1
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
2
|
Lutkewitte AJ, Finck BN. Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity. Biomolecules 2020; 10:E1386. [PMID: 33003344 PMCID: PMC7600782 DOI: 10.3390/biom10101386] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms.
Collapse
Affiliation(s)
| | - Brian N. Finck
- Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA;
| |
Collapse
|
3
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
4
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
5
|
Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proc Natl Acad Sci U S A 2019; 116:13320-13329. [PMID: 31209056 PMCID: PMC6613170 DOI: 10.1073/pnas.1822113116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) enzymes degrade cAMP and underpin the compartmentalization of cAMP signaling through their targeting to particular protein complexes and intracellular locales. We describe the discovery and characterization of a small-molecule compound that allosterically activates PDE4 long isoforms. This PDE4-specific activator displays reversible, noncompetitive kinetics of activation (increased V max with unchanged K m), phenocopies the ability of protein kinase A (PKA) to activate PDE4 long isoforms endogenously, and requires a dimeric enzyme assembly, as adopted by long, but not by short (monomeric), PDE4 isoforms. Abnormally elevated levels of cAMP provide a critical driver of the underpinning molecular pathology of autosomal dominant polycystic kidney disease (ADPKD) by promoting cyst formation that, ultimately, culminates in renal failure. Using both animal and human cell models of ADPKD, including ADPKD patient-derived primary cell cultures, we demonstrate that treatment with the prototypical PDE4 activator compound lowers intracellular cAMP levels, restrains cAMP-mediated signaling events, and profoundly inhibits cyst formation. PDE4 activator compounds thus have potential as therapeutics for treating disease driven by elevated cAMP signaling as well as providing a tool for evaluating the action of long PDE4 isoforms in regulating cAMP-mediated cellular processes.
Collapse
|
6
|
Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, Houslay MD, Baillie GS. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry 2019; 9:141. [PMID: 31076569 PMCID: PMC6510753 DOI: 10.1038/s41398-019-0470-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/24/2019] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with an increased risk of depression. The aim of the present study was to investigate whether obesity is a causative factor for the development of depression and what is the molecular pathway(s) that link these two disorders. Using lipidomic and transcriptomic methods, we identified a mechanism that links exposure to a high-fat diet (HFD) in mice with alterations in hypothalamic function that lead to depression. Consumption of an HFD selectively induced accumulation of palmitic acid in the hypothalamus, suppressed the 3', 5'-cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and increased the concentration of free fatty acid receptor 1 (FFAR1). Deficiency of phosphodiesterase 4A (PDE4A), an enzyme that degrades cAMP and modulates stimulatory regulative G protein (Gs)-coupled G protein-coupled receptor signaling, protected animals either from genetic- or dietary-induced depression phenotype. These findings suggest that dietary intake of saturated fats disrupts hypothalamic functions by suppressing cAMP/PKA signaling through activation of PDE4A. FFAR1 inhibition and/or an increase of cAMP signaling in the hypothalamus could offer potential therapeutic targets to counteract the effects of dietary or genetically induced obesity on depression.
Collapse
Affiliation(s)
- Eirini Vagena
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Bernat Baeza-Raja
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Nicola M Walsh
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Catriona Syme
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Jonathan P Day
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Miles D Houslay
- Institute of Pharmaceutical Science, King's College London, London, England, SE1 9NH, UK
| | - George S Baillie
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK.
| |
Collapse
|
7
|
Chen J, Zhang W, Wang Y, Zhao D, Wu M, Fan J, Li J, Gong Y, Dan N, Yang D, Liu R, Zhan Q. The diacylglycerol kinase α (DGKα)/Akt/NF-κB feedforward loop promotes esophageal squamous cell carcinoma (ESCC) progression via FAK-dependent and FAK-independent manner. Oncogene 2018; 38:2533-2550. [DOI: 10.1038/s41388-018-0604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
|
8
|
Ramesh M, Krishnan N, Muthuswamy SK, Tonks NK. A novel phosphatidic acid-protein-tyrosine phosphatase D2 axis is essential for ERBB2 signaling in mammary epithelial cells. J Biol Chem 2015; 290:9646-59. [PMID: 25681440 DOI: 10.1074/jbc.m114.627968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 11/06/2022] Open
Abstract
We used a loss-of-function screen to investigate the role of classical protein-tyrosine phosphatases (PTPs) in three-dimensional mammary epithelial cell morphogenesis and ERBB2 signaling. The study revealed a novel role for PTPD2 as a positive regulator of ERBB2 signaling. Suppression of PTPD2 attenuated the ERBB2-induced multiacinar phenotype in three-dimensional cultures specifically by inhibiting ERBB2-mediated loss of polarity and lumen filling. In contrast, overexpression of PTPD2 enhanced the ERBB2 phenotype. We also found that a lipid second messenger, phosphatidic acid, bound PTPD2 in vitro and enhanced its catalytic activity. Small molecule inhibitors of phospholipase D (PLD), an enzyme that produces phosphatidic acid in cells, also attenuated the ERBB2 phenotype. Exogenously added phosphatidic acid rescued the PLD-inhibition phenotype, but only when PTPD2 was present. These findings illustrate a novel pathway involving PTPD2 and the lipid second messenger phosphatidic acid that promotes ERBB2 function.
Collapse
Affiliation(s)
- Mathangi Ramesh
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794, and
| | - Navasona Krishnan
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Senthil K Muthuswamy
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Department of Medical Biophysics, Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto, Canada M5G 2M9
| | - Nicholas K Tonks
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| |
Collapse
|
9
|
Wang L, Burmeister BT, Johnson KR, Baillie GS, Karginov AV, Skidgel RA, O'Bryan JP, Carnegie GK. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy. Cell Signal 2015; 27:908-22. [PMID: 25683917 DOI: 10.1016/j.cellsig.2015.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/21/2023]
Abstract
Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3',5'-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Brian T Burmeister
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Keven R Johnson
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G128QQ, Scotland, United Kingdom
| | - Andrei V Karginov
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Randal A Skidgel
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; Jessie Brown VA Medical Center, 820 S Damen Ave, Chicago, IL 60612, USA.
| | - Graeme K Carnegie
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Eni SE, Rowland M, Best MD. Retracted Article: Synthesis of diacylglycerol analogs bearing photoaffinity tags for labelling mammalian diacylglycerol kinase. RSC Adv 2015. [DOI: 10.1039/c4ra16730a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This communication reports the synthesis of diacylglycerol (DAG) probes with different photoaffinity tags for cross-linking and reducing the activity diacylglycerol kinase (DGK).
