111/gcb.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0-10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10-23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganicP δ 18 O HCl - P i $$ \mathrm{P}\ \left({\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}}\right) $$ . Total P (Pt ) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥10 km. With increasing distance from the coast, soilδ 18 O HCl - P i $$ {\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}} $$ values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76%-100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.
Collapse
Affiliation(s)
- Xiaolei Sun
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- Institute for Environmental Research, Biology 5, RWTH Aachen University, Aachen, Germany
| | - Wulf Amelung
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Erwin Klumpp
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Janek Walk
- Department of Geography and Regional Research, University of Vienna, Vienna, Austria
| | - Ramona Mörchen
- Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Christoph Böhm
- Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
| | - Ghazal Moradi
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- Institute for Environmental Research, Biology 5, RWTH Aachen University, Aachen, Germany
| | - Simon Matthias May
- Institute of Geography, University Cologne, Albertus-Magnus-Platz, Cologne, Germany
| | | | - Ye Wang
- Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, UK
| |
Collapse
|
12
|
Dookie S, Jaikishun S, Ansari AA. Avicennia germinans leaf traits in degraded, restored, and natural mangrove ecosystems of Guyana. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:324-341. [PMID: 38089845 PMCID: PMC10711649 DOI: 10.1002/pei3.10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2024]
Abstract
Mangrove leaves have unique features that enable them to cope with shifting environmental conditions while preserving their general functionality and efficiency. We examined the morphological characteristics and chlorophyll content (spectroscopically) of 600 mature Avicennia germinans leaves selected from 30 trees located in one degraded, one restored, and one natural mangrove ecosystem along Guyana's coastline. Systematic sampling was carried out using the closest individual sampling method in the wet and dry seasons. We hypothesized that both habitat type and seasonality influence the leaf traits and chlorophyll content of A. germinans. Our findings showed that A. germinans leaves are mesophyllous, and traits such as leaf perimeter, area, length, width, dry mass, wet mass, turgid mass, leaf-specific area, and relative water content showed fluctuations in ecosystems (one-way ANOVA, p < .05) as well as seasonally (paired t-test, p < .05). Substantial, positive correlations (p < .05, R > .75) were also established for over 10 leaf parameters in both seasons while PCA and multiple regression analyses further confirmed the strong relationships between leaf morphological features and their respective locations. Changes in chlorophyll concentration were most noticeable in the degraded ecosystem while variations in leaf traits were more pronounced in the restored mangrove area. This may be due to the various disturbances found in each ecosystem coupled with fluctuations in the seasons. Our results demonstrate that mangroves, to some extent, alter their plant structures to cope with environmental stressors present in the various ecosystems they thrive in to maintain their survival.
Collapse
Affiliation(s)
- Sabrina Dookie
- Department of BiologyUniversity of GuyanaGeorgetownGuyana
| | | | | |
Collapse
|
13
|
Sha H, Liu X, Xiao X, Zhang H, Gu X, Chen W, Mao B. Nigrospora oryzae Causing Leaf Spot Disease on Chrysanthemum × morifolium Ramat and Screening of Its Potential Antagonistic Bacteria. Microorganisms 2023; 11:2224. [PMID: 37764068 PMCID: PMC10537370 DOI: 10.3390/microorganisms11092224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Chrysanthemum × morifolium Ramat. is a famous perennial herb with medicinal, edible, and ornamental purposes, but the occurrence of plant diseases can reduce its value. A serious disease that caused leaf spots in C. morifolium appeared in 2022 in Tongxiang City, Zhejiang Province, China. The C. morifolium leaves with brown spots were collected and used for pathogen isolation. By completing Koch's postulates, it was proven that the isolate had pathogenicity to infect C. morifolium. It was determined that the pathogen isolated from chrysanthemum leaves was Nigrospora oryzae, through morphology and a multilocus sequence analysis method using a combination of the internal transcribed spacer gene (ITS), beta-tubulin gene (TUB2), and translation elongation factor 1-alpha gene (TEF1-α). This is the first report of C. morifolium disease caused by N. oryzae in the world. Through dual culture assay on PDA plates, 12 strains of bacteria with antagonistic effects were selected from 231 strains from the C. morifolium phyllosphere, among which Bacillus siamensis D65 had the best inhibitory effect on N. oryzae growth. In addition, the components of a strain D65 fermentation broth were profiled by SPME-GC-Q-TOF analysis, providing a foundation for further application and research of biological control.
Collapse
Affiliation(s)
- Haodong Sha
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Xinyi Liu
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Xiaoe Xiao
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
| | - Han Zhang
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Xueting Gu
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Weiliang Chen
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Bizeng Mao
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| |
Collapse
|
14
|
Chin ARO, Guzmán-Delgado P, Görlich A, HilleRisLambers J. Towards multivariate functional trait syndromes: Predicting foliar water uptake in trees. Ecology 2023; 104:e4112. [PMID: 37252804 DOI: 10.1002/ecy.4112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Analysis of functional traits is a cornerstone of ecology, yet individual traits seldom explain useful amounts of variation in species distribution or climatic tolerance, and their functional significance is rarely validated experimentally. Multivariate suites of interacting traits could build an understanding of ecological processes and improve our ability to make sound predictions of species success in our rapidly changing world. We use foliar water uptake capacity as a case study because it is increasingly considered to be a key functional trait in plant ecology due to its importance for stress-tolerance physiology. However, the traits behind the trait, that is, the features of leaves that determine variation in foliar water uptake rates, have not been assembled into a widely applicable framework for uptake prediction. Focusing on trees, we investigated relationships among 25 structural traits, leaf osmotic potential (a source of free energy to draw water into leaves), and foliar water uptake in 10 diverse angiosperm and conifer species. We identified consistent, multitrait "uptake syndromes" for both angiosperm and conifer trees, with differences in key traits revealing suspected differences in the water entry route between these two clades and an evolutionarily significant divergence in the function of homologous structures. A literature review of uptake-associated functional traits, which largely documents similar univariate relationships, provides additional support for our proposed "uptake syndrome." Importantly, more than half of shared traits had opposite-direction influences on the capacity of leaves to absorb water in angiosperms and conifers. Taxonomically targeted multivariate trait syndromes provide a useful tool for trait selection in ecological research, while highlighting the importance of micro-traits and the physiological verification of their function for advancing trait-based ecology.
Collapse
Affiliation(s)
- Alana R O Chin
- Plant Ecology Group, Institute of Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | - Paula Guzmán-Delgado
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Anna Görlich
- Plant Ecology Group, Institute of Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | | |
Collapse
|
15
|
Sheeran L, Rasmussen A. Aerial roots elevate indoor plant health: Physiological and morphological responses of three high-humidity adapted Araceae species to indoor humidity levels. PLANT, CELL & ENVIRONMENT 2023; 46:1873-1884. [PMID: 36786325 DOI: 10.1111/pce.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
Heightened by the COVID-19 pandemic there has been a global increase in urban greenspace appreciation. Indoor plants are equally important for improving mental health and air quality but despite evolving in humid (sub)tropical environments with aerial root types, planting systems ignore aerial resource supply. This study directly compared nutrient uptake preferences of aerial and soil-formed roots of three common houseplant species under high and ambient relative humidities. Growth and physiology parameters were measured weekly for Anthurium andreanum, Epipremnum aureum and Philodendron scandens grown in custom made growth chambers. Both aerial and soil-formed roots were then fed mixtures of nitrate, ammonium and glycine, with one source labelled with 15 N to determine uptake rates and maximum capacities. Aerial roots were consistently better at nitrogen uptake than soil roots but no species, root type or humidity condition showed a preference for a particular nitrogen source. All three species grew more in high humidity, with aerial roots demonstrating the greatest biomass increase. Higher humidities for indoor niches, together with fertiliser applications to aerial roots will support indoor plant growth, creating lush calming indoor environments for people inhabitants.
