1
|
Negi P, Pandey M, Paladi RK, Majumdar A, Pandey SP, Barvkar VT, Devarumath R, Srivastava AK. Stomata-Photosynthesis Synergy Mediates Combined Heat and Salt Stress Tolerance in Sugarcane Mutant M4209. PLANT, CELL & ENVIRONMENT 2025; 48:4668-4684. [PMID: 40052246 PMCID: PMC12050391 DOI: 10.1111/pce.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 05/06/2025]
Abstract
Sugarcane (Saccharum officinarum L.) is an economically important long-duration crop which is currently facing concurrent heat waves and soil salinity. The present study evaluates an inducible salt-tolerant sugarcane mutant M4209, developed via radiation-induced mutagenesis of elite check variety Co 86032, under heat (42/30°C; day/night), NaCl (200 mM) or heat + NaCl (HS)-stress conditions. Though heat application significantly improved plant growth and biomass in both genotypes, this beneficial impact was partially diminished in Co 86032 under HS-stress conditions, coinciding with higher Na+ accumulation and lower triacylglycerol levels. Besides, heat broadly equalised the negative impact on NaCl stress in terms of various physiological and biochemical attributes in both the genotypes, indicating its spaciotemporal advantage. The simultaneous up- and downregulation of antagonistic regulators, epidermal patterning factor (EPF) 9 (SoEPF9) and SoEPF2, respectively attributed to the OSD (Open Small Dense) stomatal phenotype in M4209, which resulted into enhanced conductance, transpirational cooling and gaseous influx. This led to improved photoassimilation, which was supported by higher plastidic:nonplastidic lipid ratio, upregulation of SoRCA (Rubisco activase) and better source strength, resulting in overall plant growth enhancement across all the tested stress scenarios. Taken together, the present study emphasised the knowledge-driven harnessing of stomatal-photosynthetic synergy for ensuring global sugarcane productivity, especially under "salt-heat" coupled stress scenarios.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Radha K. Paladi
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Arnab Majumdar
- School of Environmental StudiesJadavpur UniversityKolkataIndia
| | | | | | | | - Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
2
|
Rubio F, Aranda I, López R, Cano FJ. Elevated Growth Temperature Modifies Drought and Shade Responses of Fagus sylvatica Seedlings by Altering Growth, Gas Exchange, Water Relations, and Xylem Function. PLANTS (BASEL, SWITZERLAND) 2025; 14:1525. [PMID: 40431089 PMCID: PMC12114704 DOI: 10.3390/plants14101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Climate change is increasing global temperatures and imposing new constraints on tree regeneration, especially in late-successional species exposed to simultaneous drought and low-light conditions. To disentangle the effects of warming from those of atmospheric drought, we conducted a multifactorial growth chamber experiment on Fagus sylvatica seedlings, manipulating temperature (25 °C and +7.5 °C above optimum), soil moisture (well-watered vs. water-stressed), and light intensity (high vs. low), while maintaining constant vapor pressure deficit (VPD). We assessed growth, biomass allocation, leaf gas exchange, water relations, and xylem hydraulic traits. Warming significantly reduced total biomass, leaf area, and water-use efficiency, while increasing transpiration and residual conductance, especially under high light. Under combined warming and drought, seedlings exhibited impaired osmotic adjustment, reduced leaf safety margins, and diminished hydraulic performance. Unexpectedly, warming under shade promoted a resource-acquisitive growth strategy through the production of low-cost leaves. These results demonstrate that elevated temperature, even in the absence of increased VPD, can compromise drought tolerance in beech seedlings and shift their ecological strategies depending on light availability. The findings underscore the need to consider multiple, interacting stressors when evaluating tree regeneration under future climate conditions.
Collapse
Affiliation(s)
- Faustino Rubio
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Ismael Aranda
- Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain;
| | - Rosana López
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Francisco Javier Cano
- Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain;
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2751, Australia
| |
Collapse
|
3
|
Carriquí M, Fortesa J, Brodribb TJ. A loss of stomata exposes a critical vulnerability to variable atmospheric humidity in ferns. Curr Biol 2025; 35:1539-1548.e5. [PMID: 40107263 DOI: 10.1016/j.cub.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Stomata confer both benefits and costs to plants, but assessing the magnitude of these effects is challenging. Some ferns have entirely lost stomata on their leaves, providing an opportunity to understand functional limitations associated with the inability to regulate transpiration. Here, we show that the loss of stomata and a massive reduction in xylem tissue investment in a filmy fern (Hymenophyllum flabellatum Labill.) leaves its vascular system exposed to catastrophic failure during relatively small reductions in atmospheric humidity. Hydraulic limitation, together with a sensitivity to fast desiccation, sets a clear lethal vapor pressure deficit threshold. This threshold enables a quantitative prediction of range contraction in H. flabellatum using a simple physical model. According to this threshold and climate projections, H. flabellatum may disappear from most of its native habitat in mainland Australia by 2050.
