1
|
Primack RB, Vaughn S, Terry C. Local soil temperature advances flowering phenology of Canada mayflower (Maianthemum canadense), with implications for climate change assessment. Oecologia 2025; 207:36. [PMID: 39960630 DOI: 10.1007/s00442-025-05668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/11/2025] [Indexed: 05/09/2025]
Abstract
Local soil temperature has the potential to affect plant phenology, which is a key indicator of the biological effects of climate change. Many existing analyses, however, ignore local temperatures and focus only on temperature at larger scales measured by weather stations. Ignoring local temperature adds noise to analyses, creating the need for longer time series, and may also bias results. Over four years, we investigated the effects of local soil temperature, sun exposure, and soil depth on flowering phenology for 35 populations of Canada mayflower (Maianthemum canadense) in an 82-hectare mixed deciduous forest in Newton, Massachusetts (USA). Flowering dates varied by 5-7 days among sites. Soil temperatures varied by about 5 °C across sites before and during the flowering season. Among the populations, plants flowered earliest at sites with the warmest local climates-around one day earlier for each 1 °C warmer temperature. Sun exposure and soil depth did not affect flowering times. Differences in temperature and flowering times among sites were consistent over the four years of the study. In most other published phenology studies, spring wildflowers flower 2-5 days earlier for each 1 °C of warming of air temperatures. This study demonstrates that the effects of local temperature on phenology can be investigated over relatively short periods of time and that these effects may bias estimates of phenological responses to temperature that rely solely on temperature data from weather stations.
Collapse
Affiliation(s)
- Richard B Primack
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| | - Selby Vaughn
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Carina Terry
- Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, MA, 02215, USA
| |
Collapse
|
2
|
Ten Caten C, Dallas T. Population variability across geographical ranges: perspectives and challenges. Proc Biol Sci 2025; 292:20241644. [PMID: 39876735 PMCID: PMC11775592 DOI: 10.1098/rspb.2024.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Populations fluctuate over time and across geographical space, and understanding how different factors contribute to population variability is a central goal in population ecology. There is a particular interest in identifying trends of population variability within geographical ranges as population densities of species can fluctuate substantially across geographical space. A common assumption is that populations vary more near species geographical range edges because of unsuitable environments and higher vulnerability to environmental variability in these areas. However, empirical data rarely support this expectation, suggesting that population variability is not related to its position within species geographical ranges. We propose that performance curves, which describe the relationship between population growth rates and environmental conditions, can be used to disentangle geographical patterns of population variability. Performance curves are important for understanding population variability because populations fluctuate more in locations where they have lower growth rates owing to unsuitable environmental conditions. This is important for the assessment of these geographical patterns in population variability because geographical edges often do not reflect environmental edges. Considering species performance curves when evaluating geographical patterns of population variability would also allow researchers to detect populations that are more susceptible to future changes in environmental conditions.
Collapse
Affiliation(s)
- Cleber Ten Caten
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208, USA
| | - Tad Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208, USA
| |
Collapse
|
3
|
Miao C, Du J, Wang W, Wu J, Wu L, Zhang K, Ma X. Interannual temperature rise leads to more uniform phenological matching between invasive Stellera chamaejasme and pollinators across elevations. FRONTIERS IN PLANT SCIENCE 2024; 15:1445083. [PMID: 39464287 PMCID: PMC11502355 DOI: 10.3389/fpls.2024.1445083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Exploring how environmental changes induce alterations in the phenology matching between plants and pollinators is significant for predicting species' reproductive output and population dynamics. Our study focused on the invasive poisonous weed Stellera chamaejasme, widely distributed in the Qilian Mountains, China. By continuously monitoring its flowering phenology and flower visitors' activities across different elevational ranges, we compared phenological matching patterns between S. chamaejasme and its potential pollinators across years with varying environmental temperatures. We found that S. chamaejasme, a typical early-flowering alpine species, begins its flowering in early June. Despite variations in the composition of flower-visiting insects across elevations and years, it maintained stable interactions with four major groups: Meloidae, Tachinidae, Scarabaeidae, and Noctuidae. Phenological mismatches between the peak flowering period of S. chamaejasme and the peak abundance of major potential pollinators were generally observed across its range, with higher phenological matching at higher elevations. This enhanced matching at higher elevations may drive the rapid invasion of S. chamaejasme in these areas. In the year with higher ambient temperature, phenological matching increased across its range, and its elevational sensitivity decreased, potentially contributing to its ongoing expansion in different elevations. The results of our study advance a new insight into the population expansion of invasive species in mountain ecosystems.
Collapse
Affiliation(s)
- Chenxin Miao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Du
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Wen Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juanjuan Wu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Longqing Wu
- Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye, China
| | - Kehai Zhang
- Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye, China
| | - Xuee Ma
- Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye, China
| |
Collapse
|
4
|
Abera TA, Heiskanen J, Maeda EE, Muhammed MA, Bhandari N, Vakkari V, Hailu BT, Pellikka PKE, Hemp A, van Zyl PG, Zeuss D. Deforestation amplifies climate change effects on warming and cloud level rise in African montane forests. Nat Commun 2024; 15:6992. [PMID: 39143071 PMCID: PMC11324879 DOI: 10.1038/s41467-024-51324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Tropical montane forest ecosystems are pivotal for sustaining biodiversity and essential terrestrial ecosystem services, including the provision of high-quality fresh water. Nonetheless, the impact of montane deforestation and climate change on the capacity of forests to deliver ecosystem services is yet to be fully understood. In this study, we offer observational evidence demonstrating the response of air temperature and cloud base height to deforestation in African montane forests over the last two decades. Our findings reveal that approximately 18% (7.4 ± 0.5 million hectares) of Africa's montane forests were lost between 2003 and 2022. This deforestation has led to a notable increase in maximum air temperature (1.37 ± 0.58 °C) and cloud base height (236 ± 87 metres), surpassing shifts attributed solely to climate change. Our results call for urgent attention to montane deforestation, as it poses serious threats to biodiversity, water supply, and ecosystem services in the tropics.
