1
|
Walker MT, Bloodworth JC, Kountz TS, McCarty SL, Green JE, Ferrie RP, Campbell JA, Averill SH, Beckman KB, Grammer LC, Eng C, Avila PC, Farber HJ, Rodriguez-Cintron W, Rodriguez-Santana JR, Serebrisky D, Thyne SM, Seibold MA, Burchard EG, Kumar R, Cook-Mills JM. 5-HTP inhibits eosinophilia via intracellular endothelial 5-HTRs; SNPs in 5-HTRs associate with asthmatic lung function. FRONTIERS IN ALLERGY 2024; 5:1385168. [PMID: 38845678 PMCID: PMC11153829 DOI: 10.3389/falgy.2024.1385168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background Previous research showed that 5-hydroxytryptophan (5HTP), a metabolic precursor of serotonin, reduces allergic lung inflammation by inhibiting eosinophil migration across endothelial monolayers. Objective It is unknown if serotonin receptors are involved in mediating this 5HTP function or if serotonin receptor (HTR) single nucleotide polymorphisms (SNPs) associate with lung function in humans. Methods Serotonin receptor subtypes were assessed by qPCR, western blot, confocal microscopy, pharmacological inhibitors and siRNA knockdown. HTR SNPs were assessed in two cohorts. Results Pharmacological inhibition or siRNA knockdown of the serotonin receptors HTR1A or HTR1B in endothelial cells abrogated the inhibitory effects of 5HTP on eosinophil transendothelial migration. In contrast, eosinophil transendothelial migration was not inhibited by siRNA knockdown of HTR1A or HTR1B in eosinophils. Surprisingly, these HTRs were intracellular in endothelial cells and an extracellular supplementation with serotonin did not inhibit eosinophil transendothelial migration. This is consistent with the inability of serotonin to cross membranes, the lack of selective serotonin reuptake receptors on endothelial cells, and the studies showing minimal impact of selective serotonin reuptake inhibitors on asthma. To extend our HTR studies to humans with asthma, we examined the CHIRAH and GALA cohorts for HTR SNPs that affect HTR function or are associated with behavior disorders. A polygenic index of SNPs in HTRs was associated with lower lung function in asthmatics. Conclusions Serotonin receptors mediate 5HTP inhibition of transendothelial migration and HTR SNPs associate with lower lung function. These results may serve to aid in design of novel interventions for allergic inflammation.
Collapse
Affiliation(s)
- Matthew T. Walker
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey C. Bloodworth
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy S. Kountz
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha L. McCarty
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jeremy E. Green
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ryan P. Ferrie
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jackson A. Campbell
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha H. Averill
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Leslie C. Grammer
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Pedro C. Avila
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Harold J. Farber
- Department of Pediatrics, Section of Pulmonology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
| | | | | | - Denise Serebrisky
- Pediatric Pulmonary Division, Jacobi Medical Center, Bronx, NY, United States
| | - Shannon M. Thyne
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Max A. Seibold
- Center for Genes, Environment, and Health and the Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, CO, United States
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rajesh Kumar
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Allergy and Clinical Immunology, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Joan M. Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Corzo-Gómez J, Picazo O, Castellanos-Pérez M, Briones-Aranda A. Systematic Review of the Serotonergic System in the Pathophysiology of Severe Dengue: The Theory of Thrombocytopenia and Vascular Extravasation. Mini Rev Med Chem 2023; 23:230-243. [PMID: 35726421 DOI: 10.2174/1389557522666220619231643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe dengue is characterized by thrombocytopenia, hemorrhaging, and/or capillary extravasation and may be linked to a reduced plasma concentration of serotonin (5-hydroxytriptamine, or 5-HT). OBJECTIVE The aim of the current contribution was to conduct a systematic bibliographic review of reports on the role of the peripheral serotonergic system in the pathophysiology of severe dengue. METHODS A bibliographic review was carried out of in vivo/in vitro models, clinical trials, and case series studies from 2010-2019. The selective criteria were the use of treatments with serotonin reuptake inhibitors and/or agonists/antagonists of 5-HT receptors and their impact on inflammation, coagulation, and endothelium. Moreover, cross-sectional and cohort studies on the relationship between intraplatelet and plasma 5-HT levels in patients with dengue were also included. The risk of bias in the selected reports was examined with domain-based assessment utilizing Cochrane-type criteria. The main results are summarized in Tables and Figures. RESULTS Based on descriptions of the effect of serotonergic drugs on 5-HT levels and the findings of clinical trials of dengue treatment, most receptors of the peripheral serotonergic system, and especially 5-HT2A, seem to participate in regulating serum 5-HT during severe dengue. Therefore, the peripheral serotonergic system probably contributes to thrombocytopenia and capillary extravasation. CONCLUSION Regarding dengue, 5-HT may be a key parameter for predicting severity, and an understanding of 5-HT-related mechanisms could possibly facilitate the development of new therapies. These proposals require further research due to the limited number of publications on the role of serotonergic receptors at the peripheral level.