Collapse
Affiliation(s)
- Sammy Eni Eni
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - Meng Rowland
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | | |
Collapse
|
11
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2014; 66:1033-79. [PMID: 25244928 PMCID: PMC4180337 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
12
|
Costa A, Rossi E, Scicchitano BM, Coletti D, Moresi V, Adamo S. Neurohypophyseal Hormones: Novel Actors of Striated Muscle Development and Homeostasis. Eur J Transl Myol 2014; 24:3790. [PMID: 26913138 PMCID: PMC4756744 DOI: 10.4081/ejtm.2014.3790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the 1980’s, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.
Collapse
Affiliation(s)
- Alessandra Costa
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Eleonora Rossi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Bianca Maria Scicchitano
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology; (3) Institute of Histology and Embryology, Catholic University School of Medicine, Rome, Italy
| | - Dario Coletti
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Viviana Moresi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Sergio Adamo
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| |
Collapse
|
13
|
Schafer PH, Parton A, Capone L, Cedzik D, Brady H, Evans JF, Man HW, Muller GW, Stirling DI, Chopra R. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal 2014; 26:2016-29. [PMID: 24882690 DOI: 10.1016/j.cellsig.2014.05.014] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/02/2023]
Abstract
Apremilast, an oral small molecule inhibitor of phosphodiesterase 4 (PDE4), is in development for chronic inflammatory disorders, and has shown efficacy in psoriasis, psoriatic arthropathies, and Behçet's syndrome. In March 2014, the US Food and Drug Administration approved apremilast for the treatment of adult patients with active psoriatic arthritis. The properties of apremilast were evaluated to determine its specificity, effects on intracellular signaling, gene and protein expression, and in vivo pharmacology using models of innate and adaptive immunity. Apremilast inhibited PDE4 isoforms from all four sub-families (A1A, B1, B2, C1, and D2), with IC50 values in the range of 10 to 100 nM. Apremilast did not significantly inhibit other PDEs, kinases, enzymes, or receptors. While both apremilast and thalidomide share a phthalimide ring structure, apremilast lacks the glutarimide ring and thus fails to bind to cereblon, the target of thalidomide action. In monocytes and T cells, apremilast elevated intracellular cAMP and induced phosphorylation of the protein kinase A substrates CREB and activating transcription factor-1 while inhibiting NF-κB transcriptional activity, resulting in both up- and down-regulation of several genes induced via TLR4. Apremilast reduced interferon-α production by plasmacytoid dendritic cells and inhibited T-cell cytokine production, but had little effect on B-cell immunoglobulin secretion. In a transgenic T-cell and B-cell transfer murine model, apremilast (5mg/kg/day p.o.) did not affect clonal expansion of either T or B cells and had little or no effect on their expression of activation markers. The effect of apremilast on innate immunity was tested in the ferret lung neutrophilia model, which allows monitoring of the known PDE4 inhibitor gastrointestinal side effects (nausea and vomiting). Apremilast significantly inhibited lung neutrophilia at 1mg/kg, but did not induce significant emetic reflexes at doses <30 mg/kg. Overall, the pharmacological effects of apremilast are consistent with those of a targeted PDE4 inhibitor, with selective effects on innate immune responses and a wide therapeutic index compared to its gastrointestinal side effects.
Collapse
Affiliation(s)
- P H Schafer
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA.
| | - A Parton
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - L Capone
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - D Cedzik
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - H Brady
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - J F Evans
- Department of Biology, PharmAkea, San Diego, CA, USA
| | - H-W Man
- Department of Process Chemistry, Celgene Corporation, Summit, NJ, USA
| | - G W Muller
- GWM Consulting, Rancho Santa Fe, CA, USA
| | | | - R Chopra
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| |
Collapse
|
14
|
Dominguez CL, Floyd DH, Xiao A, Mullins GR, Kefas BA, Xin W, Yacur MN, Abounader R, Lee JK, Wilson GM, Harris TE, Purow BW. Diacylglycerol kinase α is a critical signaling node and novel therapeutic target in glioblastoma and other cancers. Cancer Discov 2013; 3:782-97. [PMID: 23558954 DOI: 10.1158/2159-8290.cd-12-0215] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cells. We determined that mTOR and hypoxia-inducible factor-1α (HIF-1α) are key targets of DGKα inhibition, in addition to its regulation of other oncogenes. DGKα regulates mTOR transcription via a unique pathway involving cyclic AMP. Finally, we showed the efficacy of DGKα inhibition with short hairpin RNA or a small-molecule agent in glioblastoma and melanoma xenograft treatment models, with growth delay and decreased vascularity. This study establishes DGKα as a central signaling hub and a promising therapeutic target in the treatment of cancer.
Collapse
Affiliation(s)
- Charli L Dominguez
- Division of Neuro-Oncology, Department of Neurology, College of Nursing and Health Professions, University of Southern Indiana, Evansville, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Choi SJ, Rhee HW, Kim J, Chung DS, Hong JI. Fluorescent Assay of Cyclic Nucleotide Phosphodiesterase Activity in a Neutral Aqueous Solution. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation. Proc Natl Acad Sci U S A 2012; 110:642-7. [PMID: 23267081 DOI: 10.1073/pnas.1213493110] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.
Collapse
|
17
|
Banjac A, Kurz U, Schultz JE. The regulatory tandem domains of human phosphodiesterases 1 and 4 regulate a cyanobacterial adenylyl cyclase. Cell Signal 2012; 24:1479-84. [PMID: 22484154 DOI: 10.1016/j.cellsig.2012.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/08/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Human phosphodiesterase 1 is regulated by a tandem of N-terminal calmodulin/Ca(2+)-binding domains. We grafted the tandems from hPDE1A3 and -B1 onto the cyanobacterial adenylyl cyclase CyaB1 thus replacing an intrinsic tandem GAF-domain. Cyclase activity was stimulated by Ca(2+)/calmodulin 1.9 to 4.4-fold, i.e. similarly as reported for hPDE1 regulation. hPDE4 long isoforms are activated by phosphorylation of a serine located in a conserved RRESF motif in a tandem of N-terminal upstream-conserved regions (UCR). We grafted the UCR tandems from hPDE4A4, -B1, and -D3 onto the CyaB1 cyclase as a reporter enzyme. Activity was enhanced 1.4 to 4.5-fold by respective phosphomimetic (S/D) point mutations. Similarly, cyclase activity was increased 2.5-fold by phosphorylation of the chimera with the PDE4D3 UCR tandem by cAMP-dependent protein kinase. We propose a common mechanism of activation in mammalian phosphodiesterases containing N-terminal tandem regulatory domains. A downstream region is suggested to alternate between random and ordered conformations and to enable switching between inactive, the catalytic domain occluding PDE homodimers and active monomeric PDE catalytic domains.