Collapse
Affiliation(s)
- Temesgen Alemayehu Abera
- Department of Environmental Informatics, Faculty of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35037, Marburg, Germany.
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, FI-00014, Helsinki, Finland.
| | - Janne Heiskanen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, FI-00014, Helsinki, Finland
- Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, Finland
| | - Eduardo Eiji Maeda
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, FI-00014, Helsinki, Finland
- Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, Finland
| | - Mohammed Ahmed Muhammed
- Department of Environmental Informatics, Faculty of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35037, Marburg, Germany
- School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Netra Bhandari
- Department of Environmental Informatics, Faculty of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35037, Marburg, Germany
| | - Ville Vakkari
- Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, Finland
- Atmospheric Chemistry Research Group, Chemical Resource Beneficiation, North-West University, Potchefstroom, South Africa
| | - Binyam Tesfaw Hailu
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, FI-00014, Helsinki, Finland
- School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Petri K E Pellikka
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, FI-00014, Helsinki, Finland
- State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Pieter G van Zyl
- Atmospheric Chemistry Research Group, Chemical Resource Beneficiation, North-West University, Potchefstroom, South Africa
| | - Dirk Zeuss
- Department of Environmental Informatics, Faculty of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35037, Marburg, Germany
| |
Collapse
|
5
|
Christiansen DM, Römer G, Dahlgren JP, Borg M, Jones OR, Merinero S, Hylander K, Ehrlén J. High-resolution data are necessary to understand the effects of climate on plant population dynamics of a forest herb. Ecology 2024; 105:e4191. [PMID: 37878669 DOI: 10.1002/ecy.4191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
Climate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small-scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism-relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.
Collapse
Affiliation(s)
- Ditte M Christiansen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Gesa Römer
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Johan P Dahlgren
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Malin Borg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Owen R Jones
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Sonia Merinero
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Körner C. Concepts in Alpine Plant Ecology. PLANTS (BASEL, SWITZERLAND) 2023; 12:2666. [PMID: 37514280 PMCID: PMC10386573 DOI: 10.3390/plants12142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The alpine life zone is perhaps the only biome that occurs globally where mountains are high enough. At latitudinally varying elevation, the alpine belt hosts small stature plants that vary greatly in morphology, anatomy and physiology. In this contribution, I summarize a number of principles that govern life in what is often considered a cold and hostile environment. The 12 conceptual frameworks depicted include the key role of aerodynamic decoupling from free atmospheric climatic conditions, the problematic concepts of limitation and stress in an evolutionary context, and the role of developmental flexibility and functional diversity. With its topography driven habitat diversity, alpine plant diversity is buffered against environmental change, and the multitude of microclimatic gradients offers 'experiments by nature', the power of which awaits multidisciplinary exploration.
Collapse
Affiliation(s)
- Christian Körner
- Department of Environmental Sciences, University of Basel, Botany, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Carscadden KA, Doak DF, Oldfather MF, Emery NC. Demographic responses of hybridizing cinquefoils to changing climate in the Colorado Rocky Mountains. Ecol Evol 2023; 13:e10097. [PMID: 37449020 PMCID: PMC10336340 DOI: 10.1002/ece3.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within- and among-species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippiana and P. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates than P. hippiana. In contrast, hybrid performance relative to P. pulcherrima varied with population and climate, with the hybrid maintaining relatively stable growth rates while populations of P. pulcherrima shrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context-dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions for P. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long-lived taxa are lagging behind their demographic trajectories, such that the currently less common P. hippiana could become the most abundant of the Potentilla taxa as this region continues to warm and dry.
Collapse
Affiliation(s)
- Kelly A. Carscadden
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel F. Doak
- Department of Environmental StudiesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Meagan F. Oldfather
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
8
|
Worthy SJ, Gremer JR. Understanding the drivers of intraspecific demographic variation: Needs and opportunities. AMERICAN JOURNAL OF BOTANY 2023; 110:e16176. [PMID: 37189226 DOI: 10.1002/ajb2.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| |
Collapse
|
9
|
de Souza JS, Vinagre C, Dos Santos LN. Thermal plasticity over a marine-estuarine ecocline can buffer a tropical fish from warming. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105998. [PMID: 37094528 DOI: 10.1016/j.marenvres.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Intraspecific variation in thermal tolerance can favor species persistence in a warmer ocean, but is often overlooked in fine-scale studies. Nonetheless, local drivers (e.g. salinity) interact with temperature to shape species' thermal response. Here, we acclimated juveniles of Brazilian silversides Atherinella brasiliensis captured at the limits of a marine-estuarine ecocline under reciprocal-cross conditions, to test for phenotypic plasticity in heat tolerance. We also tested whether silversides acclimated to temperatures predicted for 2100 (+3-4.5 °C). Fish in warm-brackish waters showed higher CTMax (Critical Thermal Maximum) than those in cold-marine conditions, regardless of their origin. Silversides' CTMax reached up to 40.6 °C, but it did not increase after exposure to temperatures predicted for 2100. Lack of acclimation response suggests that silversides heat tolerance has reached a "ceiling", despite thermal plasticity. Our findings show that fine-scale environmental heterogeneity can promote phenotypic plasticity for tropical species, reducing the risk of short-term extirpation.
