1
|
Zhao T, Tan L, Han X, Ma X, Lin K, Wang J. Energy metabolism response induced by microplastic for marine dinoflagellate Karenia mikimotoi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161267. [PMID: 36608820 DOI: 10.1016/j.scitotenv.2022.161267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Microplastic contaminations threaten the entire marine ecosystem and cause severe ecological stress. This study explored the energy metabolism change of Karenia mikimotoi under exposure to nanoplastics (NPs) and microplastics (MPs) (65 nm, 100 nm, and 1 μm polystyrene (PS), and 100 nm polymethyl methacrylate (PMMA)) at a concentration of 10 mg L-1. Membrane potential, esterase activity, polysaccharide content, and ATPase activity were detected to assess the energy metabolism of K. mikimotoi under MPs/NPs exposure. Transcriptome and metabolomic analyses were used to investigate the intrinsic mechanisms of energy metabolism changes. Smaller PS particles caused greater damage to the cell membrane potential, increased the polysaccharide content, and resulted in a heavier weakening of the ATPase enzymatic activity in K. mikimotoi cells, suggesting that smaller-sized PS had more influence on esterase activity and energy metabolism than the bigger-sized PS. The results evidenced that energy metabolism relates to the size and type of MPs/NPs, and nano-scale plastic particles could induce greater metabolic changes.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiaotian Han
- Changjiang River Estuary Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Zong Q, Pan Y, Liu Y, Wu Z, Huang Z, Zhang Y, Ma K. pNaktide mitigates inflammation-induced neuronal damage and behavioral deficits through the oxidative stress pathway. Int Immunopharmacol 2023; 116:109727. [PMID: 36689848 DOI: 10.1016/j.intimp.2023.109727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Neuroinflammation is closely related to the etiology and progression of neurodegenerative diseases such as Parkinson disease and Alzheimer disease. pNaktide, an Src inhibitor, exerts antioxidant effects by mimicking Na/K-ATPase. It has been verified that its anti-inflammation and anti-oxidation ability could be embodied in obesity, steatohepatitis, uremic cardiomyopathy, aging, and prostate cancer. This study aimed to investigate the effects and mechanisms of pNaktide in lipopolysaccharide (LPS)-induced behavioral damage, neuroinflammation, and neuronal damage. We found that pNaktide improved anxiety, memory, and motor deficits. pNaktide inhibited MAPK and NF-κB pathways induced by TLR4 activation, inhibited the NLRP3 inflammasome complex, and reduced the expression of inflammatory factors, complement factors, and chemokines. pNaktide inhibited the activation of Nrf2 and HO-1 antioxidant stress pathways by LPS and reduced the level of oxidative stress. Inhibition of autophagy and enhancement of apoptosis induced by LPS were also alleviated by pNaktide, which restored LPS-induced injury to newborn neurons in the hippocampus region. In summary, pNaktide attenuates neuroinflammation, reduces the level of oxidative stress, has neuroprotective effects, and may be used for the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yongfang Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
3
|
Szczerbowska-Boruchowska M, Surowka AD, Ostachowicz B, Piana K, Spaleniak A, Wrobel P, Dudala J, Ziomber-Lisiak A. Combined spectroscopic, biochemical and chemometric approach toward finding of biochemical markers of obesity. Biochim Biophys Acta Gen Subj 2023; 1867:130279. [PMID: 36384192 DOI: 10.1016/j.bbagen.2022.130279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Early-stage detection of subclinical obesity-driven systemic changes is a challenging area of medical diagnostics, where the most popular existing measures - such as body mass index - BMI - often fall short of providing a realistic estimate of adiposity and, therefore, of ongoing pathologies at the systemic, tissue and cellular level. In the quest for identifying new more robust diagnostic markers, whole-organ analysis of chemical elements is a promising approach for identifying candidate proxies of obesity status in the system. METHODS Total Reflection X-ray fluorescence (TXRF) coupled with biochemical assays, chemometrics and statistical validation was used as a new integrated pipeline for marker identification in external ear samples of obese animals. The specimens were taken from obese animals fed a high calorie diet as well as from lean intact animals fed a standard diet. RESULTS The most significant differences in the content of K, Fe, Br, and Rb between the studied groups of the animals were identified. However, with the methodology applied Rb was found the most robust biochemical discriminator of early-stage obesity effects, as validated by the logistic regression model. We observed no relationship between the levels of the elements consumed by the animals and their apparent content in the earlobe tissue samples. CONCLUSIONS Our preliminary study confirms that obesity alters tissue trace metal metabolism and shows the proposed new approach as an accurate and reliable methodology for detecting tissue elemental obesity-related alterations. GENERAL SIGNIFICANCE This result can be of practical significance for designing new point-of-care systems for obesity screening tests, taking advantage of direct/indirect Rb measurements.