Collapse
Affiliation(s)
- Marc Carriquí
- University of Tasmania, School of Natural Sciences, Private Bag 55, Hobart, TAS 7001, Australia; Universitat de les Illes Balears - Agro-Environmental and Water Economics Institute, Departament de Biologia, Research Group on Plant Biology Under Mediterranean Conditions, Cra. de Valldemossa, km 7.5., Palma 07122, Spain.
| | - Josep Fortesa
- Universitat de les Illes Balears - Agro-Environmental and Water Economics Institute, Department of Geography, Natural Hazards and Emergencies Observatory of the Balearic Islands-RiscBal., Cra. de Valldemossa, km 7.5., Palma 07122, Spain
| | - Timothy J Brodribb
- University of Tasmania, School of Natural Sciences, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
4
|
Habermann E, Riul BN, Nóbile FHM, Santana RM, Oliveira KS, de Souza Marques B, Dias de Oliveira EA, Branco RBF, Costa KADP, Hungria M, Nogueira MA, Martinez CA. Inoculation with plant growth-promoting bacteria mitigates the negative impacts of 2 °C warming on the photosynthesis, growth, and nutritional value of a tropical C 4 grassland under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178769. [PMID: 39946881 DOI: 10.1016/j.scitotenv.2025.178769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Human-induced climate change is causing Earth's temperature to rise, and models indicate a persistent increase in the next years. Temperature is one of the most important factors regulating the carbon flux of natural and managed ecosystems. In the last decades, the use of plant growth-promoting bacteria in C4 grasses has emerged as an important alternative to alleviate the negative impacts of abiotic factors on plant metabolism, growth, and forage nutritional quality. In this study, we investigated the effects of warming (+2 °C) on the photosynthesis, plant water status, growth, and nutritional quality of a managed pasture of Brachiaria (syn. Urochloa) Mavuno inoculated or not with Azospirillum brasilense and Pseudomonas fluorescens. We evaluated two levels of temperature (ambient and elevated) under two levels of inoculation (inoculated and non-inoculated) in a multifactorial design. Our results showed that inoculation stimulated root growth and increased photosynthetic rates through higher stomatal conductance and improved photosystem II performance, presumably resulting in higher productivity, crude protein content, and forage digestibility with reduced lignin and fiber fraction. Warming increased non-photochemical quenching and electron transport rate in the wet season, but decreased midday maximum quantum efficiency of PSII photochemistry during dry season, relative water content, productivity, and forage quality and digestibility. When inoculated plants developed under a warmer atmosphere, the positive effects of inoculation completely counteract the negative impacts of warming on photosynthesis, growth, nutritional quality, and digestibility, resulting in a pasture with reduced lignin content and improved heating dissipating capacity and digestibility. Our results demonstrated that A. brasilense and P. fluorescens co-inoculation is a sustainable option to fully mitigate the negative impacts of elevated temperature on Mavuno grass pastures. These findings highlight the potential of microbial inoculants in enhancing forage resilience and productivity under climate stress.
Collapse
Affiliation(s)
- Eduardo Habermann
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Beatriz Neroni Riul
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Fábio Henrique Moscardini Nóbile
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Ramon Martins Santana
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Kamilla Silva Oliveira
- Department of Agricultural Science, School of Agricultural and Veterinarian Sciences, São Paulo State University, Access Road Prof. Paulo Donato Castellane No number, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Bruno de Souza Marques
- Goiano Institute Federal (IF Goiano) at Rio Verde, Sul Goiana Highway, Km1, CEP 75901-970 Rio Verde, GO, Brazil
| | | | - Roberto Botelho Ferraz Branco
- Institute Agronomic, São Paulo Agribusiness Technology Agency (APTA), Rodovia Antonio Duarte Nogueira, km 321, CEP 14001-970 Ribeirão Preto, SP, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, Rodovia Carlos João Strass, s/n°, C. Postal 4006, CEP 86085-981, Londrina, PR, Brazil
| | - Marco Antônio Nogueira
- Embrapa Soja, Rodovia Carlos João Strass, s/n°, C. Postal 4006, CEP 86085-981, Londrina, PR, Brazil
| | - Carlos Alberto Martinez
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Corak NK, Thornton PE, Lowman LEL. A high resolution, gridded product for vapor pressure deficit using Daymet. Sci Data 2025; 12:256. [PMID: 39939642 PMCID: PMC11822033 DOI: 10.1038/s41597-025-04544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
Vapor pressure deficit (VPD) is a critical variable in assessing drought conditions and evaluating plant water stress. Gridded products of global and regional VPD are not freely available from satellite remote sensing, model reanalysis, or ground observation datasets. We present two versions of the first gridded VPD product for the Continental US and parts of Northern Mexico and Southern Canada (CONUS+) at a 1 km spatial resolution and daily time step. We derived VPD from Daymet maximum daily temperature and average daily vapor pressure and scale the estimates based on (1) climate determined by the Köppen-Geiger classifications and (2) land cover determined by the International Geosphere-Biosphere Programme. Ground-based VPD data from 253 AmeriFlux sites representing different climate and land cover classifications were used to improve the Daymet-derived VPD estimates for every pixel in the CONUS+ grid to produce the final datasets. We evaluated the Daymet-derived VPD against independent observations and reanalysis data. The CONUS+ VPD datasets will aid in investigating disturbances including drought and wildfire, and informing land management strategies.