Collapse
Affiliation(s)
- Laura Sheeran
- Division of Agriculture and Environmental Science, School of Biosciences, The University of Nottingham, Sutton Bonington, UK
| | - Amanda Rasmussen
- Division of Agriculture and Environmental Science, School of Biosciences, The University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
16
|
Ohlendorf R, Tan NYH, Nakayama N. Engineering Themes in Plant Forms and Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:777-801. [PMID: 37216204 DOI: 10.1146/annurev-arplant-061422-094751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Living structures constantly interact with the biotic and abiotic environment by sensing and responding via specialized functional parts. In other words, biological bodies embody highly functional machines and actuators. What are the signatures of engineering mechanisms in biology? In this review, we connect the dots in the literature to seek engineering principles in plant structures. We identify three thematic motifs-bilayer actuator, slender-bodied functional surface, and self-similarity-and provide an overview of their structure-function relationships. Unlike human-engineered machines and actuators, biological counterparts may appear suboptimal in design, loosely complying with physical theories or engineering principles. We postulate what factors may influence the evolution of functional morphology and anatomy to dissect and comprehend better the why behind the biological forms.
Collapse
Affiliation(s)
- Rahel Ohlendorf
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| | | | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| |
Collapse
|
17
|
Li Y, Eugster W, Riedl A, Lehmann MM, Aemisegger F, Buchmann N. Dew benefits on alpine grasslands are cancelled out by combined heatwave and drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1136037. [PMID: 37229137 PMCID: PMC10203623 DOI: 10.3389/fpls.2023.1136037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Increasing frequencies of heatwaves combined with simultaneous drought stress in Europe threaten the ecosystem water and carbon budgets of alpine grasslands. Dew as an additional water source can promote ecosystem carbon assimilation. It is known that grassland ecosystems keep high evapotranspiration as long as soil water is available. However, it is rarely being investigated whether dew can mitigate the impact of such extreme climatic events on grassland ecosystem carbon and water exchange. Here we use stable isotopes in meteoric waters and leaf sugars, eddy covariance fluxes for H2O vapor and CO2, in combination with meteorological and plant physiological measurements, to investigate the combined effect of dew and heat-drought stress on plant water status and net ecosystem production (NEP) in an alpine grassland (2000 m elevation) during the June 2019 European heatwave. Before the heatwave, enhanced NEP in the early morning hours can be attributed to leaf wetting by dew. However, dew benefits on NEP were cancelled out by the heatwave, due to the minor contribution of dew in leaf water. Heat-induced reduction in NEP was intensified by the combined effect of drought stress. The recovery of NEP after the peak of the heatwave could be linked to the refilling of plant tissues during nighttime. Among-genera differences of plant water status affected by dew and heat-drought stress can be attributed to differences in their foliar dew water uptake, and their reliance on soil moisture or the impact of the atmospheric evaporative demand. Our results indicate that dew influence on alpine grassland ecosystems varies according to the environmental stress and plant physiology.
Collapse
Affiliation(s)
- Yafei Li
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Werner Eugster
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Riedl
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Marco M. Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Roth-Nebelsick A, Hacke UG, Voigt D, Schreiber SG, Krause M. Foliar water uptake in Pinus species depends on needle age and stomatal wax structures. ANNALS OF BOTANY 2023; 131:287-300. [PMID: 36420705 PMCID: PMC9992939 DOI: 10.1093/aob/mcac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Foliar water uptake (FWU) has been documented in many species and is increasingly recognized as a non-trivial factor in plant-water relationships. However, it remains unknown whether FWU is a widespread phenomenon in Pinus species, and how it may relate to needle traits such as the form and structure of stomatal wax plugs. In this contribution, these questions were addressed by studying FWU in current-year and 1-year-old needles of seven Pinus species. METHODS We monitored FWU gravimetrically and analysed the needle surface via cryo-scanning electron microscopy. Additionally, we considered the effect of artificial wax erosion by application of the surfactant Triton X-100, which is able to alter wax crystals. KEY RESULTS The results show for all species that (1) FWU occurred, (2) FWU is higher in old needles compared to young needles and (3) there is substantial erosion of stomatal wax plugs in old needles. FWU was highest in Pinus canariensis, which has a thin stomatal wax plug. Surfactant treatment enhanced FWU. CONCLUSIONS The results of this study provide evidence for (1) widespread FWU in Pinus, (2) the influence of stomatal wax plugs on FWU and (3) age-related needle surface erosion.
Collapse
Affiliation(s)
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Dagmar Voigt
- Technische Universität Dresden, Faculty of Biology, Institute of Botany, 01062 Dresden, Germany
| | - Stefan G Schreiber
- EnviroStats Solutions Inc., 4715 117A ST NW, Edmonton, Alberta, T6H 3R9, Canada
| | - Matthias Krause
- State Museum of Natural History, Rosenstein 1, 70191 Stuttgart, Germany
| |
Collapse
|
19
|
Li C, Mo Y, Wang N, Xing L, Qu Y, Chen Y, Yuan Z, Ali A, Qi J, Fernández V, Wang Y, Kopittke PM. The overlooked functions of trichomes: Water absorption and metal detoxication. PLANT, CELL & ENVIRONMENT 2023; 46:669-687. [PMID: 36581782 DOI: 10.1111/pce.14530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yingying Mo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Longyi Xing
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qu
- Baoji Academy of Agriculture Sciences, Baoji, China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- College of Life Sciences, Hebei University, Hebei, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Victoria Fernández
- School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
20
|
Wang H, Li Z, Ji S, Lv G. Response of water and photosynthetic physiological characteristics to leaf humidification in Calligonum ebinuricum. PLoS One 2023; 18:e0285130. [PMID: 37141258 PMCID: PMC10159122 DOI: 10.1371/journal.pone.0285130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
Foliar water uptake (FWU) has increasingly been regarded as a common approach for plants to obtain water under water-limited conditions. At present, the research on FWU has mostly focused on short-term experiments; the long-term FWU plant response remains unclear; Methods: Through a field in-situ humidification control experiment, the leaves of Calligonum ebinuricum N. A. Ivanova ex Soskov were humidified, and the changes of leaf water potential, gas exchange parameters and fluorescence physiological parameters of plants after long-term and short-term FWU were discussed; The main results were as follows: (1) After short-term humidification, the water potential of Calligonum ebinuricum decreased, the non-photochemical quenching (NPQ) increased, and the plant produced photoinhibition phenomenon, indicating that short-term FWU could not alleviate drought stress. (2) After long-term humidification, the leaf water potential, chlorophyll fluorescence parameter and net photosynthetic rate (Pn) increased significantly. That is to say, after long-term FWU, the improvement of plant water status promoted the occurrence of light reaction and carbon reaction, and then increased the net photosynthetic rate (Pn); Therefore, long-term FWU is of great significance to alleviate drought stress and promote Calligonum ebinuricum growth. This study will be helpful to deepen our understanding of the drought-tolerant survival mechanism of plants in arid areas.