Collapse
Affiliation(s)
- Josselin Corzo-Gómez
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Ofir Picazo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Manuela Castellanos-Pérez
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Alfredo Briones-Aranda
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| |
Collapse
|
3
|
Affiliation(s)
- Luc Maroteaux
- UMR-S839 INSERM, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Fusun Kilic
- Departments of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
4
|
Liu M, Wei W, Stone CR, Zhang L, Tian G, Ding JN. Beneficial effects of trimetazidine on expression of serotonin and serotonin transporter in rats with myocardial infarction and depression. Neuropsychiatr Dis Treat 2018; 14:787-797. [PMID: 29588593 PMCID: PMC5859911 DOI: 10.2147/ndt.s157441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Trimetazidine is an anti-ischemic drug that can inhibit platelet aggregation and regulate serotonin (5-hydroxytryptamine [5-HT]) release. The purpose of this study was to investigate the therapeutic effects of trimetazidine on 5-HT and serotonin transporter (SERT) expression in experimentally induced myocardial infarction (MI), depression, and MI + depression. MATERIALS AND METHODS Eighty Sprague Dawley (SD) rats were randomly divided into a trimetazidine group and a saline group of 40 rats each. The trimetazidine group was given trimetazidine pretreatment for 4 weeks, while the saline group received saline for 4 weeks. Both groups were then subdivided into four subgroups (n=10), which were each subjected to a unique disease condition: sham surgery, MI, depression, or MI + depression. All rats were sacrificed 3 days thereafter, and serum and platelet levels of 5-HT and SERT were assessed. In addition, we experimented with trimetazidine posttreatment. Twenty SD rats underwent MI surgery, and were then randomly divided into a treatment and a saline group (n=10 each). For 4 weeks post-surgery, the trimetazidine group was given trimetazidine, while the saline group received saline. Serum and platelet levels of 5-HT and SERT were assessed. RESULTS Pretreatment with trimetazidine: in the nontreatment saline group, MI, depression, and MI + depression showed significant declines (P<0.05) in both serum and platelet 5-HT levels compared to sham. Trimetazidine treatment significantly increased serum and platelet 5-HT levels in the MI, depression, and MI + depression (P<0.05) subgroups compared to their counterparts in the saline group. Results for SERT were heterogeneous between serum and platelets. Trimetazidine treatment significantly decreased serum levels of SERT in the sham surgery subgroup (P<0.05), while significantly increasing levels in depression rats, compared to control (P<0.05). In platelets, trimetazidine significantly decreased SERT in sham surgery, MI, depression, and MI + depression rats, compared to control (P<0.05). This contrast suggests that trimetazidine has opposite effects in serum and platelet SERT levels for the three disease models. Post-surgery trimetazidine: increased serum 5-HT (P<0.05) and serum SERT (P<0.05) were observed, compared to control. In platelets, trimetazidine decreased both 5-HT and SERT compared to control, significantly (P<0.05) for 5-HT, but not significantly for SERT (P>0.05). CONCLUSION Trimetazidine has a regulatory effect on 5-HT and SERT in the serum and platelets. Because of the downstream effects of this regulation on blood vessel function and myocardial protection, trimetazidine may be a therapeutic or preventive agent in several disease processes, including MI, depression, and the comorbidity between these two diseases. Further investigation, aimed at exploring the clinical potential of trimetazidine, is therefore warranted.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wanlin Wei
- Department of Cardiology, PLA Army General Hospital, Beijing, People's Republic of China
| | - Christopher R Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lijun Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guoxiang Tian
- Department of 4th Cadres Ward, PLA Army General Hospital, Beijing, People's Republic of China
| | - Jessie N Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Ayala-Lopez N, Thompson JM, Watts SW. Perivascular Adipose Tissue's Impact on Norepinephrine-Induced Contraction of Mesenteric Resistance Arteries. Front Physiol 2017; 8:37. [PMID: 28228728 PMCID: PMC5296360 DOI: 10.3389/fphys.2017.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Perivascular adipose tissue (PVAT) can decrease vascular contraction to NE. We tested the hypothesis that metabolism and/or uptake of vasoactive amines by mesenteric PVAT (MPVAT) could affect NE-induced contraction of the mesenteric resistance arteries. Methods: Mesenteric resistance vessels (MRV) and MPVAT from male Sprague-Dawley rats were used. RT-PCR and Western blots were performed to detect amine metabolizing enzymes. The Amplex® Red Assay was used to quantify oxidase activity by detecting the oxidase reaction product H2O2 and the contribution of PVAT on the mesenteric arteries' contraction to NE was measured by myography. Results: Semicarbazide sensitive amine oxidase (SSAO) and monoamine oxidase A (MAO-A) were detected in MRV and MPVAT by Western blot. Addition of the amine oxidase substrates tyramine or