1
|
Njoga EO, Nnaemeka VC, Jaja IF, Oguttu JW, Nwanta JA, Chah KF. Systematic review and meta-analysis of Campylobacter species infections in humans and food-producing animals in Nigeria, 2002-2023: The imperative of a One Health control approach. One Health 2025; 20:101029. [PMID: 40270547 PMCID: PMC12017976 DOI: 10.1016/j.onehlt.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Zoonotic Campylobacter species (ZCS), particularly C. jejuni, C. coli, and C. lari, pose significant health risks to humans and food-producing animals (FPAs). This study investigates the prevalence, geospatial and temporal distributions of Campylobacter species infections (CSI) in Nigeria from 2002 to 2023 through a systematic review and meta-analysis of 40 studies, adhering to PRISMA 2020 guidelines. The overall pooled prevalence of CSI was 33 % (95 % CI: 25 % - 41 %), with significant variations among hosts: poultry (42 %, 95 % CI: 27 % - 57 %), humans (30 %, 95 % CI: 23 % - 38 %), and cattle (21 %, 95 % CI: 15 % - 32 %). In humans, the prevalence were 20.3 % in healthy individuals, 23.8 % in diarrheic patients, and 34.2 % in HIV patients. C. coli was the predominant isolate in humans (87.5 %) and cattle (38.1 %), while C. jejuni was prevalent in poultry (76.2 %). The North-West geopolitical zone exhibited the highest geospatial prevalence at 40 % (95 % CI: 23 % - 57 %). Meta-regression analysis indicated that diagnostic method did not significantly impact prevalence (p = 0.2170), but sample type explained 25.70 % of the between-study variance (Wald χ2 (2) = 33.10, p < 0.0001). Poultry samples showed the highest predicted prevalence at 47.8 % (95 % CI: 39.01 % - 56.51 %), significantly greater than cattle at 18.3 % (95 % CI: 8.9 % - 27.8 %; coefficient = 0.2942, p < 0.001). Sensitivity analyses showed minimal changes in pooled prevalence (33 % to 32 %), confirming the robustness of findings despite high heterogeneity (I2 = 99.48 % vs. 99.52 %). Temporal analysis indicated that poultry infections peaked between 2016 and 2020. These findings highlight the critical importance of implementing effective biosecurity measures and enhancing food safety practices to mitigate Campylobacter transmission in Nigeria, particularly in poultry and the North-West zone, which exhibited the highest prevalence rates. The adoption of One Health control approach, including the "farm to fork" principle, is strongly recommended to limit human Campylobacter infections by ensuring comprehensive food safety practices throughout the livestock production and processing value chains.
Collapse
Affiliation(s)
- Emmanuel O. Njoga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria
| | - Victory C. Nnaemeka
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, United Kingdom
| | - Ishmael F. Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
- Department of Agriculture and Animal Health, College of Agriculture & Environmental Sciences, University of South Africa, South Africa
| | - James W. Oguttu
- Department of Agriculture and Animal Health, College of Agriculture & Environmental Sciences, University of South Africa, South Africa
| | - John A. Nwanta
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria
| | - Kennedy F. Chah
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
2
|
Ortega-Sanz I, Rovira J, Megías G, Rivero-Pérez MD, Melero B. Genome-Wide association study to identify genetic markers associated with Campylobacter jejuni motility. Microb Pathog 2025; 205:107657. [PMID: 40318771 DOI: 10.1016/j.micpath.2025.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The ability of Campylobacter jejuni to survive and persist under harsh conditions is linked to the presence of flagella. This structure promotes the motility of the bacteria towards their optimum environment. The aim of this study was to examine the genetic basis for motility within 136 C. jejuni isolates through two different Genome-Wide Association Studies, gene presence/absence and Single Nucleotide Polymorphisms (SNPs). The motility phenotype was widely distributed across the phylogeny with large intra-lineage swarming performance variabilities. Accessory genes significantly associated with motility were found in four key genomic regions. One of these regions affected the Cj0727-Cj0733 operon, that encodes a putative ABC transporter system for phosphate uptake, while other influenced the capsule biosynthesis locus. Multiple SNPs mostly linked to increased motility were also discovered in clusters of genes, with special relevance to transport and membrane proteins. Therefore, the capsule and membrane composition might influence nutrient transfer, further impacting the protonmotive force that drives flagellar motor rotation in C. jejuni. The study provides novel genetic markers with a potential role in the motility phenotype of the pathogen.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, 9001 Burgos, Spain.
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, 9001 Burgos, Spain.
| | - Gregoria Megías
- Microbiology Department of the University Hospital of Burgos (HUBU), Burgos, Spain.
| | | | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, 9001 Burgos, Spain.
| |
Collapse
|
3
|
Veronese P, Dodi I. Campylobacter jejuni/ coli Infection: Is It Still a Concern? Microorganisms 2024; 12:2669. [PMID: 39770871 PMCID: PMC11728820 DOI: 10.3390/microorganisms12122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. Campylobacter infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of Campylobacter jejuni/coli infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations. Late complications are reactive arthritis, Guillain-Barré syndrome, and Miller Fisher syndrome. In the pediatric population, the 0-4 age group has the highest incidence of campylobacteriosis. Regarding the use of specific antimicrobial therapy, international guidelines agree in recommending it for severe intestinal infections. Host factors, including malnutrition, immunodeficiency, and malignancy, can also influence the decision to treat. The Centers for Disease Control and Prevention (CDC) has identified antibiotic resistance in Campylobacter as a 'significant public health threat' due to increasing resistance to FQs or macrolides. Although numerous vaccines have been proposed in recent years to reduce the intestinal colonization of poultry, none have shown sufficient efficacy to provide a definitive solution.
Collapse
Affiliation(s)
- Piero Veronese
- Pediatric Infectious Disease Unit, Barilla Children’s Hospital of Parma, 43126 Parma, Italy;
| | | |
Collapse
|
4
|
Zong Minko O, Mabika Mabika R, Moyen R, Mounioko F, Ondjiangui LF, Yala JF. The Impact of Campylobacter, Salmonella, and Shigella in Diarrheal Infections in Central Africa (1998-2022): A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1635. [PMID: 39767475 PMCID: PMC11675583 DOI: 10.3390/ijerph21121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Gastric diseases caused, in particular, by Campylobacter, non-typhoidal Salmonella, and Shigella resulting from food and/or water problems, are a disproportionately distributed burden in developing countries in Central Africa. The aim of this work was to compile a list of studies establishing the prevalence of the involvement of these bacterial genera in diarrheal syndromes in Central Africa from 1998 to 2022. METHODS The Preferred Reporting Articles for Systemic Reviews and Meta-Analyses, six (6) database (Pubmed, Google Scholar, Semantic Scholar, Freefullpdf, and Scinapse) were perused for research on the role of Campylobacter, Salmonella and Shigella diarrheal infections in humans and animals, in 9 country of Central Africa over from 1998 to 2022. RESULTS Seventeen articles were selected, including 16 on humans and one on animals. These data were recorded in 6 of the 9 countries of Central Africa, including Gabon (5), Angola (3), Cameroon (3), the Democratic Republic of Congo (3), Chad (2), and the Central African Republic (1). Mono-infections with Salmonella spp. were the most predominant (55.56%, n = 5/9), followed by an equal proportion of Campylobacter spp. and Shigella spp. with 44.44% (4/9), respectively and, co-infections with Campylobacter/Salmonella spp. and Salmonella/Shigella spp. with a prevalence of 11.11% (1/9) respectively. The most used diagnostic tool was conventional culture (82.35%) against 17.65% for PCR or real-time PCR. CONCLUSION Despite the paucity of recorded data on the prevalence of diarrheal infections due to Campylobacter in this sub-region, it is crucial that scientific studies focus on the diagnosis and monitoring of this zoonotic bacterium. Also, improved diagnosis will necessarily involve the integration of molecular tools in the diagnosis of these diarrheic syndromes in both humans and animals.
Collapse
Affiliation(s)
- Ornella Zong Minko
- Bacteriology Laboratory, Medical Analysis Research Unit, Interdisciplinary Center for Medical Research of Franceville (CIRMF), Franceville BP 769, Gabon; (O.Z.M.); (R.M.M.); (L.F.O.)
- Molecular and Cellular Biology Laboratory, Microbiology Team (LABMC), Agrobiology Research Unit, Masuku University of Sciences and Techniques (USTM), Franceville BP 067, Gabon
| | - Rolande Mabika Mabika
- Bacteriology Laboratory, Medical Analysis Research Unit, Interdisciplinary Center for Medical Research of Franceville (CIRMF), Franceville BP 769, Gabon; (O.Z.M.); (R.M.M.); (L.F.O.)
| | - Rachel Moyen
- Laboratory of Cellular and Molecular Biology, Sciences and Techniques Faculty, University Marien Ngouabi, Brazzaville BP 69, Congo;
| | - Franck Mounioko
- Vector Systems Ecology Unit, Interdisciplinary Center for Medical Research of Franceville (CIRMF), Franceville BP 769, Gabon;
| | - Léonce Fauster Ondjiangui
- Bacteriology Laboratory, Medical Analysis Research Unit, Interdisciplinary Center for Medical Research of Franceville (CIRMF), Franceville BP 769, Gabon; (O.Z.M.); (R.M.M.); (L.F.O.)
| | - Jean Fabrice Yala
- Bacteriology Laboratory, Medical Analysis Research Unit, Interdisciplinary Center for Medical Research of Franceville (CIRMF), Franceville BP 769, Gabon; (O.Z.M.); (R.M.M.); (L.F.O.)
- Molecular and Cellular Biology Laboratory, Microbiology Team (LABMC), Agrobiology Research Unit, Masuku University of Sciences and Techniques (USTM), Franceville BP 067, Gabon
| |
Collapse
|
5
|
Omole Z, Dorrell N, Elmi A, Nasher F, Gundogdu O, Wren BW. Pathogenicity and virulence of Campylobacter jejuni: What do we really know? Virulence 2024; 15:2436060. [PMID: 39648291 PMCID: PMC11633169 DOI: 10.1080/21505594.2024.2436060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and is a major public health concern worldwide. Despite its importance, our understanding of how C. jejuni causes diarrhoea and interacts with its hosts is limited due to the absence of appropriate infection models and established virulence factors found in other enteric pathogens. Additionally, despite its genetic diversity, non-pathogenic C. jejuni strains are unknown. Regardless of these limitations, significant progress has been made in understanding how C. jejuni uses a complex array of factors which aid the bacterium to survive and respond to host defences. This review provides an update on fitness and virulence determinants of this important pathogen and questions our knowledge on these determinants that are often based on inferred genomics knowledge and surrogate infection models.