Collapse
Affiliation(s)
- Ana Banjac
- Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
18
|
Michalski JM, Golden G, Ikari J, Rennard SI. PDE4: a novel target in the treatment of chronic obstructive pulmonary disease. Clin Pharmacol Ther 2011; 91:134-42. [PMID: 22130119 DOI: 10.1038/clpt.2011.266] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphodiesterases (PDEs) are important modulators of inflammation and wound healing. In this capacity, specific targeting of PDEs for the treatment of many diseases, including chronic obstructive pulmonary disease (COPD), has been investigated. Currently, treatment of COPD is suboptimal. PDE4 modulates the inflammatory response of the lung, and inhibition of PDE4 may be a novel, COPD-specific approach toward more effective treatment strategies. This review describes the state of PDE4-inhibitor therapy for use in COPD treatment.
Collapse
Affiliation(s)
- J M Michalski
- Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
19
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
20
|
Norambuena A, Metz C, Jung JE, Silva A, Otero C, Cancino J, Retamal C, Valenzuela JC, Soza A, González A. Phosphatidic acid induces ligand-independent epidermal growth factor receptor endocytic traffic through PDE4 activation. Mol Biol Cell 2010; 21:2916-29. [PMID: 20554760 PMCID: PMC2921116 DOI: 10.1091/mbc.e10-02-0167] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endocytic traffic can control cell surface versus intracellular distribution of empty/inactive EGFR, an thus its accessibility to external stimuli, through a pathway involving down regulation of PKA activity mediated by PA signaling towards PDE4. This novel control mechanism can trans-modulate EGFR function by heterologous stimuli of PLD. Endocytosis modulates EGFR function by compartmentalizing and attenuating or enhancing its ligand-induced signaling. Here we show that it can also control the cell surface versus intracellular distribution of empty/inactive EGFR. Our previous observation that PKA inhibitors induce EGFR internalization prompted us to test phosphatidic acid (PA) generated by phospholipase D (PLD) as an endogenous down-regulator of PKA activity, which activates rolipram-sensitive type 4 phosphodiesterases (PDE4) that degrade cAMP. We found that inhibition of PA hydrolysis by propranolol, in the absence of ligand, provokes internalization of inactive (neither tyrosine-phosphorylated nor ubiquitinated) EGFR, accompanied by a transient increase in PA levels and PDE4s activity. This EGFR internalization is mimicked by PA micelles and is strongly counteracted by PLD2 silencing, rolipram or forskolin treatment, and PKA overexpression. Accelerated EGFR endocytosis seems to be mediated by clathrin-dependent and -independent pathways, leading to receptor accumulation in juxtanuclear recycling endosomes, also due to a decreased recycling. Internalized EGFR can remain intracellular without degradation for several hours or return rapidly to the cell surface upon discontinuation of the stimulus. This novel regulatory mechanism of EGFR, also novel function of signaling PA, can transmodulate receptor accessibility in response to heterologous stimuli.
Collapse
Affiliation(s)
- Andrés Norambuena
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
PDE4 associates with different scaffolding proteins: modulating interactions as treatment for certain diseases. Handb Exp Pharmacol 2008:125-66. [PMID: 18491051 DOI: 10.1007/978-3-540-72843-6_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
cAMP is an ubiquitous second messenger that is crucial to many cellular processes. The sole means of terminating the cAMP signal is degradation by cAMP phosphodiesterases (PDEs). The PDE4 family is of particular interest because PDE4 inhibitors have therapeutic potential for the treatment of various inflammatory and auto-immune diseases and also have anti-depressant and memory-enhancing effects. The subcellular targeting of PDE4 isoforms is fundamental to the compartmentalization of cAMP signaling pathways and is largely achieved via proteinprotein interactions. Increased knowledge of these protein-protein interactions and their regulatory properties could aid in the design of novel isoform-specific inhibitors with improved efficacy and fewer prohibitive side effects.
Collapse
|
22
|
Erdogan S, Aslantas O, Celik S, Atik E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res Vet Sci 2007; 84:18-25. [PMID: 17397885 DOI: 10.1016/j.rvsc.2007.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/16/2007] [Accepted: 02/06/2007] [Indexed: 01/19/2023]
Abstract
Cyclic AMP (cAMP) is a key intracellular second messenger which at increased levels has been shown to have anti-inflammatory and tissue-protective effects. Its concentration is determined by the activities of both adenylate cyclase (AC) and the phosphodiesterase (PDE) enzymes. The aim of this study was to compare the effects of increased cAMP and glucocorticoid dexamethasone administration on B. melitensis-induced lipid peroxidation, Brucella suppressed antioxidant enzyme activities and PDE4 transcripts in rats. Intracellular cyclic AMP level was elevated by two different approaches; activation of AC and inhibition of PDE activities. Rats were inoculated with B. melitensis for seven days then a single dose of nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX), the adenylate cyclase activator forskolin and dexamethasone were administrated to each infected group, and animals were challenged for 48 h. Brucella-induced lipid peroxidation was significantly reduced by the cAMP elevating agents as well as dexamethasone administration in plasma, liver and spleen. The antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased by the pathogen. Whilst suppressed GSH-Px activity was reversed by cAMP elevating agents, SOD activity was not restored. Superoxide generating enzyme xanthine oxidase activity was not altered at the end of the infection period. Brucella infection increased plasma IL-12 level and this effect was also suppressed by the cAMP elevating agents, whereas TNF-alpha, IFN-gamma and IL-10 levels were unchanged. Intracellular cAMP levels are entirely hydrolyzed by cAMP-specific PDE 4 isozymes (PDE4s) in inflammatory and immunocompetent cells. Brucella reduced mRNA transcript levels for PDE4A by 40%, though PDE4B and 4D transcriptions were being unaffected in spleen. It was concluded that B. melitensis infection decreased activity of the antioxidant defence system, induced lipid peroxidation and suppressed PDE4A transcription. Administration of cAMP elevating agents exhibited similar affect with dexamethasone on lipid peroxidation, IL-12 production and antioxidant enzyme activities in Brucella infection.
