1
|
Ahn G, Jung IJ, Shin GI, Jeong SY, Ji MG, Huh JS, Hwang JW, Kim J, Cha JY, Lee SY, Kim MG, Kim WY. The core morning clock component CCA1 enhances UPR target gene expression to facilitate ER stress recovery. PLANT COMMUNICATIONS 2025; 6:101284. [PMID: 39953730 PMCID: PMC12010412 DOI: 10.1016/j.xplc.2025.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for protein synthesis and folding. When its protein folding capacity is exceeded, unfolded or misfolded proteins accumulate, causing ER stress and triggering the unfolded protein response (UPR) to restore ER proteostasis. Although UPR gene expression in plants follows a diel cycle, the mechanisms by which the circadian clock regulates these genes remain unclear. Here, we demonstrate that sensitivity to ER stress in root growth exhibits time-of-day phases and that the circadian clock regulates UPR target gene expression during ER stress. Notably, mutations in the core morning clock component CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) impair ER stress recovery. CCA1 forms a complex with the UPR modulator basic leucine zipper 28 (bZIP28) and acts as an upstream regulator of ER stress recovery. Upon ER stress, CCA1 is stabilized and associates with bZIP28 at the ER stress response element within the BiP3 promoter, enhancing the ER stress response. Thus, CCA1 and bZIP28 coordinate a time-dependent adaptive response to ER stress to maintain ER proteostasis. Our results suggest that the circadian clock primes the timing and levels of ER chaperone expression to enhance ER stress tolerance.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - In Jung Jung
- National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, Gwangju 62407, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Sung Huh
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Won Hwang
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), PBRRC, PMBBRC, RILS & IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
2
|
Adhikari B, Verchot J, Brandizzi F, Ko DK. ER stress and viral defense: Advances and future perspectives on plant unfolded protein response in pathogenesis. J Biol Chem 2025; 301:108354. [PMID: 40015641 PMCID: PMC11982459 DOI: 10.1016/j.jbc.2025.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Viral infections pose significant threats to crop productivity and agricultural sustainability. The frequency and severity of these infections are increasing, and pathogens are evolving rapidly under the influence of climate change. This underscores the importance of exploring the fundamental mechanisms by which plants defend themselves against dynamic viral threats. One such mechanism is the unfolded protein response (UPR), which is activated when the protein folding demand exceeds the capacity of the endoplasmic reticulum, particularly under adverse environmental conditions. While the key regulators of the UPR in response to viral infections have been identified, our understanding of how they modulate the UPR to suppress plant viral infections at the molecular and genetic levels is still in its infancy. Recent findings have shown that, in response to plant viral infections, the UPR swiftly reprograms transcriptional changes to support cellular, metabolic, and physiological processes associated with cell viability. However, the underlying mechanisms and functional outcomes of these changes remain largely unexplored. Here, we highlight recent advances in plant UPR research and summarize key findings related to viral infection-induced UPR, focusing on the balance between prosurvival and prodeath strategies. We also discuss the potential of systems-level approaches to uncover the full extent of the functional link between the UPR and plant responses to viral infections.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA.
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
3
|
Batool I, Ayyaz A, Qin T, Wu X, Chen W, Hannan F, Zafar ZU, Naeem MS, Farooq MA, Zhou W. Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2025; 14:152. [PMID: 39861509 PMCID: PMC11768255 DOI: 10.3390/plants14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures. Given the rising global temperatures, heat stress has become a major abiotic challenge, affecting the growth and development of various crops and significantly reducing productivity. Brassica napus, the second-largest source of vegetable oil worldwide, faces drastic reductions in seed yield and quality under heat stress. This review summarizes recent research on the genetic and physiological impact of heat stress in the Brassicaceae family, as well as in model plants Arabidopsis and rice. Several studies show that extreme temperature fluctuations during crucial growth stages negatively affect plants, leading to impaired growth and reduced seed production. The review discusses the mechanisms of heat stress adaptation and the key regulatory genes involved. It also explores the emerging understanding of epigenetic modifications during heat stress. While such studies are limited in B. napus, contrasting trends in gene expression have been observed across different species and cultivars, suggesting these genes play a complex role in heat stress tolerance. Key knowledge gaps are identified regarding the impact of heat stress during the growth stages of B. napus. In-depth studies of these stages are still needed. The profound understanding of heat stress response mechanisms in tissue-specific models are crucial in advancing our knowledge of thermo-tolerance regulation in B. napus and supporting future breeding efforts for heat-tolerant crops.
Collapse
Affiliation(s)
- Iram Batool
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Tongjun Qin
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Xiaofen Wu
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Weiqi Chen
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Zafar Ullah Zafar
- Institute of Botany, Bahauddin Zakariya University, Multan 40162, Pakistan;
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Ahsan Farooq
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| |
Collapse
|
4
|
Thulasi Devendrakumar K, Herrfurth C, Yeap M, Peng TS, Feussner I, Li X. Balancing roles between phosphatidylinositols and sphingolipids in regulating immunity and ER stress responses in pi4kβ1,2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2816-2836. [PMID: 39074039 DOI: 10.1111/tpj.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Plant immune regulation is complex. In addition to proteins, lipid molecules play critical roles in modulating immune responses. The mutant pi4kβ1,2 is mutated in two phosphatidylinositol 4-kinases PI4Kβ1 and β2 involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P). The mutant displays autoimmunity, short roots, aberrant root hairs, and a heightened sensitivity to ER stress. In a forward genetic screen designed to dissect pi4kβ1,2 autoimmunity, we found that Orosomucoid-like 1 (ORM1) is required for the phenotypes of pi4kβ1,2, including short root and ER stress sensitivity. The orm1 mutations lead to increased long-chain base and ceramide levels in the suppressors. We also found that the basic region/leucine Zipper motif (bZIP) 28 and 60 transcription factors, central regulators of ER stress response, are required for its autoimmunity and root defect. In comparison, the defense-related phytohormones salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are required for its autoimmunity but plays a minor role in its root phenotypes. Further, we found that wild-type plants overexpressing ORM1 are autoimmune, displaying short roots and increased ceramide levels. The autoimmunity of the ORM1 overexpression lines is dependent on SA, NHP, and bZIP60. As ORM1 is a known negative regulator of sphingolipid biosynthesis, our study uncovers a balancing role between PIs and sphingolipids in regulating immunity and ER stress responses in pi4kβ1,2.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, D-37077, Germany
| | - Mikaela Yeap
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Tony ShengZhe Peng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
5
|
Adhikari B, Gayral M, Herath V, Bedsole CO, Kumar S, Ball H, Atallah O, Shaw B, Pajerowska-Mukhtar KM, Verchot J. bZIP60 and Bax inhibitor 1 contribute IRE1-dependent and independent roles to potexvirus infection. THE NEW PHYTOLOGIST 2024; 243:1172-1189. [PMID: 38853429 DOI: 10.1111/nph.19882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Mathieu Gayral
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, 26, bd Docteur Petitjean-BP 87999, Dijon, Cedex, 21079, France
| | - Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Sandeep Kumar
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Haden Ball
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Osama Atallah
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Brian Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| |
Collapse
|
6
|
Pastor-Cantizano N, Angelos ER, Ruberti C, Jiang T, Weng X, Reagan BC, Haque T, Juenger TE, Brandizzi F. Programmed cell death regulator BAP2 is required for IRE1-mediated unfolded protein response in Arabidopsis. Nat Commun 2024; 15:5804. [PMID: 38987268 PMCID: PMC11237027 DOI: 10.1038/s41467-024-50105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Environmental and physiological situations can challenge the balance between protein synthesis and folding capacity of the endoplasmic reticulum (ER) and cause ER stress, a potentially lethal condition. The unfolded protein response (UPR) restores ER homeostasis or actuates programmed cell death (PCD) when ER stress is unresolved. The cell fate determination mechanisms of the UPR are not well understood, especially in plants. Here, we integrate genetics and ER stress profiling with natural variation and quantitative trait locus analysis of 350 natural accessions of the model species Arabidopsis thaliana. Our analyses implicate a single nucleotide polymorphism to the loss of function of the general PCD regulator BON-ASSOCIATED PROTEIN2 (BAP2) in UPR outcomes. We establish that ER stress-induced BAP2 expression is antagonistically regulated by the UPR master regulator, inositol-requiring enzyme 1 (IRE1), and that BAP2 controls adaptive UPR amplitude in ER stress and ignites pro-death mechanisms in conditions of UPR insufficiency.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Evan R Angelos
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Botany & Plant Sciences Department, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biosciences, University of Milan, Milano, Italy
| | - Tao Jiang
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Brandon C Reagan
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Ko DK, Brandizzi F. Dynamics of ER stress-induced gene regulation in plants. Nat Rev Genet 2024; 25:513-525. [PMID: 38499769 PMCID: PMC11186725 DOI: 10.1038/s41576-024-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Cavalcante FLP, da Silva SJ, de Sousa Lopes L, de Oliveira Paula-Marinho S, Guedes MIF, Gomes-Filho E, de Carvalho HH. Unveiling a differential metabolite modulation of sorghum varieties under increasing tunicamycin-induced endoplasmic reticulum stress. Cell Stress Chaperones 2023; 28:889-907. [PMID: 37775652 PMCID: PMC10746676 DOI: 10.1007/s12192-023-01382-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Plants trigger endoplasmic reticulum (ER) pathways to survive stresses, but the assistance of ER in plant tolerance still needs to be explored. Thus, we selected sensitive and tolerant contrasting abiotic stress sorghum varieties to test if they present a degree of tolerance to ER stress. Accordingly, this work evaluated crescent concentrations of tunicamycin (TM µg mL-1): control (0), lower (0.5), mild (1.5), and higher (2.5) on the initial establishment of sorghum seedlings CSF18 and CSF20. ER stress promoted growth and metabolism reductions, mainly in CSF18, from mild to higher TM. The lowest TM increased SbBiP and SbPDI chaperones, as well as SbbZIP60, and SbbIRE1 gene expressions, but mild and higher TM decreased it. However, CSF20 exhibited higher levels of SbBiP and SbbIRE1 transcripts. It corroborated different metabolic profiles among all TM treatments in CSF18 shoots and similarities between profiles of mild and higher TM in CSF18 roots. Conversely, TM profiles of both shoots and roots of CSF20 overlapped, although it was not complete under low TM treatment. Furthermore, ER stress induced an increase of carbohydrates (dihydroxyacetone in shoots, and cellobiose, maltose, ribose, and sucrose in roots), and organic acids (pyruvic acid in shoots, and butyric and succinic acids in roots) in CSF20, which exhibited a higher degree of ER stress tolerance compared to CSF18 with the root being the most affected plant tissue. Thus, our study provides new insights that may help to understand sorghum tolerance and the ER disturbance as significant contributor for stress adaptation and tolerance engineering.
