1
|
Dodangeh S, Hasani-Ranjbar S. Old and new anti-obesity drugs. J Diabetes Metab Disord 2025; 24:16. [PMID: 39712336 PMCID: PMC11659566 DOI: 10.1007/s40200-024-01512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024]
Abstract
Obesity is a pandemic problem that correlates with a cluster of metabolic factors leading to poor cardiovascular outcomes, morbidity, and an increased risk of overall mortality. It is necessary to approach obesity with a comprehensive treatment plan, which may involve lifestyle modifications (diet, exercise, and behavioral therapy) and pharmacological interventions. This article provides an overview of the mechanisms of action, efficacy, and safety of available long-term anti-obesity drugs and introduces other potential agents under investigation.
Collapse
Affiliation(s)
- Salimeh Dodangeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wean J, Kowalsky AH, Laker R, Will S, Drucker DJ, Rhodes CJ, Seeley RJ. Specific loss of GIPR signaling in GABAergic neurons enhances GLP-1R agonist-induced body weight loss. Mol Metab 2025; 95:102074. [PMID: 39612941 PMCID: PMC11946504 DOI: 10.1016/j.molmet.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVES Dual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown. METHODS To address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements. RESULTS A GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism. CONCLUSIONS Our findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.
Collapse
Affiliation(s)
- Jordan Wean
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Rhianna Laker
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sarah Will
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, Toronto, Canada
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Rampy J, Torres-Manzo AP, Hoffsmith K, Loberg MA, Sheng Q, Salas-Lucia F, Bianco AC, Arrojo E Drigo R, Wang H, Weiss VL, Carrasco N. Overnutrition directly impairs thyroid hormone biosynthesis and utilization, causing hypothyroidism, despite remarkable thyroidal adaptations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645596. [PMID: 40236234 PMCID: PMC11996416 DOI: 10.1101/2025.03.31.645596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Thyroid hormones (THs: T 3 and T 4 ) are key regulators of metabolic rate and nutrient metabolism. They are controlled centrally and peripherally in a coordinated manner to elegantly match T 3 -mediated energy expenditure (EE) to energy availability. Hypothyroidism reduces EE and has long been blamed for obesity; however, emerging evidence suggests that, instead, obesity may drive thyroid dysfunction. Thus, we used a mouse model of diet-induced obesity to determine its direct effects on thyroid histopathology and function, deiodinase activity, and T 3 action. Strikingly, overnutrition induced hypothyroidism within 3 weeks. Levels of thyroidal THs and their precursor protein thyroglobulin decreased, and ER stress was induced, indicating that thyroid function was directly impaired. We also observed pronounced histological and vascular expansion in the thyroid. Overnutrition additionally suppressed T 4 activation, rendering the mice resistant to T 4 and reducing EE. Our findings collectively show that overnutrition deals a double strike to TH biosynthesis and action, despite large efforts to adapt-but, fortunately, thyroid dysfunction in mice can be reversed by weight loss. In humans, BMI correlated with thyroidal vascularization, importantly demonstrating initial translatability. These studies lay the groundwork for novel obesity therapies that tackle hypothyroidism-which are much-needed, as no current obesity treatment works for everyone.
Collapse
|
4
|
Anastasiou IΑ, Argyrakopoulou G, Dalamaga M, Kokkinos A. Dual and Triple Gut Peptide Agonists on the Horizon for the Treatment of Type 2 Diabetes and Obesity. An Overview of Preclinical and Clinical Data. Curr Obes Rep 2025; 14:34. [PMID: 40210807 PMCID: PMC11985575 DOI: 10.1007/s13679-025-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE OF REVIEW The development of long-acting incretin receptor agonists represents a significant advance in the fight against the concurrent epidemics of type 2 diabetes mellitus (T2DM) and obesity. The aim of the present review is to examine the cellular processes underlying the actions of these new, highly significant classes of peptide receptor agonists. We further explore the potential actions of multi-agonist drugs as well as the mechanisms through which gut-brain communication can be used to achieve long-term weight loss without negative side effects. RECENT FINDINGS Several unimolecular dual-receptor agonists have shown promising clinical efficacy studies when used alone or in conjunction with approved glucose-lowering medications. We also describe the development of incretin-based pharmacotherapy, starting with exendin- 4 and ending with the identification of multi-incretin hormone receptor agonists, which appear to be the next major step in the fight against T2DM and obesity. We discuss the multi-agonists currently in clinical trials and how each new generation of these drugs improves their effectiveness. Since most glucose-dependent insulinotropic polypeptide (GIP) receptor: glucagon-like peptide- 1 receptor (GLP- 1) receptor: glucagon receptor triagonists compete in efficacy with bariatric surgery, the success of these agents in preclinical models and clinical trials suggests a bright future for multi-agonists in the treatment of metabolic diseases. To fully understand how these treatments affect body weight, further research is needed.
Collapse
Affiliation(s)
- Ioanna Α Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alexander Kokkinos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
5
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
6
|
Brachs S, Soll D, Beer F, Huckauf N, Konkar A, Spranger J, Rütten H, Mai K. Hormonal regulation of human adipose tissue lipolysis: impact of adipose GIP system in overweight and obesity. Eur J Endocrinol 2025; 192:91-99. [PMID: 39935317 DOI: 10.1093/ejendo/lvae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Indexed: 02/13/2025]
Abstract
OBJECTIVE Given the promising effects of GLP-1/GIP/glucagon receptor triagonists on weight loss in animals and humans, improved understanding of underlying mechanism is required. We investigated a direct lipolytic effect of a specific GLP-1/GIP/glucagon receptor triagonist on human adipose tissue to disentangle central and peripheral effects as potential drivers of weight loss. DESIGN AND METHODS Isolated primary adipocytes from subcutaneous adipose tissue biopsies of 22 non-diabetic subjects [63.0 (57.0-69.5) years] were incubated with increasing concentrations of isoprenaline, GLP-1, GIP, glucagon, or a GLP-1/GIP/glucagon receptor triagonist. Glycerol concentration was measured following stimulation to assess lipolysis. mRNA expression of adipose tissue receptors was analyzed in parallel. RESULTS Glycerol concentration only increased by isoprenaline, GIP (+13%), and GLP-1/GIP/glucagon receptor triagonist (+28%) but not by GLP-1 or glucagon. This effect was not related to age or body mass index (BMI). Higher adipose tissue GIP receptor mRNA expression was related to elevated glycerol release after GIP and GLP-1/GIP/glucagon receptor triagonist stimulation. CONCLUSIONS Direct lipolytic effects of GIP seem to exist in human subcutaneous adipose tissue. This might be targetable by multiple receptor agonists, especially with a high GIP receptor affinity. Such a mechanism can potentiate the beneficial effect on weight loss and will therefore represent a promising target of future research. CLINICAL TRIAL REGISTRATION NUMBER The trial was registered at German Clinical Trials Register (drks.de) as DRKS00010049.