benzylamine (1 mM) resulted in higher amine oxidase activity in the MRV, MPVAT, MPVAT's adipocyte fraction (AF), and the stromal vascular fraction (SVF). Inhibiting SSAO with semicarbazide (1 mM) decreased amine oxidase activity in the MPVAT and AF. Benzylamine-driven, but not tyramine-driven, oxidase activity in the MRV was reduced by semicarbazide. By contrast, no reduction in oxidase activity in all sample types was observed with use of the monoamine oxidase inhibitors clorgyline (1 μM) or pargyline (1 μM). Inhibition of MAO-A/B or SSAO individually did not alter contraction to NE. However, inhibition of both MAO and SSAO increased the potency of NE at mesenteric arteries with PVAT. Addition of MAO and SSAO inhibitors along with the H2O2 scavenger catalase reduced PVAT's anti-contractile effect to NE. Inhibition of the norepinephrine transporter (NET) with nisoxetine also reduced PVAT's anti-contractile effect to NE. Conclusions: PVAT's uptake and metabolism of NE may contribute to the anti-contractile effect of PVAT. MPVAT and adipocytes within MPVAT are a source of SSAO.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State UniversityEast Lansing, MI, USA
| | | | | |
Collapse
|
6
|
Watts SW. Oh, the places you'll go! My many colored serotonin (apologies to Dr. Seuss). Am J Physiol Heart Circ Physiol 2016; 311:H1225-H1233. [PMID: 27663771 PMCID: PMC5130493 DOI: 10.1152/ajpheart.00538.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/11/2016] [Indexed: 11/22/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] has a truly fascinating history in the cardiovascular world. Discovered in the blood, 5-HT has long been appropriately regarded as a vasoconstrictor. A multitude of in vitro studies of isolated vessels support that addition of 5-HT causes vascular contraction. In only a few cases was 5-HT a vasodilator. Moreover, the potency and threshold of 5-HT causing contraction is increased in arteries from hypertensive vs. normotensive subjects, both animal and human. As such, we and others have hypothesized that 5-HT would contribute to hypertension by elevating arterial tone. In stark contrast to these decades of findings, we observed that a chronic infusion of 5-HT into conscious rats caused a reduction in blood pressure and nearly normalized blood pressure of experimentally hypertensive rats. Going back to the early work of Irvine Page, one of the scientists who discovered 5-HT, reveals an early recognized but never understood ability of 5-HT to reduce systemic blood pressure. Our laboratory, in collaboration with colleagues around the world, has dedicated itself to understanding the mechanisms of 5-HT-induced reduction in blood pressure. This manuscript takes you through a brief history of the discovery of 5-HT, in vitro serotonergic pharmacology of blood vessels, in vivo work with 5-HT and our studies that suggests the venous vasculature, potentially in combination with small arterioles, may be important to the actions of 5-HT in reducing blood pressure. 5-HT has certainly ended up in a place I never expected it to go.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Kozhevnikova LM, Mironova GY, Sukhanova IF. The inhibitors of the 5HT-transporter fluoxetine and clomipramine attenuate serotonin-induced constriction of the aorta and the calcium signal in smooth muscle cells of the rat. BIOL BULL+ 2016. [DOI: 10.1134/s106235901601009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Young LW, Darios ES, Watts SW. An immunohistochemical analysis of SERT in the blood-brain barrier of the male rat brain. Histochem Cell Biol 2015; 144:321-9. [PMID: 26223876 PMCID: PMC4575874 DOI: 10.1007/s00418-015-1343-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
5-Hydroxytryptamine (5-HT) was originally discovered as a vasoconstrictor. 5-HT lowers blood pressure when administered peripherally to both normotensive and hypertensive male rats. Because the serotonin transporter (SERT) can function bidirectionally, we must consider whether 5-HT can be transported from the bloodstream to the central nervous system (CNS) in facilitating the fall in blood pressure. The blood-brain barrier (BBB) is a highly selective barrier that restricts movement of substances from the bloodstream to the CNS and vice versa, but the rat BBB has not been investigated in terms of SERT expression. This requires us to determine whether the BBB of the rat, the species in which we first observed a fall in blood pressure to infused 5-HT, expresses SERT. We hypothesized that SERT is present in the BBB of the male rat. To test this hypothesis, over 500 blood vessels were sampled from coronal slices of six male rat brains. Immunofluorescence of these coronal slices was used to determine whether SERT and RecA-1 (an endothelial cell marker) colocalized to the BBB. Blood vessels were considered to be capillaries if they were between 1.5 and 23 µm (intraluminal diameter). SERT was identified in the largest pial vessels of the BBB (mean ± SEM = 228.70 ± 18.71 µm, N = 9) and the smallest capillaries (mean ± SEM = 2.75 ± 0.12 µm, N = 369). SERT was not identified in the endothelium of blood vessels ranging from 20 to 135 µm (N = 45). The expression of SERT in the rat BBB means that 5-HT entry into the CNS must be considered a potential mechanism when investigating 5-HT-induced fall in blood pressure.