Collapse
Affiliation(s)
- Suat Erdogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay 31034, Turkey.
| | | | | | | |
Collapse
|
23
|
Abstract
Contraction and relaxation of vascular smooth muscle and cardiac myocytes are key physiological events in the cardiovascular system. These events are regulated by second messengers, cAMP and cGMP, in response to extracellular stimulants. The strength of signal transduction is controlled by intracellular cyclic nucleotide concentrations, which are determined by a balance in production and degradation of cAMP and cGMP. Degradation of cyclic nucleotides is catalyzed by 3',5'-cyclic nucleotide phosphodiesterases (PDEs), and therefore regulation of PDEs hydrolytic activity is important for modulation of cellular functions. Mammalian PDEs are composed of 21 genes and are categorized into 11 families based on sequence homology, enzymatic properties, and sensitivity to inhibitors. PDE families contain many splice variants that mostly are unique in tissue-expression patterns, gene regulation, enzymatic regulation by phosphorylation and regulatory proteins, subcellular localization, and interaction with association proteins. Each unique variant is closely related to the regulation of a specific cellular signaling. Thus, multiple PDEs function as a particular modulator of each cardiovascular function and regulate physiological homeostasis.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/physiology
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Isoenzymes/metabolism
- Male
- Mammals/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Muscle Cells/enzymology
- Muscle Cells/physiology
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Myocardial Contraction/physiology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/physiology
- Phenotype
- Phosphoproteins/metabolism
- Phosphoric Diester Hydrolases/classification
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/physiology
- Phosphorylation
- Phylogeny
- Protein Interaction Mapping
- Protein Kinases/physiology
- Protein Processing, Post-Translational/physiology
- Protein Structure, Tertiary
- Rats
- Signal Transduction/physiology
- Subcellular Fractions/enzymology
Collapse
Affiliation(s)
- Kenji Omori
- Discovery Research Laboratories, Tanabe Seiyaku Co Ltd, 2-50 Kawagishi 2-chome, Toda, Saitama 335-8505, Japan.
| | | |
Collapse
|
24
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 665] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
25
|
Powner DJ, Pettitt TR, Wakelam MJO. Assays to Study Phospholipase D Regulation by Inositol Phospholipids and ADP‐Ribosylation Factor 6. Methods Enzymol 2005; 404:398-410. [PMID: 16413286 DOI: 10.1016/s0076-6879(05)04035-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Phospholipase D (PLD) is an enzyme implicated in the regulation of both exocytic and endocytic vesicle trafficking as well as many other processes. Consistent with this, the small GTPase Arf6 and regulated changes in inositol phospholipids levels are two factors that regulate both PLD and vesicle trafficking. Here we describe three methodologies through which the activation of PLD by Arf6 and inositol phospholipids may be investigated. The first method described is an in vitro protocol that allows the analysis of purified proteins or cell lysates. Furthermore, this protocol can be used to analyze the effects of different inositol phospholipids by changing the composition of the substrate vesicle. The major advantage of this protocol lies in the ability to analyze the effects of direct interactions on PLD activation by using pure proteins and lipids. The other two methods are in vivo protocols for the analysis of PLD activation in response to extracellular stimuli. Modification of cellular composition using overexpression/deletion or knockout of specific genes can be utilized with these protocols to characterize PLD activation pathways. The first of these methods uses the detection of radiolabeled PLD products and can be used for most cell types whereas the second of these two protocols is used to measure PLD products when radiolabeling of cells is not possible, such as freshly isolated cells that will not survive long enough to attain radiochemical equilibrium.
Collapse
Affiliation(s)
- Dale J Powner
- CR United Kingdom Institute for Cancer Studies, Birmingham University
| | | | | |
Collapse
|
26
|
Zhu B, Kelly J, Vemavarapu L, Thompson WJ, Strada SJ. Activation and induction of cyclic AMP phosphodiesterase (PDE4) in rat pulmonary microvascular endothelial cells. Biochem Pharmacol 2004; 68:479-91. [PMID: 15242814 DOI: 10.1016/j.bcp.2004.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 03/30/2004] [Indexed: 11/28/2022]
Abstract
Regulation of the rolipram-sensitive cAMP-specific phosphodiesterase 4 (PDE4) gene family was studied in rat pulmonary microvascular endothelial cells (RPMVECs). Total PDE4 hydrolysis was increased within 10 min after addition of forskolin (10 microM), reached a maximum at 20-40 min, and then gradually declined in the cells. A similar activation of PDE4 activity was observed using a protein kinase A (PKA) activator, N(6)-monobutyryl cAMP. Both the forskolin and the N(6)-monobutyryl cAMP activated PDE4 activities were blocked by the PKA-specific inhibitor, H89. This forskolin-stimulated and PKA-mediated short-term activation of PDE4 activity was further confirmed by in vitro phosphorylation of 87kDa PDE4A6 and 83kDa PDE4B3 polypeptides using exogenous PKA Calpha. Increased immunoreactivity of phosphorylated PDE4A6 in situ was detected in Western blots by a PDE4A-phospho antibody specific to the putative PKA phosphorylation sites. Following long-term treatment of RPMVECs with rolipram and forskolin medium (RFM) for more than 60 days, PDE4 activity reached ten-fold higher values than control RPMVECS with twenty-fold increases detected in intracellular cAMP content. The RFM cells showed increased immunoreactivities of the constitutive 4A6 and 4B3 isoforms plus two novel splice variants at 101kDa (4B1) and 71kDa (4B2). Treatment with H89 did not inhibit the PDE4 elevation in RFM cells. In addition to the increased levels of PDE4 in RFM cells, immunofluorescence showed a translocation of PDE4A and 4B to a nuclear region, which was normally not observed in RPMVECs. The PDE4 activity in RFM cells decayed rapidly with an even faster decline of intracellular cAMP content when forskolin/rolipram were removed from the medium. These results suggest that both the activation (short-term) and induction (long-term) of PDE4A/4B isoforms in RPMVECs are closely modulated by the intracellular cAMP content via both post-translational and synthetic mechanisms.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
27
|
Han MS, Kim DH. Visual detection of AMP and real-time monitoring of cyclic nucleotide phosphodiesterase (PDE) activity in neutral aqueous solution. Chemosensor-coupled assay of PDE and PDE inhibitors. Bioorg Med Chem Lett 2003; 13:1079-82. [PMID: 12643916 DOI: 10.1016/s0960-894x(03)00055-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A phosphate chemosensor ensemble, [Zn(H-bpmp)(pyrocatechol violet)](+) is useful for a real-time assay of phosphodiesterases (PDEs) in a neutral aqueous solution. In addition, a simple and convenient screen and assay procedures for inhibitors of PDEs have been demonstrated using IBMX, a nonselective PDE inhibitor as an example.