Collapse
Affiliation(s)
- Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Dominik Soll
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Finja Beer
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Nadine Huckauf
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Anish Konkar
- Sanofi Research and Development, Frankfurt am Main 65926, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam 10117, Germany
| | - Hartmut Rütten
- Sanofi Research and Development, Frankfurt am Main 65926, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam 10117, Germany
| |
Collapse
|
7
|
Gómez-Ambrosi J, Catalán V, Frühbeck G. The evolution of the understanding of obesity over the last 100 years. Int J Obes (Lond) 2025; 49:168-176. [PMID: 39506027 DOI: 10.1038/s41366-024-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
The definition of obesity has evolved significantly over the last century, from a simplistic view of excessive eating and laziness to a complex, multifactorial disease with profound health and societal implications. As science progresses, it is essential that we keep improving our knowledge about obesity, taking into consideration, factors like genetics, metabolism, body composition, and the social determinants of health. This article explores how our understanding of this condition has been shaped over the last 100 years considering historical and scientific factors. The history and usefulness of the body mass index (BMI), the development of other anthropometric markers and the evolution in the incorporation of body composition into clinical practice, among other aspects related to the definition of obesity, are discussed. The challenges posed by obesity can be better addressed and more effective strategies for prevention and treatment can be developed adopting a more personalized and holistic approach. Obesity is not only a matter of individual responsibility but a multifaceted public health problem that requires a multidisciplinary and inclusive strategy to address its complexities.
Collapse
Affiliation(s)
- Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
8
|
Kokkorakis M, Chakhtoura M, Rhayem C, Al Rifai J, Ghezzawi M, Valenzuela-Vallejo L, Mantzoros CS. Emerging pharmacotherapies for obesity: A systematic review. Pharmacol Rev 2025; 77:100002. [PMID: 39952695 DOI: 10.1124/pharmrev.123.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The history of antiobesity pharmacotherapies is marked by disappointments, often entangled with societal pressure promoting weight loss and the prevailing conviction that excess body weight signifies a lack of willpower. However, categories of emerging pharmacotherapies generate hope to reduce obesity rates. This systematic review of phase 2 and phase 3 trials in adults with overweight/obesity investigates the effect of novel weight loss pharmacotherapies, compared to placebo/control or US Food and Drug Administration-approved weight loss medication, through searching Medline, Embase, and ClinicalTrials.gov (2012-2024). We identified 53 phase 3 and phase 2 trials, with 36 emerging antiobesity drugs or combinations thereof and 4 withdrawn or terminated trials. Oral semaglutide 50 mg is the only medication that has completed a phase 3 trial. There are 14 ongoing phase 3 trials on glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) (ecnoglutide, orforglipron, and TG103), GLP-1 RA/amylin agonist (CagriSema), GLP-1/glucagon RAs (mazdutide and survodutide), GLP-1/glucose-dependent insulinotropic polypeptide and glucagon RA (retatrutide), dapagliflozin, and the combination sibutramine/topiramate. Completed phase 2 trials on incretin-based therapies showed a mean percent weight loss of 7.4% to 24.2%. Almost half of the drugs undergoing phase 2 trials are incretin analogs. The obesity drug pipeline is expanding rapidly, with the most promising results reported with incretin analogs. Data on mortality and obesity-related complications, such as cardio-renal-metabolic events, are needed. Moreover, long-term follow-up data on the safety and efficacy of weight maintenance with novel obesity pharmacotherapies, along with studies focused on underrepresented populations, cost-effectiveness assessments, and drug availability, are needed to bridge the care gap for patients with obesity. SIGNIFICANCE STATEMENT: Obesity is the epidemic of the 21st century. Except for the newer injectable medications, drugs with suboptimal efficacy have been available in the clinician's armamentarium for weight management. However, emerging alternatives of novel agents and combinations populate the current obesity therapeutic pipeline. This systematic review identifies the state and mechanism of action of emerging pharmacotherapies undergoing or having completed phase 2 and phase 3 clinical trials. The information provided herein furthers the understanding of obesity management, implying direct clinical implications and stimulating research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana Al Rifai
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024; 15:11811-11833. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
10
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Diz-Chaves Y, Maastor Z, Spuch C, Lamas JA, González-Matías LC, Mallo F. Glucagon-like peptide 1 receptor activation: anti-inflammatory effects in the brain. Neural Regen Res 2024; 19:1671-1677. [PMID: 38103230 PMCID: PMC10960307 DOI: 10.4103/1673-5374.389626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity. Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues, including different brain regions. Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection, like the support of cell growth/survival, enhancement promotion of synapse formation, autophagy, and inhibition of the secretion of proinflammatory cytokines, microglial activation, and apoptosis during neural morphogenesis. The glial cells, including astrocytes and microglia, maintain metabolic homeostasis and defense against pathogens in the central nervous system. After brain insult, microglia are the first cells to respond, followed by reactive astrocytosis. These activated cells produce proinflammatory mediators like cytokines or chemokines to react to the insult. Furthermore, under these circumstances, microglia can become chronically inflammatory by losing their homeostatic molecular signature and, consequently, their functions during many diseases. Several processes promote the development of neurological disorders and influence their pathological evolution: like the formation of protein aggregates, the accumulation of abnormally modified cellular constituents, the formation and release by injured neurons or synapses of molecules that can dampen neural function, and, of critical importance, the dysregulation of inflammatory control mechanisms. The glucagon-like peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies, restoring brain cell homeostasis under inflammatory conditions, modulating microglia activity, and decreasing the inflammatory response. This review summarizes recent advances linked to the anti-inflammatory properties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis, Alzheimer's disease, Parkinson's disease, vascular dementia, or chronic migraine.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Zainab Maastor
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Sala Investigación, Estrada Clara Campoamor, Vigo, Spain
| | - José Antonio Lamas
- Biomedical Research Centre (CINBIO), Laboratory of Neuroscience, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Lucas C. González-Matías
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Federico Mallo
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| |
Collapse
|
12
|
Kusminski CM, Perez-Tilve D, Müller TD, DiMarchi RD, Tschöp MH, Scherer PE. Transforming obesity: The advancement of multi-receptor drugs. Cell 2024; 187:3829-3853. [PMID: 39059360 PMCID: PMC11286204 DOI: 10.1016/j.cell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Munich, Germany; German Center for Diabetes Research (DZD) and Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Munich, Munich, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Chan AML, Ng AMH, Yunus MHM, Idrus RH, Law JX, Yazid MD, Chin KY, Yusof MRM, Ng SN, Koh B, Lokanathan Y. Single high-dose intravenous injection of Wharton's jelly-derived mesenchymal stem cell exerts protective effects in a rat model of metabolic syndrome. Stem Cell Res Ther 2024; 15:160. [PMID: 38835014 DOI: 10.1186/s13287-024-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohd Rafizul Mohd Yusof
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - See Nguan Ng
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Novikoff A, Müller TD. Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't. Physiology (Bethesda) 2024; 39:142-156. [PMID: 38353610 PMCID: PMC11368522 DOI: 10.1152/physiol.00032.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
16
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
17
|
Kim KK, Lee HR, Jang SM, Kim TW. Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models. Nutr Res Pract 2024; 18:180-193. [PMID: 38584817 PMCID: PMC10995778 DOI: 10.4162/nrp.2024.18.2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.