Collapse
Affiliation(s)
- Joice Silva de Souza
- Graduate Course in Ecology and Evolution (PPGEE), University of Rio de Janeiro State (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP, 20550-900, Rio de Janeiro, RJ, Brazil; Laboratory of Theoretical and Applied Ichthyology (LICTA), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, CEP, 22290-240, Rio de Janeiro, RJ, Brazil.
| | - Catarina Vinagre
- CCMAR, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; MARE - Marine and Environmental Sciences Centre, Universidade de Lisboa, Faculdade de Ciências, Campo Grande, 1749-016, Lisboa, Portugal
| | - Luciano Neves Dos Santos
- Graduate Course in Ecology and Evolution (PPGEE), University of Rio de Janeiro State (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP, 20550-900, Rio de Janeiro, RJ, Brazil; Laboratory of Theoretical and Applied Ichthyology (LICTA), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, CEP, 22290-240, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Zettlemoyer MA, Wilson JE, DeMarche ML. Estimating phenological sensitivity in contemporary vs. historical data sets: Effects of climate resolution and spatial scale. AMERICAN JOURNAL OF BOTANY 2022; 109:1981-1990. [PMID: 36321486 DOI: 10.1002/ajb2.16087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Phenological sensitivity, or the degree to which a species' phenology shifts in response to warming, is an important parameter for comparing and predicting species' responses to climate change. Phenological sensitivity is often measured using herbarium specimens or local studies in natural populations. These approaches differ widely in spatiotemporal scales, yet few studies explicitly consider effects of the geographic extent and resolution of climate data when comparing phenological sensitivities quantified from different data sets for a given species. METHODS We compared sensitivity of flowering phenology to growing degree days of the alpine plant Silene acaulis using two data sets: herbarium specimens and a 6 yr observational study in four populations at Niwot Ridge, Colorado, USA. We investigated differences in phenological sensitivity obtained using variable spatial scales and climate data sources. RESULTS Herbarium specimens underestimated phenological sensitivity compared to observational data, even when herbarium samples were limited geographically or to nearby weather station data. However, when observational data were paired with broader-scale climate data, as is typically used in herbarium data sets, estimates of phenological sensitivity were more similar. CONCLUSIONS This study highlights the potential for variation in data source, geographic scale, and accuracy of macroclimate data to produce very different estimates of phenological responses to climate change. Accurately predicting phenological shifts would benefit from comparisons between methods that estimate climate variables and phenological sensitivity over a variety of spatial scales.
Collapse
Affiliation(s)
- Meredith A Zettlemoyer
- Department of Plant Biology, University of Georgia, 120 Carlton Street, 2502 Miller Plant Sciences, Athens, Georgia, 30602-5004, USA
| | - Jill E Wilson
- Department of Plant Biology, University of Georgia, 120 Carlton Street, 2502 Miller Plant Sciences, Athens, Georgia, 30602-5004, USA
| | - Megan L DeMarche
- Department of Plant Biology, University of Georgia, 120 Carlton Street, 2502 Miller Plant Sciences, Athens, Georgia, 30602-5004, USA
| |
Collapse
|
11
|
Ray CA, Kapas RE, Opedal ØH, Blonder BW. Linking microenvironment modification to species interactions and demography in an alpine plant community. OIKOS 2022. [DOI: 10.1111/oik.09235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Courtenay A. Ray
- Dept of Environmental Science, Policy and Management, Univ. of California Berkeley CA USA
- School of Life Sciences, Arizona State Univ. Tempe AZ USA
| | | | | | - Benjamin W. Blonder
- Dept of Environmental Science, Policy and Management, Univ. of California Berkeley CA USA
- School of Life Sciences, Arizona State Univ. Tempe AZ USA
| |
Collapse
|
12
|
Jeong H, Cho YC, Kim E. Site-specific temporal variation of population dynamics in subalpine endemic plant species. Sci Rep 2022; 12:19207. [PMID: 36357477 PMCID: PMC9649610 DOI: 10.1038/s41598-022-23903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Endemic plants in high mountains are projected to be at high risk because of climate change. Temporal demographic variation is a major factor affecting population viability because plants often occur in small, isolated populations. Because isolated populations tend to exhibit genetic differentiation, analyzing temporal demographic variation in multiple populations is required for the management of high mountain endemic species. We examined the population dynamics of an endemic plant species, Primula farinosa subsp. modesta, in four subalpine sites over six years. Stage-based transition matrices were constructed, and temporal variation in the projected population growth rate (λ) was analyzed using life table response experiments (LTREs). The variation in λ was primarily explained by the site × year interaction rather than the main effects of the site and year. The testing sites exhibited inconsistent patterns in the LTRE contributions of the vital rates to the temporal deviation of λ. However, within sites, growth or stasis had significant negative correlations with temporal λ deviation. Negative correlations among the contributions of vital rates were also detected within the two testing sites, and the removal of the correlations alleviated temporal fluctuations in λ. The response of vital rates to yearly environmental fluctuations reduced the temporal variation of λ. Such effects manifested especially at two sites where plants exhibited higher plasticity than plants at other sites. Site-specific temporal variation implies that populations of high mountain species likely exhibit asynchronous temporal changes, and multiple sites need to be evaluated for their conservation.