Collapse
Affiliation(s)
- Min Su Han
- Center for Integrated Molecular Systems and Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31 Hyojadong, Pohang 790-784, South Korea
| | | |
Collapse
|
28
|
Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 2003; 278:5493-6. [PMID: 12493749 DOI: 10.1074/jbc.r200029200] [Citation(s) in RCA: 381] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003; 370:1-18. [PMID: 12444918 PMCID: PMC1223165 DOI: 10.1042/bj20021698] [Citation(s) in RCA: 589] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 11/13/2002] [Accepted: 11/22/2002] [Indexed: 11/17/2022]
Abstract
cAMP is a second messenger that controls many key cellular functions. The only way to inactivate cAMP is to degrade it through the action of cAMP phosphodiesterases (PDEs). PDEs are thus poised to play a key regulatory role. PDE4 cAMP-specific phosphodiesterases appear to have specific functions with selective inhibitors serving as potent anti-inflammatory agents. The recent elucidation of the structure of the PDE4 catalytic unit allows for molecular insight into the mode of catalysis as well as substrate and inhibitor selectivity. The four PDE4 genes encode over 16 isoforms, each of which is characterized by a unique N-terminal region. PDE4 isoforms play a pivotal role in controlling functionally and spatially distinct pools of cAMP by virtue of their unique intracellular targeting. Targeting occurs by association with proteins, such as arrestins, SRC family tyrosyl kinases, A-kinase anchoring proteins ('AKAPs') and receptor for activated C kinase 1 ('RACK1'), and, in the case of isoform PDE4A1, by a specific interaction (TAPAS-1) with phosphatidic acid. PDE4 isoforms are 'designed' to be regulated by extracellular-signal-related protein kinase (ERK), which binds to anchor sites on the PDE4 catalytic domain that it phosphorylates. The upstream conserved region 1 (UCR1) and 2 (UCR2) modules that abut the PDE4 catalytic unit confer regulatory functions by orchestrating the functional outcome of phosphorylation by cAMP-dependent protein kinase ('PKA') and ERK. PDE4 enzymes stand at a crossroads that allows them to integrate various signalling pathways with that of cAMP in spatially distinct compartments.
Collapse
Affiliation(s)
- Miles D Houslay
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Davidson Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | |
Collapse
|
30
|
Baillie GS, Huston E, Scotland G, Hodgkin M, Gall I, Peden AH, MacKenzie C, Houslay ES, Currie R, Pettitt TR, Walmsley AR, Wakelam MJO, Warwicker J, Houslay MD. TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J Biol Chem 2002; 277:28298-309. [PMID: 11994273 DOI: 10.1074/jbc.m108353200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we identify an 11-residue helical module in the unique N-terminal region of the cyclic AMP-specific phosphodiesterase PDE4A1 that determines association with phospholipid bilayers and shows a profound selectivity for interaction with phosphatidic acid (PA). This module contains a core bilayer insertion unit that is formed by two tryptophan residues, Trp(19) and Trp(20), whose orientation is optimized for bilayer insertion by the Leu(16):Val(17) pairing. Ca(2+), at submicromolar levels, interacts with Asp(21) in this module and serves to gate bilayer insertion, which is completed within 10 ms. Selectivity for interaction with PA is suggested to be achieved primarily through the formation of a charge network of the form (Asp(21-):Ca(2+):PA(2-):Lys(24+)) with overall neutrality at the bilayer surface. This novel phospholipid-binding domain, which we call TAPAS-1 (tryptophan anchoring phosphatidic acid selective-binding domain 1), is here identified as being responsible for membrane association of the PDE4A1 cAMP-specific phosphodiesterase. TAPAS-1 may not only serve as a paradigm for other PA-binding domains but also aid in detecting related phospholipid-binding domains and in generating simple chimeras for conferring membrane association and intracellular targeting on defined proteins.
Collapse
Affiliation(s)
- George S Baillie
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Wolfson Building, Institute of Biomedical and Life Sciences (IBLS), University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Picq M, Huang Y, Lagarde M, Doutheau A, Nemoz G. Synthesis of photoreactive phosphatidic acid analogues displaying activatory properties on cyclic AMP-phosphodiesterases. Photoaffinity labeling of an isoform of phosphodiesterase. J Med Chem 2002; 45:1678-85. [PMID: 11931622 DOI: 10.1021/jm011032f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously shown that phosphatidic acid (PA) is a specific activator of some isoforms of type 4 cyclic nucleotide phosphodiesterases (PDE 4) and that accumulation of endogenous PA can, in this way, influence the cAMP signaling pathway in different cell types. Enzyme activation depends on direct binding of the effector to specific sites carried by the enzyme. To identify the binding domain, photoactivatable phosphatidic acid analogues 1-azidoPA (12) and 2-azidoPA (7 and 15), potentially suitable for covalent labeling of PDE4, have been synthesized. The ability of phospholipases A(2) and D to hydrolyze unnatural phospholipids has been considered in this paper. The effect of 1-azidoPA (12) and 2-azidoPA (7 and 15) on the activity of a recombinant PA-sensitive isoform PDE4D3 was evaluated. The three compounds were able to activate the enzyme with different efficiencies. A tritiated analogue of 15 was synthesized and used in PDE4D3 labeling experiments, which showed that this PA analogue was specifically and covalently linked to the enzyme after UV irradiation. Photoactivatable analogues thus appear as suitable tools for the characterization of PA binding sites.
Collapse
Affiliation(s)
- Madeleine Picq
- INSERM U352, Laboratoire de Biochimie et Pharmacologie, INSA-Lyon, 20 Avenue Einstein, 69621 Villeurbanne Cedex, France.
| | | | | | | | | |
Collapse
|
32
|
Nakajima KI, Sonoda H, Mizoguchi T, Aoki J, Arai H, Nagahama M, Tagaya M, Tani K. A novel phospholipase A1 with sequence homology to a mammalian Sec23p-interacting protein, p125. J Biol Chem 2002; 277:11329-35. [PMID: 11788596 DOI: 10.1074/jbc.m111092200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p125, a mammalian Sec23p-interacting protein, exhibits sequence homology with bovine testis phosphatidic acid-preferring phospholipase A(1). In this study, we identified and characterized a new homologue of p125, KIAA0725p. KIAA0725p exhibited remarkable sequence similarity with p125 throughout the entire sequence determined but lacked an N-terminal proline-rich, Sec23p-interacting region. In vitro binding analysis showed that KIAA0725p does not bind to Sec23p. KIAA0725p possessed phospholipase A(1) activity preferentially for phosphatidic acid. We examined the effects of overexpression of KIAA0725p on the morphology of organelles. Overexpression of KIAA0725p, like that of p125, caused dispersion of the endoplasmic reticulum-Golgi intermediate compartment and Golgi apparatus. Different from the case of p125, overexpression of KIAA0725p resulted in dispersion of tethering proteins located in the Golgi region and caused aggregation of the endoplasmic reticulum. Our results indicate that KIAA0725p is a new member of the phosphatidic acid-preferring phospholipase A(1) protein family and suggest that the cellular function of KIAA0725p is different from that of p125.