Collapse
Affiliation(s)
| | - Artur D Surowka
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Beata Ostachowicz
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Kaja Piana
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Anna Spaleniak
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Joanna Dudala
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Agata Ziomber-Lisiak
- Department of Pathophysiology, Jagiellonian University, Medical College, Krakow, Poland
| |
Collapse
|
4
|
Yang HJ, Kim JH, Shim JH, Heo CY. Plasminogen-derived peptide promotes adipogenic differentiation of preadipocytes in vitro and in vivo. Adipocyte 2022; 11:643-652. [PMID: 36397715 PMCID: PMC9718552 DOI: 10.1080/21623945.2022.2149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Soft tissue defects caused by adipose tissue loss can result in various conditions such as lipodystrophy in congenital diseases, trauma secondary to ageing, and mastectomy in breast cancer; fat grafting is commonly performed to restore these defects. Although various enrichment strategies have been studied, novel therapeutics that are cost-effective, safe, technologically easy to manufacture, and minimally invasive are required. In this study, we identified a novel peptide derived from plasminogen, named plasminogen-derived peptide-1 (PLP-1), which showed adipogenic differentiation potential and led to an increase in the expression levels of adiponectin, C1Q and collagen domain containing protein, fatty acid-binding protein 4, and CCAAT/enhancer-binding protein-alpha. In vivo experiments confirmed an increase in the rate of adipocyte differentiation and the expression levels of CD31 in the PLP-1-treated mice groups. These results suggested that PLP-1 plays an important role in promoting the differentiation of preadipocytes and may be useful for developing therapeutic approaches to treat adipose tissue defects.
Collapse
Affiliation(s)
- Hea Jung Yang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Ho Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Hee Shim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Korea,CONTACT Jung Hee Shim Department of Research Administration Team, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam463-707, Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea,Chan Yeong Heo Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam463-707, Korea
| |
Collapse
|
5
|
Zhang J, Chang J, Beg MA, Huang W, Zhao Y, Dai W, Wu X, Cui W, Pillai SS, Lakhani HV, Sodhi K, Shapiro JI, Sahoo D, Zheng Z, Silverstein RL, Chen Y. Na/K-ATPase suppresses LPS-induced pro-inflammatory signaling through Lyn. iScience 2022; 25:104963. [PMID: 36072548 PMCID: PMC9442361 DOI: 10.1016/j.isci.2022.104963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Na/K-ATPase (NKA), besides its ion transporter function, is a signal transducer by regulating Src family kinases (SFK). The signaling NKA contributes to oxidized LDL-induced macrophage foam cell formation and interacts with TLR4. However, its role in lipopolysaccharides (LPS)-induced signaling and glycolytic switch in macrophages remains unclear. Using peritoneal macrophages from NKA α1 haploinsufficient mice (NKA α1+/-), we found that NKA α1 haploinsufficiency led to enhanced LPS-stimulated NF-κB pathway, ROS signaling, and pro-inflammatory cytokines. Intraperitoneal injection of LPS resulted in more severe lung inflammation and injury with lower survival rate in NKA α1+/- mice. Additionally, LPS induced a higher extent of the metabolic switch from oxidative phosphorylation to glycolysis. Mechanistically, NKA α1 interacted with TLR4 and Lyn. The presence of NKA α1 in this complex attenuated Lyn activation by LPS, which subsequently restricted the downstream ROS and NF-κB signaling. In conclusion, we demonstrated that NKA α1 suppresses LPS-induced macrophage pro-inflammatory signaling through Lyn.