Collapse
Affiliation(s)
- Hyungsoon Jeong
- grid.61221.360000 0001 1033 9831School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Korea
| | - Yong-Chan Cho
- grid.418977.40000 0000 9151 8497Conservation Center for Gwangneung Forest, Korea National Arboretum, Pocheon, 11186 Korea
| | - Eunsuk Kim
- grid.61221.360000 0001 1033 9831School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Korea
| |
Collapse
|
13
|
Zhang H, Wang Y, Wang Z, Ding W, Xu K, Li L, Wang Y, Li J, Yang M, Liu X, Huang X. Modelling the current and future potential distribution of the bean bug Riptortus pedestris with increasingly serious damage to soybean. PEST MANAGEMENT SCIENCE 2022; 78:4340-4352. [PMID: 35754391 DOI: 10.1002/ps.7053] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The bean bug, Riptortus pedestris, has received intense attention in recent years because of its involvement in increasing outbreaks of staygreen syndrome in soybean (Glycine max (L.)), often causing almost 100% loss of soybean yield in China. However, for this pest of great economic importance, potential current and future distribution patterns and their underlying driving factors remain unclear. RESULTS Maxent modelling under climate, elevation and land-use (including the distribution information of G. max) variables showed that the current potential distribution covered a vast geographic range, primarily including most parts of south, South East and east Asia. Under future environmental scenarios, suitable habitat expanded markedly. Areas that would become highly suitable for R. pedestris were primarily located in north-east China and west India. Five bioclimatic (BIO13, BIO08, BIO18, BIO02 and BIO07) and one land-use (C3 annual crops) predictors contributed approximately 95% to the modelling, and analyses of curve responses showed that to a certain extent, R. pedestris preferred relatively high temperature and precipitation. Our results indicate that a high risk of R. pedestris outbreaks is present in parts of Asia, especially in the soybean-growing regions of China, and this risk will continue in the future. CONCLUSION The predicted distribution pattern and key regulating factors identified herein could provide a vital reference for developing pest management policies and further alleviate the incidence of staygreen syndrome in soybean. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongfei Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Ying Wang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Zhengbing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Weili Ding
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, P. R. China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, P. R. China
| | - Yueying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, P. R. China
| | - Jinbu Li
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, P. R. China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Xinzheng Huang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
14
|
Yang X, Angert AL, Zuidema PA, He F, Huang S, Li S, Li SL, Chardon NI, Zhang J. The role of demographic compensation in stabilising marginal tree populations in North America. Ecol Lett 2022; 25:1676-1689. [PMID: 35598109 DOI: 10.1111/ele.14028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022]
Abstract
Demographic compensation-the opposing responses of vital rates along environmental gradients-potentially delays anticipated species' range contraction under climate change, but no consensus exists on its actual contribution. We calculated population growth rate (λ) and demographic compensation across the distributional ranges of 81 North American tree species and examined their responses to simulated warming and tree competition. We found that 43% of species showed stable population size at both northern and southern edges. Demographic compensation was detected in 25 species, yet 15 of them still showed a potential retraction from southern edges, indicating that compensation alone cannot maintain range stability. Simulated climatic warming caused larger decreases in λ for most species and weakened the effectiveness of demographic compensation in stabilising ranges. These findings suggest that climate stress may surpass the limited capacity of demographic compensation and pose a threat to the viability of North American tree populations.
Collapse
Affiliation(s)
- Xianyu Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center of Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, P.R. China.,Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, Canada
| | - Amy L Angert
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, Canada
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, the Netherlands
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Shongming Huang
- Government of Alberta, Department of Agriculture, Forestry and Rural Economic Development, Edmonton, Canada
| | - Shouzhong Li
- Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, School of Geographical Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Shou-Li Li
- State Key Laboratory of Grassland Agro-ecosystems, and College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Nathalie I Chardon
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center of Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, P.R. China
| |
Collapse
|
15
|
DuBois K, Pollard KN, Kauffman BJ, Williams SL, Stachowicz JJ. Local adaptation in a marine foundation species: Implications for resilience to future global change. GLOBAL CHANGE BIOLOGY 2022; 28:2596-2610. [PMID: 35007376 DOI: 10.1111/gcb.16080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Environmental change is multidimensional, with local anthropogenic stressors and global climate change interacting to differentially impact populations throughout a species' geographic range. Within species, the spatial distribution of phenotypic variation and its causes (i.e., local adaptation or plasticity) will determine species' adaptive capacity to respond to a changing environment. However, comparatively less is known about the spatial scale of adaptive differentiation among populations and how patterns of local adaptation might drive vulnerability to global change stressors. To test whether fine-scale (2-12 km) mosaics of environmental stress can cause adaptive differentiation in a marine foundation species, eelgrass (Zostera marina), we conducted a three-way reciprocal transplant experiment spanning the length of Tomales Bay, CA. Our results revealed strong home-site advantage in growth and survival for all three populations. In subsequent common garden experiments and feeding assays, we showed that countergradients in temperature, light availability, and grazing pressure from an introduced herbivore contribute to differential performance among populations consistent with local adaptation. Our findings highlight how local-scale mosaics in environmental stressors can increase phenotypic variation among neighboring populations, potentially increasing species resilience to future global change. More specifically, we identified a range-center eelgrass population that is pre-adapted to extremely warm temperatures similar to those experienced by low-latitude range-edge populations of eelgrass, demonstrating how reservoirs of heat-tolerant phenotypes may already exist throughout a species range. Future work on predicting species resilience to global change should incorporate potential buffering effects of local-scale population differentiation and promote a phenotypic management approach to species conservation.
Collapse
Affiliation(s)
- Katherine DuBois
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - Kenzie N Pollard
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Brian J Kauffman
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - Susan L Williams
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
16
|
Daco L, Colling G, Matthies D. Altitude and latitude have different effects on population characteristics of the widespread plant Anthyllis vulneraria. Oecologia 2021; 197:537-549. [PMID: 34601636 PMCID: PMC8505396 DOI: 10.1007/s00442-021-05030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/27/2021] [Indexed: 12/02/2022]
Abstract
Widespread plants may provide natural models for how population processes change with temperature and other environmental variables and how they may respond to global change. Similar changes in temperature can occur along altitudinal and latitudinal gradients, but hardly any study has compared the effects of the two types of gradients. We studied populations of Anthyllis vulneraria along a latitudinal gradient from Central Europe to the range limit in the North and an altitudinal gradient in the Alps from 500 m to the altitudinal limit at 2500 m, both encompassing a change in annual mean temperature of c. 11.5 °C. Plant size and reproduction decreased, but plant density increased along both gradients, indicating higher recruitment and demographic compensation among vital rates. Our results support the view that demographic compensation may be common in widespread species in contrast to the predictions of the abundant centre model of biogeography. Variation in temperature along the gradients had the strongest effects on most population characteristics, followed by that in precipitation, solar radiation, and soil nutrients. The proportion of plants flowering, seed set and seed mass declined with latitude, while the large variation in these traits along the altitudinal gradient was not related to elevation and covarying environmental variables like annual mean temperature. This suggests that it will be more difficult to draw conclusions about the potential impacts of future climate warming on plant populations in mountains, because of the importance of small-scale variation in environmental conditions.