Collapse
Affiliation(s)
- Lindsey W Young
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Emma S Darios
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Durairaj H, Steury MD, Parameswaran N. Paroxetine differentially modulates LPS-induced TNFα and IL-6 production in mouse macrophages. Int Immunopharmacol 2015; 25:485-92. [PMID: 25744603 DOI: 10.1016/j.intimp.2015.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 11/16/2022]
Abstract
Paroxetine is a selective serotonin reuptake inhibitor (SSRI) that is clinically used for the treatment of depression in human patients. Because of recent reports on the role of serotonin in modulating inflammation and the link between inflammation and depression, we sought to test the effect of paroxetine directly on macrophage response to an inflammatory stimulus. Lipopolysaccharide (LPS) treatment of mouse macrophages significantly enhanced TNFα and IL-6 production. Paroxetine treatment of macrophages, however, significantly inhibited LPS-induced IL-6 production. In contrast, paroxetine enhanced LPS-induced TNFα production in macrophages. These effects of paroxetine were mimicked by fluoxetine, another SSRI. To determine if the effects of paroxetine are mediated via modulation of the 5-HT system, we treated macrophages with 5-HT or 5-HT receptor antagonist (LY215840) in the presence of LPS and/or paroxetine. 5-HT treatment by itself did not affect LPS-induced cytokine production. LY215840, however, reversed paroxetine's effect on LPS-induced TNFα production but not IL-6. To understand the signaling mechanisms, we examined paroxetine's effect on MAPK and NFκB pathways. While paroxetine inhibited LPS-induced IκBα phosphorylation, MAPK pathways were mostly unaffected. Together these data demonstrate that paroxetine has critical but differential effects on IL-6 and TNFα production in macrophages and that it likely regulates these cytokines via distinct mechanisms.
Collapse
Affiliation(s)
- Haritha Durairaj
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
10
|
Hothersall JD, Alexander A, Samson AJ, Moffat C, Bollan KA, Connolly CN. 5-Hydroxytryptamine (5-HT) cellular sequestration during chronic exposure delays 5-HT3 receptor resensitization due to its subsequent release. J Biol Chem 2014; 289:32020-32029. [PMID: 25281748 PMCID: PMC4231679 DOI: 10.1074/jbc.m114.594796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 μm, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 μm, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization.
Collapse
Affiliation(s)
- J Daniel Hothersall
- Medical Research Institute, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Amy Alexander
- Medical Research Institute, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Andrew J Samson
- Medical Research Institute, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Christopher Moffat
- Medical Research Institute, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Karen A Bollan
- Medical Research Institute, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Christopher N Connolly
- Medical Research Institute, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| |
Collapse
|
11
|
Du CK, Zhan DY, Akiyama T, Sonobe T, Inagaki T, Shirai M. Myocardial interstitial serotonin and its major metabolite, 5-hydroxyindole acetic acid levels determined by microdialysis technique in rat heart. Life Sci 2014; 117:33-9. [PMID: 25277944 DOI: 10.1016/j.lfs.2014.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/01/2014] [Accepted: 09/18/2014] [Indexed: 01/26/2023]
Abstract
AIMS The aim of this study was to elucidate myocardial interstitial serotonin (5-HT) kinetics in the heart, including 5-HT reuptake and enzymatic degradation to 5-hydroxyindole acetic acid (5-HIAA) via monoamine oxidase (MAO). MAIN METHODS Using microdialysis technique in anesthetized rats, we simultaneously monitored myocardial interstitial levels of 5-HT and its major metabolite, 5-HIAA, in the left ventricle and examined the effects of local administration of a MAO inhibitor, pargyline, or a 5-HT uptake inhibitor, fluoxetine. KEY FINDINGS Pargyline increased dialysate 5-HT concentration from 1.8±0.3 at baseline to 3.9±0.5nM but decreased dialysate 5-HIAA concentration from 20.7±1.0 at baseline to 15.8±1.4nM at 60-80min of administration. Fluoxetine increased dialysate 5-HT concentration from 1.9±0.4 at baseline to 6.5±0.9nM at 60-80min of administration, but did not change dialysate 5-HIAA concentration. Local administration of ADP (100mM) increased dialysate 5-HT and 5-HIAA concentrations. Pargyline did not affect ADP-induced increase in dialysate 5-HT concentration but suppressed ADP-induced increase in dialysate 5-HIAA concentration during 60min of ADP administration. Fluoxetine increased dialysate 5-HT concentration at 40-60min of ADP administration, but did not affect ADP-induced increase in dialysate 5-HIAA concentration. SIGNIFICANCE Simultaneous monitoring of myocardial interstitial 5-HT and 5-HIAA levels provides valuable information on 5-HT kinetics including reuptake and enzymatic degradation by MAO, which play a role in the regulation of myocardial interstitial 5-HT levels at baseline and when 5-HT levels are elevated.
