1
|
Xu Y, Li M, Jia Z, Gong Y, Li X, Fu YH. Incorporating Drought Thresholds Improves Model Predictions of Autumn Phenology in Tropical and Subtropical Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70177. [PMID: 40237248 DOI: 10.1111/gcb.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Drought dramatically influences vegetation phenology, thereby impacting terrestrial carbon and water cycles. However, the mechanisms by which drought drives changes in autumn phenology remain unclear, hindering the accurate simulation of these processes in phenology models. In this study, we employed ridge regression analysis to quantify the dynamic effects of intensifying drought on the end-of-photosynthetic-growing-season (EOPS) and identified the drought threshold at which the vegetation's response to drought shifts. We demonstrate that the response of EOPS in tropical and subtropical forests reverses from a delay to an advancement as drought intensity surpasses specific thresholds, with the average drought threshold across the study area corresponding to a standardized precipitation evapotranspiration index (SPEI) value of -0.9. Drought thresholds, however, vary geographically, increasing along the precipitation gradient, potentially due to variations in drought stress-related gene expression and tolerance strategies across different humidity environments. Therefore, we developed a new autumn phenology model (DMPD) by incorporating a drought threshold parameter that distinguishes contrasting drought effects and predicts future EOPS under two scenarios (SSP245 and SSP585). The DMPD model substantially enhanced the representation of EOPS, as evidenced by a lower root mean square error (RMSE), higher correlation, and a greater proportion of significant correlations with EOPS derived from GOSIF. By the end of the century, EOPS is projected to be consistently delayed under both moderate (SSP245) and high (SSP585) warming scenarios, with the rate of delay decelerating under SSP245 after 2066. Our study confirms that increasing drought intensity leads to contrasting shifts in the autumnal photosynthetic phenology of tropical and subtropical forests and highlights the potential of integrating these contrasting drought effects into phenology models to improve the accuracy of vegetation phenology predictions under future climate change scenarios.
Collapse
Affiliation(s)
- Yue Xu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Mingwei Li
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zitong Jia
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yufeng Gong
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Xiran Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Yongshuo H Fu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Plavcová L, Tumajer J, Altman J, Svoboda M, Stegehuis AI, Pejcha V, Doležal J. High Inter-Specific Diversity and Seasonality of Trunk Radial Growth in Trees Along an Afrotropical Elevational Gradient. PLANT, CELL & ENVIRONMENT 2025; 48:2285-2297. [PMID: 39582134 PMCID: PMC11788962 DOI: 10.1111/pce.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Understanding mechanisms driving tropical tree growth is essential for comprehending carbon sequestration and predicting the future of tropical forests amid rapid deforestation. We conducted a natural experiment in Mount Cameroon to identify climatic factors limiting diurnal and seasonal growth in dominant tree species across a 2200-m elevation gradient, from lowland rainforests to montane mist forests with distinct wet and dry seasons. Using high-precision automatic dendrometers, we recorded radial growth rates of 28 tropical tree species from 2015 to 2018, correlating them with rainfall (11 100-2500 mm) and temperatures (23-14°C) across elevations. Significant growth limitations were suggested at both extremes of water availability. Tree growth peaked during the dry and prewet seasons at humid lower elevations and during wet seasons at drier higher elevations. Growth rates increased with soil moisture at higher elevations and peaked at medium soil moisture at lower elevations. Trees grew fastest at lower temperatures relative to their elevation-specific means, with growth limited by high daytime temperatures and promoted by nighttime temperatures. Our results revealed significant interspecific diurnal and seasonal growth variations hindered by both water scarcity and excess in West African rainforests, essential for forecasting and modelling carbon sinks.
Collapse
Affiliation(s)
- Lenka Plavcová
- Department of Forest Ecology, Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| | - Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jan Altman
- Department of Forest Ecology, Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| | - Annemiek Irene Stegehuis
- Department of Forest Ecology, Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
- Laboratoire de Géologie, IPSL, CNRS UMR 8538, École Normale SupérieurePSL UniversityParisFrance
| | - Vít Pejcha
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Jiří Doležal
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
3
|
Brodribb TJ, Bourbia I. Deadly predictions in trees. TREE PHYSIOLOGY 2025; 45:tpae155. [PMID: 39658203 DOI: 10.1093/treephys/tpae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Australia
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Australia
| |
Collapse
|
4
|
Kopecký M, Hederová L, Macek M, Klinerová T, Wild J. Forest plant indicator values for moisture reflect atmospheric vapour pressure deficit rather than soil water content. THE NEW PHYTOLOGIST 2024; 244:1801-1811. [PMID: 39175085 DOI: 10.1111/nph.20068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Soil moisture shapes ecological patterns and processes, but it is difficult to continuously measure soil moisture variability across the landscape. To overcome these limitations, soil moisture is often bioindicated using community-weighted means of the Ellenberg indicator values of vascular plant species. However, the ecology and distribution of plant species reflect soil water supply as well as atmospheric water demand. Therefore, we hypothesized that Ellenberg moisture values can also reflect atmospheric water demand expressed as a vapour pressure deficit (VPD). To test this hypothesis, we disentangled the relationships among soil water content, atmospheric vapour pressure deficit, and Ellenberg moisture values in the understory plant communities of temperate broadleaved forests in central Europe. Ellenberg moisture values reflected atmospheric VPD rather than soil water content consistently across local, landscape, and regional spatial scales, regardless of vegetation plot size, depth as well as method of soil moisture measurement. Using in situ microclimate measurements, we discovered that forest plant indicator values for moisture reflect an atmospheric VPD rather than soil water content. Many ecological patterns and processes correlated with Ellenberg moisture values and previously attributed to soil water supply are thus more likely driven by atmospheric water demand.
Collapse
Affiliation(s)
- Martin Kopecký
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Lucia Hederová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Tereza Klinerová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Jan Wild
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|
5
|
Liu Z, Wang X, Jia G, Jiang J, Liao B. Introduction of broadleaf tree species can promote the resource use efficiency and gross primary productivity of pure forests. PLANT, CELL & ENVIRONMENT 2024; 47:5252-5264. [PMID: 39177516 DOI: 10.1111/pce.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Long-term pure forest (PF) management and successive planting has result resulted in "low-efficiency artificial forests" in large areas. However, controversy persists over the promoting effect of introduction of broadleaf tree species on production efficiency of PF. This study hypothesised that introduced broadleaf tree species can significantly promote both water-nutrient use efficiency and gross primary productivity (GPP)of PF. Tree ring chronologies, water source, water use efficiency and GPP were analysed in coniferous Cunninghamia lanceolata and broadleaved Phoebe zhennan growing over the past three decades. The introduction of P. zhennan into C. lanceolata plantations resulted in inter-specific competition for water, probably because of the similarity of the main water source of these two tree species. However, C. lanceolata absorbed more water with a higher nutrient level from the 40-60-cm soil layer in mixed forests (MF). Although the co-existing tree species limited the basal area increment and growth rates of C. lanceolata in MF plots, the acquisition of dissolved nutrients from the fertile topsoil layer were enhanced; this increased the water use efficiency and GPP of MF plots. To achieve better ecological benefits and GPP, MFs should be constructed in southern China.