Collapse
Affiliation(s)
- Huimin Wang
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| | - Zhoukang Li
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| | - Suwan Ji
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| | - Guanghui Lv
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| |
Collapse
|
21
|
Bahamonde HA, Aranda I, Peri PL, Gyenge J, Fernández V. Leaf wettability, anatomy and ultra-structure of Nothofagus antarctica and N. betuloides grown under a CO 2 enriched atmosphere. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:193-201. [PMID: 36427381 DOI: 10.1016/j.plaphy.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Increasing CO2 air concentration may affect wettability, anatomy and ultra-structure of leaves of Patagonian forest species, evergreen and deciduous plants potentially responding differently to such CO2 increases. In this study, we analysed the wettability, anatomy and ultra-structure of leaves of Nothofagus antarctica (deciduous) and N. betuloides (evergreen) grown under high CO2 concentrations. Leaf wettability was affected by increasing CO2, in different directions depending on species and leaf side. In both species, soluble cuticular lipid concentrations per unit leaf area raised with higher CO2 levels. Stomatal parameters (density, size of guard cells and pores) showed different responses to CO2 increasing depending on the species examined. In both species, leaf tissues showed a general trend to diminish with higher CO2 concentration. Cuticle thickness was modified with higher CO2 concentration in N. betuloides, but not in N. antarctica leaves. In both species, chloroplasts were often damaged with the increase in CO2 concentration. Our results show that several surface and internal leaf parameters can be modified in association with an increase in atmospheric CO2 concentration which may very among plant species.
Collapse
Affiliation(s)
- Héctor A Bahamonde
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (UNLP), Av. 60 y 119, La Plata, 1900, Buenos Aires, Argentina
| | - Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA CSIC), Centro de Investigación Forestal (ICIFOR), Carretera Coruña Km 7.5, E-28040, Madrid, Spain
| | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 332, Río Gallegos, 9400, Santa Cruz, Argentina
| | - Javier Gyenge
- Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, AER Tandil INTA, EEA Balcarce, B7620, Argentina
| | - Victoria Fernández
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Lian X, Zhao W, Gentine P. Recent global decline in rainfall interception loss due to altered rainfall regimes. Nat Commun 2022; 13:7642. [PMID: 36496496 PMCID: PMC9741630 DOI: 10.1038/s41467-022-35414-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Evaporative loss of interception (Ei) is the first process occurring during rainfall, yet its role in large-scale surface water balance has been largely underexplored. Here we show that Ei can be inferred from flux tower evapotranspiration measurements using physics-informed hybrid machine learning models built under wet versus dry conditions. Forced by satellite and reanalysis data, this framework provides an observationally constrained estimate of Ei, which is on average 84.1 ± 1.8 mm per year and accounts for 8.6 ± 0.2% of total rainfall globally during 2000-2020. Rainfall frequency regulates long-term average Ei changes, and rainfall intensity, rather than vegetation attributes, determines the fraction of Ei in gross precipitation (Ei/P). Rain events have become less frequent and more intense since 2000, driving a global decline in Ei (and Ei/P) by 4.9% (6.7%). This suggests that ongoing rainfall changes favor a partitioning towards more soil moisture and runoff, benefiting ecosystem functions but simultaneously increasing flood risks.
Collapse
Affiliation(s)
- Xu Lian
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA.
| | - Wenli Zhao
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
- Center for Learning the Earth with Artificial intelligence and Physics (LEAP), Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Qin J, Si J, Jia B, Zhao C, Zhou D, He X, Wang C, Zhu X. Water use strategies of Ferula bungeana on mega-dunes in the Badain Jaran Desert. FRONTIERS IN PLANT SCIENCE 2022; 13:957421. [PMID: 36561438 PMCID: PMC9763701 DOI: 10.3389/fpls.2022.957421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
In desert ecosystems, ephemeral plants have developed specialized water use strategies in response to long-term natural water stress. To examine the water use strategies of desert ephemeral plants under natural extreme drought conditions, we investigated the water absorption sources, water potential, hydraulic conductivity, and water use efficiency of Ferula bungeana at different elevations on the slopes of mega-dunes in the Badain Jaran Desert, Inner Mongolia, during a period of extreme drought. We found that the water utilized by F. bungeana was mostly absorbed from the 0-60 cm soil layers (80.47 ± 4.28%). With progression of the growing season, the source of water changed from the 0-30 cm soil layer to the 30-60 cm layer. The water potentials of the leaves, stems, and roots of F. bungeana were found to be characterized by clear diurnal and monthly variation, which were restricted by water availability and the hydraulic conductivity of different parts of the plant. The root hydraulic conductivity of F. bungeana was found to be considerably greater than that of the canopy, both of which showed significant diurnal and monthly variation. The water use efficiency of F. bungeana under extreme drought conditions was relatively high, particularly during the early and late stages of the growing season. Variations in water availability led to the regulation of water uptake and an adjustment of internal water conduction, which modified plant water use efficiency. These observations tend to indicate that the water use strategies of F. bungeana are mainly associated with the growth stage of plants, whereas the distribution pattern of plants on mega-dunes appeared to have comparatively little influence. Our findings on the water use of ephemeral plants highlight the adaptive mechanisms of these plants in desert habitats and provide a theoretical basis for selecting plants suitable for the restoration and reconstruction of desert ecosystems.
Collapse
Affiliation(s)
- Jie Qin
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Si
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Bing Jia
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Zhao
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Dongmeng Zhou
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui He
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunlin Wang
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinglin Zhu
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Santos EA, Haro-Carrión X, Oshun J. Age-specific and species-specific tree response to seasonal drought in tropical dry forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157908. [PMID: 35944638 DOI: 10.1016/j.scitotenv.2022.157908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Millions of people depend on ecosystem services provided by Tropical Dry Forests (TDFs), yet their proximity to population centers, seasonally dry climate, and the ease at which they are converted to agriculture has left only 10 % of their original extent globally. As more TDFs become protected, basic information relating TDF age to subsurface water resources will help guide forest recovery. Severe deforestation and recent reforestation around Bahía de Caráquez, Ecuador produced a mosaic of different successional stages ideal for exploring relationships between TDF age, subsurface water availability and species-specific responses to seasonal drought. Over one year, we measured gravimetric water content, predawn and midday leaf water potential, and the stable isotope composition of xylem and source waters in two regenerating and one primary forest. Over the transition from wet to dry season, we discovered a sharper decrease in predawn water potential in younger successional forests than in the primary forest. Growing in degraded subsurface environments under increased competition, successional forest trees accessed deeper sources of moisture from unsaturated weathered bedrock and groundwater through the dry season; however, different species employed distinct water use strategies. Ceiba trichistandra maintained midday water potentials above -1.27 MPa through a drought avoidance strategy dependent on groundwater. Sideroxylon celastrinum tolerated drought by lowering predawn and midday water potential through the early dry season but took up greater proportions of saprolite moisture and groundwater as the dry season progressed. Contrastingly, Handroanthus chrysanthus maintained access to shallow soil and saprolite moisture by dropping midday water potential to -4.30 MPa, reflecting drought tolerance. Our results show that limited subsurface water resources in regenerating TDF's lead to species-specific adaptations reliant on deeper sources of moisture. The recovery of soil and saprolite hydrologic properties following disturbances is likely to exceed 100 years, highlighting the importance of forest conservation.