Collapse
Affiliation(s)
| | - Hye Rim Lee
- Kangwon National University Well-Being Bioproducts R&D Center, Hoengseong 25209, Korea
| | | | - Tae Woo Kim
- Newgen Healthcare Co., Chuncheon 24232, Korea
| |
Collapse
|
18
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence: A narrative review of the main treatment options with a focus on innovative pharmacological therapies. Eur J Pediatr 2024; 183:1499-1508. [PMID: 38227053 DOI: 10.1007/s00431-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The prevalence of obesity in children and adolescents is increasing, and it is recognised as a complex disorder that often begins in early childhood and persists throughout life. Both polygenic and monogenic obesity are influenced by a combination of genetic predisposition and environmental factors. Rare genetic obesity forms are caused by specific pathogenic variants in single genes that have a significant impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. Genetic testing is recommended for patients who exhibit rapid weight gain in infancy and show additional clinical features suggestive of monogenic obesity as an early identification allows for appropriate treatment, preventing the development of obesity-related complications, avoiding the failure of traditional treatment approaches. In the past, the primary recommendations for managing obesity in children and teenagers have been focused on making multiple lifestyle changes that address diet, physical activity, and behaviour, with the goal of maintaining these changes long-term. However, achieving substantial and lasting weight loss and improvements in body mass index (BMI) through lifestyle interventions alone is rare. Recently the progress made in genetic analysis has paved the way for innovative pharmacological treatments for different forms of genetic obesity. By understanding the molecular pathways that contribute to the development of obesity, it is now feasible to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms. Conclusion: However, additional preclinical research and studies in the paediatric population are required, both to develop more personalised prevention and therapeutic programs, particularly for the early implementation of innovative and beneficial management options, and to enable the translation of these novel therapy approaches into clinical practice. What is Known: • The prevalence of obesity in the paediatric population is increasing, and it is considered as a multifaceted condition that often begins in early childhood and persists in the adult life. Particularly, rare genetic forms of obesity are influenced by a combination of genetic predisposition and environmental factors and are caused by specific pathogenic variants in single genes showing a remarkable impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. • Patients who present with rapid weight gain in infancy and show additional clinical characteristics indicative of monogenic obesity should undergo genetic testing, which, by enabling a correct diagnosis, can prevent the development of obesity-related consequences through the identification for appropriate treatment. What is New: • In recent years, advances made in genetic analysis has made it possible to develop innovative pharmacological treatments for various forms of genetic obesity. In fact, it is now achievable to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms by understanding the molecular pathways involved in the development of obesity. • As demonstrated over the last years, two drugs, setmelanotide and metreleptin, have been identified as potentially effective interventions in the treatment of certain rare forms of monogenic obesity caused by loss-of-function mutations in genes involved in the leptin-melanocortin pathway. Recent advancements have led to the development of novel treatments, including liraglutide, semaglutide and retatrutide, that have the potential to prevent the progression of metabolic abnormalities and improve the prognosis of individuals with these rare and severe forms of obesity. However, extensive preclinical research and, specifically, additional studies in the paediatric population are necessary to facilitate the translation of these innovative treatment techniques into clinical practice.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital - Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
19
|
Tanaka Y, Maeda N, Koseki M, Maeda K. Changes in Body Weight in Severely Obese Patients Treated with the Anorexiant Mazindol. J Clin Med 2024; 13:1860. [PMID: 38610625 PMCID: PMC11012520 DOI: 10.3390/jcm13071860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: The number of severely obese patients worldwide is rapidly increasing. Recently, novel therapeutic approaches, such as bariatric surgery or GLP-1 receptor agonists, have emerged, bringing about a paradigm shift in this field. However, these therapies sometimes face challenges, such as peri-surgical complications or supply shortages. Mazindol, which is an appetite suppressant approved decades ago in Japan, remains a valuable option. In this study, we investigated the effectiveness of mazindol in reducing body weight in 147 patients, and we examined the factors influencing said effectiveness. (2) Methods: The patients were divided into four groups based on the treatment cycles they underwent: 1 cycle, 2 cycles, 3-5 cycles, and over 6 cycles. We compared the changes in body weight before and after the treatment among these four groups. Additionally, we sought to identify the factors correlated to the effectiveness of mazindol. (3) Results: The change in body weight was more pronounced in the group which underwent 3-5 cycles compared to the groups which underwent 1 cycle and 2 cycles; this change was also more pronounced in the group which underwent over 6 cycles compared to those which underwent 1 cycle. Furthermore, we observed a significant correlation between the initial body weight and the extent of body weight change. (4) Conclusions: Mazindol demonstrated effectiveness in reducing the body weight of patients in a cycle-dependent manner.
Collapse
Affiliation(s)
| | - Norikazu Maeda
- Longwood Maeda Clinic, Suita 565-0874, Japan
- Department of Endocrinology, Metabolism and Diabetes, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Japan
| | - Masahiro Koseki
- Longwood Maeda Clinic, Suita 565-0874, Japan
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | | |
Collapse
|
20
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
21
|
Ng MY, Song ZJ, Venkatesan G, Rodriguez-Cuenca S, West JA, Yang S, Tan CH, Ho PCL, Griffin JL, Vidal-Puig A, Bassetto M, Hagen T. Conjugating uncoupler compounds with hydrophobic hydrocarbon chains to achieve adipose tissue selective drug accumulation. Sci Rep 2024; 14:4932. [PMID: 38418847 PMCID: PMC10901892 DOI: 10.1038/s41598-024-54466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhi Jian Song
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | | | - Sergio Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - James A West
- Department of Biochemistry, The University of Cambridge, Cambridge, UK
| | - Shili Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Choon Hong Tan
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Julian L Griffin
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Aberdeen, UK
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Duarte MKRN, Leite-Lais L, Agnez-Lima LF, Maciel BLL, Morais AHDA. Obesity and Nutrigenetics Testing: New Insights. Nutrients 2024; 16:607. [PMID: 38474735 DOI: 10.3390/nu16050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Obesity results from interactions between environmental factors, lifestyle, and genetics. In this scenario, nutritional genomics and nutrigenetic tests stand out, with the promise of helping patients avoid or treat obesity. This narrative review investigates whether nutrigenetic tests may help to prevent or treat obesity. Scientific studies in PubMed Science Direct were reviewed, focusing on using nutrigenetic tests in obesity. The work showed that few studies address the use of tools in obesity. However, most of the studies listed reported their beneficial effects in weight loss. Ethical conflicts were also discussed, as in most countries, there are no regulations to standardize these tools, and there needs to be more scientific knowledge for health professionals who interpret them. International Societies, such as the Academy of Nutrition and Dietetics and the Brazilian Association for the Study of Obesity and Metabolic Syndrome, do not recommend nutrigenetic tests to prevent or treat obesity, especially in isolation. Advancing nutrigenetics depends on strengthening three pillars: regulation between countries, scientific evidence with clinical validity, and professional training.