Collapse
Affiliation(s)
| | - Sávio Justino da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil
| | | | - Maria Izabel Florindo Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceará (UECE), Av. Dr. Silas Munguba, 1700, Fortaleza, CE, 60714-903, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil
| | - Humberto Henrique de Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil.
| |
Collapse
|
9
|
Löchli K, Torbica E, Haile-Weldeslasie M, Baku D, Aziz A, Bublak D, Fragkostefanakis S. Crosstalk between endoplasmic reticulum and cytosolic unfolded protein response in tomato. Cell Stress Chaperones 2023; 28:511-528. [PMID: 36449150 PMCID: PMC10469158 DOI: 10.1007/s12192-022-01316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Conditions that cause proteotoxicity like high temperature trigger the activation of unfolded protein response (UPR). The cytosolic (CPR) and endoplasmic reticulum (ER) UPR rely on heat stress transcription factor (HSF) and two members of the basic leucine zipper (bZIP) gene family, respectively. In tomato, HsfA1a is the master regulator of CPR. Here, we identified the core players of tomato ER-UPR including the two central transcriptional regulators, namely bZIP28 and bZIP60. Interestingly, the induction of ER-UPR genes and the activation of bZIP60 are altered in transgenic plants where HsfA1a is either overexpressed (A1aOE) or suppressed (A1CS), indicating an interplay between CPR and ER-UPR systems. Several ER-UPR genes are differentially expressed in the HsfA1a transgenic lines either exposed to heat stress or to the ER stress elicitor tunicamycin (TUN). The ectopic expression of HsfA1a is associated with higher tolerance against TUN. On the example of the ER-resident Hsp70 chaperone BIP3, we show that the presence of cis-elements required for HSF and bZIP regulation serves as a putative platform for the co-regulation of these genes by both CPR and ER-UPR mechanisms, in the case of BIP3 in a stimulatory manner under high temperatures. In addition, we show that the accumulation of HsfA1a results in higher levels of three ATG genes and a more sensitized induction of autophagy in response to ER stress which also supports the increased tolerance to ER stress of the A1aOE line. These findings provide a basis for the coordination of protein homeostasis in different cellular compartments under stress conditions.
Collapse
Affiliation(s)
- Karin Löchli
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | - Emma Torbica
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | | | - Deborah Baku
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | - Aatika Aziz
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | - Daniela Bublak
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | | |
Collapse
|
10
|
Zhang H, Ding X, Wang H, Chen H, Dong W, Zhu J, Wang J, Peng S, Dai H, Mei W. Systematic evolution of bZIP transcription factors in Malvales and functional exploration of AsbZIP14 and AsbZIP41 in Aquilaria sinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243323. [PMID: 37719219 PMCID: PMC10499555 DOI: 10.3389/fpls.2023.1243323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
Introduction Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenhua Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, College of Forestry, Hainan University, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
11
|
Lee YR, Ko KS, Lee HE, Lee ES, Han K, Yoo JY, Vu BN, Choi HN, Lee YN, Hong JC, Lee KO, Kim DS. CRISPR/Cas9-Mediated HY5 Gene Editing Reduces Growth Inhibition in Chinese Cabbage ( Brassica rapa) under ER Stress. Int J Mol Sci 2023; 24:13105. [PMID: 37685921 PMCID: PMC10487758 DOI: 10.3390/ijms241713105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Various stresses can affect the quality and yield of crops, including vegetables. In this study, CRISPR/Cas9 technology was employed to examine the role of the ELONGATED HYPOCOTYL 5 (HY5) gene in influencing the growth of Chinese cabbage (Brassica rapa). Single guide RNAs (sgRNAs) were designed to target the HY5 gene, and deep-sequencing analysis confirmed the induction of mutations in the bZIP domain of the gene. To investigate the response of Chinese cabbage to endoplasmic reticulum (ER) stress, plants were treated with tunicamycin (TM). Both wild-type and hy5 mutant plants showed increased growth inhibition with increasing TM concentration. However, the hy5 mutant plants displayed less severe growth inhibition compared to the wild type. Using nitroblue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining methods, we determined the amount of reactive oxygen species (ROS) produced under ER stress conditions, and found that the hy5 mutant plants generated lower levels of ROS compared to the wild type. Under ER stress conditions, the hy5 mutant plants exhibited lower expression levels of UPR- and cell death-related genes than the wild type. These results indicate that CRISPR/Cas9-mediated editing of the HY5 gene can mitigate growth inhibition in Chinese cabbage under stresses, improving the quality and yield of crops.
Collapse
Affiliation(s)
- Ye Rin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.E.L.); (E.S.L.); (K.H.)
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (K.S.K.); (J.Y.Y.); (J.C.H.)
| | - Hye Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.E.L.); (E.S.L.); (K.H.)
| | - Eun Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.E.L.); (E.S.L.); (K.H.)
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.E.L.); (E.S.L.); (K.H.)
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (K.S.K.); (J.Y.Y.); (J.C.H.)
| | - Bich Ngoc Vu
- Division of Life Science, Division of Applied Life Sciences (BK4 Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (B.N.V.); (H.N.C.); (Y.N.L.)
| | - Ha Na Choi
- Division of Life Science, Division of Applied Life Sciences (BK4 Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (B.N.V.); (H.N.C.); (Y.N.L.)
| | - Yoo Na Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (B.N.V.); (H.N.C.); (Y.N.L.)
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (K.S.K.); (J.Y.Y.); (J.C.H.)
- Division of Life Science, Division of Applied Life Sciences (BK4 Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (B.N.V.); (H.N.C.); (Y.N.L.)
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (K.S.K.); (J.Y.Y.); (J.C.H.)
- Division of Life Science, Division of Applied Life Sciences (BK4 Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (B.N.V.); (H.N.C.); (Y.N.L.)
| | - Do Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.E.L.); (E.S.L.); (K.H.)
| |
Collapse
|
12
|
Chen S, Dang D, Liu Y, Ji S, Zheng H, Zhao C, Dong X, Li C, Guan Y, Zhang A, Ruan Y. Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165582. [PMID: 37223800 PMCID: PMC10200999 DOI: 10.3389/fpls.2023.1165582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 05/25/2023]
Abstract
Introduction Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance. Methods We utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions. Results GWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism (Zm00001d012176, Zm00001d012101, Zm00001d009488); (2) programmed cell death (Zm00001d053952); (3) transcriptional regulation (Zm00001d037771, Zm00001d053859, Zm00001d031861, Zm00001d038930, Zm00001d049400, Zm00001d045128 and Zm00001d043036); (4) autophagy (Zm00001d028417); and (5) cell growth and development (Zm00001d017495). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.