Collapse
Affiliation(s)
- Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics (Basel) 2024; 13:1143. [PMID: 39766533 PMCID: PMC11672454 DOI: 10.3390/antibiotics13121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Campylobacter jejuni (CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
7
|
Malet-Villemagne J, Vidic J. Extracellular vesicles in the pathogenesis of Campylobacter jejuni. Microbes Infect 2024; 26:105377. [PMID: 38866352 DOI: 10.1016/j.micinf.2024.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Bacteria in genus Campylobacter are the leading cause of foodborne infections worldwide. Here we describe the roles of extracellular vesicles in the pathogenesis of these bacteria and current knowledge of vesicle biogenesis. We also discuss the advantages of this alternative secretion pathway for bacterial virulence.
Collapse
Affiliation(s)
- Jeanne Malet-Villemagne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350, Jouy en Josas, France.
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350, Jouy en Josas, France.
| |
Collapse
|
8
|
Habib I, Mohamed MYI, Lakshmi GB, Al Marzooqi HM, Afifi HS, Shehata MG, Khan M, Ghazawi A, Abdalla A, Anes F. Quantitative assessment and genomic profiling of Campylobacter dynamics in poultry processing: a case study in the United Arab Emirates integrated abattoir system. Front Microbiol 2024; 15:1439424. [PMID: 39296292 PMCID: PMC11408311 DOI: 10.3389/fmicb.2024.1439424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
In the United Arab Emirates, no previous research has investigated the dynamics of the foodborne pathogen Campylobacter in broiler abattoir processing. This study conducted in one of the largest poultry producers in the UAE, following each key slaughter stage-defeathering, evisceration, and final chilling-five broiler carcasses were collected from 10 slaughter batches over a year. Additionally, one caecum was obtained from 15 chickens in each slaughter batch to evaluate the flock colonization. In total, 300 samples (150 carcasses and 150 caeca) were collected and enumerated for Campylobacter using standard methods. Campylobacter was pervasive in caecal samples from all slaughter batches, with 86% of carcasses post-defeathering and evisceration stages and 94% post-chilling tested positive for Campylobacter. Campylobacter coli predominates in 55.2% of positive samples, followed by Campylobacter jejuni in 21%, with both species co-existing in 23.8% of the samples. Campylobacter counts in caecal contents ranged from 6.7 to 8.5 log10 CFU/g, decreasing post-defeathering and evisceration to 3.5 log10 CFU/g of neck skin and further to 3.2 log10 CFU/g of neck skin post-evisceration. After chilling, 70% of carcasses exceeded 3 log10 CFU/g of neck skin. Whole-genome sequencing (WGS) of 48 isolates unveiled diverse sequence types and clusters, with isolates sharing the same clusters (less than 20 single nucleotide polymorphisms) between different farms, different flocks within the same farm, as well as in consecutive slaughter batches, indicating cross-contamination. Multiple antimicrobial resistance genes and mutations in gyrA T86I (conferring fluoroquinolone resistance) and an RNA mutation (23S r.2075; conferring macrolide resistance) were widespread, with variations between C. coli and C. jejuni. WGS results revealed that selected virulence genes (pglG, pseD, pseI, flaA, flaB, cdtA, and cdtC) were significantly present in C. jejuni compared to C. coli isolates. This study offers the first insights into Campylobacter dynamics in poultry processing in the UAE. This work provides a base for future research to explore additional contributors to Campylobacter contamination in primary production. In conclusion, effective Campylobacter management demands a comprehensive approach addressing potential contamination sources at every production and processing stage, guided by continued microbiological surveillance and genomic analysis to safeguard public health and food safety.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Glindya Bhagya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hassan Mohamed Al Marzooqi
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Hanan Sobhy Afifi
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Mohamed Gamal Shehata
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTACITY), Alexandria, Egypt
| | - Mushtaq Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Abdalla
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Golden O, Gutierrez M, O'Flaherty J, Unger K, Doyle B, Keogh T, McLernon J, Pearce R, O'Brien T, Byrne W. Implementation of a national monitoring programme of Campylobacter in Irish broilers to measure progress of on-farm and primary processing control measures. Zoonoses Public Health 2024; 71:663-672. [PMID: 38544332 DOI: 10.1111/zph.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND Campylobacter is the most common food-borne pathogen in the European Union. In 2018, the crude incidence rate in Ireland was 63.6 per 100,000 population. Chicken is considered an important source of infection for humans. In 2015, the Campylobacter Stakeholders' Group (CSG) was established to reduce Campylobacter contamination levels in Irish broiler flocks. AIMS This work aimed to describe the Campylobacter monitoring programme that was established by the CSG, to analyse the results of this testing between 2019 and 2022, and to assess progress. METHODS AND RESULTS This paper describes the monitoring programme that was established by the CSG, which harmonized Campylobacter enumeration testing across all Irish broiler processors and allowed comparability of results for trend analysis. An analysis of the 2019-2022 data is presented here and compared to previous studies of Campylobacter levels in Irish broilers. An analysis of the 2019-2022 data showed a significant reduction in levels in both caeca and neck skin when the results from 2022 were compared to those from 2019 to 2020. Campylobacter spp. were detected in 37% of caecal samples from first depopulation (pre-thin) broilers and 30% of neck skin samples in 2022, with just 4% of carcases (in neck skin samples) with ≥1000 colony-forming units per gram detected in 2022. Campylobacter levels detected in Irish broilers, in the present monitoring programme were less than those reported in previous studies in both caecal and carcase samples, although not directly comparable for statistical significance because of differences in study methods. CONCLUSIONS The cooperation between stakeholders and regulators of the Irish broiler chicken industry over the past decade has facilitated a coordinated approach to monitoring of Campylobacter levels in broilers, and implementation of control measures. This has enabled a steady reduction in the levels of Campylobacter in Irish chicken.
Collapse
Affiliation(s)
- Olwen Golden
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Co. Kildare, Ireland
| | - Montserrat Gutierrez
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Co. Kildare, Ireland
| | - Joseph O'Flaherty
- Veterinary Public Health Policy, Department of Agriculture, Food and the Marine, Dublin 2, Ireland
| | - Kilian Unger
- Veterinary Public Health Policy, Department of Agriculture, Food and the Marine, Dublin 2, Ireland
| | - Bernadette Doyle
- Veterinary Medicines, AMR, ABP, TSE Division, Celbridge, Co. Kildare, Ireland
| | - Tara Keogh
- North Veterinary Area Management, Department of Agriculture, Food and the Marine, Cavan, Co Cavan, Ireland
| | - Joanne McLernon
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Co. Kildare, Ireland
| | - Rachel Pearce
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Co. Kildare, Ireland
| | - Tony O'Brien
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Co. Kildare, Ireland
| | - William Byrne
- Food Microbiology Division, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Co. Kildare, Ireland
| |
Collapse
|
10
|
Middendorf PS, Wijnands LM, Boeren S, Zomer AL, Jacobs-Reitsma WF, den Besten HM, Abee T. Activation of the l-fucose utilization cluster in Campylobacter jejuni induces proteomic changes and enhances Caco-2 cell invasion and fibronectin binding. Heliyon 2024; 10:e34996. [PMID: 39220920 PMCID: PMC11365321 DOI: 10.1016/j.heliyon.2024.e34996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most Campylobacter jejuni isolates carry the fucose utilization cluster (Cj0480c-Cj0489) that supports the metabolism of l-fucose and d-arabinose. In this study we quantified l-fucose and d-arabinose metabolism and metabolite production, and the impact on Caco-2 cell interaction and binding to fibronectin, using C. jejuni NCTC11168 and the closely related human isolate C. jejuni strain 286. When cultured with l-fucose and d-arabinose, both isolates showed increased survival and production of acetate, pyruvate and succinate, and the respective signature metabolites lactate and glycolic acid, in line with an overall upregulation of l-fucose cluster proteins. In vitro Caco-2 cell studies and fibronectin-binding experiments showed a trend towards higher invasion and a significantly higher fibronectin binding efficacy of C. jejuni NCTC11168 cells grown with l-fucose and d-arabinose, while no significant differences were found with C. jejuni 286. Both fibronectin binding proteins, CadF and FlpA, were detected in the two isolates, but were not significantly differentially expressed in l-fucose or d-arabinose grown cells. Comparative proteomics analysis linked the C. jejuni NCTC11168 phenotypes uniquely to the more than 135-fold upregulated protein Cj0608, putative TolC-like component MacC, which, together with the detected Cj0606 and Cj0607 proteins, forms the tripartite secretion system MacABC with putative functions in antibiotic resistance, cell envelope stress response and virulence in Gram negative pathogenic bacteria. Further studies are required to elucidate the role of the MacABC system in C. jejuni cell surface structure modulation and virulence.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lucas M. Wijnands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
11
|
Dziegiel AH, Bloomfield SJ, Savva GM, Palau R, Janecko N, Wain J, Mather AE. High Campylobacter diversity in retail chicken: epidemiologically important strains may be missed with current sampling methods. Epidemiol Infect 2024; 152:e101. [PMID: 39168635 PMCID: PMC11736455 DOI: 10.1017/s0950268824000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 08/23/2024] Open
Abstract
Campylobacter spp. are leading bacterial gastroenteritis pathogens. Infections are largely underreported, and the burden of outbreaks may be underestimated. Current strategies of testing as few as one isolate per sample can affect attribution of cases to epidemiologically important sources with high Campylobacter diversity, such as chicken meat. Multiple culture method combinations were utilized to recover and sequence Campylobacter from 45 retail chicken samples purchased across Norwich, UK, selecting up to 48 isolates per sample. Simulations based on resampling were used to assess the impact of Campylobacter sequence type (ST) diversity on outbreak detection. Campylobacter was recovered from 39 samples (87%), although only one sample was positive through all broth, temperature, and plate combinations. Three species were identified (Campylobacter jejuni, Campylobacter coli, and Campylobacter lari), and 33% of samples contained two species. Positive samples contained 1-8 STs. Simulation revealed that up to 87 isolates per sample would be required to detect 95% of the observed ST diversity, and 26 isolates would be required for the average probability of detecting a random theoretical outbreak ST to reach 95%. An optimized culture approach and selecting multiple isolates per sample are essential for more complete Campylobacter recovery to support outbreak investigation and source attribution.