Collapse
Affiliation(s)
| | - Lúcia Leite-Lais
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
23
|
Zhong Q, Wang X, Wei R, Liu F, Alamin M, Sun J, Gui L. Equisetin inhibits adiposity through AMPK-dependent regulation of brown adipocyte differentiation. Heliyon 2024; 10:e25458. [PMID: 38327434 PMCID: PMC10847917 DOI: 10.1016/j.heliyon.2024.e25458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Obesity has a significant impact on endocrine function, which leads to metabolic diseases including diabetes, insulin resistance, and other complications associated with obesity. Development of effective and safe anti-obesity drugs is imperative and necessary. Equisetin (EQST), a tetramate-containing marine fungal product, was reported to inhibit bacterial fatty acid synthesis and affect mitochondrial metabolism. It is tempting to speculate that EQST might have anti-obesity effects. This study was designed to explore anti-obesity effects and underlying mechanism of EQST on 3T3-L1 adipocytes differentiated from 3T3-L1 cells. Oil Red O staining showed that EQST reduced lipid accumulation in 3T3-L1 adipocytes. Quantitative real-time polymerase chain reaction and Western blot analysis revealed that EQST significantly inhibited expression of adipogenesis/lipogenesis-related genes C/ebp-α, Ppar-γ, Srebp1c, Fas, and reduced protein levels. There was also increased expression of key genes and protein levels involved in lipolysis (Perilipin, Atgl, Hsl), brown adipocyte differentiation (Prdm16, Ucp1), mitochondrial biogenesis (Pgc1α, Tfam) and β-oxidation Acsl1, Cpt1. Moreover, mitochondrial content, their membrane potential ΔΨM, and respiratory chain genes Mt-Co1, Cox7a1, Cox8b, and Cox4 (and protein) exhibited marked increase in expression upon EQST treatment, along with increased protein levels. Importantly, EQST induced expression and activation of AMPK, which was compromised by the AMPK inhibitor dorsomorphin, leading to rescue of EQST-downregulated Fas expression and a reduction of the EQST-increased expression of Pgc1α, Ucp1, and Cox4. Together, EQST robustly promotes fat clearance through the AMPK pathway, these results supporting EQST as a strong candidate for the development into an anti-obesity therapeutic agent.
Collapse
Affiliation(s)
- Qin Zhong
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, University Town, Gui'an New District, Guiyang City, Guizhou Province 550025, China
- Clinical Medical Research Center, Affiliated Hospital of Guizhou Medical University No.28 Beijing Road, Guiyang City, Guizhou Province 550001, China
| | - Xian Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, University Town, Gui'an New District, Guiyang City, Guizhou Province 550025, China
| | - Ruiran Wei
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, University Town, Gui'an New District, Guiyang City, Guizhou Province 550025, China
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, No.69 Meishan Road Hefei City, Anhui Province 230031, China
| | - Fang Liu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, University Town, Gui'an New District, Guiyang City, Guizhou Province 550025, China
| | - Md Alamin
- Department of Biology, College of Life Sciences, Southern Medical University of Science and Technology, No.1088 Xueyuan Road, Shenzhen City, Guangdong Province 518055, China
| | - Jiajia Sun
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, No.1120 Lianhua Road, Futian District, Shenzhen City, Guangdong Province 518000, China
| | - Liming Gui
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, University Town, Gui'an New District, Guiyang City, Guizhou Province 550025, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, No.1120 Lianhua Road, Futian District, Shenzhen City, Guangdong Province 518000, China
| |
Collapse
|
24
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
25
|
Jakubowska A, le Roux CW, Viljoen A. The Road towards Triple Agonists: Glucagon-Like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide and Glucagon Receptor - An Update. Endocrinol Metab (Seoul) 2024; 39:12-22. [PMID: 38356208 PMCID: PMC10901658 DOI: 10.3803/enm.2024.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Obesity is the fifth leading risk factor for global deaths with numbers continuing to increase worldwide. In the last 20 years, the emergence of pharmacological treatments for obesity based on gastrointestinal hormones has transformed the therapeutic landscape. The successful development of glucagon-like peptide-1 (GLP-1) receptor agonists, followed by the synergistic combined effect of glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonists achieved remarkable weight loss and glycemic control in those with the diseases of obesity and type 2 diabetes. The multiple cardiometabolic benefits include improving glycemic control, lipid profiles, blood pressure, inflammation, and hepatic steatosis. The 2023 phase 2 double-blind, randomized controlled trial evaluating a GLP-1/GIP/glucagon receptor triagonist (retatrutide) in patients with the disease of obesity reported 24.2% weight loss at 48 weeks with 12 mg retatrutide. This review evaluates the current available evidence for GLP-1 receptor agonists, dual GLP-1/GIP receptor co-agonists with a focus on GLP-1/GIP/glucagon receptor triagonists and discusses the potential future benefits and research directions.
Collapse
Affiliation(s)
| | - Carel W. le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Adie Viljoen
- Borthwick Diabetes Research Centre, Lister Hospital, Stevenage, UK
| |
Collapse
|
26
|
Coutinho W, Halpern B. Pharmacotherapy for obesity: moving towards efficacy improvement. Diabetol Metab Syndr 2024; 16:6. [PMID: 38172940 PMCID: PMC10763391 DOI: 10.1186/s13098-023-01233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is a chronic, recurring, progressive disease and a major public health problem associated with several other diseases that lead to disability, morbidity, and mortality. The prevalence of obesity has increased at pandemic levels, along with increasing weight-related comorbidities and deaths worldwide. Lifestyle interventions alone provide clinically significant long-term weight loss in only a small proportion of individuals, and bariatric surgery is not suitable or desirable for all patients. Historically, anti-obesity medications achieved a mean efficacy with weight loss between 5 and 10%, which significantly impacted several comorbidities and risk factors, but the average efficacy of these medications remained lower than that expected by both patients and health care professionals and eventually curbed long-term use. Moreover, there is no direct evidence on the impact of anti-obesity medications on cardiovascular outcomes. Semaglutide is a newer anti-obesity medication that changes the overall landscape, as phase 3 studies show a mean weight loss near the 15% threshold and significant proportions of patients with a weight loss of greater than 20%. In this review, we focus on the currently available anti-obesity medications, discuss the results of semaglutide, and present perspectives on the future of obesity treatment after semaglutide.
Collapse
Affiliation(s)
- Walmir Coutinho
- State Institute of Diabetes and Endocrinology, Rua Moncorvo Filho, 90, Rio de Janeiro, RJ, 20211-340, Brazil.