Collapse
Affiliation(s)
- Ziqiang Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaodi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guodong Jia
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jiang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Bin Liao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Walthert L, Etzold S, Carminati A, Saurer M, Köchli R, Zweifel R. Coordination between degree of isohydricity and depth of root water uptake in temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174346. [PMID: 38944298 DOI: 10.1016/j.scitotenv.2024.174346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In an increasingly dry environment, it is crucial to understand how tree species use soil water and cope with drought. However, there is still a knowledge gap regarding the relationships between species-specific stomatal behaviour, spatial root distribution, and root water uptake (RWU) dynamics. Our study aimed to investigate above- and below-ground aspects of water use during soil drying periods in four temperate tree species that differ in stomatal behaviour: two isohydric tracheid-bearing conifers, Scots pine and Norway spruce, and two more anisohydric deciduous species, the diffuse-porous European beech, and the ring-porous Downy oak. From 2015 to 2020, soil-tree-atmosphere-continuum parameters were measured for each species in monospecific forests where trees had no access to groundwater. The hourly time series included data on air temperature, vapor pressure deficit, soil water potential, soil hydraulic conductivity, and RWU to a depth of 2 m. Analysis of drought responses included data on stem radius, leaf water potential, estimated osmotically active compounds, and drought damage. Our study reveals an inherent coordination between stomatal regulation, fine root distribution and water uptake. Compared to conifers, the more anisohydric water use of oak and beech was associated with less strict stomatal closure, greater investment in deep roots, four times higher maximum RWU, a shift of RWU to deeper soil layers as the topsoil dried, and a more pronounced soil drying below 1 m depth. Soil hydraulic conductivity started to limit RWU when values fell below 10-3 to 10-5 cm/d, depending on the soil. As drought progressed, oak and beech may also have benefited from their leaf osmoregulatory capacity, but at the cost of xylem embolism with around 50 % loss of hydraulic conductivity when soil water potential dropped below -1.25 MPa. Consideration of species-specific water use is crucial for forest management and vegetation modelling to improve forest resilience to drought.
Collapse
Affiliation(s)
- Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Roger Köchli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
7
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Jhaveri R, Cannanbilla L, Bhat KSA, Sankaran M, Krishnadas M. Anatomical traits explain drought response of seedlings from wet tropical forests. Ecol Evol 2024; 14:e70155. [PMID: 39224158 PMCID: PMC11366499 DOI: 10.1002/ece3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Water availability regulates plant community dynamics but the drought response of seedlings remains poorly known, despite their vulnerability, especially for the Asian tropics. In particular, discerning how functional traits of seedlings mediate drought response can aid generalizable predictions of tree responses to global environmental change. We assessed interspecific variation in drought response explained by above- and below-ground seedling traits. We conducted a dry-down experiment in the greenhouse using 16 tree species from the humid forests of Western Ghats in southern India, chosen to represent differences in affinity to conditions of high and low seasonal drought (seasonality affiliation). We compared survival, growth, and photosynthetic performance under drought and well-watered conditions and assessed the extent to which species' responses were explained by seasonality affiliation and 12 traits of root, stem and leaf. We found that the species from seasonally dry forest reduced photosynthetic rate in drought compared with well-watered conditions, but seasonality affiliation did not explain differences in growth and survival. Performance in drought vs well-watered conditions were best explained by anatomical traits of xylem, veins and stomata. Species with larger xylem reduced their growth and photosynthesis to tolerate desiccation. In drought, species with smaller stomata correlated with lower survival even though photosynthetic activity decreased by a larger extent with larger stomata. Overall, anatomical traits of xylem and stomata, directly related to water transport and gas-exchange, played a more prominent role than commonly used traits (e.g., specific leaf area, leaf dry matter content) in explaining species response to drought, and may offer a good proxy for physiological traits related to drought tolerance of seedlings.
Collapse
Affiliation(s)
- Rishiddh Jhaveri
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Lakshmipriya Cannanbilla
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Chair of Plant EcologyUniversity of BayreuthBayreuthGermany
| | - K. S. Arpitha Bhat
- Department of Life ScienceBangalore UniversityBangaloreIndia
- Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | - Meghna Krishnadas
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
9
|
Zarakas CM, Swann ALS, Koven CD, Smith MN, Taylor TC. Different model assumptions about plant hydraulics and photosynthetic temperature acclimation yield diverging implications for tropical forest gross primary production under warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17449. [PMID: 39301722 DOI: 10.1111/gcb.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 09/22/2024]
Abstract
Tropical forest photosynthesis can decline at high temperatures due to (1) biochemical responses to increasing temperature and (2) stomatal responses to increasing vapor pressure deficit (VPD), which is associated with increasing temperature. It is challenging to disentangle the influence of these two mechanisms on photosynthesis in observations, because temperature and VPD are tightly correlated in tropical forests. Nonetheless, quantifying the relative strength of these two mechanisms is essential for understanding how tropical gross primary production (GPP) will respond to climate change, because increasing atmospheric CO2 concentration may partially offset VPD-driven stomatal responses, but is not expected to mitigate the effects of temperature-driven biochemical responses. We used two terrestrial biosphere models to quantify how physiological process assumptions (photosynthetic temperature acclimation and plant hydraulic stress) and functional traits (e.g., maximum xylem conductivity) influence the relative strength of modeled temperature versus VPD effects on light-saturated GPP at an Amazonian forest site, a seasonally dry tropical forest site, and an experimental tropical forest mesocosm. By simulating idealized climate change scenarios, we quantified the divergence in GPP predictions under model configurations with stronger VPD effects compared with stronger direct temperature effects. Assumptions consistent with stronger direct temperature effects resulted in larger GPP declines under warming, while assumptions consistent with stronger VPD effects resulted in more resilient GPP under warming. Our findings underscore the importance of quantifying the role of direct temperature and indirect VPD effects for projecting the resilience of tropical forests in the future, and demonstrate that the relative strength of temperature versus VPD effects in models is highly sensitive to plant functional parameters and structural assumptions about photosynthetic temperature acclimation and plant hydraulics.
Collapse
Affiliation(s)
- Claire M Zarakas
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
| | - Abigail L S Swann
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Charles D Koven
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
- School of Environmental and Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
| | - Tyeen C Taylor
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Penha D, Brum M, Alves LF, Domingues TF, Meneses A, Branches R, Restrepo-Coupe N, Oliveira RS, Moura JMS, Pequeno PACLA, Prohaska N, Saleska SR. Preserving isohydricity: vertical environmental variability explains Amazon forest water-use strategies. TREE PHYSIOLOGY 2024; 44:tpae088. [PMID: 39041710 DOI: 10.1093/treephys/tpae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Increases in hydrological extremes, including drought, are expected for Amazon forests. A fundamental challenge for predicting forest responses lies in identifying ecological strategies which underlie such responses. Characterization of species-specific hydraulic strategies for regulating water-use, thought to be arrayed along an 'isohydric-anisohydric' spectrum, is a widely used approach. However, recent studies have questioned the usefulness of this classification scheme, because its metrics are strongly influenced by environments, and hence can lead to divergent classifications even within the same species. Here, we propose an alternative approach positing that individual hydraulic regulation strategies emerge from the interaction of environments with traits. Specifically, we hypothesize that the vertical forest profile represents a key gradient in drought-related environments (atmospheric vapor pressure deficit, soil water availability) that drives divergent tree water-use strategies for coordinated regulation of stomatal conductance (gs) and leaf water potentials (ΨL) with tree rooting depth, a proxy for water availability. Testing this hypothesis in a seasonal eastern Amazon forest in Brazil, we found that hydraulic strategies indeed depend on height-associated environments. Upper canopy trees, experiencing high vapor pressure deficit (VPD), but stable soil water access through deep rooting, exhibited isohydric strategies, defined by little seasonal change in the diurnal pattern of gs and steady seasonal minimum ΨL. In contrast, understory trees, exposed to less variable VPD but highly variable soil water availability, exhibited anisohydric strategies, with fluctuations in diurnal gs that increased in the dry season along with increasing variation in ΨL. Our finding that canopy height structures the coordination between drought-related environmental stressors and hydraulic traits provides a basis for preserving the applicability of the isohydric-to-anisohydric spectrum, which we show here may consistently emerge from environmental context. Our work highlights the importance of understanding how environmental heterogeneity structures forest responses to climate change, providing a mechanistic basis for improving models of tropical ecosystems.