Collapse
Affiliation(s)
| | | | - George M. Savva
- Core Science Resources, Quadram Institute Bioscience, Norwich, UK
| | - Raphaëlle Palau
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, UK
| | - Nicol Janecko
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, UK
| | - John Wain
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alison E. Mather
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Hock L, Walczak C, Mosser J, Ragimbeau C, Cauchie HM. Exploring the Role of the Environment as a Reservoir of Antimicrobial-Resistant Campylobacter: Insights from Wild Birds and Surface Waters. Microorganisms 2024; 12:1621. [PMID: 39203463 PMCID: PMC11356556 DOI: 10.3390/microorganisms12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing global health challenge, compromising bacterial infection treatments and necessitating robust surveillance and mitigation strategies. The overuse of antimicrobials in humans and farm animals has made them hotspots for AMR. However, the spread of AMR genes in wildlife and the environment represents an additional challenge, turning these areas into new AMR hotspots. Among the AMR bacteria considered to be of high concern for public health, Campylobacter has been the leading cause of foodborne infections in the European Union since 2005. This study examines the prevalence of AMR genes and virulence factors in Campylobacter isolates from wild birds and surface waters in Luxembourg. The findings reveal a significant prevalence of resistant Campylobacter strains, with 12% of C. jejuni from wild birds and 37% of C. coli from surface waters carrying resistance genes, mainly against key antibiotics like quinolones and tetracycline. This study underscores the crucial role of the environment in the spread of AMR bacteria and genes, highlighting the urgent need for enhanced surveillance and control measures to curb AMR in wildlife and environmental reservoirs and reduce transmission risks to humans. This research supports One Health approaches to tackling antimicrobial resistance and protecting human, animal, and environmental health.
Collapse
Affiliation(s)
- Louise Hock
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Cécile Walczak
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Juliette Mosser
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg;
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| |
Collapse
|
13
|
Zainol MFA, Safiyanu MB, Aziz SA, Omar AR, Chuang KP, Mariatulqabtiah AR. Campylobacteriosis and Control Strategies against Campylobacters in Poultry Farms. J Microbiol Biotechnol 2024; 34:987-993. [PMID: 38719774 PMCID: PMC11180925 DOI: 10.4014/jmb.2311.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 05/29/2024]
Abstract
Campylobacteriosis is a significant foodborne illness caused by Campylobacter bacteria. It is one of the most common bacterial causes of gastroenteritis worldwide, with poultry being a major reservoir and source of infection in humans. In poultry farms, Campylobacters colonize the intestinal tract of chickens and contaminate meat during processing. Vaccines under development against Campylobacters in poultry showed partial or no protection against their cecal colonization. Therefore, this review will elaborate on campylobacteriosis and emphasize the control strategies and recent vaccine trials against Campylobacters in poultry farms. The epidemiology, diagnosis, and treatment of Campylobacter infection, along with specific mention of poultry Campylobacter contamination events in Malaysia, will also be discussed.
Collapse
Affiliation(s)
- Mohamad Fadzirul Anwar Zainol
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mansur Bala Safiyanu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Science Laboratory Technology, School of Science Engineering and Technology, Federal Polytechnic Daura, P.M.B 1049, Daura, Katsina State, Nigeria
| | - Saleha Abd Aziz
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kuo Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Centre, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Imbrea AM, Balta I, Dumitrescu G, McCleery D, Pet I, Iancu T, Stef L, Corcionivoschi N, Liliana PC. Exploring the Contribution of Campylobacter jejuni to Post-Infectious Irritable Bowel Syndrome: A Literature Review. APPLIED SCIENCES 2024; 14:3373. [DOI: 10.3390/app14083373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This comprehensive review investigates the specific impact of the foodborne pathogen Campylobacter jejuni (C. jejuni) on gastrointestinal health, focusing on its connection to post-infectious irritable bowel syndrome (PI-IBS). This review examines the pathogen’s pathophysiology, clinical implications and epidemiological trends using recent research and data to highlight its prevalence and association with PI-IBS. A detailed literature analysis synthesizes current research to illuminate Campylobacter’s long-lasting effects on gut microbiota and intestinal function. It provides a detailed analysis of the literature to shed light on C. jejuni’s long-term impact on gut microbiota and intestinal function. The findings suggest the need for multifaceted prevention and treatment approaches considering individual, microbial and epidemiological factors, thus contributing to a more nuanced understanding of PI-IBS following C. jejuni infection.
Collapse
Affiliation(s)
- Ana-Maria Imbrea
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Petculescu-Ciochina Liliana
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
15
|
Marconi F, Sartoni M, Girardi C, Rossi A, Carrini M, Nuvoloni R, Pedonese F, Munaò G. Analysis of two cross-contamination cases of Campylobacter jejuni foodborne disease in fragile subjects in the territory of a Local Health Authority in Tuscany, Italy. Ital J Food Saf 2024; 13:12053. [PMID: 38577580 PMCID: PMC10993647 DOI: 10.4081/ijfs.2024.12053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 04/06/2024] Open
Abstract
Campylobacteriosis is the most reported foodborne disease in the European Union, with more than 100,000 confirmed cases annually. Human infection can be caused by a low infectious dose, and in fragile populations, the food disease can manifest itself in acute and severe forms. This study aims to analyze two cases of campylobacteriosis in fragile people caused by Campylobacter jejuni in 2023 in Tuscany and the actions of the Local Health Competent Authority. From the results of the related investigations, it was possible to attribute both cases of foodborne diseases to unsafe food management during preparation/administration. Given the peculiar characteristics of the etiological agent, it is necessary to focus the attention of the population, especially those who deal with fragile subjects, on the good hygiene practices to be followed both at home and in collective catering.
Collapse
Affiliation(s)
| | | | - Clara Girardi
- Department of Veterinary Sciences, University of Pisa
| | - Aurelio Rossi
- Department of Veterinary Sciences, University of Pisa
| | | | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa
| | - Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa
| | - Giovanni Munaò
- Veterinary Public Health and Food Safety Functional Unit, Local Health Competent Authority Toscana Centro, Firenze 2, Calenzano, Italy
| |
Collapse
|
16
|
Greminger S, Strahm C, Notter J, Martens B, Helfenstein S, Den Hollander J, Frischknecht M. Vertebral osteomyelitis with Campylobacter jejuni - a case report and review of the literature of a very rare disease. J Bone Jt Infect 2024; 9:59-65. [PMID: 38601004 PMCID: PMC11002916 DOI: 10.5194/jbji-9-59-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 04/12/2024] Open
Abstract
Infections with Campylobacter species mainly cause gastrointestinal disease and are usually self-limiting. Systemic complications such as bacteremia and osteoarticular infections are rare. Here we report a very rare case of a vertebral osteomyelitis due to C. jejuni, and we reviewed the literature for similar cases, identifying six other cases. Therapy should be guided on resistance testing if available due to emerging resistance rates, especially to fluoroquinolones. Azithromycin may be a treatment option for C. jejuni spondylodiscitis.
Collapse
Affiliation(s)
- Simone Greminger
- Medical Center Pflanzberg, Poststrasse 20, 8274 Tägerwilen, Switzerland
| | - Carol Strahm
- Division of Infectious Diseases, Cantonal Hospital St Gallen, Rorschacher Strasse 95, 9007 St Gallen, Switzerland
| | - Julia Notter
- Division of Infectious Diseases, Cantonal Hospital St Gallen, Rorschacher Strasse 95, 9007 St Gallen, Switzerland
| | - Benjamin Martens
- Center for Spine Surgery Eastern Switzerland, Cantonal Hospital St Gallen, Rorschacher Strasse 95, 9007 St Gallen, Switzerland
| | - Seth Florian Helfenstein
- Division of General Internal Medicine, Cantonal Hospital St Gallen, Rorschacher Strasse 95, 9007 St Gallen, Switzerland
| | - Jürgen Den Hollander
- Cantonal network of Radiology and Nuclear Medicine, Cantonal Hospital St Gallen, Rorschacher Strasse 95, 9007 St Gallen, Switzerland
| | - Manuel Frischknecht
- Division of Infectious Diseases, Cantonal Hospital St Gallen, Rorschacher Strasse 95, 9007 St Gallen, Switzerland
| |
Collapse
|
17
|
Dermatas A, Rozos G, Zaralis K, Dadamogia A, Fotou K, Bezirtzoglou E, Akrida-Demertzi K, Demertzis P, Voidarou C(C. Overview of Ecology and Aspects of Antibiotic Resistance in Campylobacter spp. Isolated from Free-Grazing Chicken Tissues in Rural Households. Microorganisms 2024; 12:368. [PMID: 38399772 PMCID: PMC10892918 DOI: 10.3390/microorganisms12020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rural households all over the world rear backyard chicken mainly for their own consumption and, to a lesser extent, for barter trade. These chickens represent a staple dish with numerous culinary variations and a cheap source of protein. Although some Campylobacter species, and particularly Campylobacter jejuni and Campylobacter coli, have been associated with industrial poultry carcasses, studies concerning the ecology of this genus in rural households do not exist. To assess the prevalence of Campylobacter species in the tissues of backyard chickens, samples were collected from birds Gallus domesticus bred in households in the rural area of Epirus (Greece), and Campylobacter strains were isolated by quantitative methods at 37 °C and 42 °C. In total, 256 strains were identified, belonging to 17 Campylobacter species, with C. jejuni and C. coli being the most prevalent. From the four ecological parameters studied (size of the flock, presence of small ruminants in the same household, presence of other poultry species in the same household, and feeding leftovers of the household), the size of the flock and the presence of small ruminants and/or pigs in the same household mostly affected the distribution of these strains. To study the phenotypical resistance against 14 antibiotics, 215 strains were selected. The results showed a high prevalence of multidrug-resistance (MDR) strains extending to all classes of antibiotics. Further genome analysis revealed the presence of genes coding resistance (blaOxA-61, tet(O), tet(A) cmeA, cmeB, cmeC, and gyrA (Thr-86-Ile mutation)), with the efflux pump CmeABC being the most prevalent. All antimicrobial resistance-encoded genes co-circulated, except for blaOXA-61, which moved independently. The minimum inhibitory concentration (MIC) values of two out of three antibiotics (representing different classes) were reduced when the strains tested were exposed to carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a known efflux pump inhibitor. The same result was obtained with the addition of CCCP to the MIC values of bile salts. These results lead to the conclusion that Campylobacter species are present in an impressive diversity in backyard chicken tissues and that they exert a significant resistance to antibiotics, raising a potential danger for public health.