- Department of Medicine, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ, 22541-041, Brazil.
| | - Bruno Halpern
- Department of Endocrinology, Obesity Unit, Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo. Av. Dr. Enéas de Carvalho Aguiar, 255, 7Th Floor, Room 7037, São Paulo, SP, 05403-000, Brazil
| |
Collapse
|
27
|
Rodriguez P, Laskowski LJ, Pallais JP, Bock HA, Cavalco NG, Anderson EI, Calkins MM, Razzoli M, Sham YY, McCorvy JD, Bartolomucci A. Functional profiling of the G protein-coupled receptor C3aR1 reveals ligand-mediated biased agonism. J Biol Chem 2024; 300:105549. [PMID: 38072064 PMCID: PMC10796979 DOI: 10.1016/j.jbc.2023.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit β-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to β-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent β-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
28
|
Tschöp MH, Friedman JM. Seeking satiety: From signals to solutions. Sci Transl Med 2023; 15:eadh4453. [PMID: 37992155 DOI: 10.1126/scitranslmed.adh4453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Remedies for the treatment of obesity date to Hippocrates, when patients with obesity were directed to "reduce food and avoid drinking to fullness" and begin "running during the night." Similar recommendations have been repeated ever since, despite the fact that they are largely ineffective. Recently, highly effective therapeutics were developed that may soon enable physicians to manage body weight in patients with obesity in a manner similar to the way that blood pressure is controlled in patients with hypertension. These medicines have grown out of a revolution in our understanding of the molecular and neural control of appetite and body weight, reviewed here.
Collapse
Affiliation(s)
- Matthias H Tschöp
- Helmholtz Munich and Technical University Munich, Munich, 85758 Germany
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
29
|
Blanchi B, Taurand M, Colace C, Thomaidou S, Audeoud C, Fantuzzi F, Sawatani T, Gheibi S, Sabadell-Basallote J, Boot FWJ, Chantier T, Piet A, Cavanihac C, Pilette M, Balguerie A, Olleik H, Carlotti F, Ejarque M, Fex M, Mulder H, Cnop M, Eizirik DL, Jouannot O, Gaffuri AL, Czernichow P, Zaldumbide A, Scharfmann R, Ravassard P. EndoC-βH5 cells are storable and ready-to-use human pancreatic beta cells with physiological insulin secretion. Mol Metab 2023; 76:101772. [PMID: 37442376 PMCID: PMC10407753 DOI: 10.1016/j.molmet.2023.101772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-βH5 cells, the latest in the EndoC-βH cell family. METHODS EndoC-βH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-βH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS Ready to use EndoC-βH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-βH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-βH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS EndoC-βH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.
Collapse
Affiliation(s)
| | | | - Claire Colace
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sevda Gheibi
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain; Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Fransje W J Boot
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Aline Piet
- Human Cell Design, Canceropole, Toulouse, France
| | | | | | | | - Hamza Olleik
- Human Cell Design, Canceropole, Toulouse, France
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Malin Fex
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Raphaël Scharfmann
- Université Paris Cité, Institut Cochin, CNRS, INSERM U1016, Paris, 75014, France
| | - Philippe Ravassard
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France.
| |
Collapse
|
30
|
Tschöp M, Nogueiras R, Ahrén B. Gut hormone-based pharmacology: novel formulations and future possibilities for metabolic disease therapy. Diabetologia 2023; 66:1796-1808. [PMID: 37209227 PMCID: PMC10474213 DOI: 10.1007/s00125-023-05929-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/22/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are established pharmaceutical therapies for the treatment of type 2 diabetes and obesity. They mimic the action of GLP-1 to reduce glucose levels through stimulation of insulin secretion and inhibition of glucagon secretion. They also reduce body weight by inducing satiety through central actions. The GLP-1 receptor agonists used clinically are based on exendin-4 and native GLP-1 and are available as formulations for daily or weekly s.c. or oral administration. GLP-1 receptor agonism is also achieved by inhibitors of dipeptidyl peptidase-4 (DPP-4), which prevent the inactivation of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), thereby prolonging their raised levels after meal ingestion. Other developments in GLP-1 receptor agonism include the formation of small orally available agonists and compounds with the potential to pharmaceutically stimulate GLP-1 secretion from the gut. In addition, GLP-1/glucagon and GLP-1/GIP dual receptor agonists and GLP-1/GIP/glucagon triple receptor agonists have shown the potential to reduce blood glucose levels and body weight through their effects on islets and peripheral tissues, improving beta cell function and stimulating energy expenditure. This review summarises developments in gut hormone-based therapies and presents the future outlook for their use in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum, München, Germany
| | - Ruben Nogueiras
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Liao C, Liang X, Zhang X, Li Y. The effects of GLP-1 receptor agonists on visceral fat and liver ectopic fat in an adult population with or without diabetes and nonalcoholic fatty liver disease: A systematic review and meta-analysis. PLoS One 2023; 18:e0289616. [PMID: 37616255 PMCID: PMC10449217 DOI: 10.1371/journal.pone.0289616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
AIM To uncover the effect of GLP-1 receptor agonists (GLP-1 RAs) on the visceral- and hepatic fat content of adults. METHODS PubMed, EMBASE, Cochrane Library, and Web of Science were searched from inception until November 2022. Randomized controlled trials (RCTs) of GLP-1Ras was extracted, including reports of effects on visceral adipose tissue and hepatic fat content in individuals with type 2 diabetes, non-type 2 diabetes, NAFLD (non-alcoholic fatty liver disease), and non-NAFLD. Meta-analyses used random-effects models. RESULTS 1736 individuals in the 30 qualified RCTs were included, comprising 1363 people with type 2 diabetes and 318 with NFLD. GLP-1 RAs reduced visceral adipose tissue (standard mean difference [SMD] = -0.59, 95% CI [-0.83, -0.36], P<0.00001) and hepatic fat content (weighted mean difference [WMD] = -3.09, 95% CI [-4.16, -2.02], P<0.00001) compared to other control treatment. Subgroup analysis showed that GLP-1Ras dramatically decreased visceral fat in patients with type 2 diabetes (SMD = -0.49, 95% CI [-0.69, -0.29] P<0.00001), NAFLD (SMD = -0.99, 95% CI [-1.64, -0.34] P = 0.003), non-type 2 diabetes (SMD = -1.38, 95% CI [-2.44, -0.32] P = 0.01), and non-NAFLD (SMD = -0.53, 95% CI [-0.78, -0.28] P<0.0001). GLP-1Ras reduced the liver fat level of type 2 diabetes (WMD = -3.15, 95% CI [-4.14, -2.15] P<0.00001), NAFLD (WMD = -3.83, 95% CI [-6.30, -1.37] P = 0.002), and type 2 diabetes with NAFLD (WMD = -4.27, 95% CI [-6.80, -1.74] P = 0.0009), while showed no impact on the hepatic fat content in non-Type 2 diabetes (WMD = -12.48, 95% CI [-45.19, 20.24] P = 0.45). CONCLUSIONS LP-1 RAs significantly reduce visceral- and liver fat content in adults.
Collapse
Affiliation(s)
- Chao Liao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinyin Liang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yao Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
32
|
Lenart-Lipińska M, Łuniewski M, Szydełko J, Matyjaszek-Matuszek B. Clinical and Therapeutic Implications of Male Obesity. J Clin Med 2023; 12:5354. [PMID: 37629396 PMCID: PMC10455727 DOI: 10.3390/jcm12165354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of obesity, a disorder linked to numerous comorbidities and metabolic complications, has recently increased dramatically worldwide and is highly prevalent in men, even at a young age. Compared to female patients, men with obesity more frequently have delayed diagnosis, higher severity of obesity, increased mortality rate, and only a minority of obese male patients are successfully treated, including with bariatric surgery. The aim of this review was to present the current state of knowledge about the clinical and therapeutic implications of obesity diagnosed in males.