Collapse
Affiliation(s)
- Emily A Santos
- University of California, Davis, Davis, CA 95616, United States of America.
| | | | - Jasper Oshun
- U.S. Fulbright Scholar and Visiting Professor at the Universidad de Ingeniería y Tecnología, Lima, Peru
| |
Collapse
|
25
|
Almahayni T. A radioecological model with moisture-dependent K d: Application to 129I and 79Se natural release to a grassland. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 255:107043. [PMID: 36274503 DOI: 10.1016/j.jenvrad.2022.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A radioecological model previously developed to simulate chlorine cycling in a Scots pine forest was modified to examine the effect of soil hydrochemical conditions on the fate of 129I and 79Se released to a grassland through natural discharge of contaminated groundwater. To this end, the constant solid-liquid distribution coefficient (Kd) in the original model was replaced by a parametric equation to estimate 129I and 79Se Kd values from soil saturation - as a proxy for soil redox potential - and a set of Kd values determined experimentally under oxic and anoxic conditions. Additionally, the multi-compartment Scots pine tree module was replaced by a two-compartment module to represent 129I and 79Se cycling in grass. Simulations undertaken with the model indicated a considerable effect of soil redox conditions on 129I and 79Se accumulation in the soil column, especially in the saturated subsoil above the water table. The constant Kd overestimated 129I accumulation in the soil in relation to the parametric Kd. In contrast, the constant Kd underestimated 79Se accumulation in the soil. These results have implications for radiological impact assessments, specifically regarding the degree of conservatism in the Kd used in the assessment. In respect of bioavailability to grass, the simulated soil-to-plant transfer factors of 129I and 79Se compared favourably with values reported in the literature for similar soils and plant species, giving confidence in the model performance. The model presented here is a step forward in radioecological modelling as it includes the key processes that drive radionuclide transfers in soil-plant systems and the effect of soil redox conditions on sorption. The model can be readily extended to other cultivated lands and release scenarios to predict radionuclide transfer up the food chain.
Collapse
Affiliation(s)
- Talal Almahayni
- Biosphere Impact Studies Unit, Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
26
|
Dawson TE. Sourcing the water that makes up tree biomass. TREE PHYSIOLOGY 2022; 42:2149-2152. [PMID: 36094844 DOI: 10.1093/treephys/tpac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Determining the potential sources of water that eventually become organic matter that make up the bulk of tree biomass has been facilitated by using the stable isotope composition of waters. Until recently these water sources were thought to only be taken up by roots from soils and other subsurface reservoirs. However, there is a growing body of evidence that now shows that water taken up directly by leaves and stems can not only be significant but can also dominate as the water source used in organic matter synthesis. In this commentary, I review and discuss these issues and point to an important paper by Akira Kagawa in this issue of Tree Physiology that provides a new experimental method and some striking evidence that foliar water uptake can be the primary water source that makes up tree biomass.
Collapse
Affiliation(s)
- Todd E Dawson
- Departments of Integrative Biology and Environmental Science, Policy & Management, University of California - Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
27
|
Kagawa A. Foliar water uptake as a source of hydrogen and oxygen in plant biomass. TREE PHYSIOLOGY 2022; 42:2153-2173. [PMID: 35554604 PMCID: PMC9652008 DOI: 10.1093/treephys/tpac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/08/2022] [Indexed: 05/11/2023]
Abstract
Introductory biology lessons around the world typically teach that plants absorb water through their roots, but, unfortunately, absorption of water through leaves and subsequent transport and use of this water for biomass formation remains a field limited mostly to specialists. Recent studies have identified foliar water uptake as a significant net water source for terrestrial plants. The growing interest in the development of a new model that includes both foliar water uptake (in liquid form) and root water uptake to explain hydrogen and oxygen isotope ratios in leaf water and tree rings demands a method for distinguishing between these two water sources. Therefore, in this study, I have devised a new labelling method that utilizes two different water sources, one enriched in deuterium (HDO + D2O; δD = 7.0 × 10 4‰, δ18O = 4.1‰) and one enriched in oxygen-18 (H218O; δD = -85‰, δ18O = 1.1 × 104‰), to simultaneously label both foliar-absorbed and root-absorbed water and quantify their relative contributions to plant biomass. Using this new method, I here present evidence that, in the case of well-watered Cryptomeria japonica D. Don, hydrogen and oxygen incorporated into new leaf cellulose in the rainy season derives mostly from foliar-absorbed water (69% from foliar-absorbed water and 31% from root-absorbed water), while that of new root cellulose derives mostly from root-absorbed water (20% from foliar-absorbed water and 80% from root-absorbed water), and new branch xylem is somewhere in between (55% from foliar-absorbed water and 45% from root-absorbed water). The dual-labelling method first implemented in this study enables separate and simultaneous labelling of foliar-absorbed and root-absorbed water and offers a new tool to study the uptake, transport and assimilation processes of these waters in terrestrial plants.
Collapse
|
28
|
Kagawa A. Foliar water uptake as a source of hydrogen and oxygen in plant biomass. TREE PHYSIOLOGY 2022; 42:2153-2173. [PMID: 35554604 DOI: 10.1101/2020.08.20.260372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/08/2022] [Indexed: 05/25/2023]
Abstract
Introductory biology lessons around the world typically teach that plants absorb water through their roots, but, unfortunately, absorption of water through leaves and subsequent transport and use of this water for biomass formation remains a field limited mostly to specialists. Recent studies have identified foliar water uptake as a significant net water source for terrestrial plants. The growing interest in the development of a new model that includes both foliar water uptake (in liquid form) and root water uptake to explain hydrogen and oxygen isotope ratios in leaf water and tree rings demands a method for distinguishing between these two water sources. Therefore, in this study, I have devised a new labelling method that utilizes two different water sources, one enriched in deuterium (HDO + D2O; δD = 7.0 × 10 4‰, δ18O = 4.1‰) and one enriched in oxygen-18 (H218O; δD = -85‰, δ18O = 1.1 × 104‰), to simultaneously label both foliar-absorbed and root-absorbed water and quantify their relative contributions to plant biomass. Using this new method, I here present evidence that, in the case of well-watered Cryptomeria japonica D. Don, hydrogen and oxygen incorporated into new leaf cellulose in the rainy season derives mostly from foliar-absorbed water (69% from foliar-absorbed water and 31% from root-absorbed water), while that of new root cellulose derives mostly from root-absorbed water (20% from foliar-absorbed water and 80% from root-absorbed water), and new branch xylem is somewhere in between (55% from foliar-absorbed water and 45% from root-absorbed water). The dual-labelling method first implemented in this study enables separate and simultaneous labelling of foliar-absorbed and root-absorbed water and offers a new tool to study the uptake, transport and assimilation processes of these waters in terrestrial plants.