Collapse
Affiliation(s)
- Argyrios Dermatas
- Food Chemistry Laboratory, Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.D.); (K.A.-D.); (P.D.)
| | - Georgios Rozos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Konstantinos Zaralis
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Aikaterini Dadamogia
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
| | - Konstantina Fotou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantoula Akrida-Demertzi
- Food Chemistry Laboratory, Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.D.); (K.A.-D.); (P.D.)
| | - Panagiotis Demertzis
- Food Chemistry Laboratory, Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.D.); (K.A.-D.); (P.D.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece; (G.R.); (A.D.); (K.F.)
| |
Collapse
|
18
|
Abay KA, Desalegn G, Weldu Y, Gebrehiwot GT, Gebreyohannes G, Welekidan LN, Desta KH, Asfaw YT, Teka AG, Gebremedhin MT. Prevalence and Antimicrobial Resistance of Campylobacter Species and Associated Factors Among Under-Five Children with Diarrhea at Randomly Selected Public Health Facilities in Mekelle, Tigray, Ethiopia. Infect Drug Resist 2024; 17:495-505. [PMID: 38348229 PMCID: PMC10860571 DOI: 10.2147/idr.s438370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Background Campylobacter species are the most predominant bacterial agents to cause diarrhea in under-five children. It poses a serious challenge to public health worldwide with ongoing acquisition of resistance to different antimicrobials with multiple patterns. Thus, this study aimed to determine the prevalence, and antimicrobial resistance of Campylobacter species, and associated factors among under-five children with diarrhea in selected public health facilities. Methods A cross-sectional study was conducted among under-five children with diarrhea using convenient sampling. Health facilities were selected using a simple random sampling method. The stool samples collected from 214 study participants were transported and processed following standard microbiological protocols. Campylobacter isolates were identified using Gram staining, biochemical test, serological test, and aerobic growth at 25°C. Antimicrobial susceptibility profiles of isolates were performed using the Kirby-Bauer method. Data were analyzed using SPSS ver. 25.0. Association between variables was assessed using Chi-square test and Logistic regression, with P ≤ 0.05. Results The subject's mean age was 31.3 (±3.9) months. Of the 214 samples cultured, 14 (6.5%) of them were positive for Campylobacter species with 95% CI (3.3-10.3). Out of the isolated species, 12 (85.7%) were Campylobacter jejuni /Campylobacter coli and 2 (14.3%) were other Campylobacter species. Bottle feeding and history of direct contact to domestic animals were associated with Campylobacter species (AOR=5.13, CI=1.21-21.6, p=0.026 and AOR=4.93, CI=1.33-18.17, P=0.016), respectively. Campylobacter isolates were highly resistant to ciprofloxacin 5 (35.7%), and tetracycline 3 (21.4%). Conclusion A higher incidence of Campylobacter species was obtained in children who were bottle-fed and who had a history of direct contact with domestic animals. The isolates were highly resistant to ciprofloxacin and tetracycline. These findings indicate that special attention is needed for better management of Campylobacter drug resistance in under-five children. To enhance and support our current findings, further research using molecular techniques is needed to identify the resistant and virulent genes of the bacterial isolates.
Collapse
Affiliation(s)
- Kebede Araya Abay
- Department of Microbiology and Immunology, Dr. Tewelde Legesse College of Health Sciences, Mekelle, Tigray, Ethiopia
| | - Girmay Desalegn
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Yemane Weldu
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Gebrecherkos Teame Gebrehiwot
- Department of Biomedical Research and Technology Transfer, Tigray Health Research Institute, Mekelle, Tigray, Ethiopia
| | - Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Letemicheal Negash Welekidan
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kibra Hailu Desta
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Yohanns Tekle Asfaw
- Department of Veterinary Medicine, College of Animal Health, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Ataklti Gessese Teka
- Department of Biomedical Research and Technology Transfer, Tigray Health Research Institute, Mekelle, Tigray, Ethiopia
| | - Mulugeta Tilahun Gebremedhin
- Department of Biomedical Research and Technology Transfer, Tigray Health Research Institute, Mekelle, Tigray, Ethiopia
| |
Collapse
|
19
|
Suominen K, Häkkänen T, Ranta J, Ollgren J, Kivistö R, Perko-Mäkelä P, Salmenlinna S, Rimhanen-Finne R. Campylobacteriosis in Finland: Passive Surveillance in 2004-2021 and a Pilot Case-Control Study with Whole-Genome Sequencing in Summer 2022. Microorganisms 2024; 12:132. [PMID: 38257959 PMCID: PMC11154465 DOI: 10.3390/microorganisms12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis causes a significant disease burden in humans worldwide and is the most common type of zoonotic gastroenteritis in Finland. To identify infection sources for domestic Campylobacter infections, we analyzed Campylobacter case data from the Finnish Infectious Disease Register (FIDR) in 2004-2021 and outbreak data from the National Food- and Waterborne Outbreak Register (FWO Register) in 2010-2021, and conducted a pilot case-control study (256 cases and 756 controls) with source attribution and patient sample analysis using whole-genome sequencing (WGS) in July-August 2022. In the FIDR, 41% of the cases lacked information on travel history. Based on the case-control study, we estimated that of all cases, 39% were of domestic origin. Using WGS, 22 clusters of two or more cases were observed among 185 domestic cases, none of which were reported to the FWO register. Based on this case-control study and source attribution, poultry is an important source of campylobacteriosis in Finland. More extensive sampling and comparison of patient, food, animal, and environmental isolates is needed to estimate the significance of other sources. In Finland, campylobacteriosis is more often of domestic origin than FIDR notifications indicate. To identify the domestic cases, travel information should be included in the FIDR notification, and to improve outbreak detection, all domestic patient isolates should be sequenced.
Collapse
Affiliation(s)
- Kristiina Suominen
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Tessa Häkkänen
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Jukka Ranta
- Risk Assessment Unit, Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland;
| | - Jukka Ollgren
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland;
| | | | - Saara Salmenlinna
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Ruska Rimhanen-Finne
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| |
Collapse
|
20
|
Garcia-Fernandez A, Janowicz A, Marotta F, Napoleoni M, Arena S, Primavilla S, Pitti M, Romantini R, Tomei F, Garofolo G, Villa L. Antibiotic resistance, plasmids, and virulence-associated markers in human strains of Campylobacter jejuni and Campylobacter coli isolated in Italy. Front Microbiol 2024; 14:1293666. [PMID: 38260875 PMCID: PMC10800408 DOI: 10.3389/fmicb.2023.1293666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis, a prevalent foodborne gastrointestinal infection in Europe, is primarily caused by Campylobacter jejuni and Campylobacter coli, with rising global concerns over antimicrobial resistance in these species. This study comprehensively investigates 133 human-origin Campylobacter spp. strains (102 C. jejuni and 31 C. coli) collected in Italy from 2013 to 2021. The predominant Multilocus Sequence Typing Clonal complexes (CCs) were ST-21 CC and ST-206 CC in C. jejuni and ST-828 CC in C. coli. Ciprofloxacin and tetracycline resistance, mainly attributed to GyrA (T86I) mutation and tet(O) presence, were prevalent, while erythromycin resistance was associated with 23S rRNA gene mutation (A2075G), particularly in C. coli exhibiting multidrug-resistant pattern CipTE. Notable disparities in virulence factors among strains were observed, with C. jejuni exhibiting a higher abundance compared to C. coli. Notably, specific C. jejuni sequence types, including ST-21, ST-5018, and ST-1263, demonstrated significantly elevated counts of virulence genes. This finding underscores the significance of considering both the species and strain-level variations in virulence factor profiles, shedding light on potential differences in the pathogenicity and clinical outcomes associated with distinct C. jejuni lineages. Campylobacter spp. plasmids were classified into three groups comprising pVir-like and pTet-like plasmids families, exhibiting diversity among Campylobacter spp. The study underscores the importance of early detection through Whole Genome Sequencing to identify potential emergent virulence, resistance/virulence plasmids, and new antimicrobial resistance markers. This approach provides actionable public health data, supporting the development of robust surveillance programs in Italy.
Collapse
Affiliation(s)
| | - Anna Janowicz
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Maira Napoleoni
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Sergio Arena
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Primavilla
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Monica Pitti
- Centro di Riferimento per la Tipizzazione delle Salmonelle, CeRTiS, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Romina Romantini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
21
|
Sahin O, Pang J, Pavlovic N, Tang Y, Adiguzel MC, Wang C, Zhang Q. A Longitudinal Study on Campylobacter in Conventionally Reared Commercial Broiler Flocks in the United States: Prevalence and Genetic Diversity. Avian Dis 2024; 67:317-325. [PMID: 38300653 DOI: 10.1637/aviandiseases-d-23-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/18/2023] [Indexed: 02/02/2024]
Abstract
Poultry meat contaminated with Campylobacter, a major bacterial cause of foodborne gastroenteritis worldwide, is considered the primary source of human campylobacteriosis. Thus, reduction or elimination of Campylobacter in poultry production will have a significant impact on food safety and public health. Despite the significant progress made over the last decades, many puzzles remain about the epidemiology of Campylobacter on poultry farms, hampering the development of an effective control strategy. This longitudinal study was conducted to determine the prevalence and genetic diversity of Campylobacter in a U.S. commercial broiler production farm system. Cecal contents (15 samples/flock) and boot swabs (3 samples/flock) were collected from approximately 6-wk-old birds from 406 conventional broiler flocks reared in 53 houses on 15 farms (located within a relatively close geographic proximity and managed by the same poultry integrator) for up to eight consecutive production cycles and cultured for Campylobacter. Pulsed-field gel electrophoresis was used to investigate the genetic diversity of the Campylobacter jejuni isolates recovered from the cecal contents. The prevalence of Campylobacter at the farm, house, and flock levels were found to be 93% (14/15), 79% (42/53), and 47% (192/406), respectively. Campylobacter prevalence varied remarkably among different farms and flocks, with some farms or houses testing consistently negative while others being positive all the time over the entire study period. Campylobacter isolation rate changed significantly by sample type (higher by cecal contents vs. boot swabs) and season/production cycle (higher in spring vs. other seasons). The majority (88%; 2364/2675) of the isolates were identified as C. jejuni, and almost all the rest (11%; 303/2675) were Campylobacter coli. Genotyping showed limited diversity within a flock and suggested persistence of some C. jejuni clones over multiple production cycles on the same farm. In conclusion, this study indicated that although Campylobacter prevalence was overall high, there were marked differences in the prevalence among the broiler flocks or farms tested. Future studies aimed at identification of potential risk factors associated with differential Campylobacter status are warranted in order to develop effective on-farm interventions.