Collapse
Affiliation(s)
- Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology, and Metabolic Diseases, Medical University of Lublin, 20-954 Lublin, Poland; (M.Ł.); (J.S.); (B.M.-M.)
| | | | | | | |
Collapse
|
33
|
Chen YK, Liu TT, Teia FKF, Xie MZ. Exploring the underlying mechanisms of obesity and diabetes and the potential of Traditional Chinese Medicine: an overview of the literature. Front Endocrinol (Lausanne) 2023; 14:1218880. [PMID: 37600709 PMCID: PMC10433171 DOI: 10.3389/fendo.2023.1218880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity and diabetes are closely related metabolic disorders that have become major public health concerns worldwide. Over the past few decades, numerous studies have explored the underlying mechanisms of these disorders and identified various risk factors, including genetics, lifestyle, and dietary habits. Traditional Chinese Medicine (TCM) has been increasingly recognized for its potential to manage obesity and diabetes. Weight loss is difficult to sustain, and several diabetic therapies, such as sulfonylureas, thiazolidinediones, and insulin, might make it harder to lose weight. While lifestyle changes should be the primary approach for people interested in lowering weight, drugs are also worth investigating. Since some of the newer glucose-lowering medications that cause weight loss, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2i), are additionally utilized or are under consideration for use as anti-obesity drugs, the frontier between glucose-lowering medication and weight loss drugs appears to be shifting. This review provides an overview of the literature on the underlying mechanisms of obesity and diabetes and the prospect of TCM in their management. We discuss the various TCM interventions, including acupuncture, herbal medicine, and dietary therapy, and their effects on metabolic health. We also highlight the potential of TCM in regulating gut microbiota, reducing inflammation, and improving insulin sensitivity. The findings suggest that TCM may provide a promising approach to preventing and managing obesity and diabetes. However, further well-designed studies are needed to confirm the efficacy and safety of TCM interventions and to elucidate their underlying mechanisms of action.
Collapse
Affiliation(s)
- Yan-kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Ting-ting Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Farah Khameis Farag Teia
- Department of Agro-technology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Meng-zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
34
|
Algarni MA, Algarni AAM, Alqarni WA, Alqassim AY. Knowledge and Attitude of the General Population in Saudi Arabia Toward Weight Management Medications (WMMs): A Cross-Sectional Study. Cureus 2023; 15:e42875. [PMID: 37664345 PMCID: PMC10474326 DOI: 10.7759/cureus.42875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Over the past decades, the global prevalence of obesity has tripled, with the Kingdom of Saudi Arabia experiencing a notably higher rate of increase. While lifestyle modifications remain the first line of treatment, pharmacological interventions are often employed when dietary and exercise interventions prove insufficient. However, safety concerns, misuse, and limited knowledge about weight management medications (WMMs) pose serious challenges. OBJECTIVES The objectives of this study were to determine the level of knowledge and examine attitudes towards WMMs among the general population, and to explore the factors associated with these knowledge levels and attitude patterns. METHODS A cross-sectional study was conducted among adults from the general population in Saudi Arabia from January 2023 to May 2023. Participants completed a validated, self-administered electronic questionnaire in Arabic language. The questionnaire captured sociodemographic, lifestyle and health data, knowledge about WMMs, and attitudes toward them. The outcome measures included knowledge and attitudes scores. Factors associated with knowledge and attitudes were analyzed using chi-square tests. Statistical significance was determined at a p-value of <0.05. RESULTS Around 716 respondents were included in the final analysis. Most of the participants acknowledged diet 565 (78.9%) and exercise 621 (86.7%) as effective strategies to lose weight. Only 222 (31.0%) participants recognized pharmaceutical medications as a weight management strategy. Knowledge about specific weight loss medications varied, with the highest recognition for semaglutide (Ozempic®, Novo Nordisk, Bagsværd, Denmark) 236 (33.0%) and liraglutide (Saxenda®, Novo Nordisk, Bagsværd, Denmark) 228 (31.8%), while the other WMMs were not commonly known between participants. Regarding attitudes, the majority disagreed with statements that WMMs are more effective than diet/exercise 413 (57.7%), are safe 405 (56.6%), and are more convenient to use 408 (57.0%). Notably, about three-quarters [534 (74.6%)] of participants agreed that these medications require specialist's counseling. No correlation was observed between knowledge score and attitude score (Pearson's correlation coefficient r=0.03; p=0.330). Respondents' knowledge about WMMs was significantly influenced by age, monthly income, educational level, psychiatric history, and previous use of WMMs (p<0.05). Adequate knowledge was more prevalent among participants aged 26-35, earning more than 20K SAR monthly, postgraduates, those with a psychiatric history, and past users of WMMs. Attitudes toward WMMs, however, showed no significant association with sociodemographic or health-related factors (p>0.05). However, prior use of WMMs significantly correlated with attitudes (p=0.007), with past users demonstrating more favorable attitudes. CONCLUSION This study reveals a limited knowledge and cautious attitude regarding WMMs in the Saudi population, despite the high prevalence of obesity. With prior use of WMMs correlating with better knowledge and more favorable attitudes, these findings emphasize the need for targeted interventions to enhance public awareness and safe usage of these medications.
Collapse
Affiliation(s)
- Malak A Algarni
- Family Medicine, Postgraduate Program of Family Medicine, Ministry of Health, Jeddah, SAU
- Medicine, Ibn Sina National College for Medical Studies, Jeddah, SAU
| | - Ameera Ali M Algarni
- Clinical Nutrition, University of Nottingham, Nottingham, GBR
- Nutrition, Ministry of Education, Jeddah, SAU
| | - Waleed A Alqarni
- Medicine, Ibn Sina National College for Medical Studies, Jeddah, SAU
| | - Ahmad Y Alqassim
- Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| |
Collapse
|
35
|
Müller TD, Blüher M. [Obesity treatment: will pharmacotherapies replace metabolic surgery in the future?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023:10.1007/s00108-023-01530-0. [PMID: 37286802 DOI: 10.1007/s00108-023-01530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Obesity is a chronically progressing disease that represents a major challenge for affected patients, health care professionals and society, since it is highly prevalent and associated with several comorbidities. The treatment of obesity aims at body weight reduction, reducing the burden of comorbidities and weight maintenance after weight loss. To achieve these goals, a conservative treatment strategy is recommended that consists of an energy-reduced diet, increased physical activity and behavioral modifications. If individual treatment targets cannot be achieved by basic treatment, stepwise therapy intensification should be initiated including short-term very low calorie diets, pharmacotherapy or bariatric surgery. However, these treatment approaches differ with respect to average weight loss and other outcomes. There is still a large gap between the efficacy of conservative strategies and "metabolic" surgery that cannot be filled by current pharmacotherapies. However, recent advances in the development of anti-obesity medications could change the positioning of pharmacotherapies in obesity management. Here we discuss whether next-generation pharmacotherapies have the potential to become an alternative to obesity surgery in the future.