Collapse
Affiliation(s)
- Deliane Penha
- Instituto de Biodiversidade e Florestas, Programa de Pós-Graduação Sociedade, Natureza e Desenvolvimento, Universidade Federal do Oeste do Pará, Vera Paz, s/n, Salé, Santarém, Pará, 68040-255, Brazil
- Instituto de Engenharia e Geociências, Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Vera Paz, s/n, Salé, Santarém, Pará, 68040-255, Brazil
| | - Mauro Brum
- Department of Ecology and Evolutionary Biology, University of Arizona, 1200 E University Blvd, Tucson, AZ 85721, United States
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas (UNICAMP), Barão Geraldo, Campinas SP 13083-970, Brazil
| | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 619 Charles E. Young Drive East, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, United States
| | - Tomas F Domingues
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
| | - Anderson Meneses
- Instituto de Biodiversidade e Florestas, Programa de Pós-Graduação Sociedade, Natureza e Desenvolvimento, Universidade Federal do Oeste do Pará, Vera Paz, s/n, Salé, Santarém, Pará, 68040-255, Brazil
- Instituto de Engenharia e Geociências, Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Vera Paz, s/n, Salé, Santarém, Pará, 68040-255, Brazil
- Instituto de Engenharia e Geociências, Laboratório de Inteligência Computacional, Universidade Federal do Oeste do Pará, Vera Paz, s/n, Salé, Santarém, Pará, 68040-255, Brazil
| | - Rardiles Branches
- Programa de Pós-Graduação em Meteorologia, Instituto Nacional de Pesquisas Espaciais, Rodovia Presidente Dutra, km 40, Cachoeira Paulista, São Paulo 12630-000, Brazil
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, 1200 E University Blvd, Tucson, AZ 85721, United States
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas (UNICAMP), Barão Geraldo, Campinas SP 13083-970, Brazil
| | - José Mauro S Moura
- Instituto de Engenharia e Geociências, Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Vera Paz, s/n, Salé, Santarém, Pará, 68040-255, Brazil
- Interdisciplinary and Intercultural Training Institute, Federal University of Western Para, Vera Paz, s/n, Salé, Santarém, Pará, 68040-255, Brazil
| | - Pedro A C L Aurélio Pequeno
- Programa de Pós-graduação em Recursos Naturais (PRONAT), Universidade Federal de Roraima, Av. Cap. Ene Garcez, 2413, Aeroporto, Roraima, Boa Vista, 69310-000, Brazil
| | - Neill Prohaska
- Department of Ecology and Evolutionary Biology, University of Arizona, 1200 E University Blvd, Tucson, AZ 85721, United States
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, 1200 E University Blvd, Tucson, AZ 85721, United States
| |
Collapse
|
11
|
Mašek J, Dorado-Liñán I, Treml V. Responses of stem growth and canopy greenness of temperate conifers to dry spells. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1533-1544. [PMID: 38630139 PMCID: PMC11281975 DOI: 10.1007/s00484-024-02682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/28/2024]
Abstract
Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.
Collapse
Affiliation(s)
- Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic.
| | - Isabel Dorado-Liñán
- Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| |
Collapse
|
12
|
Chen S, Stark SC, Nobre AD, Cuartas LA, de Jesus Amore D, Restrepo-Coupe N, Smith MN, Chitra-Tarak R, Ko H, Nelson BW, Saleska SR. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 2024; 631:111-117. [PMID: 38898277 DOI: 10.1038/s41586-024-07568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon sinks of atmospheric CO2 are declining, as deforestation and climate-change-associated droughts1-4 threaten to push these forests past a tipping point towards collapse5-8. Forests exhibit complex drought responses, indicating both resilience (photosynthetic greening) and vulnerability (browning and tree mortality), that are difficult to explain by climate variation alone9-17. Here we combine remotely sensed photosynthetic indices with ground-measured tree demography to identify mechanisms underlying drought resilience/vulnerability in different intact forest ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation characteristics). In higher-fertility southern Amazonia, drought response was structured by water-table depth, with resilient greening in shallow-water-table forests (where greater water availability heightened response to excess sunlight), contrasting with vulnerability (browning and excess tree mortality) over deeper water tables. Notably, the resilience of shallow-water-table forest weakened as drought lengthened. By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees (or, alternatively, tall forests, with deep-rooted water access), supported more-drought-resilient forests independent of water-table depth. This functional biogeography of drought response provides a framework for conservation decisions and improved predictions of heterogeneous forest responses to future climate changes, warning that Amazonia's most productive forests are also at greatest risk, and that longer/more frequent droughts are undermining multiple ecohydrological strategies and capacities for Amazon forest resilience.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Scott C Stark
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| | | | - Luz Adriana Cuartas
- National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
| | - Diogo de Jesus Amore
- National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Cupoazu LLC, Etobicoke, Ontario, Canada
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, USA
- School of Environmental and Natural Sciences, College of Science and Engineering, Bangor University, Bangor, UK
| | - Rutuja Chitra-Tarak
- Los Alamos National Laboratory, Earth and Environmental Sciences, Los Alamos, NM, USA
| | - Hongseok Ko
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Bruce W Nelson
- Brazil's National Institute for Amazon Research (INPA), Manaus, Brazil
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Li P, Li H, Si B. Estimating deep soil water depletion and availability under planted forest on the Loess Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172228. [PMID: 38599401 DOI: 10.1016/j.scitotenv.2024.172228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Deep soil water (DSW) plays a pivotal role in tree growth, susceptibility to drought-induced mortality, and belowground carbon and nutrient cycling. Assessing DSW depletion is essential for evaluating the resilience and sustainability of planted forests. But, due to the poor accessibility of deep soil layers, little is known about large scale DSW depletion. In this study, we leverage the concept that "plants are reliable indicators of deep soil water" to estimate DSW depletion in planted forests within the arid and semi-arid regions of the Chinese Loess Plateau (CLP). Our approach involves establishing a model that correlates forest age with DSW depletion. We then employ this model to estimate DSW depletion across the region, utilizing readily available data on the distribution of forest age and utilize the boundary models to consider the variability of DSW depletion estimated with forest age. Our results indicate that the model effectively estimates DSW depletion in planted forests, demonstrating a strong fit with an R2 of 0.71 and a low root mean square error (RMSE) of 332 mm. Notably, a substantial portion of the planted forest areas on the CLP has experienced DSW depletion from 800 mm to 1600 mm, and totaling 2.41 × 1010 m3 DSW depletion from 1995 to 2020 based on the general model. However, the available DSW in the existing planted forests on the CLP is estimated at only 1.73 × 1010 m3 by 2038. This suggests that there is potential risks and unsustainability for further afforestation efforts and carbon sequestration on the CLP under the current continuous afforestation measures. Our study holds significant implications for sustainable regional ecological management and quantifying water resources for carbon trading through afforestation.
Collapse
Affiliation(s)
- Peng Li
- College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Huijie Li
- College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China.
| | - Bingcheng Si
- College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
14
|
Bachofen C, Tumber-Dávila SJ, Mackay DS, McDowell NG, Carminati A, Klein T, Stocker BD, Mencuccini M, Grossiord C. Tree water uptake patterns across the globe. THE NEW PHYTOLOGIST 2024; 242:1891-1910. [PMID: 38649790 DOI: 10.1111/nph.19762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.
Collapse
Affiliation(s)
- Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
- Harvard Forest, Harvard University, Petersham, MA, 01316, USA
| | - D Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin D Stocker
- Institute of Geography, University of Bern, Bern, 3013, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3013, Bern, Switzerland
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Wittemann M, Mujawamariya M, Ntirugulirwa B, Uwizeye FK, Zibera E, Manzi OJL, Nsabimana D, Wallin G, Uddling J. Plasticity and implications of water-use traits in contrasting tropical tree species under climate change. PHYSIOLOGIA PLANTARUM 2024; 176:e14326. [PMID: 38708565 DOI: 10.1111/ppl.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.