Collapse
Affiliation(s)
- Shan Chen
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dongdong Dang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Yubo Liu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Shuwen Ji
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Chenghao Zhao
- Dandong Academy of Agricultural Sciences, Fengcheng, Liaoning, China
| | - Xiaomei Dong
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Cong Li
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yanye Ruan
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
De Benedictis M, Gallo A, Migoni D, Papadia P, Roversi P, Santino A. Cadmium treatment induces endoplasmic reticulum stress and unfolded protein response in Arabidopsisthaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:281-290. [PMID: 36736010 DOI: 10.1016/j.plaphy.2023.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We report about the response of Arabidopsis thaliana to chronic and temporary Cd2+ stress, and the Cd2+ induced activation of ER stress and unfolded protein response (UPR). Cd2+-induced UPR proceeds mainly through the bZIP60 arm, which in turn activates relevant ER stress marker genes such as BiP3, CNX, PDI5 and ERdj3B in a concentration- (chronic stress) or time- (temporary stress) dependent manner. A more severe Cd-stress triggers programmed cell death (PCD) through the activation of the NAC089 transcription factor. Toxic effects of Cd2+ exposure are reduced in the Atbzip28/bzip60 double mutant in terms of primary root length and fresh shoot weight, likely due to reduced UPR and PCD activation. We also hypothesised that the enhanced Cd2+ tolerance of the Atbzip28/bzip60 double mutant is due to an increase in brassinosteroids signaling, since the amount of the brassinosteroid insensitive1 receptor (BRI1) protein decreases under Cd2+ stress only in Wt plants. These data highlight the complexity of the UPR pathway, since the ER stress response is strictly related to the type of the treatment applied and the multifaceted connections of ER signaling. The reduced sensing of Cd2+ stress in plants with UPR defects can be used as a novel strategy for phytoremediation.
Collapse
Affiliation(s)
- Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Danilo Migoni
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Paride Papadia
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, C.N.R., Unit of Milan, Milano, Italy; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy.
| |
Collapse
|
14
|
Kim JS, Mochida K, Shinozaki K. ER Stress and the Unfolded Protein Response: Homeostatic Regulation Coordinate Plant Survival and Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:3197. [PMID: 36501237 PMCID: PMC9735958 DOI: 10.3390/plants11233197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The endoplasmic reticulum (ER), a eukaryotic organelle, is the major site of protein biosynthesis. The disturbance of ER function by biotic or abiotic stress triggers the accumulation of misfolded or unfolded proteins in the ER. The unfolded protein response (UPR) is the best-studied ER stress response. This transcriptional regulatory system senses ER stress, activates downstream genes that function to mitigate stress, and restores homeostasis. In addition to its conventional role in stress responses, recent reports indicate that the UPR is involved in plant growth and development. In this review, we summarize the current knowledge of ER stress sensing and the activation and downstream regulation of the UPR. We also describe how the UPR modulates both plant growth and stress tolerance by maintaining ER homeostasis. Lastly, we propose that the UPR is a major component of the machinery that balances the trade-off between plant growth and survival in a dynamic environment.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Herath V, Verchot J. Comprehensive Transcriptome Analysis Reveals Genome-Wide Changes Associated with Endoplasmic Reticulum (ER) Stress in Potato ( Solanum tuberosum L.). Int J Mol Sci 2022; 23:ijms232213795. [PMID: 36430273 PMCID: PMC9696714 DOI: 10.3390/ijms232213795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
We treated potato (Solanum tuberosum L.) plantlets with TM and performed gene expression studies to identify genome-wide changes associated with endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). An extensive network of responses was identified, including chromatin remodeling, transcriptional reprogramming, as well as changes in the structural components of the endomembrane network system. Limited genome-wide changes in alternative RNA splicing patterns of protein-coding transcripts were also discovered. Significant changes in RNA metabolism, components of the translation machinery, as well as factors involved in protein folding and maturation occurred, which included a broader set of genes than expected based on Arabidopsis research. Antioxidant defenses and oxygen metabolic enzymes are differentially regulated, which is expected of cells that may be experiencing oxidative stress or adapting to protect proteins from oxidation. Surges in protein kinase expression indicated early signal transduction events. This study shows early genomic responses including an array of differentially expressed genes that have not been reported in Arabidopsis. These data describe novel ER stress responses in a solanaceous host.
Collapse
Affiliation(s)
- Venura Herath
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA
- Correspondence: ; Tel.: +1-979-568-6369
| |
Collapse
|
16
|
Nakamura M, Nozaki M, Iwata Y, Koizumi N, Sato Y. THESEUS1 is involved in tunicamycin-induced root growth inhibition, ectopic lignin deposition, and cell wall damage-induced unfolded protein response. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:129-138. [PMID: 35937530 PMCID: PMC9300425 DOI: 10.5511/plantbiotechnology.21.1224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 06/15/2023]
Abstract
Endoplasmic reticulum (ER) stress activates unfolded protein responses (UPRs), such as promoting protein folding under the control of specific gene expression. Our previous study showed that ER stress induced by ER stress inducers such as tunicamycin (Tm), an inhibitor of N-linked glycan synthesis, causes ectopic lignin deposition in Arabidopsis roots, but the relationship between UPR and ectopic lignin deposition remains unclear. The receptor-like kinase THESEUS1 (THE1) has been shown to sense cell wall damage (CWD) induced in Arabidopsis by cellulose synthase inhibitors such as isoxaben (ISO) and to activate ectopic lignin deposition. In this study, we assessed the involvement of THE1 in ectopic lignin deposition caused by the ER stress inducer Tm. The loss-of-function mutation of THE1, the1-3, suppressed Tm-induced root growth inhibition and ectopic lignin deposition, revealing that THE1 is involved in root growth defects and ectopic lignin deposition caused by ER stress. Similarly, ISO treatment induced ectopic lignin deposition as well as the expression of the UPR marker genes binding protein 3 (BiP3) and ER-localized DnaJ 3b (ERdj3b). Conversely, in the the1-3 mutant, ISO-induced ectopic lignin deposition and the expression of BiP3 and ERdj3b were suppressed. These results showed that THE1 is involved in not only root growth inhibition and ectopic lignin deposition caused by ER stress but also CWD-induced UPR.