Collapse
Affiliation(s)
- Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| | - Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- Department of Statistics, Iowa State University, Ames, IA 50011
| | - Nada Pavlovic
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Yizhi Tang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Mehmet Cemal Adiguzel
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- Department of Statistics, Iowa State University, Ames, IA 50011
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
22
|
Choi Y, Lee W, Kwon JG, Kang A, Kwak MJ, Eor JY, Kim Y. The current state of phage therapy in livestock and companion animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:57-78. [PMID: 38618037 PMCID: PMC11007465 DOI: 10.5187/jast.2024.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 04/16/2024]
Abstract
In a global context, bacterial diseases caused by pathogenic bacteria have inflicted sustained damage on both humans and animals. Although antibiotics initially appeared to offer an easy treatment for most bacterial infections, the recent rise of multidrug-resistant bacteria, stemming from antibiotic misuse, has prompted regulatory measures to control antibiotic usage. Consequently, various alternatives to antibiotics are being explored, with a particular focus on bacteriophage (phage) therapy for treating bacterial diseases in animals. Animals are broadly categorized into livestock, closely associated with human dietary habits, and companion animals, which have attracted increasing attention. This study highlights phage therapy cases targeting prominent bacterial strains in various animals. In recent years, research on bacteriophages has gained considerable attention, suggesting a promising avenue for developing alternative substances to antibiotics, particularly crucial for addressing challenging bacterial diseases in the future.
Collapse
Affiliation(s)
- Youbin Choi
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Woongji Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Joon-Gi Kwon
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Anna Kang
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Ju-Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
23
|
Cribb DM, Moffatt CRM, Wallace RL, McLure AT, Bulach D, Jennison AV, French N, Valcanis M, Glass K, Kirk MD. Genomic and clinical characteristics of campylobacteriosis in Australia. Microb Genom 2024; 10:001174. [PMID: 38214338 PMCID: PMC10868609 DOI: 10.1099/mgen.0.001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Campylobacter spp. are a common cause of bacterial gastroenteritis in Australia, primarily acquired from contaminated meat. We investigated the relationship between genomic virulence characteristics and the severity of campylobacteriosis, hospitalisation, and other host factors.We recruited 571 campylobacteriosis cases from three Australian states and territories (2018-2019). We collected demographic, health status, risk factors, and self-reported disease data. We whole genome sequenced 422 C. jejuni and 84 C. coli case isolates along with 616 retail meat isolates. We classified case illness severity using a modified Vesikari scoring system, performed phylogenomic analysis, and explored risk factors for hospitalisation and illness severity.On average, cases experienced a 7.5 day diarrhoeal illness with additional symptoms including stomach cramps (87.1 %), fever (75.6 %), and nausea (72.0 %). Cases aged ≥75 years had milder symptoms, lower Vesikari scores, and higher odds of hospitalisation compared to younger cases. Chronic gastrointestinal illnesses also increased odds of hospitalisation. We observed significant diversity among isolates, with 65 C. jejuni and 21 C. coli sequence types. Antimicrobial resistance genes were detected in 20.4 % of isolates, but multidrug resistance was rare (0.04 %). Key virulence genes such as cdtABC (C. jejuni) and cadF were prevalent (>90 % presence) but did not correlate with disease severity or hospitalisation. However, certain genes (e.g. fliK, Cj1136, and Cj1138) appeared to distinguish human C. jejuni cases from food source isolates.Campylobacteriosis generally presents similarly across cases, though some are more severe. Genotypic virulence factors identified in the literature to-date do not predict disease severity but may differentiate human C. jejuni cases from food source isolates. Host factors like age and comorbidities have a greater influence on health outcomes than virulence factors.
Collapse
Affiliation(s)
- Danielle M. Cribb
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Cameron R. M. Moffatt
- Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, Australia
| | - Rhiannon L. Wallace
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada
| | - Angus T. McLure
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Amy V. Jennison
- Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, Australia
| | - Nigel French
- Tāwharau Ora|School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| |
Collapse
|
24
|
Kostoglou D, Simoni M, Vafeiadis G, Kaftantzis NM, Giaouris E. Prevalence of Campylobacter spp., Salmonella spp., and Listeria monocytogenes, and Population Levels of Food Safety Indicator Microorganisms in Retail Raw Chicken Meat and Ready-To-Eat Fresh Leafy Greens Salads Sold in Greece. Foods 2023; 12:4502. [PMID: 38137306 PMCID: PMC10742679 DOI: 10.3390/foods12244502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The presence of microbial pathogens in foods compromises their safety resulting in foodborne illnesses, public health disorders, product recalls, and economic losses. In this work, 60 samples of chilled raw chicken meat and 40 samples of packaged ready-to-eat (RTE) fresh leafy greens salads, sold in Greek retail stores (butchers and supermarkets), were analyzed for the presence of three important foodborne pathogenic bacteria, i.e., Campylobacter spp., Salmonella spp., and Listeria monocytogenes, following the detection protocols of the International Organization for Standardization (ISO). In parallel, the total aerobic plate count (APC), Enterobacteriaceae, total coliforms, Escherichia coli, and staphylococci were also enumerated as hygiene (safety) indicator organisms. When present, representative typical colonies for each pathogen were biochemically verified, following the ISO guidelines. At the same time, all the Campylobacter isolates from chicken (n = 120) were identified to the species level and further phylogenetically discriminated through multiplex and repetitive sequence-based (rep) polymerase chain reaction (PCR) methods, respectively. Concerning raw chicken, Campylobacter spp. were recovered from 54 samples (90.0%) and Salmonella spp. were recovered from 9 samples (15.0%), while L. monocytogenes was present in 35 samples (58.3%). No Campylobacter was recovered from salads, and Salmonella was present in only one sample (2.5%), while three salads were found to be contaminated with L. monocytogenes (7.5%). The 65% of the Campylobacter chicken isolates belonged to C. jejuni, whereas the rest, 35%, belonged to C. coli. Alarmingly, APC was equal to or above 106 CFU/g in 53.3% and 95.0% of chicken and salad samples, respectively, while the populations of some of the other safety indicators were in some cases also high. In sum, this study unravels high occurrence percentages for some pathogenic and food safety indicator microorganisms in raw chicken meat and RTE fresh leafy greens salads sold in Greek retail, highlighting the need for more extensive microbiological control throughout the food production chain (from the farm/field to the market).
Collapse
Affiliation(s)
| | | | | | | | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece; (D.K.)
| |
Collapse
|
25
|
Woyda R, Oladeinde A, Endale D, Strickland T, Plumblee Lawrence J, Abdo Z. Virulence factors and antimicrobial resistance profiles of Campylobacter isolates recovered from consecutively reused broiler litter. Microbiol Spectr 2023; 11:e0323623. [PMID: 37882583 PMCID: PMC10871742 DOI: 10.1128/spectrum.03236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Campylobacter is a leading cause of foodborne illness in the United States due to consumption of contaminated or mishandled food products, often associated with chicken meat. Campylobacter is common in the microbiota of avian and mammalian gut; however, acquisition of antimicrobial resistance genes (ARGs) and virulence factors (VFs) may result in strains that pose significant threat to public health. Although there are studies investigating the genetic diversity of Campylobacter strains isolated from post-harvest chicken samples, there are limited data on the genome characteristics of isolates recovered from preharvest broiler production. Here, we show that Campylobacter jejuni and Campylobacter coli differ in their carriage of antimicrobial resistance and virulence factors may also differ in their ability to persist in litter during consecutive grow-out of broiler flocks. We found that presence/absence of virulence factors needed for evasion of host defense mechanisms and gut colonization played an integral role in differentiating Campylobacter strains.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, Georgia, USA
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
26
|
Gamża AM, Hagenaars TJ, Koene MGJ, de Jong MCM. Combining a parsimonious mathematical model with infection data from tailor-made experiments to understand environmental transmission. Sci Rep 2023; 13:12986. [PMID: 37563156 PMCID: PMC10415373 DOI: 10.1038/s41598-023-38817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Although most infections are transmitted through the environment, the processes underlying the environmental stage of transmission are still poorly understood for most systems. Improved understanding of the environmental transmission dynamics is important for effective non-pharmaceutical intervention strategies. To study the mechanisms underlying environmental transmission we formulated a parsimonious modelling framework including hypothesised mechanisms of pathogen dispersion and decay. To calibrate and validate the model, we conducted a series of experiments studying distance-dependent transmission of Campylobacter jejuni in broilers. We obtained informative simultaneous estimates for all three model parameters: the parameter of C. jejuni inactivation, the diffusion coefficient describing pathogen dispersion, and the transmission rate parameter. The time and distance dependence of transmission in the fitted model is quantitatively consistent with marked spatiotemporal patterns in the experimental observations. These results, for C. jejuni in broilers, show that the application of our modelling framework to suitable transmission data can provide mechanistic insight in environmental pathogen transmission.