Collapse
Affiliation(s)
- Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Agriculture and Animal Resources Development Board (RAB), Kigali, Rwanda
- Rwanda Forestry Authority, Muhanga, Rwanda
| | - Felicien K Uwizeye
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Olivier Jean Leonce Manzi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, Huye, Rwanda
| | - Donat Nsabimana
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Cusack DF, Christoffersen B, Smith-Martin CM, Andersen KM, Cordeiro AL, Fleischer K, Wright SJ, Guerrero-Ramírez NR, Lugli LF, McCulloch LA, Sanchez-Julia M, Batterman SA, Dallstream C, Fortunel C, Toro L, Fuchslueger L, Wong MY, Yaffar D, Fisher JB, Arnaud M, Dietterich LH, Addo-Danso SD, Valverde-Barrantes OJ, Weemstra M, Ng JC, Norby RJ. Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models. THE NEW PHYTOLOGIST 2024; 242:351-371. [PMID: 38416367 DOI: 10.1111/nph.19561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Collapse
Affiliation(s)
- Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Bradley Christoffersen
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Katrin Fleischer
- Department Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07745, Germany
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Nathaly R Guerrero-Ramírez
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Gottingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Gottingen, 37077, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lindsay A McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- National Center for Atmospheric Research, National Oceanographic and Atmospheric Agency, 1850 Table Mesa Dr., Boulder, CO, 80305, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah A Batterman
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Dallstream
- Department of Biology, McGill University, 1205 Av. du Docteur-Penfield, Montreal, QC, H3A 1B1, Canada
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34398, France
| | - Laura Toro
- Yale Applied Science Synthesis Program, The Forest School at the Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Daniela Yaffar
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Marie Arnaud
- Institute of Ecology and Environmental Sciences (IEES), UMR 7618, CNRS-Sorbonne University-INRAE-UPEC-IRD, Paris, 75005, France
- School of Geography, Earth and Environmental Sciences & BIFOR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
- Department of Biology, Haverford College, Haverford, PA, 19003, USA
| | - Shalom D Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, P.O Box UP 63 KNUST, Kumasi, Ghana
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Jing Cheng Ng
- Nanyang Technological University, Singapore, 639798, Singapore
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
17
|
Chaturvedi RK, Pandey SK, Tripathi A, Goparaju L, Raghubanshi AS, Singh JS. Variations in the plasticity of functional traits indicate the differential impacts of abiotic and biotic factors on the structure and growth of trees in tropical dry forest fragments. FRONTIERS IN PLANT SCIENCE 2024; 14:1181293. [PMID: 38333040 PMCID: PMC10851170 DOI: 10.3389/fpls.2023.1181293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Abiotic and biotic factors have considerable impact on the plasticity of plant functional traits, which influences forest structure and productivity; however, their inter-relationships have not been quantified for fragmented tropical dry forest (TDF) ecosystems. We asked the following questions: (1) what are the variations in the plasticity of functional traits due to soil moisture availability in TDF fragments? (2) what are the roles of soil nutrients and forest disturbances in influencing variations in the plasticity of functional traits in the TDF fragments? and (3) how do the variations in the plasticity of functional traits influence the structure and productivity of TDF fragments? Based on linear mixed-effects results, we observed significant variations among tree species for soil moisture content (SMC) under the canopy and selected functional traits across forest fragments. We categorized tree species across fragments by principal component analysis (PCA) and hierarchical clustering on principal components (HCPC) analyses into three functional types, viz., low wood density high deciduous (LWHD), high wood density medium deciduous (HWMD), and high wood density low deciduous (HWLD). Assemblage of functional traits suggested that the LWHD functional type exhibits a drought-avoiding strategy, whereas HWMD and HWLD adopt a drought-tolerant strategy. Our study showed that the variations in functional trait plasticity and the structural attributes of trees in the three functional types exhibit contrasting affinity with SMC, soil nutrients, and disturbances, although the LWHD functional type was comparatively more influenced by soil resources and disturbances compared to HWMD and HWLD along the declining SMC and edge distance gradients. Plasticity in functional traits for the LWHD functional type exhibited greater variations in traits associated with the conservation of water and resources, whereas for HWMD and HWLD, the traits exhibiting greater plasticity were linked with higher productivity and water transport. The cumulative influence of SMC, disturbances, and functional trait variations was also visible in the relative abundance of functional types in large and small sized fragments. Our analysis further revealed the critical differences in the responses of functional trait plasticity of the coexisting tree species in TDF, which suggests that important deciduous endemic species with drought-avoiding strategies might be prone to strategic exclusion under expected rises in anthropogenic disturbances, habitat fragmentation, and resource limitations.
Collapse
Affiliation(s)
- Ravi Kant Chaturvedi
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Santosh Kumar Pandey
- Ecosystems Analysis Laboratory, Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anshuman Tripathi
- Training, Safety and Environment, National Mineral Development Corporation Limited, Dantewada, Chhattisgarh, India
| | - Laxmi Goparaju
- Forest and Remote Sensing, Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India
| | - Akhilesh Singh Raghubanshi
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - J. S. Singh
- Ecosystems Analysis Laboratory, Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
18
|
Wilcox KR, Chen A, Avolio ML, Butler EE, Collins S, Fisher R, Keenan T, Kiang NY, Knapp AK, Koerner SE, Kueppers L, Liang G, Lieungh E, Loik M, Luo Y, Poulter B, Reich P, Renwick K, Smith MD, Walker A, Weng E, Komatsu KJ. Accounting for herbaceous communities in process-based models will advance our understanding of "grassy" ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:6453-6477. [PMID: 37814910 DOI: 10.1111/gcb.16950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 10/11/2023]
Abstract
Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process-based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests. The limited representation of herbaceous communities within models arises from two important knowledge gaps: first, our empirical understanding of the principles governing herbaceous vegetation dynamics is either incomplete or does not provide mechanistic information necessary to drive herbaceous community processes with models; second, current model structure and parameterization of grass and other herbaceous plant functional types limits the ability of models to predict outcomes of competition and growth for herbaceous vegetation. In this review, we provide direction for addressing these gaps by: (1) presenting a brief history of how vegetation dynamics have been developed and incorporated into earth system models, (2) reporting on a model simulation activity to evaluate current model capability to represent herbaceous vegetation dynamics and ecosystem function, and (3) detailing several ecological properties and phenomena that should be a focus for both empiricists and modelers to improve representation of herbaceous vegetation in models. Together, empiricists and modelers can improve representation of herbaceous ecosystem processes within models. In so doing, we will greatly enhance our ability to forecast future states of the earth system, which is of high importance given the rapid rate of environmental change on our planet.