Collapse
Affiliation(s)
- Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Jackie Chang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | - Wenxin Huang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Yiqiong Zhao
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Xiaopeng Wu
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sneha S. Pillai
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Hari Vishal Lakhani
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Zhang X, Yao Z, Xue Z, Wang S, Liu X, Hu Y, Zhang Y, Wang J, Li X, Chen A. Resibufogenin Targets the ATP1A1 Signaling Cascade to Induce G2/M Phase Arrest and Inhibit Invasion in Glioma. Front Pharmacol 2022; 13:855626. [PMID: 35656311 PMCID: PMC9152115 DOI: 10.3389/fphar.2022.855626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Resibufogenin (RB) is a major active ingredient in the traditional Chinese medicine Chansu and has garnered considerable attention for its efficacy in the treatment of cancer. However, the anticancer effects and underlying mechanisms of RB on glioblastoma (GBM) remain unknown. Here, we found that RB induced G2/M phase arrest and inhibited invasion in a primary GBM cell line, P3#GBM, and two GBM cell lines, U251 and A172. Subsequently, we demonstrated that RB-induced G2/M phase arrest occurred through downregulation of CDC25C and upregulation of p21, which was caused by activation of the MAPK/ERK pathway, and that RB inhibited GBM invasion by elevating intercellular Ca2+ to suppress the Src/FAK/Paxillin focal adhesion pathway. Intriguingly, we confirmed that upon RB binding to ATP1A1, Na+-K+-ATPase was activated as a receptor and then triggered the intracellular MAPK/ERK pathway and Ca2+-mediated Src/FAK/Paxillin focal adhesion pathway, which led to G2/M phase arrest and inhibited the invasion of GBM cells. Taken together, our findings reveal the antitumor mechanism of RB by targeting the ATP1A1 signaling cascade and two key signaling pathways and highlight the potential of RB as a new class of promising anticancer agents.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Shuai Wang
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yaotian Hu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
7
|
Liu J, Chaudhry M, Bai F, Chuang J, Chaudhry H, Al-Astal AEY, Nie Y, Sollars V, Sodhi K, Seligman P, Shapiro JI. Blockage of the Na-K-ATPase signaling-mediated oxidant amplification loop elongates red blood cell half-life and ameliorates uremic anemia induced by 5/6th PNx in C57BL/6 mice. Am J Physiol Renal Physiol 2022; 322:F655-F666. [PMID: 35435001 PMCID: PMC9076417 DOI: 10.1152/ajprenal.00189.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that the Na-K-ATPase signaling-mediated oxidant amplification loop contributes to experimental uremic cardiomyopathy and anemia induced by 5/6th partial nephrectomy (PNx). This process can be ameliorated by systemic administration of the peptide pNaKtide, which was designed to block this oxidant amplification loop. The present study demonstrated that the PNx-induced anemia is characterized by marked decreases in red blood cell (RBC) survival as assessed by biotinylated RBC clearance and eryptosis as assessed by annexin V binding. No significant change in iron homeostasis was observed. Examination of plasma samples demonstrated that PNx induced significant increases in systemic oxidant stress as assessed by protein carbonylation, plasma erythropoietin concentration, and blood urea nitrogen. Systemic administration of pNaKtide, but not NaKtide (pNaKtide without the TAT leader sequence) and a scramble "pNaKtide" (sc-pNaKtide), led to the normalization of hematocrit, RBC survival, and plasma protein carbonylation. Administration of the three peptides had no significant effect on PNx-induced increases in plasma erythropoietin and blood urea nitrogen without notable changes in iron metabolism. These data indicate that blockage of the Na-K-ATPase signaling-mediated oxidant amplification loop ameliorates the anemia of experimental renal failure by increasing RBC survival.NEW & NOTEWORTHY The anemia of CKD is multifactorial, and the current treatment based primarily on stimulating bone marrow production of RBCs with erythropoietin or erythropoietin analogs is unsatisfactory. In a murine model of CKD that is complicated by anemia, blockade of Na-K-ATPase signaling with a specific peptide (pNaKtide) ameliorated the anemia primarily by increasing RBC survival. Should these results be confirmed in patients, this strategy may allow for novel and potentially additive strategies to treat the anemia of CKD.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Muhammad Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Justin Chuang
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Hibba Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ala-Eddin Yassin Al-Astal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ying Nie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Vincent Sollars
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Komal Sodhi
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Paul Seligman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Joseph I Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
8
|
Khitan ZJ, Chin KV, Sodhi K, Kheetan M, Alsanani A, Shapiro JI. Gut microbiome and diet in populations with obesity: Role of the Na+/K+-ATPase transporter signaling in severe COVID-19. Obesity (Silver Spring) 2022; 30:869-873. [PMID: 35048549 PMCID: PMC8957587 DOI: 10.1002/oby.23387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The triad of obesity, a high-protein diet from animal sources, and disturbed gut microbiota have been linked to poor clinical outcomes in patients with COVID-19. In this report, the effect of oxidative stress resulting from the Na+ /K+ -ATPase transporter signaling cascade is explored as a driver of this poor clinical outcome. METHODS Protein-protein interactions with the SARS-CoV-2 proteome were identified from the interactome data for Na+ /K+ -transporting ATPase subunit α-1 (ATP1A1), epidermal growth factor receptor, and ERB-B2 receptor tyrosine kinase 2, using the curated data from the BioGRID Database of Protein Interactions. Data for the gene expression pattern of inflammatory response were from the Gene Expression Omnibus database for cardiomyocytes post SARS-CoV-2 infection (number GSE151879). RESULTS The ATP1A1 subunit of the Na+ /K+ -ATPase transporter is targeted by multiple SARS-CoV-2 proteins. Furthermore, receptor proteins associated with inflammatory response, including epidermal growth factor receptor and ERB-B2 receptor tyrosine kinase 2 (which interact with ATP1A1), are also targeted by some SARS-CoV-2 proteins. This heightened interaction likely triggers a cytokine release that increases the severity of the viral infection in individuals with obesity. CONCLUSIONS The similarities between the effects of SARS-CoV-2 proteins and indoxyl sulphate on the Na+ /K+ -ATPase transporter signaling cascade suggest the possibility of an augmentation of gene changes seen with COVID-19 infection that can result in a hyperinduction of cytokine release in individuals with obesity.