Collapse
Affiliation(s)
- Anna M Gamża
- Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands.
| | - Thomas J Hagenaars
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands.
| | - Miriam G J Koene
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
27
|
Kato I, Minkevitch J, Sun J. Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review. Scand J Gastroenterol 2023; 58:1453-1465. [PMID: 37366241 DOI: 10.1080/00365521.2023.2228954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of zoonotic gastroenteritis. The other emerging group of Campylobacters spp. are part of human oral commensal, represented by C. concisus (CC), which has been recently linked to non-oral conditions. Although long-term gastrointestinal (GI) complications from these two groups of Campylobacters have been previously reviewed individually, overall impact of Campylobacter infection on GI carcinogenesis and their inflammatory precursor lesions has not been assessed collectively. AIMS To evaluate the available evidence concerning the association between Campylobacter infection/colonization and inflammatory bowel disease (IBD), reflux esophagitis/metaplasia colorectal cancer (CRC) and esophageal cancer (EC). METHODS We performed a comprehensive literature search of PubMed for relevant original publications and systematic reviews/meta-analyses of epidemiological and clinical studies. In addition, we gathered additional information concerning microbiological data, animal models and mechanistic data from in vitro studies. RESULTS Both retrospective and prospective studies on IBD showed relatively consistent increased risk associated with Campylobacter infection. Despite lack of supporting prospective studies, retrospective studies based on tissue/fecal microbiome revealed consistent enrichment of Campylobacter in CRC samples. Studies on EC precursor lesions (esophagitis and metaplasia) were generally supportive for the association with Campylobacter, while inconsistent observations on EC. Studies on both IBD and EC precursors suggested the predominant role of CC, but studies on CRC were not informative of species. CONCLUSIONS There is sufficient evidence calling for concerted effort in unveiling direct and indirect connection of this organism to colorectal and esophageal cancer in humans.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Minkevitch
- Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago (UIC), Chicago, IL, USA
- UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
28
|
Mantzios T, Tsiouris V, Papadopoulos GA, Economou V, Petridou E, Brellou GD, Giannenas I, Biliaderis CG, Kiskinis K, Fortomaris P. Investigation of the Effect of Three Commercial Water Acidifiers on the Performance, Gut Health, and Campylobacter jejuni Colonization in Experimentally Challenged Broiler Chicks. Animals (Basel) 2023; 13:2037. [PMID: 37370547 DOI: 10.3390/ani13122037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the effect of three commercial water acidifiers on the performance, gut health, and C. jejuni colonization in experimentally challenged broiler chicks. A total of 192 one-day-old broiler chicks (Ross 308®) were randomly allocated into 6 treatment groups with 4 replicates according to the following experimental design: group A, birds were not challenged and received tap water; group B, birds were challenged and received tap water; groups C, D, E, and F, birds were challenged and received tap water treated with 0.1% v/v SPECTRON®, with 0.1-0.2% v/v ProPhorce™ SA Exclusive, with 0.1-0.2% v/v Premium acid, and with 0.1-0.2% v/v Salgard® Liquid, respectively. The continuous water acidification evoked undesirable effects on broilers' performance and to an increased number of birds with ulcers and erosions in the oral cavity and the upper esophageal area. ProPhorce™ SA Exclusive and Premium acid significantly reduced the C. jejuni counts in the crop, whereas Salgard® Liquid significantly reduced the C. jejuni counts in the ceca of birds. At slaughter age, only Premium acid significantly reduced C. jejuni counts in the ceca of birds. All the tested products ameliorated the changes induced by C. jejuni infection in the pH in the ceca of birds. It can be concluded that besides the effectiveness of the tested products in controlling C. jejuni in broilers, their continuous application evoked undesirable effects on broilers' performance, leading to the need to modify the dosage scheme in future investigations.
Collapse
Affiliation(s)
- Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Georgios A Papadopoulos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vangelis Economou
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Costas G Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Paschalis Fortomaris
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
29
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
30
|
Ziomek M, Gondek M, Torracca B, Marotta F, Garofolo G, Wieczorek K, Michalak K, Fratini F, Pedonese F. Occurrence of Campylobacter in Faeces, Livers and Carcasses of Wild Boars Hunted in Tuscany (Italy) and Evaluation of MALDI-TOF MS for the Identification of Campylobacter Species. Foods 2023; 12:foods12040778. [PMID: 36832850 PMCID: PMC9956588 DOI: 10.3390/foods12040778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
A total of 193 wild boars hunted in Tuscany, an Italian region with a high presence of wild ungulates, were examined to assess the occurrence of Campylobacter species in faeces, bile, liver and carcasses, with the aim of clarifying their contribution to human infection through the food chain. Campylobacter spp. were found in 44.56% of the animals, 42.62% of the faecal samples, 18.18% of the carcass samples, 4.81% of the liver tissues and 1.97% of the bile samples. The Campylobacter species genotypically identified were C. coli, C. lanienae, C. jejuni and C. hyointestinalis. The prevalent species transpired to be C. coli and C. lanienae, which were isolated from all the matrices; C. jejuni was present in faeces and liver, while C. hyointestinalis only in faeces. Identification was carried out by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF MS) on 66 out of 100 isolates identified genotypically, and the technique yielded unsatisfactory results in the case of C. lanienae, which is responsible for sporadic human disease cases. The level of Campylobacter spp. contamination of meat and liver underlines the need to provide appropriate food safety information to hunters and consumers.
Collapse
Affiliation(s)
- Monika Ziomek
- Department of Food Hygiene of Animal Origin, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
- Correspondence: (M.Z.); (F.P.); Tel.: +48-81-445-68-91 (M.Z.); +39-050-2216707 (F.P.)
| | - Michał Gondek
- Department of Food Hygiene of Animal Origin, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
| | - Beatrice Torracca
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy
| | - Kinga Wieczorek
- National Veterinary Research Institute, Department of Hygiene of Food of Animal Origin, Partyzantow 57, 24-100 Pulawy, Poland
| | - Katarzyna Michalak
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: (M.Z.); (F.P.); Tel.: +48-81-445-68-91 (M.Z.); +39-050-2216707 (F.P.)
| |
Collapse
|
31
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
32
|
Woyda R, Oladeinde A, Endale D, Strickland T, Lawrence JP, Abdo Z. Broiler house environment and litter management practices impose selective pressures on antimicrobial resistance genes and virulence factors of Campylobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526821. [PMID: 36778422 PMCID: PMC9915665 DOI: 10.1101/2023.02.02.526821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Campylobacter infections are a leading cause of bacterial diarrhea in humans globally. Infections are due to consumption of contaminated food products and are highly associated with chicken meat, with chickens being an important reservoir for Campylobacter. Here, we characterized the genetic diversity of Campylobacter species detected in broiler chicken litter over three consecutive flocks and determined their antimicrobial resistance and virulence factor profiles. Antimicrobial susceptibility testing and whole genome sequencing were performed on Campylobacter jejuni (n = 39) and Campylobacter coli (n = 5) isolates. All C. jejuni isolates were susceptible to all antibiotics tested while C. coli (n =4) were resistant to only tetracycline and harbored the tetracycline-resistant ribosomal protection protein (TetO). Virulence factors differed within and across grow houses but were explained by the isolates' flock cohort, species and multilocus sequence type. Virulence factors involved in the ability to invade and colonize host tissues and evade host defenses were absent from flock cohort 3 C. jejuni isolates as compared to flock 1 and 2 isolates. Our results show that virulence factors and antimicrobial resistance genes differed by the isolates' multilocus sequence type and by the flock cohort they were present in. These data suggest that the house environment and litter management practices performed imposed selective pressures on antimicrobial resistance genes and virulence factors. In particular, the absence of key virulence factors within the final flock cohort 3 isolates suggests litter reuse selected for Campylobacter strains that are less likely to colonize the chicken host.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, GA, 31793
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
33
|
Mousavinafchi SB, Rahimi E, Shakerian A. Campylobacter spp. isolated from poultry in Iran: Antibiotic resistance profiles, virulence genes, and molecular mechanisms. Food Sci Nutr 2023; 11:1142-1153. [PMID: 36789060 PMCID: PMC9922131 DOI: 10.1002/fsn3.3152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Campylobacter spp. genera is one of the most common causes of microbial enteritis worldwide. The objective of this work was to investigate the antimicrobial resistance (AMR) patterns, virulence genes, and genetic variation of thermophilic Campylobacter species collected from chicken meat samples in Iran. A total of 255 meat specimens were taken and transferred to the laboratory. Culture methods were utilized to identify the Campylobacter genus, and PCR and sequencing were performed to confirm the organisms. Antimicrobial susceptibility evaluation was performed using broth microdilution for six antimicrobials [ciprofloxacin (CIP), nalidixic acid (NAL), sitafloxacin (SIT), erythromycin (ERY), tetracycline (TET), and gentamicin (GEN)]. By using PCR, AMR and virulence genes were detected. The detection rate of Campylobacter spp. was 64 (25.09%) out of 255 meat samples, with C. jejuni and C. coli accounting for 41 (64.06%) and 14 (21.87%), respectively. Other Campylobacter isolates accounted for 14.06% of the total (nine samples). The antibiotic susceptibility of all Campylobacter isolates was tested using six antibiotics, and all (100%) were resistant to CIP and NAL. However, TET resistance was observed in 93.9% and 83.3% of C. jejuni and C. coli isolates, respectively. Four (8.2%) C. jejuni isolates were multidrug-resistant (MDR), while none of the C. coli isolates were MDR. Two of the four MDR isolates were resistant to CIP, NAL, TET, and ERY, whereas the other two isolates were resistant to CIP, NAL, TET, and GEN. The values of the Minimum Inhibitory Concentration (MIC) were as follows: CIP, 64-256 μg/ml; NAL, 128-512 μg/ml; TET, 2-1024 μg/ml; SIT, 0.25-1 μg/ml; ERY, 1-32 μg/ml; and GEN, 1-256 μg/ml. recR, dnaJ, cdtC, cdtB, cdtA, flaA, ciaB, cadF, and pidA were discovered in more than 50% of C. jejuni isolates, although wlaN, virbll, cgtB, and ceuE were found in <50%. flaA, cadF, pidA, and ciaB were discovered in more than 50% of the C. coli samples, whereas recR, cdtC, cdtB, cdtA, and cgtB were found in less than half. For C. coli, the percentages for wlaN, dnaJ, virbll, and ceuE were all zero. The results of this study show Campylobacter isolates obtained from poultry have higher resistance to quinolones and TET, pathogenicity potential, and varied genotypes.