Collapse
Affiliation(s)
- Kevin R Wilcox
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
- University of Wyoming, Laramie, Wyoming, USA
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Meghan L Avolio
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ethan E Butler
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
| | - Scott Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Rosie Fisher
- CICERO Centre for International Cimate Research, Forskningsparken, Oslo, Norway
| | - Trevor Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nancy Y Kiang
- NASA Goddard Institute for Space Studies, New York, New York, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Sally E Koerner
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Lara Kueppers
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Guopeng Liang
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
| | - Eva Lieungh
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Michael Loik
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Ben Poulter
- Biospheric Sciences Lab, NASA GSFC, Greenbelt, Maryland, USA
| | - Peter Reich
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Anthony Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ensheng Weng
- NASA Goddard Institute for Space Studies, New York, New York, USA
- Center for Climate Systems Research, Columbia University, New York, New York, USA
| | - Kimberly J Komatsu
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
19
|
Blackman CJ, Billon LM, Cartailler J, Torres-Ruiz JM, Cochard H. Key hydraulic traits control the dynamics of plant dehydration in four contrasting tree species during drought. TREE PHYSIOLOGY 2023; 43:1772-1783. [PMID: 37318310 PMCID: PMC10652334 DOI: 10.1093/treephys/tpad075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Trees are at risk of mortality during extreme drought, yet our understanding of the traits that govern the timing of drought-induced hydraulic failure remains limited. To address this, we tested SurEau, a trait-based soil-plant-atmosphere model designed to predict the dynamics of plant dehydration as represented by the changes in water potential against those observed in potted trees of four contrasting species (Pinus halepensis Mill., Populus nigra L., Quercus ilex L. and Cedrus atlantica (Endl.) Manetti ex Carriére) exposed to drought. SurEau was parameterized with a range of plant hydraulic and allometric traits, soil and climatic variables. We found a close correspondence between the predicted and observed plant water potential (in MPa) dynamics during the early phase drought, leading to stomatal closure, as well as during the latter phase of drought, leading to hydraulic failure in all four species. A global model's sensitivity analysis revealed that, for a common plant size (leaf area) and soil volume, dehydration time from full hydration to stomatal closure (Tclose) was most strongly controlled by the leaf osmotic potential (Pi0) and its influence on stomatal closure, in all four species, while the maximum stomatal conductance (gsmax) also contributed to Tclose in Q. ilex and C. atlantica. Dehydration times from stomatal closure to hydraulic failure (Tcav) was most strongly controlled by Pi0, the branch residual conductance (gres) and Q10a sensitivity of gres in the three evergreen species, while xylem embolism resistance (P50) was most influential in the deciduous species P. nigra. Our findings point to SurEau as a highly useful model for predicting changes in plant water status during drought and suggest that adjustments made in key hydraulic traits are potentially beneficial to delaying the onset of drought-induced hydraulic failure in trees.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Lise-Marie Billon
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Julien Cartailler
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| |
Collapse
|
20
|
Kühnhammer K, van Haren J, Kübert A, Bailey K, Dubbert M, Hu J, Ladd SN, Meredith LK, Werner C, Beyer M. Deep roots mitigate drought impacts on tropical trees despite limited quantitative contribution to transpiration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164763. [PMID: 37308023 PMCID: PMC10331952 DOI: 10.1016/j.scitotenv.2023.164763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Deep rooting is considered a central drought-mitigation trait with vast impact on ecosystem water cycling. Despite its importance, little is known about the overall quantitative water use via deep roots and dynamic shifts of water uptake depths with changing ambient conditions. Knowledge is especially sparse for tropical trees. Therefore, we conducted a drought, deep soil water labeling and re-wetting experiment at Biosphere 2 Tropical Rainforest. We used in situ methods to determine water stable isotope values in soil and tree water in high temporal resolution. Complemented by soil and stem water content and sap flow measurements we determined percentages and quantities of deep-water in total root water uptake dynamics of different tree species. All canopy trees had access to deep-water (max. uptake depth 3.3 m), with contributions to transpiration ranging between 21 % and 90 % during drought, when surface soil water availability was limited. Our results suggest that deep soil is an essential water source for tropical trees that delays potentially detrimental drops in plant water potentials and stem water content when surface soil water is limited and could hence mitigate the impacts of increasing drought occurrence and intensity as a consequence of climate change. Quantitatively, however, the amount of deep-water uptake was low due to the trees' reduction of sap flow during drought. Total water uptake largely followed surface soil water availability and trees switched back their uptake depth dynamically, from deep to shallow soils, following rainfall. Total transpiration fluxes were hence largely driven by precipitation input.
Collapse
Affiliation(s)
- Kathrin Kühnhammer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany; Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany.
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; Honors College, University of Arizona, 1101 E. Mabel St., Tucson, AZ 85719, USA
| | - Angelika Kübert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 68, Pietari Kalmin katu 5, 00014 Helsinki, Finland
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Maren Dubbert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Isotope Biogeochemistry and Gasfluxes, ZALF, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - S Nemiah Ladd
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Laura K Meredith
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Christiane Werner
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Matthias Beyer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Keetz LT, Lieungh E, Karimi-Asli K, Geange SR, Gelati E, Tang H, Yilmaz YA, Aas KS, Althuizen IHJ, Bryn A, Falk S, Fisher R, Fouilloux A, Horvath P, Indrehus S, Lee H, Lombardozzi D, Parmentier FJW, Pirk N, Vandvik V, Vollsnes AV, Skarpaas O, Stordal F, Tallaksen LM. Climate-ecosystem modelling made easy: The Land Sites Platform. GLOBAL CHANGE BIOLOGY 2023; 29:4440-4452. [PMID: 37303068 DOI: 10.1111/gcb.16808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023]
Abstract
Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.
Collapse
Affiliation(s)
- Lasse T Keetz
- Department of Geosciences, University of Oslo, Oslo, Norway
| | - Eva Lieungh
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Sonya R Geange
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Hui Tang
- Department of Geosciences, University of Oslo, Oslo, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
- Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
| | - Yeliz A Yilmaz
- Department of Geosciences, University of Oslo, Oslo, Norway
- Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, Norway
| | - Kjetil S Aas
- Department of Geosciences, University of Oslo, Oslo, Norway
- CICERO Center for International Climate Research, Oslo, Norway
| | - Inge H J Althuizen
- Division of Climate and Environment, NORCE Norwegian Research Centre, Bergen, Norway
| | - Anders Bryn
- Natural History Museum, University of Oslo, Oslo, Norway
- Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, Norway
| | - Stefanie Falk
- Department of Geography, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rosie Fisher
- CICERO Center for International Climate Research, Oslo, Norway
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | | | - Peter Horvath
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Hanna Lee
- Division of Climate and Environment, NORCE Norwegian Research Centre, Bergen, Norway
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Danica Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Frans-Jan W Parmentier
- Department of Geosciences, University of Oslo, Oslo, Norway
- Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, Norway
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Norbert Pirk
- Department of Geosciences, University of Oslo, Oslo, Norway
| | - Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Ane V Vollsnes
- Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Olav Skarpaas
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Frode Stordal
- Department of Geosciences, University of Oslo, Oslo, Norway
- Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, Norway
| | | |
Collapse
|
22
|
Barkaoui K, Volaire F. Drought survival and recovery in grasses: Stress intensity and plant-plant interactions impact plant dehydration tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1489-1503. [PMID: 36655754 DOI: 10.1111/pce.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Plant dehydration tolerance confers drought survival in grasses, but the mortality thresholds according to soil water content (SWC), vapour pressure deficit (VPD) and plant-plant interactions are little explored. We compared the dehydration dynamics of leaf meristems, which are the key surviving organs, plant mortality, and recovery of Mediterranean and temperate populations of two perennial grass species, Dactylis glomerata and Festuca arundinacea, grown in monocultures and mixtures under a low-VPD (1.5 kPa) versus a high-VPD drought (2.2 kPa). The lethal drought index (LD50 ), that is, SWC associated with 50% plant mortality, ranged from 2.87% (ψs = -1.68 MPa) to 2.19% (ψs = -4.47 MPa) and reached the lowest values under the low-VPD drought. Populations of D. glomerata were more dehydration-tolerant (lower LD50 ), survived and recovered better than F. arundinacea populations. Plant-plant interactions modified dehydration tolerance and improved post-drought recovery in mixtures compared with monocultures. Water content as low as 20.7%-36.1% in leaf meristems allowed 50% of plants to survive. We conclude that meristem dehydration causes plant mortality and that drought acclimation can increase dehydration tolerance. Genetic diversity, acclimation and plant-plant interactions are essential sources of dehydration tolerance variability to consider when predicting drought-induced mortality.
Collapse
Affiliation(s)
- Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Volaire
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, INRAE, Montpellier, France
| |
Collapse
|
23
|
Wood JD, Gu L, Hanson PJ, Frankenberg C, Sack L. The ecosystem wilting point defines drought response and recovery of a Quercus-Carya forest. GLOBAL CHANGE BIOLOGY 2023; 29:2015-2029. [PMID: 36600482 DOI: 10.1111/gcb.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP ), a property that integrates the drought response of an ecosystem's plant community across the soil-plant-atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an "ecosystem pressure-volume (PV) curve," which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd ) was above ΨEWP (=-2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP , the forest is commonly only 2-4 weeks of intense drought away from reaching ΨEWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP , and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.