Collapse
Affiliation(s)
- Akira Kagawa
- Forestry and Forest Products Research Institute, Wood Anatomy and Quality Laboratory, Tsukuba 305-8687, Japan
| |
Collapse
|
29
|
Grünzweig JM, De Boeck HJ, Rey A, Santos MJ, Adam O, Bahn M, Belnap J, Deckmyn G, Dekker SC, Flores O, Gliksman D, Helman D, Hultine KR, Liu L, Meron E, Michael Y, Sheffer E, Throop HL, Tzuk O, Yakir D. Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world. Nat Ecol Evol 2022; 6:1064-1076. [PMID: 35879539 DOI: 10.1038/s41559-022-01779-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022]
Abstract
Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Collapse
Affiliation(s)
- José M Grünzweig
- Institute of Plant Sciences and Genetics in Agriculture, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel.
| | - Hans J De Boeck
- Plants and Ecosystems, Department of Biology, Universiteit Antwerpen, Wilrijk, Belgium
| | - Ana Rey
- Department of Biogeography and Global Change, National Museum of Natural History, Spanish National Research Council (CSIC), Madrid, Spain
| | - Maria J Santos
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - Ori Adam
- The Fredy and Nadine Herrmann Institute of Earth Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jayne Belnap
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Gaby Deckmyn
- Plants and Ecosystems, Department of Biology, Universiteit Antwerpen, Wilrijk, Belgium
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Omar Flores
- Plants and Ecosystems, Department of Biology, Universiteit Antwerpen, Wilrijk, Belgium.,Department of Biogeography and Global Change, National Museum of Natural History, Spanish National Research Council (CSIC), Madrid, Spain
| | - Daniel Gliksman
- Institute for Hydrology and Meteorology, Faculty of Environmental Sciences, Technische Universität Dresden, Tharandt, Germany.,Institute of Geography, Technische Universität Dresden, Dresden, Germany
| | - David Helman
- Institute of Environmental Sciences, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel.,Advanced School for Environmental Studies, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Ehud Meron
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Yaron Michael
- Institute of Environmental Sciences, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Sheffer
- Institute of Plant Sciences and Genetics in Agriculture, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Heather L Throop
- School of Earth and Space Exploration, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Omer Tzuk
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Industrial Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Dan Yakir
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Tredenick EC, Stuart-Williams H, Enge TG. Materials on Plant Leaf Surfaces Are Deliquescent in a Variety of Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:722710. [PMID: 35903227 PMCID: PMC9315345 DOI: 10.3389/fpls.2022.722710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Materials on plant leaf surfaces that attract water impact penetration of foliar-applied agrochemicals, foliar water uptake, gas exchange, and stomatal density. Few studies are available on the nature of these substances, and we quantify the hygroscopicity of these materials. Water vapor sorption experiments on twelve leaf washes of sample leaves were conducted and analyzed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray diffraction. All leaf surface materials studied were hygroscopic. Oils were found on the surface of the Eucalyptus studied. For mangroves that excrete salt to the leaf surfaces, significant sorption occurred at high humidity of a total of 316 mg (~0.3 ml) over 6-10 leaves and fitted a Guggenheim, Anderson, and de Böer sorption isotherm. Materials on the plant leaf surface can deliquesce and form an aqueous solution in a variety of environments where plants grow, including glasshouses and by the ocean, which is an important factor when considering plant-atmosphere relations.
Collapse
Affiliation(s)
- E. C. Tredenick
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - H. Stuart-Williams
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - T. G. Enge
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
31
|
Abstract
Biddick and Van Stan II introduce how certain plant species harvest rain.
Collapse
Affiliation(s)
- Matt Biddick
- Terrestrial Ecology Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - John T Van Stan
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
32
|
Schreel JDM, Brodersen C, De Schryver T, Dierick M, Rubinstein A, Dewettinck K, Boone MN, Van Hoorebeke L, Steppe K. Foliar water uptake does not contribute to embolism repair in beech (Fagus sylvatica L.). ANNALS OF BOTANY 2022; 129:555-566. [PMID: 35141741 PMCID: PMC9007097 DOI: 10.1093/aob/mcac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Foliar water uptake has recently been suggested as a possible mechanism for the restoration of hydraulically dysfunctional xylem vessels. In this paper we used a combination of ecophysiological measurements, X-ray microcomputed tomography and cryo-scanning electron microscopy during a drought treatment to fully evaluate this hypothesis. KEY RESULTS Based on an assessment of these methods in beech (Fagus sylvatica L.) seedlings we were able to (1) confirm an increase in the amount of hydraulically redistributed water absorbed by leaves when the soil water potential decreased, and (2) locate this redistributed water in hydraulically active vessels in the stem. However, (3) no embolism repair was observed irrespective of the organ under investigation (i.e. stem, petiole or leaf) or the intensity of drought. CONCLUSIONS Our data provide evidence for a hydraulic pathway from the leaf surface to the stem xylem following a water potential gradient, but this pathway exists only in functional vessels and does not play a role in embolism repair for beech.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA
- For correspondence. E-mail
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, USA
| | - Thomas De Schryver
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Manuel Dierick
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | | | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Matthieu N Boone
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Luc Van Hoorebeke
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
33
|
Chin ARO, Guzmán‐Delgado P, Sillett SC, Orozco J, Kramer RD, Kerhoulas LP, Moore ZJ, Reed M, Zwieniecki MA. Shoot dimorphism enables Sequoia sempervirens to separate requirements for foliar water uptake and photosynthesis. AMERICAN JOURNAL OF BOTANY 2022; 109:564-579. [PMID: 35274309 PMCID: PMC9322557 DOI: 10.1002/ajb2.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
PREMISE Trees in wet forests often have features that prevent water films from covering stomata and inhibiting gas exchange, while many trees in drier environments use foliar water uptake to reduce water stress. In forests with both wet and dry seasons, evergreen trees would benefit from producing leaves capable of balancing rainy-season photosynthesis with summertime water absorption. METHODS Using samples collected from across the vertical gradient in tall redwood (Sequoia sempervirens) crowns, we estimated tree-level foliar water uptake and employed physics-based causative modeling to identify key functional traits that determine uptake potential by setting hydraulic resistance. RESULTS We showed that Sequoia has two functionally distinct shoot morphotypes. While most shoots specialize in photosynthesis, the axial shoot type is capable of much greater foliar water uptake, and its within-crown distribution varies with latitude. A suite of leaf surface traits cause hydraulic resistance, leading to variation in uptake capacity among samples. CONCLUSIONS Shoot dimorphism gives tall Sequoia trees the capacity to absorb up to 48 kg H2 O h-1 during the first hour of leaf wetting, ameliorating water stress while presumably maintaining high photosynthetic capacity year round. Geographic variation in shoot dimorphism suggests that plasticity in shoot-type distribution and leaf surface traits helps Sequoia maintain a dominate presence in both wet and dry forests.
Collapse
Affiliation(s)
- Alana R. O. Chin
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
- Present address:
Alana R. O. Chin, D‐USYS, ETHZürich8092Switzerland
| | | | - Stephen C. Sillett
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCA95521USA
| | - Jessica Orozco
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
| | | | - Lucy P. Kerhoulas
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCA95521USA
| | - Zane J. Moore
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
| | - Marty Reed
- Department of Biological SciencesHumboldt State UniversityArcataCA95521USA
| | | |
Collapse
|
34
|
Lenz AK, Bauer U, Ruxton GD. An ecological perspective on water shedding from leaves. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1176-1189. [PMID: 34727175 PMCID: PMC8866647 DOI: 10.1093/jxb/erab479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Water shedding from leaves is a complex process depending on multiple leaf traits interacting with rain, wind, and air humidity, and with the entire plant and surrounding vegetation. Here, we synthesize current knowledge of the physics of water shedding with implications for plant physiology and ecology. We argue that the drop retention angle is a more meaningful parameter to characterize the water-shedding capacity of leaves than the commonly measured static contact angle. The understanding of the mechanics of water shedding is largely derived from laboratory experiments on artificial rather than natural surfaces, often on individual aspects such as surface wettability or drop impacts. In contrast, field studies attempting to identify the adaptive value of leaf traits linked to water shedding are largely correlative in nature, with inconclusive results. We make a strong case for taking the hypothesis-driven experimental approach of biomechanical laboratory studies into a real-world field setting to gain a comprehensive understanding of leaf water shedding in a whole-plant ecological and evolutionary context.