Collapse
Affiliation(s)
- Cheng-Kun Du
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan.
| | - Dong-Yun Zhan
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Tadakatsu Inagaki
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
12
|
Li RWS, Yang C, Kwan YW, Chan SW, Lee SMY, Leung GPH. Involvement of organic cation transporter-3 and plasma membrane monoamine transporter in serotonin uptake in human brain vascular smooth muscle cells. Front Pharmacol 2013; 4:14. [PMID: 23407616 PMCID: PMC3569667 DOI: 10.3389/fphar.2013.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/25/2013] [Indexed: 02/01/2023] Open
Abstract
The serotonin (5-HT) uptake system is supposed to play a crucial part in vascular functions by “fine-tuning” the local concentration of 5-HT in the vicinity of 5-HT2 receptors in vascular smooth muscle cells. In this study, the mechanism of 5-HT uptake in human brain vascular smooth muscle cells (HBVSMCs) was investigated. [3H]5-HT uptake in HBVSMCs was Na+-independent. Kinetic analyses of [3H]5-HT uptake in HBVSMCs revealed a Km of 50.36 ± 10.2 mM and a Vmax of 1033.61 ± 98.86 pmol/mg protein/min. The specific serotonin re-uptake transporter (SERT) inhibitor citalopram, the specific norepinephrine transporter (NET) inhibitor desipramine, and the dopamine transporter (DAT) inhibitor GBR12935 inhibited 5-HT uptake in HBVSMCs with IC50 values of 97.03 ± 40.10, 10.49 ± 5.98, and 2.80 ± 1.04 μM, respectively. These IC50 values were 100-fold higher than data reported by other authors, suggesting that those inhibitors were not blocking their corresponding transporters. Reverse transcription-polymerase chain reaction results demonstrated the presence of mRNA for organic cation transporter (OCT)-3 and plasma membrane monoamine transporter (PMAT), but the absence of OCT-1, OCT-2, SERT, NET, and DAT. siRNA knockdown of OCT-3 and PMAT specifically attenuated 5-HT uptake in HBVSMCs. It is concluded that 5-HT uptake in HBVSMCs was mediated predominantly by a low-affinity and Na+-independent mechanism. The most probable candidates are OCT-3 and PMAT, but not the SERT.
Collapse
Affiliation(s)
- Rachel W S Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | | | | | |
Collapse
|
14
|
Linder AE, Davis RP, Burnett R, Watts SW. Comparison of the function of the serotonin transporter in the vasculature of male and female rats. Clin Exp Pharmacol Physiol 2011; 38:314-22. [PMID: 21371073 DOI: 10.1111/j.1440-1681.2011.05504.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The serotonin transporter (SERT) handles serotonin (5-hydroxytryptamine (5-HT)) and is blocked by the antidepressant SERT inhibitors fluoxetine and fluvoxamine. Although the importance of SERT in the central nervous system is clear, SERT also functions in the peripheral vasculature. In the present study, we tested the hypothesis that the vasculature from female rats has increased SERT function compared with male rats because females are more responsive to SERT inhibitors. 2. In addition to in vitro experiments, in vivo experiments were used to evaluate how male and female rats handle chronically elevated levels of 5-HT. Wild-type (WT) and SERT-knockout (SERT-KO) rats were infused with 5-HT (25 μg/kg per min) for 7 days by minipump. 3. Using HPLC analysis, we demonstrated that blood vessels (aorta, carotid artery, jugular vein and vena cava) from naïve, non-infused female rats took up 5-HT acutely in vitro in a SERT-dependent manner. In in vitro experiments, SERT affected the contractility of aortas from female rats, as evidenced by an eightfold increase in potency of 5-HT in fluvoxamine (1 μmol/L)-incubated WT aortas compared with control. Fluvoxamine did not alter 5-HT-induced contraction in aortas from SERT-KO female rats. 4. Infusion of 5-HT resulted in an increase in tissue 5-HT that was reduced to a larger extent in blood vessels from female than male SERT-KO rats. Aortic contractions to 5-HT were abolished in aortas from male and female 5-HT-infused SERT-KO rats compared with WT rats. 5. Collectively, these data suggest that SERT function, when challenged with 5-HT, is modestly more important in the vasculature of the female compared with male rat.
Collapse
Affiliation(s)
- Aurea Elizabeth Linder
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| | | | | | | |
Collapse
|
15
|
Hale MW, Shekhar A, Lowry CA. Development by environment interactions controlling tryptophan hydroxylase expression. J Chem Neuroanat 2011; 41:219-26. [PMID: 21640184 DOI: 10.1016/j.jchemneu.2011.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/19/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022]
Abstract
Tryptophan hydroxylase is the rate-limiting enzyme in the biosynthesis of serotonin (5-hydroxytryptamine; 5-HT). Two isoforms of tryptophan hydroxylase, derived from different genes, tph1 and tph2, have been identified. The tph1 isoform is expressed in peripheral tissues, whereas tph2 is brain and neuron-specific. Recent studies suggest that tph2 expression and brain serotonin turnover are upregulated in depressed suicide patients, and drug-free depressed patients, respectively. Increased tph2 expression could result from genetic influences, early life developmental influences, adverse experience during adulthood, or interactions among these factors. Studies in rodents support the hypothesis that interactions between early life developmental influences and adverse experience during adulthood play an important role in determining tph2 expression. In this review, we highlight the evidence for the effects of adverse early life experience and stressful experience during adulthood on both tph1 and tph2 expression.