Collapse
Affiliation(s)
- Timo D Müller
- Institut für Diabetes und Adipositas, Helmholtz Diabetes Zentrum, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Deutschland.
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Deutschland.
| | - Matthias Blüher
- Helmholtz Institut für Metabolismus-, Adipositas- und Gefäßforschung (HI-MAG), Helmholtz Zentrum München an der Universität Leipzig und der Universitätsklinik Leipzig, Leipzig, Deutschland
| |
Collapse
|
36
|
López M, Fernández-Real JM, Tomarev SI. Obesity wars: may the smell be with you. Am J Physiol Endocrinol Metab 2023; 324:E569-E576. [PMID: 37166265 PMCID: PMC10259866 DOI: 10.1152/ajpendo.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Classically, the regulation of energy balance has been based on central and peripheral mechanisms sensing energy, nutrients, metabolites, and hormonal cues. Several cellular mechanisms at central level, such as hypothalamic AMP-activated protein kinase (AMPK), integrate this information to elicit counterregulatory responses that control feeding, energy expenditure, and glucose homeostasis, among other processes. Recent data have added more complexity to the homeostatic regulation of metabolism by introducing, for example, the key role of "traditional" senses and sensorial information in this complicated network. In this regard, current evidence is showing that olfaction plays a key and bidirectional role in energy homeostasis. Although nutritional status dynamically and profoundly impacts olfactory sensitivity, the sense of smell is involved in food appreciation and selection, as well as in brown adipose tissue (BAT) thermogenesis and substrate utilization, with some newly described actors, such as olfactomedin 2 (OLFM2), likely playing a major role. Thus, olfactory inputs are contributing to the regulation of both sides of the energy balance equation, namely, feeding and energy expenditure (EE), as well as whole body metabolism. Here, we will review the current knowledge and advances about the role of olfaction in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
- Service of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IDIBGI), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
37
|
Méndez-Álvarez D, Torres-Rojas MF, Lara-Ramirez EE, Marchat LA, Rivera G. Ligand-Based Virtual Screening, Molecular Docking, and Molecular Dynamic Simulations of New β-Estrogen Receptor Activators with Potential for Pharmacological Obesity Treatment. Molecules 2023; 28:molecules28114389. [PMID: 37298864 DOI: 10.3390/molecules28114389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a pandemic and a serious health problem in developed and undeveloped countries. Activation of estrogen receptor beta (ERβ) has been shown to promote weight loss without modifying caloric intake, making it an attractive target for developing new drugs against obesity. This work aimed to predict new small molecules as potential ERβ activators. A ligand-based virtual screening of the ZINC15, PubChem, and Molport databases by substructure and similarity was carried out using the three-dimensional organization of known ligands as a reference. A molecular docking screening of FDA-approved drugs was also conducted as a repositioning strategy. Finally, selected compounds were evaluated by molecular dynamic simulations. Compounds 1 (-24.27 ± 0.34 kcal/mol), 2 (-23.33 ± 0.3 kcal/mol), and 6 (-29.55 ± 0.51 kcal/mol) showed the best stability on the active site in complex with ERβ with an RMSD < 3.3 Å. RMSF analysis showed that these compounds do not affect the fluctuation of the Cα of ERβ nor the compactness according to the radius of gyration. Finally, an in silico evaluation of ADMET showed they are safe molecules. These results suggest that new ERβ ligands could be promising molecules for obesity control.
Collapse
Affiliation(s)
- Domingo Méndez-Álvarez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Maria F Torres-Rojas
- Laboratorio de Biomedicina Molecular 2, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico
| | - Edgar E Lara-Ramirez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Laurence A Marchat
- Laboratorio de Biomedicina Molecular 2, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
38
|
Adriaenssens A, Broichhagen J, de Bray A, Ast J, Hasib A, Jones B, Tomas A, Burgos NF, Woodward O, Lewis J, O’Flaherty E, El K, Cui C, Harada N, Inagaki N, Campbell J, Brierley D, Hodson DJ, Samms R, Gribble F, Reimann F. Hypothalamic and brainstem glucose-dependent insulinotropic polypeptide receptor neurons employ distinct mechanisms to affect feeding. JCI Insight 2023; 8:e164921. [PMID: 37212283 PMCID: PMC10322681 DOI: 10.1172/jci.insight.164921] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Central glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) signaling is critical in GIP-based therapeutics' ability to lower body weight, but pathways leveraged by GIPR pharmacology in the brain remain incompletely understood. We explored the role of Gipr neurons in the hypothalamus and dorsal vagal complex (DVC) - brain regions critical to the control of energy balance. Hypothalamic Gipr expression was not necessary for the synergistic effect of GIPR/GLP-1R coagonism on body weight. While chemogenetic stimulation of both hypothalamic and DVC Gipr neurons suppressed food intake, activation of DVC Gipr neurons reduced ambulatory activity and induced conditioned taste avoidance, while there was no effect of a short-acting GIPR agonist (GIPRA). Within the DVC, Gipr neurons of the nucleus tractus solitarius (NTS), but not the area postrema (AP), projected to distal brain regions and were transcriptomically distinct. Peripherally dosed fluorescent GIPRAs revealed that access was restricted to circumventricular organs in the CNS. These data demonstrate that Gipr neurons in the hypothalamus, AP, and NTS differ in their connectivity, transcriptomic profile, peripheral accessibility, and appetite-controlling mechanisms. These results highlight the heterogeneity of the central GIPR signaling axis and suggest that studies into the effects of GIP pharmacology on feeding behavior should consider the interplay of multiple regulatory pathways.