Collapse
Affiliation(s)
- Ken-ichi Nakajima
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Houslay MD. PDE4 cAMP-specific phosphodiesterases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:249-315. [PMID: 11550796 DOI: 10.1016/s0079-6603(01)69049-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M D Houslay
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, United Kingdom.
| |
Collapse
|
34
|
Grange M, Sette C, Cuomo M, Conti M, Lagarde M, Prigent AF, Némoz G. The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J Biol Chem 2000; 275:33379-87. [PMID: 10938092 DOI: 10.1074/jbc.m006329200] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hormones and growth factors induce in many cell types the production of phosphatidic acid (PA), which has been proposed to play a role as a second messenger. We have previously shown in an acellular system that PA selectively stimulates certain isoforms of type 4 cAMP-phosphodiesterases (PDE4). Here we studied the effect of endogenous PA on PDE activity of transiently transfected MA10 cells overexpressing the PA-sensitive isoform PDE4D3. Cell treatment with inhibitors of PA degradation, including propranolol, induced an accumulation of endogenous PA accompanied by a stimulation of PDE activity and a significant decrease in both cAMP levels and protein kinase A activity. Furthermore, in FRTL5 cells, which natively express PDE4D3, pretreatment with compounds inducing PA accumulation prevented both cAMP increase and cAMP-responsive element-binding protein phosphorylation triggered by thyroid-stimulating hormone. To determine the mechanism of PDE stimulation by PA, endogenous phospholipids were labeled by preincubating MA10 cells overexpressing PDE4D3 with [(32)P]orthophosphate. Immuno- precipitation experiments showed that PA was specifically bound to PDE4D3, supporting the hypothesis that PDE4D3 activation occurs through direct binding of PA to the protein. PA binding site on PDE4D3 was characterized by engineering deletions of selected regions in the N-terminal regulatory domain of the enzyme. Deletion of amino acid residues 31-59 suppressed both PA-activating effect and PA binding, suggesting that this region rich in basic and hydrophobic residues contains the PA binding site. These observations strongly suggest that endogenous PA can modulate cAMP levels in intact cells, through a direct activation of PDE4D3.
Collapse
Affiliation(s)
- M Grange
- Institut National de la Santé et de la Recherche Médicale Unité 352, Biochemistry and Pharmacology Laboratory, INSA-Lyon, 69621 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Francis SH, Turko IV, Corbin JD. Cyclic nucleotide phosphodiesterases: relating structure and function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:1-52. [PMID: 11008484 DOI: 10.1016/s0079-6603(00)65001-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of metallophosphohydrolases that specifically cleave the 3',5'-cyclic phosphate moiety of cAMP and/or cGMP to produce the corresponding 5'-nucleotide. PDEs are critical determinants for modulation of cellular levels of cAMP and/or cGMP by many stimuli. Eleven families of PDEs with varying selectivities for cAMP or cGMP have been identified in mammalian tissues. Within these families, multiple isoforms are expressed either as products of different genes or as products of the same gene through alternative splicing. Regulation of PDEs is important for controlling myriad physiological functions, including the visual response, smooth muscle relaxation, platelet aggregation, fluid homeostasis, immune responses, and cardiac contractility. PDEs are critically involved in feedback control of cellular cAMP and cGMP levels. Activities of the various PDEs are highly regulated by a panoply of processes, including phosphorylation events, interaction with small molecules such as cGMP or phosphatidic acid, subcellular localization, and association with specific protein partners. The PDE superfamily continues to be a major target for pharmacological intervention in a number of medically important maladies.
Collapse
Affiliation(s)
- S H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
36
|
Souness JE, Aldous D, Sargent C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. IMMUNOPHARMACOLOGY 2000; 47:127-62. [PMID: 10878287 DOI: 10.1016/s0162-3109(00)00185-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J E Souness
- Discovery Biology 1 (JA3-1), Aventis Pharma Ltd., Dagenham Research Centre, Rainham Road South, Dagenham, RM10 7XS, Essex, UK.
| | | | | |
Collapse
|
37
|
Lerner A, Kim DH, Lee R. The cAMP signaling pathway as a therapeutic target in lymphoid malignancies. Leuk Lymphoma 2000; 37:39-51. [PMID: 10721768 DOI: 10.3109/10428190009057627] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Certain subsets of lymphoid cells, such as thymocytes or peripheral B cells, undergo apoptosis after treatment with agents which elevate intracellular 3',5' cyclic adenosine monophosphate (cAMP). Investigators have also noted induction of apoptosis of chronic lymphocytic leukemia (CLL) cells following treatment with methylxanthines, a phenomenon that may, at least in part, be due to the activity of these drugs as non-specific phosphodiesterase (PDE) inhibitors. We discuss three general strategies for altering cAMP-mediated signal transduction in lymphoid cells. After a review of what is known about the expression and regulation of PDE families in human lymphoid cells, we focus on the use of isoform-specific PDE inhibitors as potential therapeutic agents in CLL. Our work has suggested that despite the presence of PDE1, PDE3B, PDE4 and PDE7 enzymes in CLL, inhibition of PDE4 results in uniquely potent induction of apoptosis in CLL cells. This effect is relatively specific as comparable treatment of human peripheral blood T cells does not induce apoptosis. Clinical trials utilizing PDE4 inhibitors are indicated in the therapy of CLL patients resistant to standard therapy.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- Animals
- Apoptosis/drug effects
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic Nucleotide Phosphodiesterases, Type 1
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/drug effects
- Lymphocytes/physiology
- Lymphoma/drug therapy
- Phosphodiesterase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Xanthines/pharmacology
Collapse
Affiliation(s)
- A Lerner
- Department of Medicine, Boston Medical Center and Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
38
|
Barnette MS. Phosphodiesterase 4 (PDE4) inhibitors in asthma and chronic obstructive pulmonary disease (COPD). PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2000; 53:193-229. [PMID: 10616299 DOI: 10.1007/978-3-0348-8735-9_5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphodiesterases (PDE) are a family of enzymes responsible for the metabolism of the intracellular second messengers cyclic AMP and cyclic GMP. PDE4 is a cyclic AMP specific PDE that is the major if not sole cyclic AMP metabolizing enzymes found in inflammatory and immune cells, and contributes significantly to cyclic AMP metabolism in smooth muscles. Based on its cellular and tissue distribution and the demonstration that selective inhibitors of this isozyme reduce bronchoconstriction in animals and suppress the activation of inflammatory cells, PDE4 has become an important molecular target for the development of novel therapies for asthma and COPD. This chapter will review the evidence demonstrating the ability of PDE4 inhibitors to modify airway obstruction, airway inflammation and airway remodelling and hyperreactivity, will present some preliminary findings obtained with theses compounds in clinical trials and and will discuss experimental approaches designed to identify novel compounds that maintain the beneficial activity of the initial selective PDE4 inhibitors but with a reduced tendency of elicit the gastrointestinal side effects observed with this class of compounds.