Collapse
Affiliation(s)
- Nicholas K Corak
- Department of Engineering, Wake Forest University, Winston-Salem, NC, USA
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Peter E Thornton
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, NC, USA.
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Benjamin CS, Dias LAS, Martins SCV, Aucique-Perez CE, Rosmaninho LBC. Unlocking the potential of cacao yield with full sun cultivation. Sci Rep 2025; 15:4368. [PMID: 39910146 PMCID: PMC11799457 DOI: 10.1038/s41598-025-87793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Cacao and chocolate production is a global industry worth around $133 billion. Full sun cultivation is a modern approach aimed at increasing yields. We evaluated six cacao clones (PS 1319, CCN 10, CCN 51, PH 16, SJ 02, and CP 49) grown under full sun conditions to assess their leaf physiology, leaf structure, yield, and yield components. Leaf physiology was measured through seven gas exchange parameters, while leaf structure was analyzed using eight measurements. For fruit and seed, we evaluated seven yield components. The clones showed differences in gas exchange. Clones PH 16 and PS 1319 had higher net photosynthetic rates per unit of leaf area (A), transpiration rates, and lower leaf internal CO2 concentrations. These A high values suggest the clones are well-acclimatized to full sun cultivation. Water availability, nutrient supply, and appropriate plant architecture also contributed to this acclimatization. Under high light intensity, the potential quantum yield of photosystem II indicated no photoinhibition, and adaptations in the photosynthetic apparatus were observed, such as lower pigment concentration in clone PH 16. Clones differed in specific leaf area (SLA) and stomatal density (SD). CCN 51 had a higher SLA, while SJ 02 had a higher SD. A significant negative correlation (-0.89) was found between dry bean yield and leaf-to-air water vapor pressure deficit (VpdL), suggesting that VpdL is a crucial parameter for selecting high-performance clones for fertigated full sun cultivation. Yields ranged from 1,220 kg/ha (CCN 10) to 2,900 kg/ha (CCN 51). Full sun cacao farms have high yield potential due to a combination of cloning, management practices, and adequate water and nutrient availability.
Collapse
Affiliation(s)
- Carolina S Benjamin
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brasil
| | - Luiz A S Dias
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brasil.
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brasil
| | - Carlos E Aucique-Perez
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, Florida, USA
| | - Lucas B C Rosmaninho
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brasil
| |
Collapse
|
7
|
Kopecký M, Hederová L, Macek M, Klinerová T, Wild J. Forest plant indicator values for moisture reflect atmospheric vapour pressure deficit rather than soil water content. THE NEW PHYTOLOGIST 2024; 244:1801-1811. [PMID: 39175085 DOI: 10.1111/nph.20068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Soil moisture shapes ecological patterns and processes, but it is difficult to continuously measure soil moisture variability across the landscape. To overcome these limitations, soil moisture is often bioindicated using community-weighted means of the Ellenberg indicator values of vascular plant species. However, the ecology and distribution of plant species reflect soil water supply as well as atmospheric water demand. Therefore, we hypothesized that Ellenberg moisture values can also reflect atmospheric water demand expressed as a vapour pressure deficit (VPD). To test this hypothesis, we disentangled the relationships among soil water content, atmospheric vapour pressure deficit, and Ellenberg moisture values in the understory plant communities of temperate broadleaved forests in central Europe. Ellenberg moisture values reflected atmospheric VPD rather than soil water content consistently across local, landscape, and regional spatial scales, regardless of vegetation plot size, depth as well as method of soil moisture measurement. Using in situ microclimate measurements, we discovered that forest plant indicator values for moisture reflect an atmospheric VPD rather than soil water content. Many ecological patterns and processes correlated with Ellenberg moisture values and previously attributed to soil water supply are thus more likely driven by atmospheric water demand.