Collapse
Affiliation(s)
- Alice Adriaenssens
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | | | - Anne de Bray
- Oxford Center for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Center, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Julia Ast
- Oxford Center for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Center, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Annie Hasib
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Natalie Figueredo Burgos
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Orla Woodward
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jo Lewis
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Elisabeth O’Flaherty
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley El
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Canqi Cui
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan
| | - Jonathan Campbell
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Daniel Brierley
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - David J. Hodson
- Oxford Center for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Center, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Ricardo Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Fiona Gribble
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Mukherjee S, Diéguez C, Fernø J, López M. Obesity wars: hypothalamic sEVs a new hope. Trends Mol Med 2023:S1471-4914(23)00088-6. [PMID: 37210227 DOI: 10.1016/j.molmed.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
There are currently several pharmacological therapies available for the treatment of obesity, targeting both the central nervous system (CNS) and peripheral tissues. In recent years, small extracellular vesicles (sEVs) have been shown to be involved in many pathophysiological conditions. Because of their special nanosized structure and contents, sEVs can activate receptors and trigger intracellular pathways in recipient cells. Notably, in addition to transferring molecules between cells, sEVs can also alter their phenotypic characteristics. The purpose of this review is to discuss how sEVs can be used as a CNS-targeted strategy for treating obesity. Furthermore, we will evaluate current findings, such as the sEV-mediated targeting of hypothalamic AMP-activated protein kinase (AMPK), and discuss how they can be translated into clinical application.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
40
|
Chen K, Dai G, Liu S, Wei Y. Reducing obesity and inflammation in mice with organically-derivatized polyoxovanadate clusters. CHINESE CHEM LETT 2023; 34:107638. [DOI: 10.1016/j.cclet.2022.06.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Boix-Castejón M, Roche E, Olivares-Vicente M, Álvarez-Martínez FJ, Herranz-López M, Micol V. Plant compounds for obesity treatment through neuroendocrine regulation of hunger: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154735. [PMID: 36921427 DOI: 10.1016/j.phymed.2023.154735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Food intake behavior is influenced by both physiological and psychological complex processes, such as appetite, satiety, and hunger. The neuroendocrine regulation of food intake integrates short- and long-term acting signals that modulate the moment of intake and energy storage/expenditure, respectively. These signals are classified as orexigenic, those that activate anabolic pathways and the desire of eating, and anorexigenic, those that activate the catabolic pathways and a sensation of satiety. Appetite control by natural vegetal compounds is an intense area of research and new pharmacological interventions have been emerging based on an understanding of appetite regulation pathways. Several validated psychometric tools are used to assess the efficacy of these plant ingredients. However, these data are not conclusive if they are not complemented with physiological parameters, such as anthropometric evaluations (body weight and composition) and the analysis of hormones related to adipose tissue and appetite in blood. PURPOSE The purpose of this manuscript is the critical analysis of the plant compounds studied to date in the literature with potential for the neuroendocrine regulation of hunger in order to determine if the use of phytochemicals for the treatment of obesity constitutes an effective and/or promising therapeutic tool. METHODS Relevant information on neuroendocrine regulation of hunger and satiety for the treatment of obesity by plant compounds up to 2022 in English and/or Spanish were derived from online databases using the PubMed search engine and Google Scholar with relevant keywords and operators. RESULTS Accordingly, the comparison performed in this review between previous studies showed a high degree of experimental heterogeneity. Among the studies reviewed here, only a few of them establish comprehensively a potential correlation between the effect of the ingredient on hunger or satiety, body changes and a physiological response. CONCLUSIONS More systematic clinical studies are required in future research. The first approach should be to decode the pattern of circulating hormones regulating hunger, satiety, and appetite in overweight/obese subjects. Thereafter, studies should correlate brain connectivity at the level of the hypothalamus, gut and adipose tissue with the hormone patterns modulating appetite and satiety. Extracts whose mode of action have been well characterized and that are safe, can be used clinically to perform a moderate, but continuous, caloric restriction in overweight patients to lose weight excess into a controlled protocol.
Collapse
Affiliation(s)
- M Boix-Castejón
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain
| | - E Roche
- Institute of Bioengineering, Applied Biology Department-Nutrition, University Miguel-Hernández, 03202, Elche, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010, Alicante, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - M Olivares-Vicente
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain
| | - F J Álvarez-Martínez
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain
| | - M Herranz-López
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain.
| | - V Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
42
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
43
|
Li J, Wu K, Zhong Y, Kuang J, Huang N, Guo X, Du H, Guo C, Li R, Zhu X, Zhang T, Gong L, Sheng L, Sun R. Si-Ni-SAN ameliorates obesity through AKT/AMPK/HSL pathway-mediated lipolysis: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115892. [PMID: 36334816 DOI: 10.1016/j.jep.2022.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Ni-San (SNS) is a famous Chinese herbal formula used in China for thousands of years. It has clinical effects on a variety of lipid metabolism disorders, but the ameliorating effects of SNS on obesity and underlying mechanisms remained poorly elucidated. AIM OF THE STUDY This study aims to explore the therapeutic effect and mechanism of SNS on obesity from multiple perspectives in vitro and in vivo. MATERIALS AND METHODS The high-fat diet (HFD)-induced obesity mouse model was established to evaluate the effect of SNS. Then network pharmacologic methods were performed to predict underlying mechanisms, and the core pathways were verified in animal and cell studies. RESULTS Our results demonstrated that SNS significantly reduced body weight, body fat content, white adipose tissue (WAT) expansion in obese mice, and lipid accumulation in primary mouse embryonic fibroblasts (MEFs) cells. Network pharmacologic analysis identified 66 potential therapeutic targets, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these genes revealed that the most important signaling pathway includes AMP-activated protein kinase (AMPK) signaling pathway, regulation of lipolysis in adipocytes, lipid and atherosclerosis. Western blot assay confirmed that SNS activated hormone-sensitive triglyceride lipase (HSL) and adipose triglyceride lipase (ATGL) activity and promoted lipolysis through AMPK signaling pathway. CONCLUSION The results confirmed that SNS improves lipid accumulation through AKT/AMPK/HSL axis mediated lipolysis, which opens a new option for clinical treatment of obesity and associated complications.
Collapse
Affiliation(s)
- Jianchao Li
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Kaiyi Wu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| | - Ying Zhong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Jiangying Kuang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Nana Huang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Xin Guo
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| | - Hang Du
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Chong Guo
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Rongrong Li
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Xiaomin Zhu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Tianyu Zhang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Liping Gong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Lisong Sheng
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Rong Sun
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Advanced Medical Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
44
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
46
|
Les approches thérapeutiques non invasives de l’obésité : hier, aujourd’hui et demain. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Hinney A, Körner A, Fischer-Posovszky P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol 2022; 18:623-637. [PMID: 35902734 PMCID: PMC9330928 DOI: 10.1038/s41574-022-00716-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin-melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy and University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Antje Körner
- Leipzig University, Medical Faculty, Hospital for Children and Adolescents, Centre of Paediatric Research (CPL), Leipzig, Germany
- LIFE Child, Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
48
|
Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients 2022; 14:nu14183775. [PMID: 36145148 PMCID: PMC9503433 DOI: 10.3390/nu14183775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The increasing prevalence of obesity and type 2 diabetes (T2DM) is provoking an important socioeconomic burden mainly in the form of cardiovascular disease (CVD). One successful strategy is the so-called metabolic surgery whose beneficial effects are beyond dietary restrictions and weight loss. One key underlying mechanism behind this surgery is the cooperative improved action of the preproglucagon-derived hormones, glucagon, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) which exert their functions through G protein-coupled receptors (GPCR). Great success has been reached with therapies based on the GLP-1 receptor monoagonism; therefore, a logical and rational approach is the use of the dual and triagonism of GCPC to achieve complete metabolic homeostasis. The present review describes novel findings regarding the complex biology of the preproglucagon-derived hormones, their signaling, and the drug development of their analogues, especially those acting as dual and triagonists. Moreover, the main investigations into animal models and ongoing clinical trials using these unimolecular dual and triagonists are included which have demonstrated their safety, efficacy, and beneficial effects on the CV system. These therapeutic strategies could greatly impact the treatment of CVD with unprecedented benefits which will be revealed in the next years.
Collapse
|
49
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
50
|
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23179583. [PMID: 36076972 PMCID: PMC9455625 DOI: 10.3390/ijms23179583] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies.
Collapse
|