Collapse
Affiliation(s)
- M S Barnette
- SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406-0939, USA
| |
Collapse
|
39
|
Naro F, Sette C, Vicini E, De Arcangelis V, Grange M, Conti M, Lagarde M, Molinaro M, Adamo S, Némoz G. Involvement of type 4 cAMP-phosphodiesterase in the myogenic differentiation of L6 cells. Mol Biol Cell 1999; 10:4355-67. [PMID: 10588663 PMCID: PMC25763 DOI: 10.1091/mbc.10.12.4355] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myogenic cell differentiation is induced by Arg(8)-vasopressin, whereas high cAMP levels and protein kinase A (PKA) activity inhibit myogenesis. We investigated the role of type 4 phosphodiesterase (PDE4) during L6-C5 myoblast differentiation. Selective PDE4 inhibition resulted in suppression of differentiation induced by vasopressin. PDE4 inhibition prevented vasopressin-induced nuclear translocation of the muscle-specific transcription factor myogenin without affecting its overall expression level. The effects of PDE4 inhibition could be attributed to an increase of cAMP levels and PKA activity. RNase protection, reverse transcriptase PCR, immunoprecipitation, Western blot, and enzyme activity assays demonstrated that the PDE4D3 isoform is the major PDE4 expressed in L6-C5 myoblasts and myotubes, accounting for 75% of total cAMP-hydrolyzing activity. Vasopressin cell stimulation caused a biphasic increase of PDE4 activity, which peaked at 2 and 15 min and remained elevated for 48 h. In the continuous presence of vasopressin, cAMP levels and PKA activity were lowered. PDE4D3 overexpression increased spontaneous and vasopressin-dependent differentiation of L6-C5 cells. These results show that PDE4D3 plays a key role in the control of cAMP levels and differentiation of L6-C5 cells. Through the modulation of PDE4 activity, vasopressin inhibits the cAMP signal transduction pathway, which regulates myogenesis possibly by controlling the subcellular localization of myogenin.
Collapse
Affiliation(s)
- F Naro
- Dipartimento di Istologia ed Embriologia Medica, Università "La Sapienza," 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McPhail LC, Waite KA, Regier DS, Nixon JB, Qualliotine-Mann D, Zhang WX, Wallin R, Sergeant S. A novel protein kinase target for the lipid second messenger phosphatidic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:277-90. [PMID: 10425401 DOI: 10.1016/s1388-1981(99)00100-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of phospholipase D occurs in response to a wide variety of hormones, growth factors, and other extracellular signals. The initial product of phospholipase D, phosphatidic acid (PA), is thought to serve a signaling function, but the intracellular targets for this lipid second messenger are not clearly identified. The production of PA in human neutrophils is closely correlated with the activation of NADPH oxidase, the enzyme responsible for the respiratory burst. We have developed a cell-free system, in which the activation of NADPH oxidase is induced by the addition of PA. Characterization of this system revealed that a multi-functional cytosolic protein kinase was a target for PA, and that two NADPH oxidase components were substrates for the enzyme. Partial purification of the PA-activated protein kinase separated the enzyme from known protein kinase targets of PA. The partially purified enzyme was selectively activated by PA, compared to other phospholipids, and phosphorylated the oxidase component p47-phox on both serine and tyrosine residues. PA-activated protein kinase activity was present in a variety of hematopoietic cells and cell lines and in rat brain, suggesting it has widespread distribution. We conclude that this protein kinase may be a novel target for the second messenger function of PA.
Collapse
Affiliation(s)
- L C McPhail
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157-1019, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Grange M, Sette C, Prigent AF, Lagarde M, Némoz G. Regulation of cAMP-phosphodiesterases by phosphatidic acid binding. Lipids 1999; 34 Suppl:S83. [PMID: 10419099 DOI: 10.1007/bf02562239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Grange
- INSERM Unité 352, Biochimie & Pharmacologie Laboratoire, INSA-Lyon, France
| | | | | | | | | |
Collapse
|
42
|
Naro F, Vicini E, Sette C, Grange M, Prigent AF, Curci R, Lagarde M, Némoz G, Adamo S. Phosphatidic acid-dependent activation of adenosine-3',5'-cyclic-monophosphate-phosphodiesterase is necessary for Arg-vasopressin induction of myogenesis. Lipids 1999; 34 Suppl:S81-2. [PMID: 10419098 DOI: 10.1007/bf02562238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- F Naro
- Dip. Istologia Embriologia Med., Univ. di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bechoua S, Dubois M, Dominguez Z, Goncalves A, Némoz G, Lagarde M, Prigent AF. Protective effect of docosahexaenoic acid against hydrogen peroxide-induced oxidative stress in human lymphocytes. Biochem Pharmacol 1999; 57:1021-30. [PMID: 10796072 DOI: 10.1016/s0006-2952(99)00012-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Oxidatively stressed lymphocytes exhibit decreased proliferative response to mitogenic stimulation. Although several sensitive targets involved in lymphocyte suppression have already been identified, little is known about the influence of oxidative stress on cyclic nucleotide phosphodiesterases (PDE) (EC 3.1.4.17), thought to play a major role in the control of cyclic AMP (cAMP) level, a well-recognized negative effector of lymphoproliferation. Although the polyunsaturated fatty acid content of membrane phospholipids is thought to be directly related to the extent of oxidant-induced lipid peroxidation, some n-3 fatty acids also seem to have antioxidant effects, depending on the concentration used and the overall redox status of the cells in question. Results of the present study showed that human peripheral blood mononuclear cells (PBMC) as well as rat thymocytes were relatively resistant to a short-term exposure (10 min) to hydrogen peroxide (H2O2). Indeed, H2O2-induced lipid peroxidation, estimated by malondialdehyde (MDA) production, was only 2-fold increased by H2O2 concentrations lower than 2 mM, whereas a larger increase (10-fold) could be observed in PBMC at the highest dose (5 mM). Previous enrichment of PBMC with 5 microM docosahexaenoic acid (22:6n-3), brought to the cells as a fatty acid-albumin complex (ratio 1), significantly reduced MDA production induced by low doses of H2O2, the protective effect no longer being observed at the highest doses. In contrast, eicosapentaenoic acid (20:5n-3) did not have any protective effect. Cytosolic PDE activities of both human PBMC and rat thymocytes were significantly inhibited (40-50%) after H2O2 treatment of the cells, whereas particulate PDE activities were not modified. Different responses of PDE activities to H2O2 treatment were observed when PBMC were first enriched with 22:6n-3 prior to H2O2 addition. In 22:6n-3-treated cells, the H2O2-induced inhibition of both cAMP- and cGMP-PDE cytosolic activities was abolished, whereas the particulate activities were increased by the highest H2O2 concentration used (5 mM). At the same time, the glutathione peroxidase (glutathione: oxidoreductase, EC 1.11.1.9) (GSH-Px) activity of PBMC and thymocytes was only marginally inhibited by H2O2 addition (20%), and pretreatment of the cells with 22:6n-3 did not modify the slight inhibitory effect of H2O2. Collectively, these results suggest that lymphocytes are relatively resistant to H2O2-induced lipid peroxidation due to their high GSH-Px content, and that low doses of 22:6n-3 are able to prevent some of the H2O2-induced alterations such as lipid peroxidation and PDE inhibition. Docosahexaenoic acid might thus offer some protection against oxidant-induced lymphocyte suppression.