Collapse
Affiliation(s)
- Martin Kopecký
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Lucia Hederová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Tereza Klinerová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Jan Wild
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|
8
|
Diao H, Cernusak LA, Saurer M, Gessler A, Siegwolf RTW, Lehmann MM. Dry inside: progressive unsaturation within leaves with increasing vapour pressure deficit affects estimation of key leaf gas exchange parameters. THE NEW PHYTOLOGIST 2024; 244:1275-1287. [PMID: 39205457 DOI: 10.1111/nph.20078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Climate change not only leads to higher air temperatures but also increases the vapour pressure deficit (VPD) of the air. Understanding the direct effect of VPD on leaf gas exchange is crucial for precise modelling of stomatal functioning. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a VPD range of 0.8-3.6 kPa, while maintaining constant temperatures without soil water limitation. In addition to applying the standard assumption of saturated vapour pressure inside leaves (ei), we inferred ei from oxygen isotope discrimination of CO2 and water vapour. ei desaturated progressively with increasing VPD, consistently across species, resulting in an intercellular relative humidity as low as 0.73 ± 0.11 at the highest tested VPD. Assuming saturation of ei overestimated the extent of reductions in stomatal conductance and CO2 mole fraction inside leaves in response to increasing VPD compared with calculations that accounted for unsaturation. In addition, a significant decrease in mesophyll conductance with increasing VPD only occurred when the unsaturation of ei was considered. We suggest that the possibility of unsaturated ei should not be overlooked in measurements related to leaf gas exchange and in stomatal models, especially at high VPD.
Collapse
Affiliation(s)
- Haoyu Diao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, 8092, Switzerland
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
9
|
Slot M, Rifai SW, Eze CE, Winter K. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. THE NEW PHYTOLOGIST 2024; 244:1238-1249. [PMID: 38736030 DOI: 10.1111/nph.19806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
As temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models. Stomatal conductance and photosynthesis consistently decreased with increasing VPD, and statistically accounting for VPD increased the optimum temperature of photosynthesis (Topt) of trees from a VPD-confounded apparent Topt of c. 30-31°C to a VPD-independent Topt of c. 33-36°C, while for lianas no VPD-independent Topt was reached within the measured temperature range. Trees and lianas exhibited similar temperature and VPD responses in both forests, despite 1500 mm difference in mean annual rainfall. Over ecologically relevant temperature ranges, photosynthesis in tropical forests is largely limited by indirect effects of warming, through changes in VPD, not by direct warming effects of photosynthetic biochemistry. Failing to account for VPD when determining Topt misattributes the underlying causal mechanism and thereby hinders the advancement of mechanistic understanding of global warming effects on tropical forest carbon dynamics.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - Sami W Rifai
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chinedu E Eze
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
- Department of Agronomy, Michael Okpara University of Agriculture, Umudike, Abia State, 440109, Nigeria
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|
10
|
Eze C, Winter K, Slot M. Vapor-pressure-deficit-controlled temperature response of photosynthesis in tropical trees. PHOTOSYNTHETICA 2024; 62:318-325. [PMID: 39649359 PMCID: PMC11622557 DOI: 10.32615/ps.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/06/2024] [Indexed: 12/10/2024]
Abstract
Rising temperatures can affect stomatal and nonstomatal control over photosynthesis, through stomatal closure in response to increasing vapor pressure deficit (VPD), and biochemical limitations, respectively. To explore the independent effects of temperature and VPD, we conducted leaf-level temperature-response measurements while controlling VPD on three tropical tree species. Photosynthesis and stomatal conductance consistently decreased with increasing VPD, whereas photosynthesis typically responded weakly to changes in temperature when a stable VPD was maintained during measurements, resulting in wide parabolic temperature-response curves. We have shown that the negative effect of temperature on photosynthesis in tropical forests across ecologically important temperature ranges does not stem from direct warming effects on biochemical processes but from the indirect effect of warming, through changes in VPD. Understanding the acclimation potential of tropical trees to elevated VPD will be critical to anticipate the consequences of global warming for tropical forests.
Collapse
Affiliation(s)
- C.E. Eze
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
- Department of Agronomy, Michael Okpara University of Agriculture Umudike, Abia State 440109, Nigeria
| | - K. Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - M. Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
11
|
Mekarni L, Cochard H, Lehmann MM, Turberg P, Grossiord C. In vivo X-ray microtomography locally affects stem radial growth with no immediate physiological impact. PLANT PHYSIOLOGY 2024; 196:153-163. [PMID: 38757896 PMCID: PMC11491841 DOI: 10.1093/plphys/kiae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.