Collapse
Affiliation(s)
- Seyedeh Bita Mousavinafchi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Amir Shakerian
- Research Center of Nutrition and Organic Products, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| |
Collapse
|
34
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
35
|
Frirdich E, Vermeulen J, Biboy J, Vollmer W, Gaynor EC. Multiple Campylobacter jejuni proteins affecting the peptidoglycan structure and the degree of helical cell curvature. Front Microbiol 2023; 14:1162806. [PMID: 37143542 PMCID: PMC10151779 DOI: 10.3389/fmicb.2023.1162806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative helical bacterium. Its helical morphology, maintained by the peptidoglycan (PG) layer, plays a key role in its transmission in the environment, colonization, and pathogenic properties. The previously characterized PG hydrolases Pgp1 and Pgp2 are important for generating C. jejuni helical morphology, with deletion mutants being rod-shaped and showing alterations in their PG muropeptide profiles in comparison to the wild type. Homology searches and bioinformatics were used to identify additional gene products involved in C. jejuni morphogenesis: the putative bactofilin 1104 and the M23 peptidase domain-containing proteins 0166, 1105, and 1228. Deletions in the corresponding genes resulted in varying curved rod morphologies with changes in their PG muropeptide profiles. All changes in the mutants complemented except 1104. Overexpression of 1104 and 1105 also resulted in changes in the morphology and in the muropeptide profiles, suggesting that the dose of these two gene products influences these characteristics. The related helical ε-Proteobacterium Helicobacter pylori has characterized homologs of C. jejuni 1104, 1105, and 1228 proteins, yet deletion of the homologous genes in H. pylori had differing effects on H. pylori PG muropeptide profiles and/or morphology compared to the C. jejuni deletion mutants. It is therefore apparent that even related organisms with similar morphologies and homologous proteins can have diverse PG biosynthetic pathways, highlighting the importance of studying PG biosynthesis in related organisms.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Emilisa Frirdich,
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jacob Biboy
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Teixeira JS, Boras VF, Hetman BM, Taboada EN, Inglis GD. Molecular Epidemiological Evidence Implicates Cattle as a Primary Reservoir of Campylobacter jejuni Infecting People via Contaminated Chickens. Pathogens 2022; 11:1366. [PMID: 36422616 PMCID: PMC9698452 DOI: 10.3390/pathogens11111366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2024] Open
Abstract
The study aimed to determine the relative contribution of cattle to the burden of illness in a model agroecosystem with high rates of human campylobacteriosis (≥ 115 cases/100 K), and high densities of cattle, including large numbers of cattle housed in confined feeding operations (i.e., in southwestern Alberta, Canada). To accomplish this, a large-scale molecular epidemiological analysis of Campylobacter jejuni circulating within the study location was completed. In excess of 8000 isolates of C. jejuni from people (n = 2548 isolates), chickens (n = 1849 isolates), cattle (n = 2921 isolates), and water (n = 771 isolates) were subtyped. In contrast to previous studies, the source attribution estimates of clinical cases attributable to cattle vastly exceeded those attributed to chicken (i.e., three- to six-fold). Moreover, cattle were often colonized by C. jejuni (51%) and shed the bacterium in their feces. A large proportion of study isolates were found in subtypes primarily associated with cattle (46%), including subtypes infecting people and those associated with chickens (19%). The implication of cattle as a primary amplifying reservoir of C. jejuni subtypes in circulation in the study location is supported by the strong cattle association with subtypes that were found in chickens and in people, a lack of evidence indicating the foodborne transmission of C. jejuni from beef and dairy, and the large number of cattle and the substantial quantities of untreated manure containing C. jejuni cells. Importantly, the evidence implicated cattle as a source of C. jejuni infecting people through a transmission pathway from cattle to people via the consumption of chicken. This has implications for reducing the burden of campylobacteriosis in the study location and elsewhere.
Collapse
Affiliation(s)
- Januana S. Teixeira
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada
| | - Benjamin M. Hetman
- Office of Public Health Field Services and Training, Public Health Agency of Canada, Winnipeg, MB R3C 0P4, Canada
| | - Eduardo N. Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
37
|
Swanson D, Koren C, Hopp P, Jonsson ME, Rø GI, White RA, Grøneng GM. A One Health real-time surveillance system for nowcasting Campylobacter gastrointestinal illness outbreaks, Norway, week 30 2010 to week 11 2022. Euro Surveill 2022; 27:2101121. [PMID: 36305333 PMCID: PMC9615412 DOI: 10.2807/1560-7917.es.2022.27.43.2101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BackgroundCampylobacter is a leading cause of food and waterborne illness. Monitoring and modelling Campylobacter at chicken broiler farms, combined with weather pattern surveillance, can aid nowcasting of human gastrointestinal (GI) illness outbreaks. Near real-time sharing of data and model results with health authorities can help increase potential outbreak responsiveness.AimsTo leverage data on weather and Campylobacter on broiler farms to build a risk model for possible human Campylobacter outbreaks and to communicate risk assessments with health authorities.MethodsWe developed a spatio-temporal random effects model for weekly GI illness consultations in Norwegian municipalities with Campylobacter monitoring and weather data from week 30 2010 to 11 2022 to give 1-week nowcasts of GI illness outbreaks. The approach combined a municipality random effects baseline model for seasonally-adjusted GI illness with a second model for peak deviations from that baseline. Model results are communicated to national and local stakeholders through an interactive website: Sykdomspulsen One Health.ResultsLagged temperature and precipitation covariates, as well as 2-week-lagged positive Campylobacter sampling in broilers, were associated with higher levels of GI consultations. Significant inter-municipality variability in outbreak nowcasts were observed.ConclusionsCampylobacter surveillance in broilers can be useful in GI illness outbreak nowcasting. Surveillance of Campylobacter along potential pathways from the environment to illness such as via water system monitoring may improve nowcasting. A One Health system that communicates near real-time surveillance data and nowcast changes in risk to health professionals facilitates the prevention of Campylobacter outbreaks and reduces impact on human health.
Collapse
Affiliation(s)
- David Swanson
- Norwegian Institute of Public Health, Oslo, Norway,Department of Biostatistics, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhang J, Konkel ME, Gölz G, Lu X. Editorial: Campylobacter-associated food safety. Front Microbiol 2022; 13:1038128. [PMID: 36386703 PMCID: PMC9644199 DOI: 10.3389/fmicb.2022.1038128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2025] Open
Affiliation(s)
- Jingbin Zhang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Development and evaluation of a novel polymerase spiral reaction based testing technique for same-day visual detection of Campylobacter coli in pork. Food Microbiol 2022; 107:104066. [DOI: 10.1016/j.fm.2022.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022]
|
40
|
Lassen B, Helwigh B, Kahl Petersen C, Ellis-Iversen J. Systematic review of products with potential application for use in the control of Campylobacter spp. in organic and free-range broilers. Acta Vet Scand 2022; 64:24. [PMID: 36076217 PMCID: PMC9461118 DOI: 10.1186/s13028-022-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Campylobacter spp. are some of the most important food-borne zoonoses in Europe and broiler meat is considered the main source of Campylobacter infections. Organic and free-range broilers have access to outdoor reservoirs of Campylobacter and are more frequently infected at slaughter than the conventional broiler flocks. Limitations to biosecurity and treatment options in these production types calls for additional solutions. This review examines intervention methods with sufficient strength and quality, which are able to reduce the load of Campylobacter safely and efficiently and discuss their applicability in organic and free-range broiler production. Four different products passed the inclusion criteria and their quality examined: ferric tyrosine chelate, a prebiotic fermentation product of Saccharomyces cerevisiae, short-chain fatty acid butyrate coated on microbeads added to feed, and a mix of organic acids added to the drinking water. Though potential candidates for reducing Campylobacter in broilers were identified, there is a lack of large scale intervention studies that demonstrate an effect under field conditions of a free-range broiler production.
Collapse
Affiliation(s)
- Brian Lassen
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Birgitte Helwigh
- Research Group for Global Capacity Building, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Channie Kahl Petersen
- Research Group for Global Capacity Building, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
41
|
Emerging Trends for Nonthermal Decontamination of Raw and Processed Meat: Ozonation, High-Hydrostatic Pressure and Cold Plasma. Foods 2022; 11:foods11152173. [PMID: 35892759 PMCID: PMC9330470 DOI: 10.3390/foods11152173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Meat may contain natural, spoilage, and pathogenic microorganisms based on the origin and characteristics of its dietary matrix. Several decontamination substances are used during or after meat processing, which include chlorine, organic acids, inorganic phosphates, benzoates, propionates, bacteriocins, or oxidizers. Unfortunately, traditional decontamination methods are often problematic because of their adverse impact on the quality of the raw carcass or processed meat. The extended shelf-life of foods is a response to the pandemic trend, whereby consumers are more likely to choose durable products that can be stored for a longer period between visits to food stores. This includes changing purchasing habits from “just in time” products “for now” to “just in case” products, a trend that will not fade away with the end of the pandemic. To address these concerns, novel carcass-decontamination technologies, such as ozone, high-pressure processing and cold atmospheric plasma, together with active and clean label ingredients, have been investigated for their potential applications in the meat industry. Processing parameters, such as exposure time and processing intensity have been evaluated for each type of matrix to achieve the maximum reduction of spoilage microorganism counts without affecting the physicochemical, organoleptic, and functional characteristics of the meat products. Furthermore, combined impact (hurdle concept) was evaluated to enhance the understanding of decontamination efficiency without undesirable changes in the meat products. Most of these technologies are beneficial as they are cost-effective, chemical-free, eco-friendly, easy to use, and can treat foods in sealed packages, preventing the product from post-process contamination. Interestingly, their synergistic combination with other hurdle approaches can help to substitute the use of chemical food preservatives, which is an aspect that is currently quite desirable in the majority of consumers. Nonetheless, some of these techniques are difficult to store, requiring a large capital investment for their installation, while a lack of certification for industrial utilization is also problematic. In addition, most of them suffer from a lack of sufficient data regarding their mode of action for inactivating microorganisms and extending shelf-life stability, necessitating a need for further research in this area.