Collapse
Affiliation(s)
- Anne-Kristin Lenz
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, UK
| | - Ulrike Bauer
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, UK
| | - Graeme D Ruxton
- School of Biology, University of St Andrews, Dryers Brae, Greenside Place, St Andrews, UK
| |
Collapse
|
35
|
Lauderbaugh LK, Holder CD. The biomechanics of leaf oscillations during rainfall events. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1139-1154. [PMID: 34791162 DOI: 10.1093/jxb/erab492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Plants are dynamic systems during rainfall events. As raindrops splash on leaf surfaces, the momentum of the raindrop is transferred to the leaf, causing the leaf to oscillate. The emphasis of this review is on the general principles of leaf oscillation models after raindrop impact and the ecological importance. Various leaf oscillation models and the underlying physical properties from biomechanics theory are highlighted. Additionally, we review experimental methods to derive the model parameters for and explore advances in our understanding of the raindrop-leaf impact process.
Collapse
Affiliation(s)
- Leal K Lauderbaugh
- Dynamics and Control of Complex Systems Laboratory, Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Curtis D Holder
- Leaf Biomechanics and Ecohydrology Research Group (L-BERG), Department of Geography and Environmental Studies, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|
36
|
Roth-Nebelsick A, Konrad W, Ebner M, Miranda T, Thielen S, Nebelsick JH. When rain collides with plants-patterns and forces of drop impact and how leaves respond to them. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1155-1175. [PMID: 35038724 DOI: 10.1093/jxb/erac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Raindrop impact on leaves is a common event which is of relevance for numerous processes, including the dispersal of pathogens and propagules, leaf wax erosion, gas exchange, leaf water absorption, and interception and storage of rainwater by canopies. The process of drop impact is complex, and its outcome depends on many influential factors. The wettability of plants has been recognized as an important parameter which is itself complex and difficult to determine for leaf surfaces. Other important parameters include leaf inclination angle and the ability of leaves to respond elastically to drop impact. Different elastic motions are initiated by drop impact, including local deformation, flapping, torsion, and bending, as well as 'swinging' of the petiole. These elastic responses, which occur on different time scales, can affect drop impact directly or indirectly, by changing the leaf inclination. An important feature of drop impact is splashing, meaning the fragmentation of the drop with ejection of satellite droplets. This process is promoted by the kinetic energy of the drop and leaf traits. For instance, a dense trichome cover can suppress splashing. Basic drop impact patterns are presented and discussed for a number of different leaf types, as well as some exemplary mosses.
Collapse
Affiliation(s)
- Anita Roth-Nebelsick
- State Museum of Natural History Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany
| | - Wilfried Konrad
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
- Technical University of Dresden, Institute of Botany, Zellescher Weg 20b, D-01217 Dresden, Germany
| | - Martin Ebner
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
| | - Tatiana Miranda
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Hölderlinstr. 12, D-72074 Tübingen, Germany
| | - Sonja Thielen
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
| | - James H Nebelsick
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
| |
Collapse
|
37
|
Yan X, Chang Y, Zhao W, Qian C, Yin X, Fan X, Zhu X, Zhao X, Ma XF. Transcriptome profiling reveals that foliar water uptake occurs with C 3 and crassulacean acid metabolism facultative photosynthesis in Tamarix ramosissima under extreme drought. AOB PLANTS 2022; 14:plab060. [PMID: 35047161 PMCID: PMC8763614 DOI: 10.1093/aobpla/plab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/14/2022] [Indexed: 05/21/2023]
Abstract
Tamarix ramosissima is a typical desert plant species that is widely distributed in the desert areas of Northwest China. It plays a significant role in sand fixation and soil water conservation. In particular, how it uses water to survive in the desert plays an important role in plant growth and ecosystem function. Previous studies have revealed that T. ramosissima can alleviate drought by absorbing water from its leaves under extreme drought conditions. To date, there is no clear molecular regulation mechanism to explain foliar water uptake (FWU). In the present study, we correlated diurnal meteorological data, sap flow and photosynthetic parameters to determine the physical and biological characteristics of FWU. Our results suggested that the lesser the groundwater, the easier it is for T. ramosissima to absorb water via the leaves. Gene ontology annotation and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of the transcriptome profile of plants subjected to high humidity suggested that FWU was highly correlated to carbohydrate metabolism, energy transfer, pyruvate metabolism, hormone signal transduction and plant-pathogen interaction. Interestingly, as a C3 plant, genes such as PEPC, PPDK, MDH and RuBP, which are involved in crassulacean acid metabolism (CAM) photosynthesis, were highly upregulated and accompanied by FWU. Therefore, we proposed that in the case of sufficient water supply, C3 photosynthesis is used in T. ramosissima, whereas in cases of extreme drought, starch is degraded to provide CO2 for CAM photosynthesis to make full use of the water obtained via FWU and the water that was transported or stored to assimilating branches and stems. This study may provide not only an important theoretical foundation for FWU and conversion from C3 plants to CAM plants but also for engineering improved photosynthesis in high-yield drought-tolerant plants and mitigation of climate change-driven drought.
Collapse
Affiliation(s)
- Xia Yan
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
- Key Laboratory of Inland River Ecohydrology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Yan Chang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Weijia Zhao
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhu
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiangqiang Zhao
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiao-Fei Ma
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Corresponding author’s e-mail address:
| |
Collapse
|
38
|
Cao Z, Wu X, Wang T, Zhao Y, Zhao Y, Wang D, Chang Y, Wei Y, Yan G, Fan Y, Yue C, Duan J, Xi B. Characteristics of airborne particles retained on conifer needles across China in winter and preliminary evaluation of the capacity of trees in haze mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150704. [PMID: 34600981 DOI: 10.1016/j.scitotenv.2021.150704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
To fully understand the characteristics of particulate matter (PM) retained on plant leaves (PMR) and the effect of vegetation on haze on a large spatial scale, we investigated needle samples collected from 78 parks and campuses in 31 cities (30 provincial cities) of China and developed a comprehensive method to characterise PMR. Both the PMR load (including water-insoluble particulate matter (WIPM), water-soluble inorganic ions (WSIS) and water-soluble organic matter (WSOM)), with a mean value of 554 ± 345 mg m-2 leaf area, and component profiles of PMR showed obvious spatial variation across the cities. Though haze pollution levels vary greatly among the 31 cities, the PM retention capacity of needles does not depend on haze level because PMR generally reaches saturation before precipitation in winter. The water-soluble component (WSC, the sum of WSIS and WSOM) accounted for 52.3% of PMR on average, among which WSIS and WSOM contributed 21.4% and 30.9% to PMR, respectively. The dominant ions of WSIS in PMR in the cities were Ca2+, K+ and NO3-, indicating that raised dust, biomass combustion and traffic exhaust are significant sources of PM in China. Compared with previous reports, the particle size distributions of PMR and PM across China were consistent, with fine PM (PM2.5) constituting a substantial proportion (43.8 ± 17.0%) of PMR. These results prove that trees can effectively remove fine particles from the air, thereby reducing human exposure to inhalable PM. We proposed a method to estimate the annual amount of PMR on Cedrus deodara, with an average value of 11.9 ± 9.6 t km-2 canopy yr-1 in China. Compared with the load of dust fall (atmospheric particles naturally falling on the ground, average of 138 ± 164 t km-2 land area yr-1 in China), we conclude that trees play a significant role in mitigating haze pollution.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Xinyuan Wu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Tianyi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yahui Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Danyang Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yu Chang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ya Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Chen Yue
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Jie Duan
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
39
|
Tomasella M, Natale S, Petruzzellis F, Di Bert S, D’Amico L, Tromba G, Nardini A. No Evidence for Light-Induced Embolism Repair in Cut Stems of Drought-Resistant Mediterranean Species under Soaking. PLANTS 2022; 11:plants11030307. [PMID: 35161287 PMCID: PMC8840644 DOI: 10.3390/plants11030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
(1) Recent studies suggested that stem photosynthesis could favor bark water uptake and embolism recovery when stem segments are soaked in water under light conditions, but evidence for this phenomenon in drought-resistant Mediterranean species with photosynthetic stems is missing. (2) Embolism recovery upon immersion in water for 2 h–4 h under light was assessed (i) via a classical hydraulic method in leafless Fraxinus ornus and Olea europaea branch segments stressed to xylem water potentials (Yxyl) inducing ca. 50% loss of hydraulic conductivity (PLC) and (ii) via X-ray micro-CT imaging of the stem segments of drought-stressed potted F. ornus saplings. Hydraulic recovery was also assessed in vivo in intact drought-stressed F. ornus saplings upon soil re-irrigation. (3) Intact F. ornus plants recovered hydraulic function through root water uptake. Conversely, the soaked stem segments of both species did not refill embolized conduits, although Yxyl recovered to pre-stress levels (between −0.5 MPa and −0.2 MPa). (4) We hypothesize that xylem embolism recovery through bark water uptake, even in light conditions, may not be a common phenomenon in woody plants and/or that wounds caused by cutting short stem segments might inhibit the refilling process upon soaking.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100 Udine, Italy
| | - Sara Di Bert
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Lorenzo D’Amico
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Italy (G.T.)