Collapse
Affiliation(s)
- Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Pascal Turberg
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| |
Collapse
|
12
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
Gauthey A, Kahmen A, Limousin JM, Vilagrosa A, Didion-Gency M, Mas E, Milano A, Tunas A, Grossiord C. High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. GLOBAL CHANGE BIOLOGY 2024; 30:e17439. [PMID: 39092538 DOI: 10.1111/gcb.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Ansgar Kahmen
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Jean-Marc Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department Ecology, University of Alicante, Alicante, Spain
| | - Margaux Didion-Gency
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | - Arianna Milano
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
14
|
Varghese S, Aguirre BA, Isbell F, Wright AJ. Simulating atmospheric drought: Silica gel packets dehumidify mesocosm microclimates. Ecol Evol 2024; 14:e70139. [PMID: 39170050 PMCID: PMC11336202 DOI: 10.1002/ece3.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
As global temperatures rise, droughts are becoming more frequent and severe. To predict how drought might affect plant communities, ecologists have traditionally designed drought experiments with controlled watering regimes and rainout shelters. Both treatments have proven effective for simulating soil drought. However, neither are designed to directly modify atmospheric drought. Here, we detail the efficacy of a silica gel atmospheric drought treatment in outdoor mesocosms with and without a co-occurring soil drought treatment. At California State University, Los Angeles, we monitored relative humidity, temperature, and vapor pressure deficit every 10 min for 5 months in bare-ground, open-top mesocosms treated with soil drought (reduced watering) and/or atmospheric drought (silica dehumidification packets suspended 12 cm above soil). We found that silica packets dehumidified these mesocosm microclimates most effectively (-5% RH) when combined with reduced soil water, regardless of the ambient humidity levels of the surrounding air. Further, packets increased microclimate vapor pressure deficit most effectively (+0.4 kPa) when combined with reduced soil water and ambient air temperatures above 20°C. Finally, packets simulated atmospheric drought most consistently when replaced within 3 days of deployment. Our results demonstrate the use of silica packets as effective dehumidification agents in outdoor drought experiments. We emphasize that incorporating atmospheric drought in existing soil drought experiments can improve our understandings of the ecological impacts of drought.
Collapse
Affiliation(s)
- S. Varghese
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - B. A. Aguirre
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - F. Isbell
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - A. J. Wright
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
15
|
Middleby KB, Cheesman AW, Cernusak LA. Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. THE NEW PHYTOLOGIST 2024; 243:648-661. [PMID: 38757766 DOI: 10.1111/nph.19822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Elevated air temperature (Tair) and vapour pressure deficit (VPDair) significantly influence plant functioning, yet their relative impacts are difficult to disentangle. We examined the effects of elevated Tair (+6°C) and VPDair (+0.7 kPa) on the growth and physiology of six tropical tree species. Saplings were grown under well-watered conditions in climate-controlled glasshouses for 6 months under three treatments: (1) low Tair and low VPDair, (2) high Tair and low VPDair, and (3) high Tair and high VPDair. To assess acclimation, physiological parameters were measured at a set temperature. Warm-grown plants grown under elevated VPDair had significantly reduced stomatal conductance and increased instantaneous water use efficiency compared to plants grown under low VPDair. Photosynthetic biochemistry and thermal tolerance (Tcrit) were unaffected by VPDair, but elevated Tair caused Jmax25 to decrease and Tcrit to increase. Sapling biomass accumulation for all species responded positively to an increase in Tair, but elevated VPDair limited growth. This study shows that stomatal limitation caused by even moderate increases in VPDair can decrease productivity and growth rates in tropical species independently from Tair and has important implications for modelling the impacts of climate change on tropical forests.
Collapse
Affiliation(s)
- Kali B Middleby
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Alexander W Cheesman
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
16
|
Heckman RW, Pereira CG, Aspinwall MJ, Juenger TE. Physiological Responses of C 4 Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:737-769. [PMID: 38424068 DOI: 10.1146/annurev-arplant-070623-093952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
C4 perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C4 perennial bioenergy grasses are predicted to thrive under climate change-C4 photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO2], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C4 perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C4 physiology with recent advances in crop improvement, especially genomic selection.
Collapse
Affiliation(s)
- Robert W Heckman
- Rocky Mountain Research Station, US Department of Agriculture Forest Service, Cedar City, Utah, USA;
| | - Caio Guilherme Pereira
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
17
|
Li Y, Hoch G. The sensitivity of root water uptake to cold root temperature follows species-specific upper elevational distribution limits of temperate tree species. PLANT, CELL & ENVIRONMENT 2024; 47:2192-2205. [PMID: 38481108 DOI: 10.1111/pce.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/30/2024]
Abstract
Physiological water stress induced by low root temperatures might contribute to species-specific climatic limits of tree distribution. We investigated the low temperature sensitivity of root water uptake and transport in seedlings of 16 European tree species which reach their natural upper elevation distribution limits at different distances to the alpine treeline. We used 2H-H2O pulse-labelling to quantify the water uptake and transport velocity from roots to leaves in seedlings exposed to constant 15°C, 7°C or 2°C root temperature, but identical aboveground temperatures between 20°C and 25°C. In all species, low root temperatures reduced the water transport rate, accompanied by reduced stem water potentials and stomatal conductance. At 7°C root temperature, the relative water uptake rates among species correlated positively with the species-specific upper elevation limits, indicating an increasingly higher sensitivity to lower root zone temperatures, the lower a species' natural elevational distribution limit. Conversely, 2°C root temperature severely inhibited water uptake in all species, irrespective of the species' thermal elevational limits. We conclude that low temperature-induced hydraulic constraints contribute to the cold distribution limits of temperate tree species and are a potential physiological cause behind the low temperature limits of plant growth in general.