Collapse
Affiliation(s)
- Masato Nakamura
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Mamoru Nozaki
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531,
Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531,
Japan
| | - Yasushi Sato
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
17
|
Ko DK, Brandizzi F. Transcriptional competition shapes proteotoxic ER stress resolution. NATURE PLANTS 2022; 8:481-490. [PMID: 35577961 PMCID: PMC9187302 DOI: 10.1038/s41477-022-01150-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Through dynamic activities of conserved master transcription factors (mTFs), the unfolded protein response (UPR) relieves proteostasis imbalance of the endoplasmic reticulum (ER), a condition known as ER stress1,2. Because dysregulated UPR is lethal, the competence for fate changes of the UPR mTFs must be tightly controlled3,4. However, the molecular mechanisms underlying regulatory dynamics of mTFs remain largely elusive. Here, we identified the abscisic acid-related regulator G-class bZIP TF2 (GBF2) and the cis-regulatory element G-box as regulatory components of the plant UPR led by the mTFs, bZIP28 and bZIP60. We demonstrate that, by competing with the mTFs at G-box, GBF2 represses UPR gene expression. Conversely, a gbf2 null mutation enhances UPR gene expression and suppresses the lethality of a bzip28 bzip60 mutant in unresolved ER stress. By demonstrating that GBF2 functions as a transcriptional repressor of the UPR, we address the long-standing challenge of identifying shared signalling components for a better understanding of the dynamic nature and complexity of stress biology. Furthermore, our results identify a new layer of UPR gene regulation hinged upon an antagonistic mTFs-GFB2 competition for proteostasis and cell fate determination.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Angelos E, Brandizzi F. The UPR regulator IRE1 promotes balanced organ development by restricting TOR-dependent control of cellular differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1229-1248. [PMID: 34902186 PMCID: PMC8978258 DOI: 10.1111/tpj.15629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 05/03/2023]
Abstract
Proteostasis of the endoplasmic reticulum (ER) is controlled by sophisticated signaling pathways that are collectively called the unfolded protein response (UPR) and are initiated by specialized ER membrane-associated sensors. The evidence that complete loss-of-function mutations of the most conserved of the UPR sensors, inositol-requiring enzyme 1 (IRE1), dysregulates tissue growth and development in metazoans and plants raises the fundamental question as to how IRE1 is connected to organismal growth. To address this question, we interrogated the Arabidopsis primary root, an established model for organ development, using the tractable Arabidopsis IRE1 mutant ire1a ire1b, which has marked root development defects in the absence of exogenous stress. We demonstrate that IRE1 is required to reach maximum rates of cell elongation and root growth. We also established that in the actively growing ire1a ire1b mutant root tips the Target of Rapamycin (TOR) kinase, a widely conserved pro-growth regulator, is hyperactive, and that, unlike cell proliferation, the rate of cell differentiation is enhanced in ire1a ire1b in a TOR-dependent manner. By functionally connecting two essential growth regulators, these results underpin a novel and critical role of IRE1 in organ development and indicate that, as cells exit an undifferentiated state, IRE1 is required to monitor TOR activity to balance cell expansion and maturation during organ biogenesis.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
19
|
Arabidopsis TBP-ASSOCIATED FACTOR 12 ortholog NOBIRO6 controls root elongation with unfolded protein response cofactor activity. Proc Natl Acad Sci U S A 2022; 119:2120219119. [PMID: 35115407 PMCID: PMC8833210 DOI: 10.1073/pnas.2120219119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Plant root growth is indeterminate but continuously responds to environmental changes. We previously reported on the severe root growth defect of a double mutant in bZIP17 and bZIP28 (bz1728) modulating the unfolded protein response (UPR). To elucidate the mechanism by which bz1728 seedlings develop a short root, we obtained a series of bz1728 suppressor mutants, called nobiro, for rescued root growth. We focused here on nobiro6, which is defective in the general transcription factor component TBP-ASSOCIATED FACTOR 12b (TAF12b). The expression of hundreds of genes, including the bZIP60-UPR regulon, was induced in the bz1728 mutant, but these inductions were markedly attenuated in the bz1728nobiro6 mutant. In view of this, we assigned transcriptional cofactor activity via physical interaction with bZIP60 to NOBIRO6/TAF12b. The single nobiro6/taf12b mutant also showed an altered sensitivity to endoplasmic reticulum stress for both UPR and root growth responses, demonstrating that NOBIRO6/TAF12b contributes to environment-responsive root growth control through UPR.
Collapse
|
20
|
Expression Characterization of AtPDI11 and Functional Analysis of AtPDI11 D Domain in Oxidative Protein Folding. Int J Mol Sci 2022; 23:ijms23031409. [PMID: 35163331 PMCID: PMC8836223 DOI: 10.3390/ijms23031409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The formation and isomerization of disulfide bonds mediated by protein disulfide isomerase (PDI) in the endoplasmic reticulum (ER) is of fundamental importance in eukaryotes. Canonical PDI structure comprises four domains with the order of a-b-b′-a′. In Arabidopsis thaliana, the PDI-S subgroup contains only one member, AtPDI11, with an a-a′-D organization, which has no orthologs in mammals or yeast. However, the expression pattern of AtPDI11 and the functioning mechanism of AtPDI11 D domain are currently unclear. In this work, we found that PDI-S is evolutionarily conserved between land plants and algal organisms. AtPDI11 is expressed in various tissues and its induction by ER stress is disrupted in bzip28/60 and ire1a/b mutants that are null mutants of key components in the unfolded protein response (UPR) signal transduction pathway, suggesting that the induction of AtPDI11 by ER stress is mediated by the UPR signaling pathway. Furthermore, enzymatic activity assays and genetic evidence showed that the D domain is crucially important for the activities of AtPDI11. Overall, this work will help to further understand the working mechanism of AtPDI11 in catalyzing disulfide formation in plants.
Collapse
|
21
|
Ko DK, Brandizzi F. Advanced genomics identifies growth effectors for proteotoxic ER stress recovery in Arabidopsis thaliana. Commun Biol 2022; 5:16. [PMID: 35017639 PMCID: PMC8752741 DOI: 10.1038/s42003-021-02964-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Adverse environmental and pathophysiological situations can overwhelm the biosynthetic capacity of the endoplasmic reticulum (ER), igniting a potentially lethal condition known as ER stress. ER stress hampers growth and triggers a conserved cytoprotective signaling cascade, the unfolded protein response (UPR) for ER homeostasis. As ER stress subsides, growth is resumed. Despite the pivotal role of the UPR in growth restoration, the underlying mechanisms for growth resumption are yet unknown. To discover these, we undertook a genomics approach in the model plant species Arabidopsis thaliana and mined the gene reprogramming roles of the UPR modulators, basic leucine zipper28 (bZIP28) and bZIP60, in ER stress resolution. Through a network modeling and experimental validation, we identified key genes downstream of the UPR bZIP-transcription factors (bZIP-TFs), and demonstrated their functional roles. Our analyses have set up a critical pipeline for functional gene discovery in ER stress resolution with broad applicability across multicellular eukaryotes. Ko and Brandizzi use Arabidopsis thaliana to investigate the downstream regulators of two major endoplasmic reticulum (ER) stress-related transcription factors, bZIP60 and bZIP28. Their results provide further insight on how two modulators of the unfolded protein response contribute to growth recovery from ER stress.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA. .,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Lima KRP, Cavalcante FLP, Paula-Marinho SDO, Pereira IMC, Lopes LDS, Nunes JVS, Coutinho ÍAC, Gomes-Filho E, Carvalho HHD. Metabolomic profiles exhibit the influence of endoplasmic reticulum stress on sorghum seedling growth over time. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:192-205. [PMID: 34902782 DOI: 10.1016/j.plaphy.2021.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Environmental stresses disturb the endoplasmic reticulum (ER) protein folding. However, primary metabolic responses induced by ER stress remain unclear. Thus, we investigated the morphophysiological and metabolomic changes under ER stress, induced by dithiothreitol (DTT) and tunicamycin (TM) treatments in sorghum seedlings from 24 to 96 h. The ER stress caused lipid peroxidation and increased the expression of SbBiP1, SbPDI, and SbIRE1. The development impairment was more pronounced in roots than in shoots as distinct metabolomic profiles were observed. DTT decreased root length, lateral roots, and root hair, while TM decreased mainly the root length. At 24 h, under ER stresses, the glutamic acid and o-acetyl-serine were biomarkers in the shoots. While homoserine, pyroglutamic acid, and phosphoric acid were candidates for roots. At the latest time (96 h), kestose and galactinol were key metabolites for shoots under DTT and TM, respectively. In roots, palatinose, trehalose, and alanine were common markers for DTT and TM late exposure. The accumulation of sugars such as arabinose and kestose occurred mainly in roots in the presence of DTT at a later time, which also inhibited glycolysis and the tricarboxylic acid cycle (TCA). Amino acid metabolism was induced, which also contributed TCA components decreasing, such as succinate in shoots and citrate in roots. Thus, our study may provide new insights into primary metabolism modulated by ER stress and seedling development.
Collapse
Affiliation(s)
- Karollyny Roger Pereira Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | | | | | - Isabelle Mary Costa Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | | | | | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | - Humberto Henrique de Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil.
| |
Collapse
|
23
|
Pu Y, Brandizzi F. Protein Preparation for Proteomic Analysis of the Unfolded Protein Response in Arabidopsis thaliana. Methods Mol Biol 2022; 2378:279-289. [PMID: 34985707 PMCID: PMC8935445 DOI: 10.1007/978-1-0716-1732-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Excessive accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to a potentially cytotoxic condition known as the ER stress. Upon ER stress, cells initiate a homeostatic response called unfolded protein response (UPR) to assist proper folding the unfolded or misfolded proteins. Proteomics have been broadly used in plants with Liquid Chromatography coupled to tandem MS (LC-MS/MS) technologies. LC-MS/MS techniques have also been a great tool for studies of posttranslational modifications (PTMs). Here we describe our protocol of a fast method for large amount of seedling treatment and collection for UPR study in Arabidopsis thaliana and the preparation of total proteins for proteomic analysis.