Collapse
|
42
|
Cossettini A, Vidic J, Maifreni M, Marino M, Pinamonti D, Manzano M. Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Antimicrobial resistance and genomic diversity of Campylobacter jejuni isolates from broiler caeca and neck skin samples collected at key stages during processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Szott V, Reichelt B, Friese A, Roesler U. A Complex Competitive Exclusion Culture Reduces Campylobacter jejuni Colonization in Broiler Chickens at Slaughter Age In Vivo. Vet Sci 2022; 9:vetsci9040181. [PMID: 35448680 PMCID: PMC9029414 DOI: 10.3390/vetsci9040181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Diminishing Campylobacter prevalence in poultry flocks has proven to be extremely challenging. To date, efficacious control measures to reduce Campylobacter prevalence are still missing. A potential approach to control Campylobacter in modern poultry productions is to occupy its niche in the mucosal layer by administering live intestinal microbiota from adult chickens to dayold-chicks (competitive exclusion (CE)). Therefore, this in vivo study investigates the efficacy of a complex CE culture to reduce Campylobacter (C.) jejuni colonization in broiler chickens. For this purpose, the complex CE culture was applied twice: once by spray application to day-old chicks immediately after hatching (on the 1st day of life) and subsequently by an additional application via drinking water on the 25th day of life. We observed a consistent and statistically significant reduction of C. jejuni counts in cloacal swabs throughout the entire fattening period. At the end of the trial after necropsy (at 33 days of age), C. jejuni cecal counts also showed a statistically significant decrease of 1 log10 MPN/g compared to the control group. Likewise, colon counts were reduced by 2.0 log10 MPN/g. These results suggest that CE cultures can be considered a practically relevant control strategy to reduce C. jejuni colonization in broiler chickens on poultry farms.
Collapse
|
45
|
Li X, Tang H, Xu Z, Tang H, Fan Z, Jiao X, Huang J. Prevalence and characteristics of Campylobacter from the genital tract of primates and ruminants in Eastern China. Transbound Emerg Dis 2022; 69:e1892-e1898. [PMID: 35297537 DOI: 10.1111/tbed.14524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Campylobacter infection is an important cause of genital failure in ruminants in developed countries. Although historically Campylobacter fetus subspecies fetus has been the main cause of abortion in sheep, C. jejuni is also increasingly associated with sheep abortions. However, limited information is known on Campylobacter-associated abortions in China. This study initially investigated the distribution of Campylobacter from the genital tracts of humans, monkeys, sheep, and cows in China from 2017 to 2018. Ten out of 2,126 (0.47%) samples from the genital tracts were Campylobacter positive, of which seven (70%) isolates were identified as C. jejuni. Phylogenetic analysis showed the high genetic diversity of these isolates. The human isolates were closely related to the sheep isolates implying inter-transmission of Campylobacter between humans and sheep according to the phylogenetic analysis. The acid resistance, adhesion, and invasion abilities of genital tract isolates were stronger than isolates from gastrointestinal tract, but no significant difference was observed in the virulence genes. We further found that three genital tract isolates belonged to the same cluster as gastrointestinal isolates from the same host. These findings suggested that there may be inter-transmission of Campylobacter between the genital and gastrointestinal tract. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaofei Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hong Tang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhonglan Xu
- Yangzhou Maternity and Infant Hospital, Yangzhou, 225001, China
| | - Haiyan Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, 225009, China
| | - Zhengyang Fan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, 225009, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, 225009, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
46
|
Icen H, Corbo MR, Sinigaglia M, Korkmaz BIO, Bevilacqua A. Using Microbial Responses Viewer and a Regression Approach to Assess the Effect of pH, Activity of Water and Temperature on the Survival of Campylobacter spp. Foods 2022; 11:foods11050637. [PMID: 35267270 PMCID: PMC8909359 DOI: 10.3390/foods11050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed at developing a model for evaluating the survival of various Campylobacter jejuni strains under different conditions in culture media and poultry data from ComBase. Campylobacter data of culture media (116) and poultry (19) were collected from Microbial Responses Viewer, an additional tool of ComBase. The Weibull equation was selected as a suitable model for the analysis of survival data because of the nonlinearity of survival curves. Then, the fitting parameters (first reduction time and shape parameter) were analysed through a Kruskall–Wallis test and box-whisker plots, thus pointing out the existence of two classes of temperature (0–12 °C and 15–25 °C) and pH (4–6.5 and 7–7.5) acting on the viability of C. jejuni. Finally, a general regression model was used to build a comprehensive function; all factors were significant, but temperature was the most significant variable, followed by pH and water activity. In addition, desirability and prediction profiles highlighted a negative correlation of the first reduction time with temperature and a positive correlation with pH and water activity.
Collapse
Affiliation(s)
- Hayrunisa Icen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Maltepe, Istanbul 34854, Turkey;
| | - Maria Rosaria Corbo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
| | - Milena Sinigaglia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
| | - Burcu Irem Omurtag Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Maltepe, Istanbul 34854, Turkey;
- Correspondence: (B.I.O.K.); (A.B.)
| | - Antonio Bevilacqua
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
- Correspondence: (B.I.O.K.); (A.B.)
| |
Collapse
|
47
|
Royden A, Christley R, Prendiville A, Williams NJ. The Role of Biosecurity in the Control of Campylobacter: A Qualitative Study of the Attitudes and Perceptions of UK Broiler Farm Workers. Front Vet Sci 2022; 8:751699. [PMID: 34993244 PMCID: PMC8724210 DOI: 10.3389/fvets.2021.751699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Campylobacter is the leading cause of human bacterial diarrhoeal disease worldwide, with poultry meat products contributing to a large proportion of cases. Due to the ubiquitous presence of Campylobacter in the poultry farm environment, biosecurity is the main area for intervention to prevent colonisation of commercial broiler chicken flocks. However, research has repeatedly demonstrated that farmers' uptake of biosecurity recommendations is often poor. This study explored farmers' attitudes towards biosecurity and identified barriers to effective implementation of biosecurity protocols. Semi-structured interviews were conducted with 1–3 members of staff on each of 16 broiler farms; 6 owned by, and 10 contracted to, 3 different UK poultry integrators. In total, 28 interviewees participated, including farm owners, managers, and workers, with a range of industry experience. Thematic analysis of the interviews revealed high levels of recognition amongst broiler farmers of the importance of Campylobacter and the responsibility of the whole farm-to-fork chain within the poultry industry to reduce Campylobacter contamination of chicken meat for the benefit of public health. Participants' self-reported awareness and implementation of biosecurity has improved significantly following the industry-wide focus on Campylobacter control. However, there are frustrations with the industry's approach to tackling Campylobacter and the heavy burden of responsibility that has been put on interventions at the farm-level. There was also scepticism amongst participants as to the effectiveness of current biosecurity measures in the reduction of Campylobacter. Nevertheless, the interviewees' recognition of the benefit of improved biosecurity on broiler health and welfare and other important targets, such as reducing antimicrobial usage, leaves a legacy of which the UK broiler industry can be proud. There is scope for further farmer education about the evidence supporting biosecurity interventions, particularly in the control of Campylobacter, and a need to establish more effective channels of communication. Furthermore, to give all players within the industry agency and investment in industry targets, contributions from all levels should be permitted in the design of future biosecurity interventions. Biosecurity compliance may be improved through collaborative efforts, such as participatory and co-design practises, to facilitate knowledge co-creation and exchange.
Collapse
Affiliation(s)
- Alexandra Royden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, United Kingdom
| | - Robert Christley
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, United Kingdom
| | - Alison Prendiville
- London College of Communication, University of the Arts London, London, United Kingdom
| | - Nicola J Williams
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, United Kingdom
| |
Collapse
|
48
|
Giaouris E. Relevance and Importance of Biofilms in the Resistance and Spreading of Campylobacter spp. Within the Food Chain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Zang X, Lv H, Tang H, Jiao X, Huang J. Capsular Genotype and Lipooligosaccharide Class Associated Genomic Characterizations of Campylobacter jejuni Isolates From Food Animals in China. Front Microbiol 2021; 12:775090. [PMID: 34950120 PMCID: PMC8690235 DOI: 10.3389/fmicb.2021.775090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is the leading causative agent of gastroenteritis and Guillain–Barré syndrome (GBS). Capsular polysaccharide (CPS) and lipooligosaccharide (LOS) contribute to the susceptibility of campylobacteriosis, which have been concern the major evaluation indicators of C. jejuni isolates from clinical patients. As a foodborne disease, food animal plays a primary role in the infection of campylobacteriosis. To assess the pathogenic characterizations of C. jejuni isolates from various ecological origins, 1609 isolates sampled from 2005 to 2019 in China were analyzed using capsular genotyping. Strains from cattle and poultry were further characterized by LOS classification and multilocus sequence typing (MLST), compared with the isolates from human patients worldwide with enteritis and GBS. Results showed that the disease associated capsular genotypes and LOS classes over-represented in human isolates were also dominant in animal isolates, especially cattle isolates. Based on the same disease associated capsular genotype, more LOS class types were represented by food animal isolates than human disease isolates. Importantly, high-risk lineages CC-22, CC-464, and CC-21 were found dominated in human isolates with GBS worldwide, which were also represented in the food animal isolates with disease associated capsular types, suggesting a possibility of clonal spread of isolates across different regions and hosts. This is the first study providing genetic evidence for food animal isolates of particular capsular genotypes harbor similar pathogenic characteristics to human clinical isolates. Collective efforts for campylobacteriosis hazard control need to be focused on the zoonotic pathogenicity of animal isolates, along the food chain “from farm to table.”
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongyue Lv
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Haiyan Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| |
Collapse
|
50
|
Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis. WATER 2021. [DOI: 10.3390/w13243551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With increasing concerns about public health and the development of molecular techniques, new detection tools and the combination of existing approaches have increased the abilities of pathogenic bacteria monitoring by exploring new biomarkers, increasing the sensitivity and accuracy of detection, quantification, and analyzing various genes such as functional genes and antimicrobial resistance genes (ARG). Molecular methods are gradually emerging as the most popular detection approach for pathogens, in addition to the conventional culture-based plate enumeration methods. The analysis of pathogens in wastewater and the back-estimation of infections in the community, also known as wastewater-based epidemiology (WBE), is an emerging methodology and has a great potential to supplement current surveillance systems for the monitoring of infectious diseases and the early warning of outbreaks. However, as a complex matrix, wastewater largely challenges the analytical performance of molecular methods. This review synthesized the literature of typical pathogenic bacteria in wastewater, types of biomarkers, molecular methods for bacterial analysis, and their recent advances in wastewater analysis. The advantages and limitation of these molecular methods were evaluated, and their prospects in WBE were discussed to provide insight for future development.
Collapse
|