Collapse
Affiliation(s)
- Yating Li
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| | - Günter Hoch
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Gauthey A, Bachofen C, Chin A, Cochard H, Gisler J, Mas E, Meusburger K, Peters RL, Schaub M, Tunas A, Zweifel R, Grossiord C. Twenty years of irrigation acclimation is driven by denser canopies and not by plasticity in twig- and needle-level hydraulics in a Pinus sylvestris forest. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3141-3152. [PMID: 38375924 PMCID: PMC11103111 DOI: 10.1093/jxb/erae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Alana Chin
- Plant Ecology Group, Institute for Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Forest Soils and Biochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Richard L Peters
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, A-6020, Innsbruck, Austria
| | - Roman Zweifel
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
19
|
Sun W, Maseyk K, Lett C, Seibt U. Restricted internal diffusion weakens transpiration-photosynthesis coupling during heatwaves: Evidence from leaf carbonyl sulphide exchange. PLANT, CELL & ENVIRONMENT 2024; 47:1813-1833. [PMID: 38321806 DOI: 10.1111/pce.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Céline Lett
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Ulli Seibt
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| |
Collapse
|
20
|
Kim D, Guadagno CR, Ewers BE, Mackay DS. Combining PSII photochemistry and hydraulics improves predictions of photosynthesis and water use from mild to lethal drought. PLANT, CELL & ENVIRONMENT 2024; 47:1255-1268. [PMID: 38178610 DOI: 10.1111/pce.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Rising temperatures and increases in drought negatively impact the efficiency and sustainability of both agricultural and forest ecosystems. Although hydraulic limitations on photosynthesis have been extensively studied, a solid understanding of the links between whole plant hydraulics and photosynthetic processes at the cellular level under changing environmental conditions is still missing, hampering our predictive power for plant mortality. Here, we examined plant hydraulic traits and CO2 assimilation rate under progressive water limitation by implementing Photosystem II (PSII) dynamics with a whole plant process model (TREES). The photosynthetic responses to plant water status were parameterized based on measurements of chlorophyll a fluorescence, gas exchange and water potential for Brassica rapa (R500) grown in a greenhouse under fully watered to lethal drought conditions. The updated model significantly improved predictions of photosynthesis, stomatal conductance and leaf water potential. TREES with PSII knowledge predicted a larger hydraulic safety margin and a decrease in percent loss of conductivity. TREES predicted a slower decrease in leaf water potential, which agreed with measurements. Our results highlight the pressing need for incorporating PSII drought photochemistry into current process models to capture cross-scale plant water dynamics from cell to whole plant level.
Collapse
Affiliation(s)
- Dohyoung Kim
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| | | | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - D Scott Mackay
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
21
|
Diao H, Cernusak LA, Saurer M, Gessler A, Siegwolf RTW, Lehmann MM. Uncoupling of stomatal conductance and photosynthesis at high temperatures: mechanistic insights from online stable isotope techniques. THE NEW PHYTOLOGIST 2024; 241:2366-2378. [PMID: 38303410 DOI: 10.1111/nph.19558] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
The strong covariation of temperature and vapour pressure deficit (VPD) in nature limits our understanding of the direct effects of temperature on leaf gas exchange. Stable isotopes in CO2 and H2 O vapour provide mechanistic insight into physiological and biochemical processes during leaf gas exchange. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a leaf temperature range of 5-40°C, while maintaining a constant leaf-to-air VPD (0.8 kPa) without soil water limitation. Above the optimum temperature for photosynthesis (30°C) under the controlled environmental conditions, stomatal conductance (gs ) and net photosynthesis rate (An ) decoupled across all tested species, with gs increasing but An decreasing. During this decoupling, mesophyll conductance (cell wall, plasma membrane and chloroplast membrane conductance) consistently and significantly decreased among species; however, this reduction did not lead to reductions in CO2 concentration at the chloroplast surface and stroma. We question the conventional understanding that diffusional limitations of CO2 contribute to the reduction in photosynthesis at high temperatures. We suggest that stomata and mesophyll membranes could work strategically to facilitate transpiration cooling and CO2 supply, thus alleviating heat stress on leaf photosynthetic function, albeit at the cost of reduced water-use efficiency.