- Dipartimento di Fisica, Università di Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Italy (G.T.)
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
- Correspondence:
| |
Collapse
|
40
|
Bryant C, Fuenzalida TI, Zavafer A, Nguyen HT, Brothers N, Harris RJ, Beckett HAA, Holmlund HI, Binks O, Ball MC. Foliar water uptake via cork warts in mangroves of the Sonneratia genus. PLANT, CELL & ENVIRONMENT 2021; 44:2925-2937. [PMID: 34118083 DOI: 10.1111/pce.14129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Foliar water uptake (FWU) occurs in plants of diverse ecosystems; however, the diversity of pathways and their associated FWU kinetics remain poorly resolved. We characterized a novel FWU pathway in two mangrove species of the Sonneratia genus, S. alba and S. caseolaris. Further, we assessed the influence of leaf wetting duration, wet-dry seasonality and leaf dehydration on leaf conductance to surface water (Ksurf ). The symplastic tracer dye, disodium fluorescein, revealed living cells subtending and encircling leaf epidermal structures known as cork warts as a pathway of FWU entry into the leaf. Rehydration kinetics experiments revealed a novel mode of FWU, with slow and steady rates of water uptake persistent over a duration of 12 hr. Ksurf increased with longer durations of leaf wetting and was greater in leaves with more negative water potentials at the initiation of leaf wetting. Ksurf declined by 68% between wet and dry seasons. Our results suggest that FWU via cork warts in Sonneratia sp. may be rate limited and under active regulation. We conclude that FWU pathways in halophytes may require ion exclusion to avoid uptake of salt when inundated, paralleling the capacity of halophyte roots for ion selectivity during water acquisition.
Collapse
Affiliation(s)
- Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Tomas I Fuenzalida
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Alonso Zavafer
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Nigel Brothers
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Rosalie J Harris
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Helen I Holmlund
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Pepperdine University, Natural Science Division, Malibu, CA, 90263, USA
| | - Oliver Binks
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
41
|
Tredenick EC, Farquhar GD. Dynamics of moisture diffusion and adsorption in plant cuticles including the role of cellulose. Nat Commun 2021; 12:5042. [PMID: 34413297 PMCID: PMC8377085 DOI: 10.1038/s41467-021-25225-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Food production must increase significantly to sustain a growing global population. Reducing plant water loss may help achieve this goal and is especially relevant in a time of climate change. The plant cuticle defends leaves against drought, and so understanding water movement through the cuticle could help future proof our crops and better understand native ecology. Here, via mathematical modelling, we identify mechanistic properties of water movement in cuticles. We model water sorption in astomatous isolated cuticles, utilising three separate pathways of cellulose, aqueous pores and lipophilic. The model compares well to data both over time and humidity gradients. Sensitivity analysis shows that the grouping of parameters influencing plant species variations has the largest effect on sorption, those influencing cellulose are very influential, and aqueous pores less so but still relevant. Cellulose plays a significant role in diffusion and adsorption in the cuticle and the cuticle surfaces.
Collapse
Affiliation(s)
- E C Tredenick
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - G D Farquhar
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Jiao L, Kosugi Y, Sempuku Y, Chang T. Canopy conductance and gas exchange of a Japanese cypress forest after rainfall‐induced wetness. Ecol Res 2021. [DOI: 10.1111/1440-1703.12257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linjie Jiao
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Yoshiko Kosugi
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Yuichi Sempuku
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
- East Nippon Expressway Company Ltd. Kanto Branch, Management Office Chiba Chiba Japan
| | - Ting‐wei Chang
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
43
|
Gilbert KJ, Renner T. Acid or base? How do plants regulate the ecology of their phylloplane? AOB PLANTS 2021; 13:plab032. [PMID: 34285793 PMCID: PMC8286713 DOI: 10.1093/aobpla/plab032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/25/2021] [Indexed: 05/29/2023]
Abstract
Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant's biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane-that is, the outermost surface of the leaf-varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions.
Collapse
Affiliation(s)
- Kadeem J Gilbert
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| |
Collapse
|
44
|
Coopman RE, Nguyen HT, Mencuccini M, Oliveira RS, Sack L, Lovelock CE, Ball MC. Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. THE NEW PHYTOLOGIST 2021; 231:1401-1414. [PMID: 33983649 DOI: 10.1111/nph.17461] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The mangrove Avicennia marina adjusts internal salt concentrations by foliar salt secretion. Deliquescence of accumulated salt causes leaf wetting that may provide a water source for salt-secreting plants in arid coastal wetlands where high nocturnal humidity can usually support deliquescence whereas rainfall events are rare. We tested the hypotheses that salt deliquescence on leaf surfaces can drive top-down rehydration, and that such absorption of moisture from unsaturated atmospheres makes a functional contribution to dry season shoot water balances. Sap flow and water relations were monitored to assess the uptake of atmospheric water by branches during shoot wetting events under natural and manipulated microclimatic conditions. Reverse sap flow rates increased with increasing relative humidity from 70% to 89%, consistent with function of salt deliquescence in harvesting moisture from unsaturated atmospheres. Top-down rehydration elevated branch water potentials above those possible from root water uptake, subsidising transpiration rates and reducing branch vulnerability to hydraulic failure in the subsequent photoperiod. Absorption of atmospheric moisture harvested through deliquescence of salt on leaf surfaces enhances water balances of Avicennia marina growing in hypersaline wetlands under arid climatic conditions. Top-down rehydration from these frequent, low intensity wetting events contributes to prevention of carbon starvation and hydraulic failure during drought.