Collapse
Affiliation(s)
- Laura Daco
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Musée national d’histoire naturelle, 25 rue Münster, L-2160 Luxembourg, Luxembourg
- Fondation Faune-Flore, 24 rue Münster, L-2160 Luxembourg, Luxembourg
| | - Guy Colling
- Musée national d’histoire naturelle, 25 rue Münster, L-2160 Luxembourg, Luxembourg
| | - Diethart Matthies
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| |
Collapse
|
17
|
Oldfather MF, Van Den Elzen CL, Heffernan PM, Emery NC. Dispersal evolution in temporally variable environments: implications for plant range dynamics. AMERICAN JOURNAL OF BOTANY 2021; 108:1584-1594. [PMID: 34587290 DOI: 10.1002/ajb2.1739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Dispersal-the movement of an individual from the site of birth to a different site for reproduction-is an ecological and evolutionary driver of species ranges that shapes patterns of colonization, connectivity, gene flow, and adaptation. In plants, the traits that influence dispersal often vary within and among species, are heritable, and evolve in response to the fitness consequences of moving through heterogeneous landscapes. Spatial and temporal variation in the quality and quantity of habitat are important sources of selection on dispersal strategies across species ranges. While recent reviews have evaluated the interactions between spatial variation in habitat and dispersal dynamics, the extent to which geographic variation in temporal variability can also shape range-wide patterns in dispersal traits has not been synthesized. In this paper, we summarize key predictions from metapopulation models that evaluate how dispersal evolves in response to spatial and temporal habitat variability. Next, we compile empirical data that quantify temporal variability in plant demography and patterns of dispersal trait variation across species ranges to evaluate the hypothesis that higher temporal variability favors increased dispersal at plant range limits. We found some suggestive evidence supporting this hypothesis while more generally identifying a major gap in empirical work evaluating plant metapopulation dynamics across species ranges and geographic variation in dispersal traits. To address this gap, we propose several future research directions that would advance our understanding of the interplay between spatiotemporal variability and dispersal trait variation in shaping the dynamics of current and future species ranges.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309, USA
| | | | - Patrick M Heffernan
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309, USA
| |
Collapse
|
18
|
Abstract
The alpine belt hosts the treeless vegetation above the high elevation climatic treeline. The way alpine plants manage to thrive in a climate that prevents tree growth is through small stature, apt seasonal development, and ‘managing’ the microclimate near the ground surface. Nested in a mosaic of micro-environmental conditions, these plants are in a unique position by a close-by neighborhood of strongly diverging microhabitats. The range of adjacent thermal niches that the alpine environment provides is exceeding the worst climate warming scenarios. The provided mountains are high and large enough, these are conditions that cause alpine plant species diversity to be robust against climatic change. However, the areal extent of certain habitat types will shrink as isotherms move upslope, with the potential areal loss by the advance of the treeline by far outranging the gain in new land by glacier retreat globally.
Collapse
|
19
|
Bell TJ, Bowles ML, Zettler LW, Pollack CA, Ibberson JE. Environmental and Management Effects on Demographic Processes in the U.S. Threatened Platanthera leucophaea (Nutt.) Lindl. (Orchidaceae). PLANTS 2021; 10:plants10071308. [PMID: 34203209 PMCID: PMC8309198 DOI: 10.3390/plants10071308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Populations of the U.S. threatened orchid, Platanthera leucophaea, are restricted to fragmented grassland and wetland habitats. We address the long-term (1998–2020) interactive effects of habitat (upland prairie vs. wetland), fire management (burned vs. unburned) and climatic variation, as well as pollination crossing effects, on population demography in 42 populations. Our analysis revealed the consistent interactive effects of habitat, dormant season burning, and climatic variation on flowering, reproduction, and survival. Burning increased flowering and population size under normal or greater than normal precipitation but may have a negative effect during drought years apparently if soil moisture stress reduces flowering and increases mortality. Trends in the number of flowering plants in populations also correspond to precipitation cycles. As with flowering and fecundity, survival is significantly affected by the interactive effects of habitat, fire, and climate. This study supports previous studies finding that P. leucophaea relies on a facultative outcrossing breeding system. Demographic modeling indicated that fire, normal precipitation, and outcrossing yielded greater population growth, and that greater fire frequency increased population persistence. It also revealed an ecologically driven demographic switch, with wetlands more dependent upon survivorship than fecundity, and uplands more dependent on fecundity than survivorship. Our results facilitate an understanding of environmental and management effects on the population demography of P. leucophaea in the prairie region of its distribution. Parallel studies are needed in the other habitats such as wetlands, especially in the eastern part of the range of the species, to provide a more complete picture.
Collapse
Affiliation(s)
- Timothy J. Bell
- Department of Biological Sciences, Chicago State University, 9501 S King Dr., Chicago, IL 60628, USA;
| | | | - Lawrence W. Zettler
- Department of Biology, Illinois College, 1101 W College Ave, Jacksonville, IL 62650, USA;
- Correspondence:
| | - Catherine A. Pollack
- U.S. Fish and Wildlife Service, 230 South Dearborn St., Suite 2938, Chicago, IL 60604, USA;
| | - James E. Ibberson
- Department of Biology, Illinois College, 1101 W College Ave, Jacksonville, IL 62650, USA;
| |
Collapse
|
20
|
Block S, Levine JM. How Dispersal Evolution and Local Adaptation Affect the Range Dynamics of Species Lagging Behind Climate Change. Am Nat 2021; 197:E173-E187. [PMID: 33989146 DOI: 10.1086/714130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAs climate changes, species' ability to spatially track suitable climate depends on their spread velocity, a function of their population growth and dispersal capacity. When climate changes faster than species can spread, the climate experienced at species' expanding range edges may ameliorate as conditions become increasingly similar to those of the range core. When this boosts species' growth rates, their spread accelerates. Here, we use simulations of a spreading population with an annual life history to explore how climatic amelioration interacts with dispersal evolution and local adaptation to determine the dynamics of spread. We found that depending on the timing of dispersal evolution, spread velocity can show contrasting trajectories, sometimes transiently exceeding the climate velocity before decelerating. Climatic amelioration can also accelerate the spread of populations composed of genotypes best adapted to local climatic conditions, but the exact dynamics depends on the pattern of climatic adaptation. We conclude that failing to account for demographic variation across climatic gradients can lead to erroneous conclusions about species' capacity to spatially track suitable climate.