Collapse
Affiliation(s)
- Matthew W Hale
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, USA
| | | | | |
Collapse
|
16
|
Patrick Davis R, Linder AE, Watts SW. Lack of the serotonin transporter (SERT) reduces the ability of 5-hydroxytryptamine to lower blood pressure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:543-6. [PMID: 21448568 PMCID: PMC3097417 DOI: 10.1007/s00210-011-0622-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 03/08/2011] [Indexed: 11/30/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is a potent constrictor of isolated blood vessels. However, recent studies demonstrate that chronic 5-HT infusion results in a prolonged fall in blood pressure in the rat. This finding highlights the need for further study of 5-HT in the cardiovascular system. We tested the hypothesis that a functional serotonin transporter (SERT) is critical to enabling a 5-HT-induced fall in blood pressure. Experiments were performed in male and female rats to determine whether gender significantly affected the ability of 5-HT to lower blood pressure and to determine whether SERT dependence was different in male vs. female rats. 5-HT (25 μg/kg/min; s.c.) was infused for 7 days to male and female, SERT wild-type (WT) and SERT knockout (KO) rats. Mean arterial pressure (MAP) and heart rate were monitored via radiotelemetry. 5-HT produced a significantly greater fall in MAP (at the nadir) in the male SERT WT rat (-20 ± 1 mmHg) compared to the male SERT KO rat (-10 ± 2 mmHg). Similarly, 5-HT also produced a significantly greater fall in MAP (at the nadir) in the female SERT WT rat (-19 ± 1 mmHg) compared to the female SERT KO rat (-15 ± 0.4 mmHg). While the lack of a functional SERT protein did not prevent a 5-HT-induced fall in blood pressure, it did reduce the ability of 5-HT to lower blood pressure in the male and female SERT rat, suggesting a potentially important role for SERT in producing a 5-HT-induced fall in blood pressure.
Collapse
Affiliation(s)
- Robert Patrick Davis
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA.
| | | | | |
Collapse
|
17
|
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine [5-HT]) was named for its isolation from blood serum (sero-) and ability to contract smooth muscle (-tonin). Thus, its relationship with the cardiovascular system began with its discovery. AIMS This review will focus on the effects of 5-HT and its receptors in the vasculature, with a focus on their involvement in high blood pressure (hypertension). Two seemingly contradictory bodies of evidence exist that make it difficult to assign any one function to 5-HT in vascular control of blood pressure. RESULTS In vitro, 5-HT is an established vasoconstrictor, the effects of which are amplified in hypertension. By contrast, 5-HT (or its precursor 5-hydroxytryptophan) lowers blood pressure when given chronically in vivo. We will discuss ideas that might help us understand these differences, discuss relatively new pharmacology parameters (e.g. biased, inverse agonism) as they pertain to 5-HT receptors, and pose questions that are vital to answer so as to understand the role played by 5-HT in control of blood pressure, especially as it pertains to vascular function. CONCLUSIONS Our goal is to understand if the actions of 5-HT in hypertension are physiologically and clinically relevant. The community understands 5-HT has complex cardiovascular effects, and clinical studies have proven equivocal in terms of the involvement of 5-HT. This article provides a balanced view of evidence/literature that illustrates involvement of 5-HT in hypertension as controversial. It contributes new pharmacological knowledge of 5-HT compounds, and poses timely questions as to how this field can move forward. The take home message is that the cardiovascular effects of 5-HT are markedly complex such that we have not yet answered the question of whether 5-HT is beneficial or detrimental to hypertension.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | |
Collapse
|
18
|
Monassier L, Laplante MA, Ayadi T, Doly S, Maroteaux L. Contribution of gene-modified mice and rats to our understanding of the cardiovascular pharmacology of serotonin. Pharmacol Ther 2010; 128:559-67. [PMID: 20828585 DOI: 10.1016/j.pharmthera.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review focuses on new insights provided by gene-modified animals into the cardiovascular pharmacology of serotonin. During their development, mice mutant for tryptophan hydroxylase 1 and lacking peripheral serotonin, or mutant for 5-HT(2B) receptors, display cardiac defects and dilated cardiomyopathy. The 5-HT(4) receptor is important for the maturation of cardiac conduction. In fact, transgenic approaches have revealed that adult cardiac status is strongly influenced by maternal serotonin. Serotonin has long been known to be a vasoconstrictor in adult physiology. Analysis of animals knocked-out for the serotonin transporter suggested a role in blood pressure control and revealed an effect of 5-HT(2B) receptor antagonists in hypertension. In the lung vasculature, mice lacking the 5-HT(2B) receptor gene that are exposed to chronic hypoxia are resistant to pulmonary hypertension, while 5-HT(1B) receptor and serotonin transporter mutant animals show partial resistance. In platelets, mutant mice revealed that serotonin transporter regulates not only the mechanisms by which serotonin is packaged and secreted but also platelet aggregation. Studies looking at adult cardiac remodeling showed that mice lacking the 5-HT(2B) receptor gene were protected from cardiac hypertrophy. Their fibroblasts were unable to secrete cytokines. Crossing these animals with mice overexpressing the receptor in cardiomyocytes revealed the contribution of cardiac fibroblasts and 5-HT(2B) receptors to cardiac hypertrophy. In mice lacking the monoamine oxidase-A gene, the role of serotonin degradation in cardiac hypertrophy was confirmed. Works with gene-modified animals has contributed strongly to the re-evaluation of the influence of serotonin on cardiovascular regulation, though several unknowns remain to be investigated.