Collapse
Affiliation(s)
- Rafael E Coopman
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Department of Botany, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 131000, Vietnam
| | - Maurizio Mencuccini
- CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles 08193, Barcelona, Spain
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
45
|
Gerlein-Safdi C. Seeing dew deposition from satellites: leveraging microwave remote sensing for the study of water dynamics in and on plants. THE NEW PHYTOLOGIST 2021; 231:5-7. [PMID: 34060665 DOI: 10.1111/nph.17418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
46
|
Waseem M, Nie ZF, Yao GQ, Hasan M, Xiang Y, Fang XW. Dew absorption by leaf trichomes in Caragana korshinskii: An alternative water acquisition strategy for withstanding drought in arid environments. PHYSIOLOGIA PLANTARUM 2021; 172:528-539. [PMID: 33452683 DOI: 10.1111/ppl.13334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 05/25/2023]
Abstract
Investigating plant morphological traits can provide insights into plant drought tolerance. To date, many papers have focused on plant hydraulic responses to drought during dehydration, but atmospheric water absorption by trichomes to mitigate drought stress by influencing leaf hydraulics in plant species that inhabit arid environments has been largely ignored. The experiment in this study was designed to assess how dew absorbed by leaf trichomes helps Caragana korshinskii withstand drought. The results showed that under a drought stress and dew (DS & D) treatment, C. korshinskii displayed a strong capacity to absorb dew with trichomes; exhibited slow decreases in leaf water potential (Ψleaf ), leaf hydraulic conductivity (Kleaf ), and gas exchange; experienced 50% Kleaf and gas exchange losses at lower relative soil water content levels than plants treated with drought stress and no dew (DS & ND); and experienced 50% Kleaf loss (Kleaf P50 ) at similar Ψleaf levels as DS & ND plants. Its congener C. sinica, which does not have leaf trichomes, displayed little ability to absorb dew under drought stress and did not show any remarkable improvement in the above parameters under the DS & D treatment. Our results indicated that leaf trichomes are important epidermal dew-uptake structures that assist in partially sustaining the leaf hydraulic assimilation system, mitigate the adverse effects of drought stress and contribute to the distribution of C. korshinskii in arid environments.
Collapse
Affiliation(s)
- Muhammad Waseem
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
47
|
Guzmán-Delgado P, Laca E, Zwieniecki MA. Unravelling foliar water uptake pathways: The contribution of stomata and the cuticle. PLANT, CELL & ENVIRONMENT 2021; 44:1728-1740. [PMID: 33665817 DOI: 10.1111/pce.14041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plants can absorb water through their leaf surfaces, a phenomenon commonly referred to as foliar water uptake (FWU). Despite the physiological importance of FWU, the pathways and mechanisms underlying the process are not well known. Using a novel experimental approach, we parsed out the contribution of the stomata and the cuticle to FWU in two species with Mediterranean (Prunus dulcis) and temperate (Pyrus communis) origin. The hydraulic parameters of FWU were derived by analysing mass and water potential changes of leaves placed in a fog chamber. Leaves were previously treated with abscisic acid to force stomata to remain closed, with fusicoccin to remain open, and with water (control). Leaves with open stomata rehydrated two times faster than leaves with closed stomata and attained approximately three times higher maximum fluxes and hydraulic conductance. Based on FWU rates, we propose that rehydration through stomata occurs primarily via diffusion of water vapour rather than in liquid form even when leaf surfaces are covered with a water film. We discuss the potential mechanisms of FWU and the significance of both stomatal and cuticular pathways for plant productivity and survival.
Collapse
Affiliation(s)
- Paula Guzmán-Delgado
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Emilio Laca
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
48
|
Mejia-Chang M, Reyes-Garcia C, Seibt U, Royles J, Meyer MT, Jones GD, Winter K, Arnedo M, Griffiths H. Leaf water δ 18O reflects water vapour exchange and uptake by C 3 and CAM epiphytic bromeliads in Panama. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:732-742. [PMID: 34099101 DOI: 10.1071/fp21087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 05/27/2023]
Abstract
The distributions of CAM and C3 epiphytic bromeliads across an altitudinal gradient in western Panama were identified from carbon isotope (δ13C) signals, and epiphyte water balance was investigated via oxygen isotopes (δ18O) across wet and dry seasons. There were significant seasonal differences in leaf water (δ18Olw), precipitation, stored 'tank' water and water vapour. Values of δ18Olw were evaporatively enriched at low altitude in the dry season for the C3 epiphytes, associated with low relative humidity (RH) during the day. Crassulacean acid metabolism (CAM) δ18Olw values were relatively depleted, consistent with water vapour uptake during gas exchange under high RH at night. At high altitude, cloudforest locations, C3 δ18Olw also reflected water vapour uptake by day. A mesocosm experiment with Tillandsia fasciculata (CAM) and Werauhia sanguinolenta (C3) was combined with simulations using a non-steady-state oxygen isotope leaf water model. For both C3 and CAM bromeliads, δ18Olw became progressively depleted under saturating water vapour by day and night, although evaporative enrichment was restored in the C3 W. sanguinolenta under low humidity by day. Source water in the overlapping leaf base 'tank' was also modified by evaporative δ18O exchanges. The results demonstrate how stable isotopes in leaf water provide insights for atmospheric water vapour exchanges for both C3 and CAM systems.
Collapse
Affiliation(s)
- Monica Mejia-Chang
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Casandra Reyes-Garcia
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK; and Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 Num. 130 Churburná de Hidalgo, Mérida, 97200, México
| | - Ulli Seibt
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK; and Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, CA, USA
| | - Jessica Royles
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Moritz T Meyer
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Glyn D Jones
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Miquel Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Fac. Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Howard Griffiths
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK; and Corresponding author.
| |
Collapse
|
49
|
Still CJ, Rastogi B, Page GFM, Griffith DM, Sibley A, Schulze M, Hawkins L, Pau S, Detto M, Helliker BR. Imaging canopy temperature: shedding (thermal) light on ecosystem processes. THE NEW PHYTOLOGIST 2021; 230:1746-1753. [PMID: 33666251 DOI: 10.1111/nph.17321] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Canopy temperature Tcan is a key driver of plant function that emerges as a result of interacting biotic and abiotic processes and properties. However, understanding controls on Tcan and forecasting canopy responses to weather extremes and climate change are difficult due to sparse measurements of Tcan at appropriate spatial and temporal scales. Burgeoning observations of Tcan from thermal cameras enable evaluation of energy budget theory and better understanding of how environmental controls, leaf traits and canopy structure influence temperature patterns. The canopy scale is relevant for connecting to remote sensing and testing biosphere model predictions. We anticipate that future breakthroughs in understanding of ecosystem responses to climate change will result from multiscale observations of Tcan across a range of ecosystems.
Collapse
Affiliation(s)
- Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Bharat Rastogi
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
- Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, 80305, USA
| | - Gerald F M Page
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Dan M Griffith
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam Sibley
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Mark Schulze
- H.J. Andrews Experimental Forest, Oregon State University, Blue River, OR, 97413, USA
| | - Linnia Hawkins
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephanie Pau
- Department of Geography, Florida State University, Tallahassee, FL, 32304, USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Effects of succession stages and altitudinal gradient on leaf surface area and biomass allocation of typical plants in the subalpine of Eastern Tibetan Plateau. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|