Collapse
Affiliation(s)
- S Bechoua
- INSERM U352, Biochimie et Pharmacologie INSA-LYON, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Dousa TP. Cyclic-3',5'-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney. Kidney Int 1999; 55:29-62. [PMID: 9893113 DOI: 10.1046/j.1523-1755.1999.00233.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Investigations of recent years revealed that isozymes of cyclic-3', 5'-nucleotide phosphodiesterase (PDE) are a critically important component of the cyclic-3',5'-adenosine monophosphate (cAMP) protein kinase A (PKA) signaling pathway. The superfamily of cyclic-3', 5'-phosphodiesterase (PDE) isozymes consists of at least nine gene families (types): PDE1 to PDE9. Some PDE families are very diverse and consist of several subtypes and numerous PDE isoform-splice variants. PDE isozymes differ in molecular structure, catalytic properties, intracellular regulation and location, and sensitivity to selective inhibitors, as well as differential expression in various cell types. A number of type-specific "second-generation" PDE inhibitors have been developed. Current evidence indicates that PDE isozymes play a role in several pathobiologic processes in kidney cells. In rat mesangial cells, PDE3 and PDE4 compartmentalize cAMP signaling to the PDE3-linked cAMP-PKA pathway that modulates mitogenesis and PDE4-linked cAMP-PKA pathway that modulates generation of reactive oxygen species. Administration of selective PDE isozyme inhibitors in vivo suppresses proteinuria and pathologic changes in experimental anti-Thy-1.1 mesangial proliferative glomerulonephritis in rats. Increased activity of PDE5 (and perhaps also PDE9) in glomeruli and in cells of collecting ducts in sodium-retaining states, such as nephrotic syndrome, accounts for renal resistance to atriopeptin; diminished ability to excrete sodium can be corrected by administration of the selective PDE5 inhibitor zaprinast. Anomalously high PDE4 activity in collecting ducts is a basis of unresponsiveness to vasopressin in mice with hereditary nephrogenic diabetes insipidus. Apparently, PDE isozymes apparently also play an important role in the pathogenesis of acute renal failure of different origins. Administration of PDE isozyme-selective inhibitors suppresses some components of immune responses to allograft transplant and improves preservation and survival of transplanted organ. PDE isozymes are a target for action of numerous novel selective PDE inhibitors, which are key components in the design of novel "signal transduction" pharmacotherapies of kidney diseases.
Collapse
Affiliation(s)
- T P Dousa
- Renal Pathophysiology Laboratory, Department of Physiology and Biophysics, Mayo Clinic and Foundation, Mayo Medical School, Rochester, Minnesota, USA.
| |
Collapse
|
45
|
Grange M, Picq M, Prigent AF, Lagarde M, Nemoz G. Regulation of PDE-4 cAMP phosphodiesterases by phosphatidic acid. Cell Biochem Biophys 1998; 29:1-17. [PMID: 9631235 DOI: 10.1007/bf02737825] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphatidic acid (PA) has been previously shown to activate specifically some of the isoforms of type 4 cylic nucleotide phosphodiesterases (PDE-4) in an acellular system. In the present work, we have investigated the mechanism of PA-activating effect by using a recombinant PA-sensitive isoform, PDE-4D3. The enzyme was specifically activated by acidic phospholipids, but not by zwitterionic phospholipids or anionic detergents. The importance of the role of PA acidic groups in the activation process was confirmed by studying the influence of pH and ionic strength on activation. Crosslinking experiments suggested that PA might influence the ability of PDE-4D3 to form dimers. Binding studies performed with radiolabeled PA showed that PA binds to a PDE-4D3 preparation in a saturable manner. Specifically bound PA was displaced by anionic, but not by zwitterionic phospholipids. With a preparation of PDE-4B2, a PDE-4 isoform insensitive to PA activation, PA binding was only displaced by high concentrations of unlabeled PA, suggesting that high-affinity PA binding sites are only present on PDE-4D3. These data support the hypothesis that PA-activating effect depends on direct binding of the effector on specific sites carried by the PDE-4D3 protein.
Collapse
Affiliation(s)
- M Grange
- Institut National de la Santé et de la Recherche Médicale Unité 352, Laboratoire de Biochimie et Pharmacologie Institut National des Sciences Appliquées-Lyon, Villeurbanne, France
| | | | | | | | | |
Collapse
|
46
|
Houslay MD, Sullivan M, Bolger GB. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1998; 44:225-342. [PMID: 9547887 DOI: 10.1016/s1054-3589(08)60128-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M D Houslay
- Division of Biochemistry and Molecular Biology, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
47
|
Bechoua S, Dubois M, Némoz G, Lagarde M, Prigent AF. Docosahexaenoic acid lowers phosphatidate level in human activated lymphocytes despite phospholipase D activation. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32573-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
El Bawab S, Macovschi O, Sette C, Conti M, Lagarde M, Nemoz G, Prigent AF. Selective stimulation of a cAMP-specific phosphodiesterase (PDE4A5) isoform by phosphatidic acid molecular species endogenously formed in rat thymocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1151-7. [PMID: 9288942 DOI: 10.1111/j.1432-1033.1997.01151.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported that concanavalin A (ConA) stimulation of rat thymocytes induces an increase in the cellular phosphatidic acid mass as well as a change in its fatty acid composition. An increase in phosphodiesterase (PDE) activity, mostly due to cAMP-specific (PDE4) isoforms, has also been observed in thymocytes stimulated by ConA. Furthermore, phosphatidic acid was able to stimulate PDE4 activity in vitro. In the present study, cAMP levels have been shown to decrease upon ConA stimulation of thymocytes. Decreasing phosphatidic acid level using diacylglycerol kinase inhibitors induced a parallel decrease of the ConA-stimulated cAMP-specific PDE activity in these cells. Analyses of phosphatidic acid molecular species in cells stimulated for 5 min by ConA revealed a significant increase in 1-stearoyl-2-arachidonoyl-sn-glycerol-3-phosphate and a relative decrease in the other molecular species of phosphatidic acid, mainly species containing palmitate. On the other hand, phosphatidic acid extracted from ConA-stimulated cells activated more efficiently the recombinant PDE4A5 isoform in vitro, as compared to phosphatidic acid extracted from unstimulated cells. In addition, phosphatidic acid species containing unsaturated fatty acids were stimulatory, while those containing two saturated fatty acids had only a marginal effect on the enzyme activity. Taken together, these data suggest that the mitogenic stimulation of thymocytes is accompanied by the synthesis of peculiar phosphatidic acid molecular species able to activate a PDE4 isoform. This activation might be of physiological relevance since cAMP is a major negative effector of the mitogenic response.
Collapse
Affiliation(s)
- S El Bawab
- INSERM U352, Laboratoire de Biochimie et Pharmacologie INSA-Lyon, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|