Collapse
Affiliation(s)
- Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Physiopathologie et Médecine Translationnelle EA 4438, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg, France.
| | | | | | | | | |
Collapse
|
19
|
Linder AE, Gaskell GL, Szasz T, Thompson JM, Watts SW. Serotonin receptors in rat jugular vein: presence and involvement in the contraction. J Pharmacol Exp Ther 2010; 334:116-23. [PMID: 20378714 PMCID: PMC2912045 DOI: 10.1124/jpet.109.163014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 04/07/2010] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is released during platelet aggregation, a phenomenon commonly observed in blood clot formation and venous diseases. Once released, 5-HT can interact with its receptors in the peripheral vasculature to modify vascular tone. The goal of this study was to perform a detailed pharmacological characterization of the 5-HT receptors involved in the contractile response of the rat jugular vein (RJV) using recently developed drugs with greater selectivity toward 5-HT receptor subtypes. We hypothesized that, as for other blood vessels, the 5-HT(1B/1D) and 5-HT(2B) receptor subtypes mediate contraction in RJV alongside the 5-HT(2A) receptor subtype. Endothelium-intact RJV rings were set up in an isolated organ bath for isometric tension recordings, and contractile concentration-effect curves were obtained for 13 distinct serotonergic receptor agonists. Surprisingly, the 5-HT(1A) and the mixed 5-HT(1A/1B) receptor agonists (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) and 5-methoxy-3 (1,2,3,6-tetrahydropyridin-4-yl) (1H indole) (RU24969) caused contractions that were antagonized by the 5-HT(1A) receptor antagonist [O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100135). The contractile curve to 5-HT was shifted to the right by WAY100135, 3-[2-[4-(4-fluoro benzoyl)-piperidin-1-yl]ethyl]-1H-quinazoline-2,4-dione (ketanserin; 5-HT(2A/C) receptor antagonist), and 1-(2-chloro-3,4-dimethoxybenzyl)-6-methyl-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole hydrochloride (LY266097; 5-HT(2B) receptor antagonist). Ketanserin also caused rightward shifts of the contractile curves to 8-OH-DPAT, RU24969, and the 5-HT(2B) receptor agonist (alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine) (BW723C86). Agonists for 5-HT(1B/1D/1F), 5-HT(3), 5-HT(6), and 5-HT(7) receptors were inactive. In real-time polymerase chain reaction experiments that have never been performed in this tissue previously, we observed mRNA expression for the 5-HT(2A), 5-HT(2B), and 5-HT(7) receptors, whereas no significant mRNA expression was found for 5-HT(1A), 5-HT(1B), and 5-HT(1D) receptors. These results support the 5-HT(2A) receptor as the main subtype targeted by 5-HT to contract the RJV.
Collapse
Affiliation(s)
- A Elizabeth Linder
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | | | | | | | | |
Collapse
|
20
|
Real C, Seif I, Adrien J, Escourrou P. Ondansetron and fluoxetine reduce sleep apnea in mice lacking monoamine oxidase A. Respir Physiol Neurobiol 2009; 168:230-8. [PMID: 19615472 DOI: 10.1016/j.resp.2009.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/07/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Prospective clinical trials addressing the role of serotonin (5-HT) in sleep apnea have indicated that the 5-HT uptake inhibitor fluoxetine is beneficial to some patients with obstructive apnea, whereas the 5-HT(3) receptor antagonist ondansetron seems of little value despite its efficacy in rat and dog models of sleep apnea (central and obstructive). Here, we examined the effect of these drugs in transgenic mice lacking monoamine oxidase A (Tg8), which exhibit approximately 3-fold higher rates of central sleep apnea than their wild-type counterparts (C3H), linked to their enhanced 5-HT levels. Acute ondansetron (2 mg kg(-1), intraperitoneal), acute fluoxetine (16 mg kg(-1)) and 13-day chronic fluoxetine (1 or 16 mg kg(-1)) decreased by approximately 80% the total (spontaneous and post-sigh) apnea index in Tg8 mice during non-rapid eye movement sleep, with no statistically significant effect on apnea in C3H mice. Our study shows that both drugs reduce the frequency of apneic episodes attributable to increased monoamine levels in this model of MAOA deficiency, and suggests that both may be effective in some patients with central sleep apneas.