Collapse
Affiliation(s)
- Yunting Pu
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
24
|
Simoni EB, Oliveira CC, Fraga OT, Reis PAB, Fontes EPB. Cell Death Signaling From Endoplasmic Reticulum Stress: Plant-Specific and Conserved Features. FRONTIERS IN PLANT SCIENCE 2022; 13:835738. [PMID: 35185996 PMCID: PMC8850647 DOI: 10.3389/fpls.2022.835738] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The endoplasmic reticulum (ER) stress response is triggered by any condition that disrupts protein folding and promotes the accumulation of unfolded proteins in the lumen of the organelle. In eukaryotic cells, the evolutionarily conserved unfolded protein response is activated to clear unfolded proteins and restore ER homeostasis. The recovery from ER stress is accomplished by decreasing protein translation and loading into the organelle, increasing the ER protein processing capacity and ER-associated protein degradation activity. However, if the ER stress persists and cannot be reversed, the chronically prolonged stress leads to cellular dysfunction that activates cell death signaling as an ultimate attempt to survive. Accumulating evidence implicates ER stress-induced cell death signaling pathways as significant contributors for stress adaptation in plants, making modulators of ER stress pathways potentially attractive targets for stress tolerance engineering. Here, we summarize recent advances in understanding plant-specific molecular mechanisms that elicit cell death signaling from ER stress. We also highlight the conserved features of ER stress-induced cell death signaling in plants shared by eukaryotic cells.
Collapse
|
25
|
Yang Y, Liu X, Zhang W, Qian Q, Zhou L, Liu S, Li Y, Hou X. Stress response proteins NRP1 and NRP2 are pro-survival factors that inhibit cell death during ER stress. PLANT PHYSIOLOGY 2021; 187:1414-1427. [PMID: 34618053 PMCID: PMC8566283 DOI: 10.1093/plphys/kiab335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/24/2021] [Indexed: 05/12/2023]
Abstract
Environmental stresses cause an increased number of unfolded or misfolded proteins to accumulate in the endoplasmic reticulum (ER), resulting in ER stress. To restore ER homeostasis and survive, plants initiate an orchestrated signaling pathway known as the unfolded protein response (UPR). Asparagine-rich protein (NRP) 1 and NRP2, two homologous proteins harboring a Development and Cell Death domain, are associated with various stress responses in Arabidopsis (Arabidopsis thaliana), but the relevant molecular mechanism remains obscure. Here, we show that NRP1 and NRP2 act as key pro-survival factors during the ER stress response and that they inhibit cell death. Loss-of-function of NRP1 and NRP2 results in decreased tolerance to the ER stress inducer tunicamycin (TM), accelerating cell death. NRP2 is constitutively expressed while NRP1 is induced in plants under ER stress. In Arabidopsis, basic leucine zipper protein (bZIP) 28 and bZIP60 are important transcription factors in the UPR that activates the expression of many ER stress-related genes. Notably, under ER stress, bZIP60 activates NRP1 by directly binding to the UPRE-I element in the NRP1 promoter. These findings reveal a pro-survival strategy in plants wherein the bZIP60-NRPs cascade suppresses cell death signal transmission, improving survival under adverse conditions.
Collapse
Affiliation(s)
- Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wenbin Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Limeng Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Song I, Lee YK, Kim JW, Lee SW, Park SR, Lee HK, Oh S, Ko K, Kim MK, Park SJ, Kim DH, Kim MS, Kim DS, Ko K. Effect of an Endoplasmic Reticulum Retention Signal Tagged to Human Anti-Rabies mAb SO57 on Its Expression in Arabidopsis and Plant Growth. Mol Cells 2021; 44:770-779. [PMID: 34711693 PMCID: PMC8560589 DOI: 10.14348/molcells.2021.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.
Collapse
Affiliation(s)
- Ilchan Song
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Young Koung Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan 54004, Korea
| | - Jin Wook Kim
- Department of Urology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seung-Won Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Se Ra Park
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hae Kyung Lee
- Division of Zoonotic and Vector Borne Diseases Research, Korea National Institute of Health, Osong 28159, Korea
| | - Soyeon Oh
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Mi Kyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Soon Ju Park
- Division of Biological Sciences, Wonkwang University, Iksan 54538, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Korea
| | - Moon-Soo Kim
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Do Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju 55365, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
27
|
Zha Q, Xi X, He Y, Yin X, Jiang A. Interaction of VvbZIP60s and VvHSP83 in response to high-temperature stress in grapes. Gene 2021; 810:146053. [PMID: 34757157 DOI: 10.1016/j.gene.2021.146053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/02/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The occurrence of frequent, extreme high temperatures affects agriculture and causes irreversible damage during the ripening period of grapes. Breeding high-temperature-tolerant varieties of grapes is the main way to deal with this challenge, thus necessitating research on the regulatory mechanism of high-temperature tolerance. Extreme high temperature causes the mismatch of proteins in the endoplasmic reticulum in plant cells and initiates the unfolded protein response (UPR). The transcription factor bZIP60 participates in the UPR process. In the present study, VvbZIP60 and VvbZIP60s (unconventional splicing of VvbZIP60) were cloned and expressed in a transgenic system to verify heat tolerance. VvbZIP60s was found to be a key gene in adapting to heat stress. VvbZIP60s/60u interacted with VvHSP83 as observed in two yeast hybrids, with bimolecular fluorescence complementation and pull-down assays. VvHSP83 is also a key gene for plants to adapt to heat stress by participating in the renaturation and degradation of denatured proteins under adversity, causing plants to resist high temperatures. This study provides a basis for analyzing the mechanism of high-temperature tolerance in grapes.
Collapse
Affiliation(s)
- Qian Zha
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Labs of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaojun Xi
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Labs of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yani He
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Labs of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiangjing Yin
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Labs of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Aili Jiang
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Labs of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
28
|
Chen W, Yang X, Zhou Y, Ma Q, Wu X, Sha Y, Qian G. [Bax inhibitor-1 inhibits calcification of vascular smooth muscle cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1177-1182. [PMID: 34549708 DOI: 10.12122/j.issn.1673-4254.2021.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Bax inhibitor-1(BI-1)on calcification of vascular smooth muscle cells(VSMCs). METHODS VSMCs were isolated from the thoracic aorta of SD rats.VSMCs or BI-1-overexpressing VSMCs(transfected with a BI-1-overexpressing plasmid) were cultured in normal medium or calcified medium containing β-glycerophosphate and calcium chloride, and the cell calcification was examined with Alizarin red staining.Enzyme-linked immunosorbent assay was used to determine the intracellular calcium content and alkaline phosphatase activity.The expression levels of Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP-2) and caspase-3 were detected with Western blotting. RESULTS After 14 days of culture in the calcified medium, the VSMCs showed significantly reduced expression of BI-1 protein(P=0.001).BI-1 overexpression in the VSMCs caused a significant reduction of calcium level and alkaline phosphatase activities(P=0.0006) and lowered the expression levels of RUNX2 and BMP-2 (P=0.0001) in the cells.The VSMCs with induced calcification exhibited a significantly increased apoptosis rate, but BI-1 overexpression obviously inhibited VSMC apoptosis in the calcified medium (P=0.0003). CONCLUSION BI-1 may attenuate vascular calcification by inhibiting calcium deposition, osteogenic differentiation and apoptosis.
Collapse
Affiliation(s)
- W Chen
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China.,Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - X Yang
- Department of Cardiology, First Medical Center, General Hospital of PLA, Beijing 100853, China
| | - Y Zhou
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China
| | - Q Ma
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China
| | - X Wu
- Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - Y Sha
- Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - G Qian
- Department of Cardiology, First Medical Center, General Hospital of PLA, Beijing 100853, China
| |
Collapse
|
29
|
Angelos E, Ko DK, Zemelis-Durfee S, Brandizzi F. Relevance of the Unfolded Protein Response to Spaceflight-Induced Transcriptional Reprogramming in Arabidopsis. ASTROBIOLOGY 2021; 21:367-380. [PMID: 33325797 PMCID: PMC7987364 DOI: 10.1089/ast.2020.2313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants are primary producers of food and oxygen on Earth and will likewise be indispensable to the establishment of large-scale sustainable ecosystems and human survival in space. To contribute to the understanding of how plants respond to spaceflight stress, we examined the significance of the unfolded protein response (UPR), a conserved signaling cascade that responds to a number of unfavorable environmental stresses, in the model plant Arabidopsis thaliana. To do so, we performed a large-scale comparative transcriptome profiling in wild type and various UPR-defective mutants during the SpaceX-CRS12 mission to the International Space Station. We established that orbital culture substantially alters the expression of hundreds of stress-related genes compared with ground control conditions. Although expression of those genes varied in the UPR mutants on the ground, it was largely similar across the genotypes in the spaceflight condition. Our results have yielded new information on how plants respond to growth in orbit and support the hypothesis that spaceflight induces the activation of signaling pathways that compensate for the loss of UPR regulators in the control of downstream transcriptional regulatory networks.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan, USA
| | - Dae Kwan Ko
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Starla Zemelis-Durfee
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Address correspondence to: Federica Brandizzi, Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
31
|
Ko DK, Brandizzi F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:254-270. [PMID: 33098715 PMCID: PMC7942231 DOI: 10.1111/tpj.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Correspondence:
| |
Collapse
|
32
|
Verchot J, Pajerowska-Mukhtar KM. UPR signaling at the nexus of plant viral, bacterial, and fungal defenses. Curr Opin Virol 2020; 47:9-17. [PMID: 33360330 DOI: 10.1016/j.coviro.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
In recent years there have been significant advances in our understanding of the ER stress responses in plants that are associated with virus infection, as well as bacterial and fungal diseases. In plants, ER stress induced by virus infection includes several signaling pathways that include the unfolded protein response (UPR) to promote the expression of chaperone proteins for proper protein folding. Understanding how facets of ER stress signaling broadly engage in pathogen responses, as well as those that are specific to virus infection is important to distinguishing features essential for broad cellular defenses and processes that may be specifically linked to viral infectivity and disease.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA..