Collapse
Affiliation(s)
- Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christian Frankenberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Volaire F, Barkaoui K, Grémillet D, Charrier G, Dangles O, Lamarque LJ, Martin-StPaul N, Chuine I. Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants? ANNALS OF BOTANY 2023; 131:245-254. [PMID: 36567631 PMCID: PMC9992932 DOI: 10.1093/aob/mcac153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plants have adapted to survive seasonal life-threatening frost and drought. However, the timing and frequency of such events are impacted by climate change, jeopardizing plant survival. Understanding better the strategies of survival to dehydration stress is therefore timely and can be enhanced by the cross-fertilization of research between disciplines (ecology, physiology), models (woody, herbaceous species) and types of stress (drought, frost). SCOPE We build upon the 'growth-stress survival' trade-off, which underpins the identification of global plant strategies across environments along a 'fast-slow' economics spectrum. Although phenological adaptations such as dormancy are crucial to survive stress, plant global strategies along the fast-slow economic spectrum rarely integrate growth variations across seasons. We argue that the growth-stress survival trade-off can be a useful framework to identify convergent plant ecophysiological strategies to survive both frost and drought. We review evidence that reduced physiological activity, embolism resistance and dehydration tolerance of meristematic tissues are interdependent strategies that determine thresholds of mortality among plants under severe frost and drought. We show that complete dormancy, i.e. programmed growth cessation, before stress occurrence, minimizes water flows and maximizes dehydration tolerance during seasonal life-threatening stresses. We propose that incomplete dormancy, i.e. the programmed reduction of growth potential during the harshest seasons, could be an overlooked but major adaptation across plants. Quantifying stress survival in a range of non-dormant versus winter- or summer-dormant plants, should reveal to what extent incomplete to complete dormancy could represent a proxy for dehydration tolerance and stress survival. CONCLUSIONS Our review of the strategies involved in dehydration stress survival suggests that winter and summer dormancy are insufficiently acknowledged as plant ecological strategies. Incorporating a seasonal fast-slow economics spectrum into global plant strategies improves our understanding of plant resilience to seasonal stress and refines our prevision of plant adaptation to extreme climatic events.
Collapse
Affiliation(s)
- Florence Volaire
- CEFE, Université Montpellier, INRAE, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Université F-34060 Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Grémillet
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont Ferrand, France
| | - Olivier Dangles
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Laurent J Lamarque
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Nicolas Martin-StPaul
- INRAE, URFM, Domaine Saint Paul, Centre de recherche PACA, 228 route de l’Aérodrome, CS 40509, Domaine Saint-Paul, Site Agroparc, France
| | - Isabelle Chuine
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| |
Collapse
|
25
|
Stocker BD, Tumber-Dávila SJ, Konings AG, Anderson MC, Hain C, Jackson RB. Global patterns of water storage in the rooting zones of vegetation. NATURE GEOSCIENCE 2023; 16:250-256. [PMID: 36920146 PMCID: PMC10005945 DOI: 10.1038/s41561-023-01125-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2023] [Indexed: 06/02/2023]
Abstract
The rooting-zone water-storage capacity-the amount of water accessible to plants-controls the sensitivity of land-atmosphere exchange of water and carbon during dry periods. How the rooting-zone water-storage capacity varies spatially is largely unknown and not directly observable. Here we estimate rooting-zone water-storage capacity globally from the relationship between remotely sensed vegetation activity, measured by combining evapotranspiration, sun-induced fluorescence and radiation estimates, and the cumulative water deficit calculated from daily time series of precipitation and evapotranspiration. Our findings indicate plant-available water stores that exceed the storage capacity of 2-m-deep soils across 37% of Earth's vegetated surface. We find that biome-level variations of rooting-zone water-storage capacities correlate with observed rooting-zone depth distributions and reflect the influence of hydroclimate, as measured by the magnitude of annual cumulative water-deficit extremes. Smaller-scale variations are linked to topography and land use. Our findings document large spatial variations in the effective root-zone water-storage capacity and illustrate a tight link among the climatology of water deficits, rooting depth of vegetation and its sensitivity to water stress.
Collapse
Affiliation(s)
- Benjamin D. Stocker
- Department of Earth System Science, Stanford University, Stanford, CA USA
- Department of Environmental Systems Science, ETH, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Shersingh Joseph Tumber-Dávila
- Department of Earth System Science, Stanford University, Stanford, CA USA
- Harvard Forest, Harvard University, Petersham, MA USA
| | | | | | | | - Robert B. Jackson
- Department of Earth System Science, Stanford University, Stanford, CA USA
- Woods Institute for the Environment, Stanford University, Stanford, CA USA
- Precourt Institute for Energy, Stanford University, Stanford, CA USA
| |
Collapse
|
26
|
Chitra‐Tarak R, Warren JM. Amazon drought resilience - emerging results point to new empirical needs. THE NEW PHYTOLOGIST 2023; 237:703-706. [PMID: 36601908 PMCID: PMC10107462 DOI: 10.1111/nph.18670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This article is a Commentary on Costa et al., 237: 714–733.
Collapse
Affiliation(s)
- Rutuja Chitra‐Tarak
- Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545‐1663USA
| | - Jeffrey M. Warren
- Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| |
Collapse
|
27
|
Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. THE NEW PHYTOLOGIST 2023; 237:22-47. [PMID: 36239086 DOI: 10.1111/nph.18539] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Collapse
Affiliation(s)
- Nidhi Vinod
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Ian R McGregor
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2DG, UK
| | - Tyeen C Taylor
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
28
|
Santos EA, Haro-Carrión X, Oshun J. Age-specific and species-specific tree response to seasonal drought in tropical dry forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157908. [PMID: 35944638 DOI: 10.1016/j.scitotenv.2022.157908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Millions of people depend on ecosystem services provided by Tropical Dry Forests (TDFs), yet their proximity to population centers, seasonally dry climate, and the ease at which they are converted to agriculture has left only 10 % of their original extent globally. As more TDFs become protected, basic information relating TDF age to subsurface water resources will help guide forest recovery. Severe deforestation and recent reforestation around Bahía de Caráquez, Ecuador produced a mosaic of different successional stages ideal for exploring relationships between TDF age, subsurface water availability and species-specific responses to seasonal drought. Over one year, we measured gravimetric water content, predawn and midday leaf water potential, and the stable isotope composition of xylem and source waters in two regenerating and one primary forest. Over the transition from wet to dry season, we discovered a sharper decrease in predawn water potential in younger successional forests than in the primary forest. Growing in degraded subsurface environments under increased competition, successional forest trees accessed deeper sources of moisture from unsaturated weathered bedrock and groundwater through the dry season; however, different species employed distinct water use strategies. Ceiba trichistandra maintained midday water potentials above -1.27 MPa through a drought avoidance strategy dependent on groundwater. Sideroxylon celastrinum tolerated drought by lowering predawn and midday water potential through the early dry season but took up greater proportions of saprolite moisture and groundwater as the dry season progressed. Contrastingly, Handroanthus chrysanthus maintained access to shallow soil and saprolite moisture by dropping midday water potential to -4.30 MPa, reflecting drought tolerance. Our results show that limited subsurface water resources in regenerating TDF's lead to species-specific adaptations reliant on deeper sources of moisture. The recovery of soil and saprolite hydrologic properties following disturbances is likely to exceed 100 years, highlighting the importance of forest conservation.