Collapse
Affiliation(s)
- Haoyu Diao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4879, Australia
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, 8092, Switzerland
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
22
|
Mas E, Cochard H, Deluigi J, Didion-Gency M, Martin-StPaul N, Morcillo L, Valladares F, Vilagrosa A, Grossiord C. Interactions between beech and oak seedlings can modify the effects of hotter droughts and the onset of hydraulic failure. THE NEW PHYTOLOGIST 2024; 241:1021-1034. [PMID: 37897156 DOI: 10.1111/nph.19358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using open-top chambers, we assessed how, over several years, species interactions (monocultures vs mixtures) modulate heat and drought impacts on the hydraulic traits of juvenile European beech and pubescent oak. Using modeling, we estimated species interaction effects on timing to drought-induced mortality and the underlying mechanisms driving these impacts. We show that mixtures mitigate adverse heat and drought impacts for oak (less negative leaf water potential, higher stomatal conductance, and delayed stomatal closure) but enhance them for beech (lower water potential and stomatal conductance, narrower leaf safety margins, faster tree mortality). Potential underlying mechanisms include oak's larger canopy and higher transpiration, allowing for quicker exhaustion of soil water in mixtures. Our findings highlight that diversity has the potential to alter the effects of extreme events, which would ensure that some species persist even if others remain sensitive. Among the many processes driving diversity effects, differences in canopy size and transpiration associated with the stomatal regulation strategy seem the primary mechanisms driving mortality vulnerability in mixed seedling plantations.
Collapse
Affiliation(s)
- Eugénie Mas
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Janisse Deluigi
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Margaux Didion-Gency
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Nicolas Martin-StPaul
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE, DomaineSaint Paul, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Luna Morcillo
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, 03080, Alicante, Spain
| | - Fernando Valladares
- Depto de Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006, Madrid, Spain
- Área de Biodiversidad y Conservación, Univ. Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, 03080, Alicante, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| |
Collapse
|
23
|
Wright AJ. Plant-plant interactions can mitigate (or exacerbate) hot drought impacts. THE NEW PHYTOLOGIST 2024; 241:955-957. [PMID: 38087824 DOI: 10.1111/nph.19473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This article is a Commentary on Mas et al. (2024), 241: 1021–1034.
Collapse
Affiliation(s)
- Alexandra J Wright
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, CA, 90032, USA
| |
Collapse
|
24
|
Huynh A, Aguirre BA, English J, Guzman D, Wright AJ. Atmospheric drying and soil drying: Differential effects on grass community composition. GLOBAL CHANGE BIOLOGY 2024; 30:e17106. [PMID: 38273553 DOI: 10.1111/gcb.17106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Global surface temperatures are projected to increase in the future; this will modify regional precipitation regimes and increase global atmospheric drying. Despite many drought studies examining the consequences of reduced precipitation, there are few experimental studies exploring plant responses to atmospheric drying via relative humidity and vapor pressure deficit (VPD). We examined eight native California perennial grass species grown in pots in a greenhouse in Los Angeles, California for 34 weeks. All pots were well-watered for 21 weeks, at which point we reduced watering to zero and recorded daily growth and dormancy for 3 weeks. We used this information to better understand the drought tolerance of our species in a larger soil drying × atmospheric drying experiment. In this larger experiment, we grew all eight species together in outdoor mesocosms and measured changes in community composition after 4 years of growth. Soil drying in our small pot experiment mirrored compositional shifts in the larger experiment. Namely, our most drought-tolerant species in our pot experiment was Poa secunda, due to a summer dormancy strategy. Similarly, the grass community shifted toward P. secunda in the driest soils as P. secunda was mostly unaffected by either soil drying or atmospheric drying. We found that some species responded strongly to soil drying (Elymus glaucus, Festuca idahoensis, and Hordeum b. californicum), while others responded strongly to atmospheric drying (Bromus carinatus and Stipa cernua). As result, community composition shifted in different and interacting ways in response to soil drying, atmospheric drying, and their combination. Further study of community responses to increasing atmospheric aridity is an essential next step to predicting the future consequences of climate change.
Collapse
Affiliation(s)
- A Huynh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - B A Aguirre
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - J English
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - D Guzman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - A J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
25
|
Varghese S, Aguirre B, Isbell F, Wright A. Simulating atmospheric drought: Silica gel packets dehumidify mesocosm microclimates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561294. [PMID: 37873293 PMCID: PMC10592642 DOI: 10.1101/2023.10.06.561294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
1. As global temperatures rise, droughts are becoming more frequent and severe. To predict how drought might affect plant communities, ecologists have traditionally designed experiments with controlled watering regimes and rainout shelters. Both treatments have proven effective for simulating soil drought. However, neither are designed to directly modify atmospheric drought. 2. Here, we detail the efficacy of a silica gel atmospheric drought treatment in outdoor mesocosms with and without a cooccurring soil drought treatment. At California State University, Los Angeles, we monitored relative humidity (RH), temperature, and vapor pressure deficit (VPD) every 10 minutes for five months in a bare-ground experiment featuring mesocosms treated with soil drought (reduced watering) and/or atmospheric drought (silica packets suspended 12 cm above soil). 3. We found that silica packets dehumidified these microclimates most effectively (-5% RH) when combined with reduced soil water, regardless of the ambient humidity levels of the surrounding air. Further, packets increased microclimate VPD most effectively (+0.4 kPa) when combined with reduced soil water and ambient air temperatures above 20°C. Finally, packets simulated atmospheric drought most consistently when replaced within three days of deployment. 4. Our results demonstrate the use of silica packets as effective dehumidification agents in outdoor drought experiments. We emphasize that incorporating atmospheric drought in existing soil drought experiments can improve our understandings of the ecological impacts of drought.