| | | |
Collapse
|
33
|
Wang B, Zhang M, Zhang J, Huang L, Chen X, Jiang M, Tan M. Profiling of rice Cd-tolerant genes through yeast-based cDNA library survival screening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:429-436. [PMID: 32814279 DOI: 10.1016/j.plaphy.2020.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The bioaccumulation of cadmium (Cd) in crop and the subsequent food chain has aroused extensive concerns. However, the underlying molecular mechanisms of plant Cd tolerance remain to be clarified from the viewpoint of novel candidate genes. Here we described a highly efficient approach for preliminary identifying rice Cd-tolerant genes through the yeast-based cDNA library survival screening combined with high-throughput sequencing strategy. About 690 gene isoforms were identified as being Cd-tolerant candidates using this shotgun approach. Among the Cd-tolerant genes identified, several categories of genes such as BAX inhibitor (BI), NAC transcription factors and Rapid ALkalinization Factors (RALFs) were of particular interest, and their function of Cd tolerance was further validated via heterologous expression, which suggested that SNAC1, RALF12, OsBI-1 can confer Cd tolerance in yeast and tobacco leaves. Regarding the genes involved in ion transport, the validated Cd-tolerant heavy metal-associated domain (HMAD) isoprenylated protein HIPP42 was particularly noteworthy. Further elucidation of these genes associated with Cd tolerance in rice will benefit agricultural activities.
Collapse
Affiliation(s)
- Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences in Jiangsu Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Lianyungang, China.
| | - Manman Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Jie Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Liping Huang
- School of Food Science and Engineering, Foshan University, Foshan, China.
| | - Xi Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
34
|
Gayral M, Arias Gaguancela O, Vasquez E, Herath V, Flores FJ, Dickman MB, Verchot J. Multiple ER-to-nucleus stress signaling pathways are activated during Plantago asiatica mosaic virus and Turnip mosaic virus infection in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1233-1245. [PMID: 32390256 DOI: 10.1111/tpj.14798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Pathogens and other adverse environmental conditions can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones. The inositol-requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA that produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. This study shows that the Plantago asiatica mosaic virus (PlAMV) triple gene block 3 (TGB3) and the Turnip mosaic virus (TuMV) 6K2 proteins activate alternative transcription pathways involving the bZIP17, bZIP28, BAG7, NAC089 and NAC103 factors in Arabidopsis thaliana. Using the corresponding knockout mutant lines, we show that bZIP17, bZIP60, BAG7 and NAC089 are factors in reducing PlAMV infection, whereas bZIP28 and bZIP60 are factors in reducing TuMV infection. We propose a model in which bZIP60 and bZIP17 synergistically induce genes restricting PlAMV infection, while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding TuMV-green fluorescent protein (GFP) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
Collapse
Affiliation(s)
- Mathieu Gayral
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
| | - Omar Arias Gaguancela
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
| | - Evelyn Vasquez
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí, 171103, Ecuador
| | - Venura Herath
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Francisco J Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí, 171103, Ecuador
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial-UTE, Av. Mariscal Sucre y Mariana de Jesús, Quito, Pichincha, 170129, Ecuador
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
| |
Collapse
|
35
|
Herath V, Gayral M, Adhikari N, Miller R, Verchot J. Genome-wide identification and characterization of Solanum tuberosum BiP genes reveal the role of the promoter architecture in BiP gene diversity. Sci Rep 2020; 10:11327. [PMID: 32647371 PMCID: PMC7347581 DOI: 10.1038/s41598-020-68407-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.
Collapse
Affiliation(s)
- Venura Herath
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA.,Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.,Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
| | - Nirakar Adhikari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Rita Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA. .,Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
36
|
Herath V, Gayral M, Adhikari N, Miller R, Verchot J. Genome-wide identification and characterization of Solanum tuberosum BiP genes reveal the role of the promoter architecture in BiP gene diversity. Sci Rep 2020; 10:11327. [PMID: 32647371 DOI: 10.1101/2020.05.16.098244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/18/2020] [Indexed: 05/24/2023] Open
Abstract
The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.
Collapse
Affiliation(s)
- Venura Herath
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
| | - Nirakar Adhikari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Rita Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA.
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
37
|
Hubbard M, Zhai C, Peng G. Exploring Mechanisms of Quantitative Resistance to Leptosphaeria maculans (Blackleg) in the Cotyledons of Canola ( Brassica napus) Based on Transcriptomic and Microscopic Analyses. PLANTS 2020; 9:plants9070864. [PMID: 32650490 PMCID: PMC7411684 DOI: 10.3390/plants9070864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
Using resistant cultivars is a common approach to managing blackleg of canola/rapeseed caused by Leptosphaeria maculans (Lm). Quantitative resistance (QR), as opposed to major-gene resistance, is of interest because it is generally more durable, due to its multi-genetic basis. However, the mechanisms and genes underlying QR are mostly unknown. In this study, potential QR modes of action in “74-44 BL” was explored. This Canadian canola cultivar showed moderate but consistent race-nonspecific resistance at the cotyledon and adult-plant stages. A susceptible cultivar, “Westar”, was used as a control. After inoculation, the lesions developed more slowly on the cotyledons of 74-44 BL than those of Westar. We used RNA sequencing (-RNA-seq) to identify genes and their functions, putatively related to this resistance, and found that genes involved in programmed cell death (PCD), reactive oxygen species (ROS), signal transduction or intracellular endomembrane transport were most differentially expressed. ROS production was assessed in relation to Lm hyphal growth and lesion size; it occurred beyond the tissue colonized by Lm in 74-44 BL and appeared to trigger rapid cell death, limiting cotyledon colonization by Lm. In contrast, Lm grew more rapidly in Westar, often catching up with the ring of ROS and surpassing lesion boundaries. It appears that QR in 74-44 BL cotyledons is associated with limited colonization by Lm possibly mediated via ROS. The RNA-seq data also showed a link between ROS, signal transduction, and endomembrane vesicle trafficking, as well as PCD in the resistance. These results provide a starting point for a better understanding of the mechanisms behind QR against Lm in canola.
Collapse
Affiliation(s)
- Michelle Hubbard
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK S7N 0X2, Canada;
| | - Chun Zhai
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2, Canada;
| | - Gary Peng
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2, Canada;
- Correspondence: ; Tel.: +1-306-385-9410
| |
Collapse
|
38
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Havaux M. Endoplasmic reticulum-mediated unfolded protein response is an integral part of singlet oxygen signalling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1266-1280. [PMID: 31975462 DOI: 10.1111/tpj.14700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a by-product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1 O2 -overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1 O2 signalling pathway involves the endoplasmic reticulum (ER)-mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR-inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1 O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light-induced cell death. Conversely, light acclimation of ch1 to 1 O2 stress put a limitation in the high light-induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1 O2 induces the ER-mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1 O2 , and a strong activation of the whole UPR is associated with cell death.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | | | - Brigitte Ksas
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
39
|
van Butselaar T, Van den Ackerveken G. Salicylic Acid Steers the Growth-Immunity Tradeoff. TRENDS IN PLANT SCIENCE 2020; 25:566-576. [PMID: 32407696 DOI: 10.1016/j.tplants.2020.02.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
Plants possess an effective immune system to combat most microbial attackers. The activation of immune responses to biotrophic pathogens requires the hormone salicylic acid (SA). Accumulation of SA triggers a plethora of immune responses (like massive transcriptional reprogramming, cell wall strengthening, and production of secondary metabolites and antimicrobial proteins). A tradeoff of strong immune responses is the active suppression of plant growth and development. The tradeoff also works the opposite way, where active growth and developmental processes suppress SA production and immune responses. Here, we review research on the role of SA in the growth-immunity tradeoff and examples of how the tradeoff can be bypassed. This knowledge will be instrumental in resistance breeding of crops with optimal growth and effective immunity.