Collapse
Affiliation(s)
- C Real
- Univ Paris-Sud, EA 3544, Sérotonine et Neuropharmacologie, Châtenay-Malabry cedex, France.
| | | | | | | |
Collapse
|
21
|
Watts SW, Priestley JRC, Thompson JM. Serotonylation of vascular proteins important to contraction. PLoS One 2009; 4:e5682. [PMID: 19479059 PMCID: PMC2682564 DOI: 10.1371/journal.pone.0005682] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 05/05/2009] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) was named for its source (sero-) and ability to modify smooth muscle tone (tonin). The biological effects of 5-HT are believed to be carried out by stimulation of serotonin receptors at the plasma membrane. Serotonin has recently been shown to be synthesized in vascular smooth muscle and taken up from external sources, placing 5-HT inside the cell. The enzyme transglutaminase uses primary amines such as 5-HT to covalently modify proteins on glutamine residues. We tested the hypothesis that 5-HT is a substrate for transglutaminase in arterial vascular smooth muscle, with protein serotonylation having physiological function. METHODOLOGY/PRINCIPAL FINDINGS The model was the rat aorta and cultured aortic smooth muscle cells. Western analysis demonstrated that transglutaminase II was present in vascular tissue, and transglutaminase activity was observed as a cystamine-inhibitable incorporation of the free amine pentylamine-biotin into arterial proteins. Serotonin-biotin was incorporated into alpha-actin, beta-actin, gamma-actin, myosin heavy chain and filamin A as shown through tandem mass spectrometry. Using antibodies directed against biotin or 5-HT, immunoprecipitation and immunocytochemistry confirmed serotonylation of smooth muscle alpha-actin. Importantly, the alpha-actin-dependent process of arterial isometric contraction to 5-HT was reduced by cystamine. CONCLUSIONS 5-HT covalently modifies proteins integral to contractility and the cytoskeleton. These findings suggest new mechanisms of action for 5-HT in vascular smooth muscle and consideration for intracellular effects of primary amines.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America.
| | | | | |
Collapse
|
22
|
Linder AE, Beggs KM, Burnett RJ, Watts SW. Body distribution of infused serotonin in rats. Clin Exp Pharmacol Physiol 2009; 36:599-601. [PMID: 19207716 DOI: 10.1111/j.1440-1681.2009.05147.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Our goal was to investigate the body distribution of serotonin (5-hydroxytryptamine; 5-HT) in rats infused with 5-HT (25 microg/kg per min) for 7 days and the contribution of the 5-HT transporter (SERT) for 5-HT uptake into the tissues. 2. Mini-osmotic pumps containing 5-HT or vehicle were implanted in rats knocked out for SERT (SERT-KO) or in wild-type (WT) rats. On the 8th day, tissues were harvested for measurements of 5-HT by high-performance liquid chromatography (HPLC). The 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA) was also measured by HPLC, because an increase in 5-HIAA in tissues from rats receiving 5-HT reflects 5-HT uptake followed by metabolism. 3. In WT rats infused with 5-HT, an increase in 5-HT or 5-HIAA was observed in the heart, pancreas, thyroid, adrenal gland, kidney, seminal vesicle, bladder, prostate, liver, oesophagus, stomach, femur, trachea, lung and spleen compared with vehicle-infused rats. An increase in 5-HT and 5-HIAA was not observed in aorta, vena cava and jejunum. In tissues from SERT-KO rats infused with 5-HT, the content of 5-HT or 5-HIAA was decreased in most of the tissues studied compared with 5-HT-infused WT rats. Although 5-HT uptake in the kidney, seminal vesicle, prostate, jejunum and trachea is SERT dependent, it is SERT independent in the pancreas. The remaining tissues display SERT-dependent and -independent mechanisms for 5-HT uptake. 4. Altogether, tissues from different systems, such as the cardiovascular, endocrine, genitourinary and gastrointestinal, accumulate 5-HT mainly via SERT and, thus, these systems are potential targets for drugs that interfere with 5-HT homeostasis.
Collapse
Affiliation(s)
- A Elizabeth Linder
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
23
|
Watts SW. The beginning of a fantastic, unanswered question: is 5-HT involved in systemic hypertension? Am J Physiol Heart Circ Physiol 2008; 295:H915-H916. [PMID: 18775854 DOI: 10.1152/classicessays.zh4-8503.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This essay examines the historical significance of an APS classic paper that is freely available online:
Collapse
|