Collapse
|
21
|
Evers SM, Knight TM, Inouye DW, Miller TEX, Salguero-Gómez R, Iler AM, Compagnoni A. Lagged and dormant season climate better predict plant vital rates than climate during the growing season. GLOBAL CHANGE BIOLOGY 2021; 27:1927-1941. [PMID: 33586192 DOI: 10.1111/gcb.15519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Understanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long-standing quest in ecology, with ever-increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long-term data required to test a large number of windows, and are thus forced to make a priori choices. In this study, we first synthesize the literature to assess current a priori choices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding-window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding-window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.
Collapse
Affiliation(s)
- Sanne M Evers
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tiffany M Knight
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - David W Inouye
- Department of Biology, University of Maryland, College Park, MD, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Amy M Iler
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Aldo Compagnoni
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
DeMarche ML, Bailes G, Hendricks LB, Pfeifer‐Meister L, Reed PB, Bridgham SD, Johnson BR, Shriver R, Waddle E, Wroton H, Doak DF, Roy BA, Morris WF. Latitudinal gradients in population growth do not reflect demographic responses to climate. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e2242. [PMID: 33098736 PMCID: PMC7988552 DOI: 10.1002/eap.2242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 06/09/2023]
Abstract
Spatial gradients in population growth, such as across latitudinal or elevational gradients, are often assumed to primarily be driven by variation in climate, and are frequently used to infer species' responses to climate change. Here, we use a novel demographic, mixed-model approach to dissect the contributions of climate variables vs. other latitudinal or local site effects on spatiotemporal variation in population performance in three perennial bunchgrasses. For all three species, we find that performance of local populations decreases with warmer and drier conditions, despite latitudinal trends of decreasing population growth toward the cooler and wetter northern portion of each species' range. Thus, latitudinal gradients in performance are not predictive of either local or species-wide responses to climate. This pattern could be common, as many environmental drivers, such as habitat quality or species' interactions, are likely to vary with latitude or elevation, and thus influence or oppose climate responses.
Collapse
Affiliation(s)
| | - Graham Bailes
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregon97403USA
| | | | | | - Paul B. Reed
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregon97403USA
| | - Scott D. Bridgham
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregon97403USA
| | - Bart R. Johnson
- Department of Landscape ArchitectureUniversity of OregonEugeneOregon97403USA
| | - Robert Shriver
- Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoNevada89557USA
| | - Ellen Waddle
- Environmental Studies ProgramUniversity of Colorado BoulderBoulderColorado80309USA
| | - Hannah Wroton
- Ecology and Evolutionary Biology DepartmentUniversity of Colorado BoulderColorado80309USA
| | - Daniel F. Doak
- Environmental Studies ProgramUniversity of Colorado BoulderBoulderColorado80309USA
| | - Bitty A. Roy
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregon97403USA
| | | |
Collapse
|
23
|
Oldfather MF, Koontz MJ, Doak DF, Ackerly DD. Range dynamics mediated by compensatory life stage responses to experimental climate manipulations. Ecol Lett 2021; 24:772-780. [PMID: 33559296 DOI: 10.1111/ele.13693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
The expectations of polar or upslope distributional shifts of species ranges in response to warming climate conditions have been recently questioned. Diverse responses of different life stages to changing temperature and moisture regimes may alter these predicted range dynamics. Furthermore, the climate driver(s) influencing demographic rates, and the contribution of each demographic rate to population growth rate (λ), may shift across a species range. We investigated these demographic effects by experimentally manipulating climate and measuring responses of λ in nine populations spanning the elevation range of an alpine plant (Ivesia lycopodioides). Populations exhibited stable growth rates (λ ~ 1) under naturally wet conditions and declining rates (λ < 1) under naturally dry conditions. However, opposing vital rate responses to experimental heating and watering lead to negligible or negative effects on population stability. These findings indicate that life stage-specific responses to changing climate can disrupt the current relationships between population stability and climate across species ranges.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Michael J Koontz
- Earth Lab, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - David D Ackerly
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA.,Jepson Herbarium, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
24
|
Shriver RK, Campbell E, Dailey C, Gaya H, Hill A, Kuzminski S, Miller‐Bartley M, Moen K, Moettus R, Oschrin E, Reese D, Simonson M, Willson A, Parker TH. Local landscape position impacts demographic rates in a widespread North American steppe bunchgrass. Ecosphere 2021. [DOI: 10.1002/ecs2.3351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Robert K. Shriver
- Ecology Center Utah State University Logan Utah84322USA
- Department of Natural Resources and Environmental Sciences University of Nevada Reno Nevada89557USA
| | - Erin Campbell
- Department of Biology Whitman College Walla Walla Washington99362USA
| | - Christopher Dailey
- Department of Biology Whitman College Walla Walla Washington99362USA
- School of Marine and Environmental Affairs University of Washington Seattle Washington98105USA
| | - Heather Gaya
- Department of Biology Whitman College Walla Walla Washington99362USA
- Warnell School of Forestry and Natural Resources University of Georgia 180 E Green Street Athens Georgia30602USA
| | - Abby Hill
- Department of Biology Whitman College Walla Walla Washington99362USA
| | - Sonya Kuzminski
- Department of Biology Whitman College Walla Walla Washington99362USA
| | | | - Kyle Moen
- Department of Biology Whitman College Walla Walla Washington99362USA
| | - Riga Moettus
- Department of Biology Whitman College Walla Walla Washington99362USA
| | - Emma Oschrin
- Department of Biology Whitman College Walla Walla Washington99362USA
- Department of Biology Indiana University 1001 East Third Street Bloomington Indiana47405USA
| | - Devin Reese
- Department of Biology Whitman College Walla Walla Washington99362USA
| | - Molly Simonson
- Department of Biology Whitman College Walla Walla Washington99362USA
- University of Washington School of Public Health 1959 NE Pacific Street Seattle Washington98195USA
| | - Alice Willson
- Department of Biology Whitman College Walla Walla Washington99362USA
| | - Timothy H. Parker
- Department of Biology Whitman College Walla Walla Washington99362USA
| |
Collapse
|
25
|
Gong X, Chen Y, Wang T, Jiang X, Hu X, Feng J. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139933. [PMID: 32559529 DOI: 10.1016/j.scitotenv.2020.139933] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The prediction of the potential distribution of invasive alien species is key for the control of their proliferation. This study developed ensemble niche models to explore the distribution patterns of Cecropia peltata and Ulex europaeus under baseline and future conditions, as well as the factors that regulate them. The models were based on occurrence records as well as climate, land-use and topography datasets. Climatic factors played a stronger role than land-use and topographical factors in their distribution patterns. Additionally, temperature seasonality and temperature annual range were the optimal predictor for the global distributions of C. peltata and U. europaeus, respectively. Under the baseline-RCP 8.5 scenario in 2070, significant increases in habitat suitability for C. peltata were generally detected in tropical regions, while for U. europaeus under the same condition, significant increases in habitat suitability were generally observed in west coast of South America and Europe, suggesting the impacts of climate changes on species distribution may be species specific. The contrast changes of suitable habitat areas for U. europaeus under the baseline-2.6 and 8.5 scenarios may suggest that the scenarios of climate changes may modify its distribution patterns and variations in suitable habitats. The double-edged effects of global warming on plant invasions may be a result of the scenario specific climate change and the species-specific responses to changes in climate. Our findings highlight the importance of climate change scenario specific and species-specific research on the impact of climate change on plant invasions.