Collapse
Affiliation(s)
- Tijmen van Butselaar
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
40
|
Hong ZH, Qing T, Schubert D, Kleinmanns JA, Liu JX. BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008563. [PMID: 31869326 PMCID: PMC6946172 DOI: 10.1371/journal.pgen.1008563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/07/2020] [Accepted: 12/12/2019] [Indexed: 11/19/2022] Open
Abstract
The unfolded protein response (UPR) is required for protein homeostasis in the endoplasmic reticulum (ER) when plants are challenged by adverse environmental conditions. Inositol-requiring enzyme 1 (IRE1), the bifunctional protein kinase / ribonuclease, is an important UPR regulator in plants mediating cytoplasmic splicing of the mRNA encoding the transcription factor bZIP60. This activates the UPR signaling pathway and regulates canonical UPR genes. However, how the protein activity of IRE1 is controlled during plant growth and development is largely unknown. In the present study, we demonstrate that the nuclear and Golgi-localized protein BLISTER (BLI) negatively controls the activity of IRE1A/IRE1B under normal growth condition in Arabidopsis. Loss-of-function mutation of BLI results in chronic up-regulation of a set of both canonical UPR genes and non-canonical UPR downstream genes, leading to cell death and growth retardation. Genetic analysis indicates that BLI-regulated vegetative growth phenotype is dependent on IRE1A/IRE1B but not their canonical splicing target bZIP60. Genetic complementation with mutation analysis suggests that the D570/K572 residues in the ATP-binding pocket and N780 residue in the RNase domain of IRE1A are required for the activation of canonical UPR gene expression, in contrast, the D570/K572 residues and D590 residue in the protein kinase domain of IRE1A are important for the induction of non-canonical UPR downstream genes in the BLI mutant background, which correlates with the shoot growth phenotype. Hence, our results reveal the important role of IRE1A in plant growth and development, and BLI negatively controls IRE1A’s function under normal growth condition in plants. When unfolded or misfolded proteins are accumulated in the ER, a much conserved response, called the unfolded protein response (UPR), is elicited to lighten the load of unfolded proteins in the ER by bringing the protein-folding and degradation capacities into alignment with the protein folding demands. However, over-activation of the UPR pathways under normal growth conditions affects plant growth and development. The bifunctional protein kinase / ribonuclease protein IRE1 is important for UPR gene regulation, but how IRE1’ protein activity is tightly controlled in plants is currently unknown. Here we report that BLISTER (BLI) negatively controls the IRE1’s function under normal growth condition in Arabidopsis. Through genetic analysis, our results also provide novel insights into how the protein kinase domain and ribonuclease domain contribute to the function of IRE1A in downstream gene expression.
Collapse
Affiliation(s)
- Zheng-Hui Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tao Qing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Daniel Schubert
- Plant Developmental Epigenetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Julia Anna Kleinmanns
- Plant Developmental Epigenetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail: (JAK); (JXL)
| | - Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JAK); (JXL)
| |
Collapse
|
41
|
Functional Diversification of ER Stress Responses in Arabidopsis. Trends Biochem Sci 2019; 45:123-136. [PMID: 31753702 DOI: 10.1016/j.tibs.2019.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is responsible for the synthesis of one-third of the cellular proteome and is constantly challenged by physiological and environmental situations that can perturb its homeostasis and lead to the accumulation of misfolded secretory proteins, a condition referred to as ER stress. In response, the ER evokes a set of intracellular signaling processes, collectively known as the unfolded protein response (UPR), which are designed to restore biosynthetic capacity of the ER. As single-cell organisms evolved into multicellular life, the UPR complexity has increased to suit their growth and development. In this review, we discuss recent advances in the understanding of the UPR, emphasizing conserved UPR elements between plants and metazoans and highlighting unique plant-specific features.
Collapse
|
42
|
Zhu M, Tang X, Wang Z, Xu W, Zhou Y, Wang W, Li X, Li R, Guo K, Sun Y, Zhang W, Xu L, Li X. Arabidopsis GAAPs interacting with MAPR3 modulate the IRE1-dependent pathway upon endoplasmic reticulum stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6113-6125. [PMID: 31618418 PMCID: PMC6859729 DOI: 10.1093/jxb/erz402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/28/2019] [Indexed: 05/08/2023]
Abstract
Cell viability requires the maintenance of intracellular homeostasis through the unfolded protein response mediated by receptors localized on the endoplasmic reticulum (ER) membrane. The receptor IRE1 mediates not only various adaptive outputs but also programmed cell death (PCD) under varying stress levels. However, little is known about the mechanism by which the same receptors trigger different responses in plants. Arabidopsis Golgi anti-apoptotic protein 1 (GAAP1) and GAAP3 resist PCD upon ER stress and negatively modulate the adaptive response of the IRE1-bZIP60 pathway through IRE1 association. To elucidate the mechanism underlying the anti-PCD activity of GAAPs, we attempted to isolate interactors of GAAPs by yeast two-hybrid screening. Membrane-associated progesterone receptor 3 (MAPR3) was isolated as one of the factors interacting with GAAP. Mutations in GAAP1/GAAP3 and/or MAPR3 enhanced the sensitivity of seedlings to ER stress. Whole-transcriptome analysis combined with quantitative reverse transcription-PCR and cellular analysis showed that regulated IRE1-dependent decay (RIDD) and autophagy were impaired in mutants mapr3, gaap1mapr3, and gaap3mapr3. MAPR3, GAAP1, and GAAP3 interacted with IRE1B as determined by protein interaction assays. These data suggest that the interaction of GAAP1/GAAP3 with MAPR3 mitigates ER stress to some extent through regulating IRE10-mediated RIDD and autophagy.
Collapse
Affiliation(s)
- Manli Zhu
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xiaohan Tang
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Zhiying Wang
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Wenqi Xu
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yan Zhou
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Wei Wang
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xin Li
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Rui Li
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Kun Guo
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yue Sun
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Wei Zhang
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xiaofang Li
- School of Life Sciences, East China Normal University, Shanghai, PR China
- Correspondence:
| |
Collapse
|
43
|
Pu Y, Ruberti C, Angelos ER, Brandizzi F. AtIRE1C, an unconventional isoform of the UPR master regulator AtIRE1, is functionally associated with AtIRE1B in Arabidopsis gametogenesis. PLANT DIRECT 2019; 3:e00187. [PMID: 31799493 PMCID: PMC6883098 DOI: 10.1002/pld3.187] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR), a highly conserved set of eukaryotic intracellular signaling cascades, controls the homeostasis of the endoplasmic reticulum (ER) in normal physiological growth and situations causing accumulation of potentially toxic levels of misfolded proteins in the ER, a condition known as ER stress. During evolution, eukaryotic lineages have acquired multiple UPR effectors, which have increased the pliability of cytoprotective responses to physiological and environmental stresses. The ER-associated protein kinase and ribonuclease IRE1 is a UPR effector that is conserved from yeast to metazoans and plants. IRE1 assumes dispensable roles in growth in yeast but it is essential in mammals and plants. The Arabidopsis genome encodes two isoforms of IRE1, IRE1A and IRE1B, whose protein functional domains are conserved across eukaryotes. Here, we describe the identification of a third Arabidopsis IRE1 isoform, IRE1C. This protein lacks the ER lumenal domain that has been implicated in sensing ER stress in the IRE1 isoforms known to date. Through functional analyses, we demonstrate that IRE1C is not essential in growth and stress responses when deleted from the genome singularly or in combination with an IRE1A knockout allele. However, we found that IRE1C exerts an essential role in gametogenesis when IRE1B is also depleted. Our results identify a novel, plant-specific IRE1 isoform and highlight that at least the control of gametogenesis in Arabidopsis requires an unexpected functional coordination of IRE1C and IRE1B. More broadly, our findings support the existence of a functional form of IRE1 that is required for development despite the remarkable absence of a protein domain that is critical for the function of other known IRE1 isoforms.