Collapse
Affiliation(s)
- S. Varghese
- California State University Los Angeles, Department of Biological Sciences, Los Angeles, CA
- University of Minnesota, Department of Ecology, Evolution, and Behavior, Minneapolis, MN
| | - B.A. Aguirre
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY
| | - F. Isbell
- University of Minnesota, Department of Ecology, Evolution, and Behavior, Minneapolis, MN
| | - A.J. Wright
- California State University Los Angeles, Department of Biological Sciences, Los Angeles, CA
| |
Collapse
|
26
|
Oberhuber W, Gruber A, Wieser G. Seasonal and Daily Xylem Radius Variations in Scots Pine Are Closely Linked to Environmental Factors Affecting Transpiration. BIOLOGY 2023; 12:1251. [PMID: 37759650 PMCID: PMC10525319 DOI: 10.3390/biology12091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Seasonal and daily radius variations in the xylem (XRV) and inner bark (IBV) of mature Scots pine trees (Pinus sylvestris) were determined during April 2019-October 2021 at a drought-prone inner alpine site (c. 750 m asl; Tyrol, Austria) by applying point dendrometers. XRVs were also related to environmental factors to evaluate the drivers of XRV during the growing season. XRV records revealed that the xylem width (i) started to shrink around the onset of radial stem growth in April, (ii) consistently decreased by c. 50 µm at the time when air temperature (T) and vapor pressure deficit (VPD) reached their maximum in late June through mid-July, and (iii) recovered until November/December. Although in daily cycles of radius variations XRV preceded IBV by about two hours and the daily amplitude of XRV was about 1/10 that of IBV, XRV and IBV (seasonal trends removed) were closely linked (ρ = 0.755; p < 0.001), indicating tight hydraulic coupling between these tissues. Furthermore, the daily amplitude of XRV was linearly and closely related to daily maximum T (ρ = 0.802; p < 0.001), mean daily solar radiation (ρ = 0.809; p < 0.001), and non-linearly related to daily maximum VPD (R2= 0.837; p < 0.001), indicating that the xylem of Pinus sylvestris reacts like a transpiration-driven passive hydraulic system.
Collapse
Affiliation(s)
- Walter Oberhuber
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria; (A.G.); (G.W.)
| | | | | |
Collapse
|
27
|
Scoffoni C, Albuquerque C, Buckley TN, Sack L. The dynamic multi-functionality of leaf water transport outside the xylem. THE NEW PHYTOLOGIST 2023; 239:2099-2107. [PMID: 37386735 DOI: 10.1111/nph.19069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside-xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside-xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside-xylem responses. Detailed experiments suggest these dynamic responses arise at least in part from strong control of radial water movement across the vein bundle sheath. While leaf xylem vulnerability may influence leaf and plant survival during extreme drought, outside-xylem dynamic responses are important for the control and resilience of water transport and leaf water status for gas exchange and growth.
Collapse
Affiliation(s)
- Christine Scoffoni
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr., Los Angeles, CA, 90032, USA
| | - Caetano Albuquerque
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr., Los Angeles, CA, 90032, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr., Los Angeles, CA, 90095, USA
| |
Collapse
|
28
|
Cai G, Wankmüller F, Ahmed MA, Carminati A. How the interactions between atmospheric and soil drought affect the functionality of plant hydraulics. PLANT, CELL & ENVIRONMENT 2023; 46:733-735. [PMID: 36624562 PMCID: PMC10108313 DOI: 10.1111/pce.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Gaochao Cai
- School of AgricultureShenzhen Campus of Sun Yat‐sen UniversityShenzhenP.R. China
| | - Fabian Wankmüller
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Mutez A. Ahmed
- Department of Land, Air and Water Resources, Soil‐Plant InteractionsUniversity of California DavisDavisCaliforniaUSA
| | - Andrea Carminati
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| |
Collapse
|
29
|
Johnson KM, Fletcher LR. A herbaceous species provides insights into drought-driven plant adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:680-683. [PMID: 36739580 PMCID: PMC9899411 DOI: 10.1093/jxb/erac485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This article comments on: Thonglim A, Bortolami G, Delzon S, Larter M, Offringa R, Keurentjes JJB, Smets E, Balazadeh S, Lens F. 2023. Drought response in Arabidopsis displays synergistic coordination between stems and leaves. Journal of Experimental Botany 74, 1004–1021
Collapse
Affiliation(s)
| | - Leila R Fletcher
- School of the Environment, Yale University, New Haven, CT 06520, USA
| |
Collapse
|