Collapse
Affiliation(s)
- Emily A Santos
- University of California, Davis, Davis, CA 95616, United States of America.
| | | | - Jasper Oshun
- U.S. Fulbright Scholar and Visiting Professor at the Universidad de Ingeniería y Tecnología, Lima, Peru
| |
Collapse
|
29
|
Chen Z, Li S, Wan X, Liu S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. FRONTIERS IN PLANT SCIENCE 2022; 13:926535. [PMID: 36237513 PMCID: PMC9552884 DOI: 10.3389/fpls.2022.926535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Considerable evidences highlight the occurrence of increasing widespread tree mortality as a result of global climate change-associated droughts. However, knowledge about the mechanisms underlying divergent strategies of various tree species to adapt to drought has remained remarkably insufficient. Leaf stomatal regulation and embolism resistance of stem xylem serves as two important strategies for tree species to prevent hydraulic failure and carbon starvation, as comprising interconnected physiological mechanisms underlying drought-induced tree mortality. Hence, the physiological and anatomical determinants of leaf stomatal regulation and stems xylem embolism resistance are evaluated and discussed. In addition, root properties related to drought tolerance are also reviewed. Species with greater investment in leaves and stems tend to maintain stomatal opening and resist stem embolism under drought conditions. The coordination between stomatal regulation and stem embolism resistance are summarized and discussed. Previous studies showed that hydraulic safety margin (HSM, the difference between minimum water potential and that causing xylem dysfunction) is a significant predictor of tree species mortality under drought conditions. Compared with HSM, stomatal safety margin (the difference between water potential at stomatal closure and that causing xylem dysfunction) more directly merge stomatal regulation strategies with xylem hydraulic strategies, illustrating a comprehensive framework to characterize plant response to drought. A combination of plant traits reflecting species' response and adaptation to drought should be established in the future, and we propose four specific urgent issues as future research priorities.
Collapse
Affiliation(s)
- Zhicheng Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xianchong Wan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
30
|
Klipel J, Bergamin RS, Esquivel‐Muelbert A, de Lima RAF, de Oliveira AA, Prado PI, Müller SC. Climatic distribution of tree species in the Atlantic Forest. Biotropica 2022. [DOI: 10.1111/btp.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joice Klipel
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Rodrigo Scarton Bergamin
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Laboratório de Estudos em Vegetação Campestre, Programa de Pós‐Graduação em Botânica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Adriane Esquivel‐Muelbert
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham UK
- Birmingham Institute of Forest Research University of Birmingham Birmingham UK
| | - Renato A. F. de Lima
- Tropical Botany, Naturalis Biodiversity Center Leiden The Netherlands
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Paulo Inácio Prado
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
31
|
Tropical tree mortality has increased with rising atmospheric water stress. Nature 2022; 608:528-533. [PMID: 35585230 DOI: 10.1038/s41586-022-04737-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
Abstract
Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.
Collapse
|
32
|
Trugman AT. Integrating plant physiology and community ecology across scales through trait-based models to predict drought mortality. THE NEW PHYTOLOGIST 2022; 234:21-27. [PMID: 34679225 DOI: 10.1111/nph.17821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Forests are a critical carbon sink and widespread tree mortality resulting from climate-induced drought stress has the potential to alter forests from a carbon sink to a source, causing a positive feedback on climate change. Process-based vegetation models aim to represent the current understanding of the underlying mechanisms governing plant physiological and ecological responses to climate. Yet model accuracy varies across scales, and regional-scale model predictive skill is frequently poor when compared with observations of drought-driven mortality. I propose a framework that leverages differences in model predictive skill across spatial scales, mismatches between model predictions and observations, and differences in the mechanisms included and absent across models to advance the understanding of the physiological and ecological processes driving observed patterns drought-driven mortality.
Collapse
Affiliation(s)
- Anna T Trugman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
33
|
|
34
|
Guillemot J, Martin-StPaul NK, Bulascoschi L, Poorter L, Morin X, Pinho BX, le Maire G, R L Bittencourt P, Oliveira RS, Bongers F, Brouwer R, Pereira L, Gonzalez Melo GA, Boonman CCF, Brown KA, Cerabolini BEL, Niinemets Ü, Onoda Y, Schneider JV, Sheremetiev S, Brancalion PHS. Small and slow is safe: On the drought tolerance of tropical tree species. GLOBAL CHANGE BIOLOGY 2022; 28:2622-2638. [PMID: 35007364 DOI: 10.1111/gcb.16082] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.
Collapse
Affiliation(s)
- Joannès Guillemot
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Leticia Bulascoschi
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Xavier Morin
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Bruno X Pinho
- AMAP, Univ Montpellier, INRAe, CIRAD, CNRS, IRD, Montpellier, France
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Guerric le Maire
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
| | | | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Rens Brouwer
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | - Coline C F Boonman
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Kerry A Brown
- Department of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, UK
| | - Bruno E L Cerabolini
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
35
|
Spanner GC, Gimenez BO, Wright CL, Menezes VS, Newman BD, Collins AD, Jardine KJ, Negrón-Juárez RI, Lima AJN, Rodrigues JR, Chambers JQ, Higuchi N, Warren JM. Dry Season Transpiration and Soil Water Dynamics in the Central Amazon. FRONTIERS IN PLANT SCIENCE 2022; 13:825097. [PMID: 35401584 PMCID: PMC8987125 DOI: 10.3389/fpls.2022.825097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
With current observations and future projections of more intense and frequent droughts in the tropics, understanding the impact that extensive dry periods may have on tree and ecosystem-level transpiration and concurrent carbon uptake has become increasingly important. Here, we investigate paired soil and tree water extraction dynamics in an old-growth upland forest in central Amazonia during the 2018 dry season. Tree water use was assessed via radial patterns of sap flow in eight dominant canopy trees, each a different species with a range in diameter, height, and wood density. Paired multi-sensor soil moisture probes used to quantify volumetric water content dynamics and soil water extraction within the upper 100 cm were installed adjacent to six of those trees. To link depth-specific water extraction patterns to root distribution, fine root biomass was assessed through the soil profile to 235 cm. To scale tree water use to the plot level (stand transpiration), basal area was measured for all trees within a 5 m radius around each soil moisture probe. The sensitivity of tree transpiration to reduced precipitation varied by tree, with some increasing and some decreasing in water use during the dry period. Tree-level water use scaled with sapwood area, from 11 to 190 L per day. Stand level water use, based on multiple plots encompassing sap flow and adjacent trees, varied from ∼1.7 to 3.3 mm per day, increasing linearly with plot basal area. Soil water extraction was dependent on root biomass, which was dense at the surface (i.e., 45% in the upper 5 cm) and declined dramatically with depth. As the dry season progressed and the upper soil dried, soil water extraction shifted to deeper levels and model projections suggest that much of the water used during the month-long dry-down could be extracted from the upper 2-3 m. Results indicate variation in rates of soil water extraction across the research area and, temporally, through the soil profile. These results provide key information on whole-tree contributions to transpiration by canopy trees as water availability changes. In addition, information on simultaneous stand level dynamics of soil water extraction that can inform mechanistic models that project tropical forest response to drought.