Collapse
Affiliation(s)
- Yunting Pu
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Cristina Ruberti
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Evan R. Angelos
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Federica Brandizzi
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| |
Collapse
|
44
|
Fan F, Zhang Y, Huang G, Zhang Q, Wang CC, Wang L, Lu D. AtERO1 and AtERO2 Exhibit Differences in Catalyzing Oxidative Protein Folding in the Endoplasmic Reticulum. PLANT PHYSIOLOGY 2019; 180:2022-2033. [PMID: 31138621 PMCID: PMC6670081 DOI: 10.1104/pp.19.00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/16/2019] [Indexed: 05/26/2023]
Abstract
Disulfide bonds are essential for the folding of the eukaryotic secretory and membrane proteins in the endoplasmic reticulum (ER), and ER oxidoreductin-1 (Ero1) and its homologs are the major disulfide donors that supply oxidizing equivalents in the ER. Although Ero1 homologs in yeast (Saccharomyces cerevisiae) and mammals have been extensively studied, the mechanisms of plant Ero1 functions are far less understood. Here, we found that both Arabidopsis (Arabidopsis thaliana) ERO1 and its homolog AtERO2 are required for oxidative protein folding in the ER. The outer active site, the inner active site, and a long-range noncatalytic disulfide bond are required for AtERO1's function. Interestingly, AtERO1 and AtERO2 also exhibit significant differences. The ero1 plants are more sensitive to reductive stress than the ero2 plants. In vivo, both AtERO1 and AtERO2 have two distinct oxidized isoforms (Ox1 and Ox2), which are determined by the formation or breakage of the putative regulatory disulfide. AtERO1 is mainly present in the Ox1 redox state, while more AtERO2 exists in the Ox2 state. Furthermore, AtERO1 showed much stronger oxidative protein-folding activity than AtERO2 in vitro. Taken together, both AtERO1 and AtERO2 are required to regulate efficient and faithful oxidative protein folding in the ER, but AtERO1 may serves as the primary sulfhydryl oxidase relative to AtERO2.
Collapse
Affiliation(s)
- Fenggui Fan
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yini Zhang
- University of the Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhong Huang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Zhang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Chih-Chen Wang
- University of the Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- University of the Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongping Lu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| |
Collapse
|
45
|
Liu L, Li J. Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:749. [PMID: 31249578 PMCID: PMC6582665 DOI: 10.3389/fpls.2019.00749] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
To adapt to constantly changing environmental conditions, plants have evolved sophisticated tolerance mechanisms to integrate various stress signals and to coordinate plant growth and development. It is well known that inter-organellar communications play important roles in maintaining cellular homeostasis in response to environmental stresses. The endoplasmic reticulum (ER), extending throughout the cytoplasm of eukaryotic cells, is a central organelle involved in lipid metabolism, Ca2+ homeostasis, and synthesis and folding of secretory and transmembrane proteins crucial to perceive and transduce environmental signals. The ER communicates with the nucleus via the highly conserved unfolded protein response pathway to mitigate ER stress. Importantly, recent studies have revealed that the dynamic ER network physically interacts with other intracellular organelles and endomembrane compartments, such as the Golgi complex, mitochondria, chloroplast, peroxisome, vacuole, and the plasma membrane, through multiple membrane contact sites between closely apposed organelles. In this review, we will discuss the signaling and metabolite exchanges between the ER and other organelles during abiotic stress responses in plants as well as the ER-organelle membrane contact sites and their associated tethering complexes.
Collapse
Affiliation(s)
- Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
46
|
Wang W, Li X, Zhu M, Tang X, Wang Z, Guo K, Zhou Y, Sun Y, Zhang W, Li X. Arabidopsis GAAP1 to GAAP3 Play Redundant Role in Cell Death Inhibition by Suppressing the Upregulation of Salicylic Acid Pathway Under Endoplasmic Reticulum Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1032. [PMID: 31507623 PMCID: PMC6719610 DOI: 10.3389/fpls.2019.01032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/24/2019] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR) is activated to sustain cell survival by reducing misfolded protein accumulation in the endoplasmic reticulum (ER). The UPR also promotes cell death when the ER stress is severe. However, the underlying molecular mechanisms of UPR activity regulation and cell death transition are less understood in plants. Arabidopsis GAAP1 and GAAP3 are involved in the regulation of UPR and cell death. Five GAAP gene members are found in Arabidopsis. Here, we analyzed the function of GAAP2 in addition to GAAP1 and GAAP3 in ER stress response using single, double, and triple mutants. Results showed that single or double or triple mutants reduced plant survival and enhanced cell death under ER stress. And the sensitivity increased with the number of mutation genes increase. Quantitative real-time polymerase chain reaction analysis showed that mutation in triple genes promoted UPR signaling when confronted with mild ER stress, advanced SA target genes upregulation when confronted with severe stress. Moreover, Quantitative detection by UPLC-ESI-MS/MS showed that ER stress upregulated salicylic acid (SA) content in plants. These data suggest that GAAP1 to GAAP3 played redundant roles in cell death resistance and fine tuning UPR activation. And the anti-cell death function of GAAPs might be achieved by impairing the up-regulation of the SA pathway under ER stress.
Collapse
|
47
|
Zeng Y, Li B, Zhang W, Jiang L. ER-Phagy and ER Stress Response (ERSR) in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1192. [PMID: 31611901 PMCID: PMC6777540 DOI: 10.3389/fpls.2019.01192] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/29/2019] [Indexed: 05/03/2023]
Abstract
The endoplasmic reticulum (ER) is the starting point for protein secretion and lipid biosynthesis in eukaryotes. ER homeostasis is precisely regulated by the unfolded protein response (UPR) to alleviate stress, involving both transcriptional and translational regulators. Autophagy is an intracellular self-eating process mediated by the double-membrane structure autophagosome for the degradation of cytosolic components and damaged organelles to regenerate nutrient supplies under nutrient-deficient or stress conditions. A recent study has revealed that besides serving as a membrane source for phagophore formation, the ER is also tightly regulated under stress conditions by a distinct type of autophagosome, namely ER-phagy. ER-phagy has been characterized with receptors clearly identified in mammals and yeast, yet relatively little is known about plant ER-phagy and its receptors. Here, we will summarize our current knowledge of ER-phagy in yeast and mammals and highlight recent progress in plant ER-phagy studies, pointing towards a possible interplay between ER-phagy and ER homeostasis under ER stress responses (ERSRs) in plants.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Yonglun Zeng, ; Baiying Li, ; Liwen Jiang,
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Yonglun Zeng, ; Baiying Li, ; Liwen Jiang,
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Yonglun Zeng, ; Baiying Li, ; Liwen Jiang,
| |
Collapse
|
48
|
Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1106-1120. [PMID: 30218537 PMCID: PMC6289879 DOI: 10.1111/tpj.14091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 05/13/2023]
Abstract
In all eukaryotes, the unfolded protein response (UPR) relieves endoplasmic reticulum (ER) stress, which is a potentially lethal condition caused by the accumulation of misfolded proteins in the ER. In mammalian and yeast cells, reactive oxygen species (ROS) generated during ER stress attenuate the UPR, negatively impacting cell survival. In plants, the relationship between the UPR and ROS is less clear. Although ROS develop during ER stress, the sources of ROS linked to ER stress responses and the physiological impact of ROS generation on the survival from proteotoxic stress are yet unknown. Here we show that in Arabidopsis thaliana the respiratory burst oxidase homologs, RBOHD and RBOHF, contribute to the production of ROS during ER stress. We also demonstrate that during ER stress RBOHD and RBOHF are necessary to properly mount the adaptive UPR and overcome temporary and chronic ER stress situations. These results ascribe a cytoprotective role to RBOH-generated ROS in the defense from proteotoxic stress in an essential organelle, and support a plant-specific feature of the UPR management among eukaryotes.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
50
|
Lai YS, Stefano G, Zemelis-Durfee S, Ruberti C, Gibbons L, Brandizzi F. Systemic signaling contributes to the unfolded protein response of the plant endoplasmic reticulum. Nat Commun 2018; 9:3918. [PMID: 30254194 PMCID: PMC6156401 DOI: 10.1038/s41467-018-06289-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/29/2018] [Indexed: 01/06/2023] Open
Abstract
The unfolded protein response (UPR) of the endoplasmic reticulum constitutes a conserved and essential cytoprotective pathway designed to survive biotic and abiotic stresses that alter the proteostasis of the endoplasmic reticulum. The UPR is typically considered cell-autonomous and it is yet unclear whether it can also act systemically through non-cell autonomous signaling. We have addressed this question using a genetic approach coupled with micro-grafting and a suite of molecular reporters in the model plant species Arabidopsis thaliana. We show that the UPR has a non-cell autonomous component, and we demonstrate that this is partially mediated by the intercellular movement of the UPR transcription factor bZIP60 facilitating systemic UPR signaling. Therefore, in multicellular eukaryotes such as plants, non-cell autonomous UPR signaling relies on the systemic movement of at least a UPR transcriptional modulator.
Collapse
Affiliation(s)
- Ya-Shiuan Lai
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Starla Zemelis-Durfee
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Lizzie Gibbons
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|