Collapse
Affiliation(s)
- Xiang Gong
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China
| | - Youjun Chen
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China
| | - Tao Wang
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China
| | - Xianfeng Jiang
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China
| | - Xiaokang Hu
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China
| | - Jianmeng Feng
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China.
| |
Collapse
|
26
|
Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, Gravel D, Livingstone SW, Wiens JJ. Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/710388] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Denney DA, Jameel MI, Bemmels JB, Rochford ME, Anderson JT. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AOB PLANTS 2020; 12:plaa005. [PMID: 32211145 PMCID: PMC7082537 DOI: 10.1093/aobpla/plaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/06/2020] [Indexed: 05/05/2023]
Abstract
Individuals within natural populations can experience very different abiotic and biotic conditions across small spatial scales owing to microtopography and other micro-environmental gradients. Ecological and evolutionary studies often ignore the effects of micro-environment on plant population and community dynamics. Here, we explore the extent to which fine-grained variation in abiotic and biotic conditions contributes to within-population variation in trait expression and genetic diversity in natural plant populations. Furthermore, we consider whether benign microhabitats could buffer local populations of some plant species from abiotic stresses imposed by rapid anthropogenic climate change. If microrefugia sustain local populations and communities in the short term, other eco-evolutionary processes, such as gene flow and adaptation, could enhance population stability in the longer term. We caution, however, that local populations may still decline in size as they contract into rare microhabitats and microrefugia. We encourage future research that explicitly examines the role of the micro-environment in maintaining genetic variation within local populations, favouring the evolution of phenotypic plasticity at local scales and enhancing population persistence under global change.
Collapse
Affiliation(s)
- Derek A Denney
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - M Inam Jameel
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jordan B Bemmels
- Department of Genetics, University of Georgia, Athens, GA, USA
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Mia E Rochford
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Oldfather MF, Kling MM, Sheth SN, Emery NC, Ackerly DD. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. GLOBAL CHANGE BIOLOGY 2020; 26:1055-1067. [PMID: 31674701 DOI: 10.1111/gcb.14897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/01/2019] [Indexed: 05/04/2023]
Abstract
The impacts of climate change have re-energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range-limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors-climate heterogeneity, collinearity among climate variables, and spatial scale-interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew M Kling
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David D Ackerly
- Department of Integrative Biology, Department of Environmental Science, Policy, and Management, Jepson Herbarium, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Liu T, Wang J, Hu X, Feng J. Land-use change drives present and future distributions of Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135872. [PMID: 31855628 DOI: 10.1016/j.scitotenv.2019.135872] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The fall armyworm (Spodoptera frugiperda J.E. Smith) is one of the most notorious pests of several crops in the world. However, to date, few studies have simulated the future distribution patterns of fall armyworm under rapid global changes. Though the relative influences of climate and land-use on species distribution might depend on the spatial scales of the studies, it is not known whether this rule is applicable to pests which mostly feed on crops. Here, we developed MaxEnt models to explore the distribution patterns of fall armyworm, as well as the relative influences of land-use change, topography and climate change on them. Under the present conditions and scenarios of RCP 2.6 and 8.5 (the most optimistic and pessimistic emissions scenarios, respectively), high potential habitats of fall armyworm were mostly recorded along the east coast areas of the USA, the State of Florida, Mexico, Central America, southern part of Brazil, central Africa, and southern Asia. Among all of the continents, Africa will face the greatest increase of the threats from fall armyworm in future. Under RCP 2.6 scenario, both the potential habitats and areas with increased habitat suitability were larger than those under RCP 8.5. Therefore, much more effort is required to control fall armyworm under RCP 2.6 scenario. Compared to climate change, land-use changes are more important in shaping the distribution patterns of fall armyworm. Therefore, the concentration of resources might modify the relative influence of climate and land-use in species distributions at large scales. Thus, regulating land-use might prove effective for mitigating the proliferation of fall armyworm. In general, C4 annual crops and managed pastures provide more suitable habitats for fall armyworm than C3 annual crops. Our findings demonstrate that delineating resource concentrations could provide a new approach towards controlling fall armyworm under current and future global change.