Collapse
Affiliation(s)
| | - Bruno O. Gimenez
- National Institute of Amazonian Research (INPA), Manaus, Brazil
- Smithsonian Tropical Research Institute (STRI), Panama City, Panama
| | - Cynthia L. Wright
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, TN, United States
| | | | - Brent D. Newman
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Adam D. Collins
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Kolby J. Jardine
- National Institute of Amazonian Research (INPA), Manaus, Brazil
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Jeffrey Q. Chambers
- National Institute of Amazonian Research (INPA), Manaus, Brazil
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Geography, University of California, Berkeley, Berkeley, CA, United States
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Jeffrey M. Warren
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, TN, United States
| |
Collapse
|
36
|
Britton TG, Brodribb TJ, Richards SA, Ridley C, Hovenden MJ. Canopy damage during a natural drought depends on species identity, physiology and stand composition. THE NEW PHYTOLOGIST 2022; 233:2058-2070. [PMID: 34850394 DOI: 10.1111/nph.17888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Vulnerability to xylem cavitation is a strong predictor of drought-induced damage in forest communities. However, biotic features of the community itself can influence water availability at the individual tree-level, thereby modifying patterns of drought damage. Using an experimental forest in Tasmania, Australia, we determined the vulnerability to cavitation (leaf P50 ) of four tree species and assessed the drought-induced canopy damage of 2944 6-yr-old trees after an extreme natural drought episode. We examined how individual damage was related to their size and the density and species identity of neighbouring trees. The two co-occurring dominant tree species, Eucalyptus delegatensis and Eucalyptus regnans, were the most vulnerable to drought-induced xylem cavitation and both species suffered significantly greater damage than neighbouring, subdominant species Pomaderris apetala and Acacia dealbata. While the two eucalypts had similar leaf P50 values, E. delegatensis suffered significantly greater damage, which was strongly related to the density of neighbouring P. apetala. Damage in E. regnans was less impacted by neighbouring plants and smaller trees of both eucalypts sustained significantly more damage than larger trees. Our findings demonstrate that natural drought damage is influenced by individual plant physiology as well as the composition, physiology and density of the surrounding stand.
Collapse
Affiliation(s)
- Travis G Britton
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Timothy J Brodribb
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Chantelle Ridley
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Mark J Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tas., 7001, Australia
| |
Collapse
|
37
|
Binks O, Cernusak LA, Liddell M, Bradford M, Coughlin I, Carle H, Bryant C, Dunn E, Oliveira R, Mencuccini M, Meir P. Forest system hydraulic conductance: partitioning tree and soil components. THE NEW PHYTOLOGIST 2022; 233:1667-1681. [PMID: 34861052 DOI: 10.1111/nph.17895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Soil-leaf hydraulic conductance determines canopy-atmosphere coupling in vegetation models, but it is typically derived from ex-situ measurements of stem segments and soil samples. Using a novel approach, we derive robust in-situ estimates for whole-tree conductance (ktree ), 'functional' soil conductance (ksoil ), and 'system' conductance (ksystem , water table to canopy), at two climatically different tropical rainforest sites. Hydraulic 'functional rooting depth', determined for each tree using profiles of soil water potential (Ψsoil ) and sap flux data, enabled a robust determination of ktree and ksoil . ktree was compared across species, size classes, seasons, height above nearest drainage (HAND), two field sites, and to alternative representations of ktree ; ksoil was analysed with respect to variations in site, season and HAND. ktree was lower and changed seasonally at the site with higher vapour pressure deficit (VPD) and rainfall; ktree differed little across species but scaled with tree circumference; rsoil (1/ksoil ) ranged from 0 in the wet season to 10× less than rtree (1/ktree ) in the dry season. VPD and not rainfall may influence plot-level k; leaf water potentials and sap flux can be used to determine ktree , ksoil and ksystem ; Ψsoil profiles can provide mechanistic insights into ecosystem-level water fluxes.
Collapse
Affiliation(s)
- Oliver Binks
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Michael Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Matt Bradford
- CSIRO Land and Water, Atherton, Qld, 4883, Australia
| | - Ingrid Coughlin
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hannah Carle
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Callum Bryant
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elliot Dunn
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rafael Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | | | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
38
|
A Study on Sensitivities of Tropical Forest GPP Responding to the Characteristics of Drought—A Case Study in Xishuangbanna, China. WATER 2022. [DOI: 10.3390/w14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Droughts that occur in tropical forests (TF) are expected to significantly impact the gross primary production (GPP) and the capacity of carbon sinks. Therefore, it is crucial to evaluate and analyze the sensitivities of TF-GPP to the characteristics of drought events for understanding global climate change. In this study, the standardized precipitation index (SPI) was used to define the drought intensity. Then, the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) was utilized to simulate the dynamic process of GPP corresponding to multi-gradient drought scenarios—rain and dry seasons × 12 level durations × 4 level intensities. The results showed that drought events in the dry season have a significantly greater impact on TF-GPP than drought events in the rainy season, especially short-duration drought events. Furthermore, the impact of drought events in the rainy season is mainly manifested in long-duration droughts. Due to abundant rainfall in the rainy season, only extreme drought events caused a significant reduction in GPP, while the lack of water in the dry season caused significant impacts due to light drought. Effective precipitation and soil moisture stock in the rainy season are the most important support for the tropical forest dry season to resist extreme drought events in the study area. Further water deficit may render the tropical forest ecosystem more sensitive to drought events.
Collapse
|
39
|
Electromagnetic Induction Is a Fast and Non-Destructive Approach to Estimate the Influence of Subsurface Heterogeneity on Forest Canopy Structure. WATER 2021. [DOI: 10.3390/w13223218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The spatial forest structure that drives the functioning of these ecosystems and their response to global change is closely linked to edaphic conditions. However, the latter properties are particularly difficult to characterize in forest areas developed on karst, where soil is highly rocky and heterogeneous. In this work, we investigated whether geophysics, and more specifically electromagnetic induction (EMI), can provide a better understanding of forest structure. We use EMI (EM31, Geonics Limited, Ontario, Canada) to study the spatial variability of ground properties in two different Mediterranean forests. A naturally post-fire regenerated forest composed of Aleppo pines and Holm oaks and a monospecific plantation of Altlas cedar. To better interpret EMI results, we used electrical resistivity tomography (ERT), soil depth surveys, and field observations. Vegetation was also characterized using hemispherical photographs that allowed to calculate plant area index (PAI). Our results show that the variability of ground properties contribute to explaining the variability in the vegetation cover development (plant area index). Vegetation density is higher in areas where the soil is deeper. We showed a significant correlation between edaphic conditions and tree development in the naturally regenerated forest, but this relationship is clearly weaker in the cedar plantation. We hypothesized that regular planting after subsoiling, as well as sylvicultural practices (thinning and pruning) influenced the expected relationship between vegetation structure and soil conditions measured by EMI. This work opens up new research avenues to better understand the interplay between soil and subsoil variability and forest response to climate change.
Collapse
|
40
|
Slot M, Nardwattanawong T, Hernández GG, Bueno A, Riederer M, Winter K. Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. THE NEW PHYTOLOGIST 2021; 232:1618-1631. [PMID: 34270792 PMCID: PMC9290923 DOI: 10.1111/nph.17626] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 05/09/2023]
Abstract
More frequent droughts and rising temperatures pose serious threats to tropical forests. When stomata are closed under dry and hot conditions, plants lose water through leaf cuticles, but little is known about cuticle conductance (gmin ) of tropical trees, how it varies among species and environments, and how it is affected by temperature. We determined gmin in relation to temperature for 24 tropical tree species across a steep rainfall gradient in Panama, by recording leaf drying curves at different temperatures in the laboratory. In contrast with our hypotheses, gmin did not differ systematically across the rainfall gradient; species differences did not reflect phylogenetic patterns; and in most species gmin did not significantly increase between 25 and 50°C. gmin was higher in deciduous than in evergreen species, in species with leaf trichomes than in species without, in sun leaves than in shade leaves, and tended to decrease with increasing leaf mass per area across species. There was no relationship between stomatal and cuticle conductance. Large species differences in gmin and its temperature response suggest that more frequent hot droughts may lead to differential survival among tropical tree species, regardless of species' position on the rainfall gradient.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
| | - Tantawat Nardwattanawong
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
- University of East AngliaNorwichNR4 7TJUK
| | - Georgia G. Hernández
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
| | - Amauri Bueno
- Julius‐von Sachs‐Institute for BiosciencesBotany IIUniversity of WürzburgJulius‐von‐Sachs‐Platz 3WürzburgD‐97082Germany
| | - Markus Riederer
- Julius‐von Sachs‐Institute for BiosciencesBotany IIUniversity of WürzburgJulius‐von‐Sachs‐Platz 3WürzburgD‐97082Germany
| | - Klaus Winter
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
| |
Collapse
|