Collapse
Affiliation(s)
- Tianmeng Liu
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China
| | - Jianming Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing, 100101, China
| | - Xiaokang Hu
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China
| | - Jianmeng Feng
- Department of Life Science and Agronomy, Dali University, No. 2 Hongsheng Road, Dali 671003, China..
| |
Collapse
|
30
|
Merinero S, Dahlberg CJ, Ehrlén J, Hylander K. Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology 2020; 101:e02999. [PMID: 32004379 PMCID: PMC7317517 DOI: 10.1002/ecy.2999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/23/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022]
Abstract
Identifying the environmental drivers of population dynamics is crucial to predict changes in species abundances and distributions under climate change. Populations of the same species might differ in their responses as a result of intraspecific variation. Yet the importance of such differences remains largely unexplored. We examined the responses of latitudinally distant populations of the forest moss Hylocomiastrum umbratum along microclimate gradients in Sweden. We transplanted moss mats from southern and northern populations to 30 sites with contrasting microclimates (i.e., replicated field common gardens) within a forest landscape, and recorded growth and survival of individual shoots over 3 yr. To evaluate the importance of intraspecific variation in responses to environmental factors, we assessed effects of the interactions between population origin and microclimate drivers on growth and survival. Effects on overall performance of transplanted populations were estimated using the product of survival and growth. We found differences between southern and northern populations in the response to summer temperature and snowmelt date in one of three yearly transitions. In this year, southern populations performed better in warm, southern‐like conditions than in cold, northern‐like conditions; and the reverse pattern was true for northern populations. Survival of all populations decreased with evaporation, consistent with the high hydric demands and poikilohydric nature of mosses. Our results are consistent with population adaptation to local climate, and suggest that intraspecific variation among populations can have important effects on the response of species to microclimate drivers. These findings highlight the need to account for differential responses in predictions of species abundance and distribution under climate change.
Collapse
Affiliation(s)
- Sonia Merinero
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden
| | - C Johan Dahlberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,The County Administrative Board of Västra Götaland, Gothenburg, SE-403 40, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
31
|
Lampei C, Wunder J, Wilhalm T, Schmid KJ. Microclimate predicts frost hardiness of alpine Arabidopsis thaliana populations better than elevation. Ecol Evol 2019; 9:13017-13029. [PMID: 31871626 PMCID: PMC6912909 DOI: 10.1002/ece3.5659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 01/17/2023] Open
Abstract
In mountain regions, topological differences on the microscale can strongly affect microclimate and may counteract the average effects of elevation, such as decreasing temperatures. While these interactions are well understood, their effect on plant adaptation is understudied. We investigated winter frost hardiness of Arabidopsis thaliana accessions originating from 13 sites along altitudinal gradients in the Southern Alps during three winters on an experimental field station on the Swabian Jura and compared levels of frost damage with the observed number of frost days and the lowest temperature in eight collection sites. We found that frost hardiness increased with elevation in a log-linear fashion. This is consistent with adaptation to a higher frequency of frost conditions, but also indicates a decreasing rate of change in frost hardiness with increasing elevation. Moreover, the number of frost days measured with temperature loggers at the collection sites correlated much better with frost hardiness than the elevation of collection sites, suggesting that populations were adapted to their local microclimate. Notably, the variance in frost days across sites increased exponentially with elevation. Together, our results suggest that strong microclimate heterogeneity of high alpine environments can preserve functional genetic diversity among small populations. Synthesis: Here, we tested how plant populations differed in their adaptation to frost exposure along an elevation gradient and whether microsite temperatures improve the prediction of frost hardiness. We found that local temperatures, particularly the number of frost days, are a better predictor of the frost hardiness of plants than elevation. This reflects a substantial variance in frost frequency between sites at similar high elevations. We conclude that high mountain regions harbor microsites that differ in their local microclimate and thereby can preserve a high functional genetic diversity among them. Therefore, high mountain regions have the potential to function as a refugium in times of global change.
Collapse
Affiliation(s)
- Christian Lampei
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
- Institute of Landscapes EcologyUniversity of MünsterMünsterGermany
| | - Jörg Wunder
- Max Planck Institute for Plant Breeding ResearchKölnGermany
| | | | - Karl J. Schmid
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| |
Collapse
|
32
|
Differential Responses to Climate and Land-Use Changes in Threatened Chinese Taxus Species. FORESTS 2019. [DOI: 10.3390/f10090766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rapid climate and land-use changes have been considered as the foremost threat to global biodiversity. China contains more than 3500 threatened higher plants, whereas the relative influence of climate and land-use changes on these endangered plants have not been explored simultaneously under topographical constraints. Here, using Taxus plants as the case study genus, we simulated the distribution range of threatened species under three scenarios of current and future climate and land-use conditions under topographical constraints. We also measured the associated difference in the responses of Taxus species to climate and land-use changes. Our results demonstrated the substantial influence of climate and land-use changes on the distributions of Taxus species. However, we observed different responses of Taxus species to these environmental changes. The distribution range of T. cuspidate Siebold & Zuccarini and T. mairei Lemee & H. Léveillé would substantially shrink, whereas the habitat range of T. fuana Nan Li & R. R. Mill would sharply expand under RCP 8.5(Representative Concentration Pathway scenarios) scenario. Meanwhile, T. wallichiana Zuccarini and T. chinensis (Pilger) Florin would experience apparent range shifts. Furthermore, topographical factors played non-negligible roles in shaping species distributions, and modifying the influence of climate and land-use changes. Together, these results provide robust evidence that even threatened species will have multiple responses to climate and land-use changes (e.g., shrinking, expanding, shifting). Our findings highlight that taking species ecological traits, habitat characteristics, and topographical constraints into account might provide valuable insights into threatened species conservation in the face of global environmental changes.
Collapse
|
33
|
Rodríguez‐Buriticá S, Winkler DE, Webb RH, Venable DL. Local temporal trajectories explain population‐level responses to climate change in saguaro (
Carnegiea gigantea
). Ecosphere 2019. [DOI: 10.1002/ecs2.2844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Susana Rodríguez‐Buriticá
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721 USA
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Bogotá D.C. Colombia
| | - Daniel E. Winkler
- U.S. Geological Survey Southwest Biological Science Center Moab Utah 84532 USA
| | - Robert H. Webb
- School of Natural Resources University of Arizona Tucson Arizona 85721 USA
| | - D. Lawrence Venable
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721 USA
| |
Collapse
|