Collapse
Affiliation(s)
- Zeid J. Khitan
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Khew-Voon Chin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Komal Sodhi
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Murad Kheetan
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Ahlim Alsanani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Joseph I. Shapiro
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| |
Collapse
|
9
|
Huang M, Wang X, Banerjee M, Mukherji ST, Kutz LC, Zhao A, Sepanski M, Fan CM, Zhu GZ, Tian J, Wang DZ, Zhu H, Xie ZJ, Pierre SV, Cai L. Regulation of Myogenesis by a Na/K-ATPase α1 Caveolin-Binding Motif. Stem Cells 2022; 40:133-148. [PMID: 35257186 PMCID: PMC8943859 DOI: 10.1093/stmcls/sxab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/25/2021] [Indexed: 01/12/2024]
Abstract
The N-terminal caveolin-binding motif (CBM) in Na/K-ATPase (NKA) α1 subunit is essential for cell signaling and somitogenesis in animals. To further investigate the molecular mechanism, we have generated CBM mutant human-induced pluripotent stem cells (iPSCs) through CRISPR/Cas9 genome editing and examined their ability to differentiate into skeletal muscle (Skm) cells. Compared with the parental wild-type human iPSCs, the CBM mutant cells lost their ability of Skm differentiation, which was evidenced by the absence of spontaneous cell contraction, marker gene expression, and subcellular myofiber banding structures in the final differentiated induced Skm cells. Another NKA functional mutant, A420P, which lacks NKA/Src signaling function, did not produce a similar defect. Indeed, A420P mutant iPSCs retained intact pluripotency and ability of Skm differentiation. Mechanistically, the myogenic transcription factor MYOD was greatly suppressed by the CBM mutation. Overexpression of a mouse Myod cDNA through lentiviral delivery restored the CBM mutant cells' ability to differentiate into Skm. Upstream of MYOD, Wnt signaling was demonstrated from the TOPFlash assay to have a similar inhibition. This effect on Wnt activity was further confirmed functionally by defective induction of the presomitic mesoderm marker genes BRACHYURY (T) and MESOGENIN1 (MSGN1) by Wnt3a ligand or the GSK3 inhibitor/Wnt pathway activator CHIR. Further investigation through immunofluorescence imaging and cell fractionation revealed a shifted membrane localization of β-catenin in CBM mutant iPSCs, revealing a novel molecular component of NKA-Wnt regulation. This study sheds light on a genetic regulation of myogenesis through the CBM of NKA and control of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Minqi Huang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25703, USA
| | - Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Laura C Kutz
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Aijie Zhao
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Michael Sepanski
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Guo-Zhang Zhu
- Department of Biological Sciences, Marshall University, Huntington, WV 25703, USA
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25703, USA
| | - Da-Zhi Wang
- University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University, 396 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Zi-Jian Xie
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| |
Collapse
|
10
|
Sodhi K, Pratt R, Wang X, Lakhani HV, Pillai SS, Zehra M, Wang J, Grover L, Henderson B, Denvir J, Liu J, Pierre S, Nelson T, Shapiro JI. Role of adipocyte Na,K-ATPase oxidant amplification loop in cognitive decline and neurodegeneration. iScience 2021; 24:103262. [PMID: 34755095 PMCID: PMC8564125 DOI: 10.1016/j.isci.2021.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that a western diet may contribute to clinical neurodegeneration and dementia. Adipocyte-specific expression of the Na,K-ATPase signaling antagonist, NaKtide, ameliorates the pathophysiological consequences of murine experimental obesity and renal failure. In this study, we found that a western diet produced systemic oxidant stress along with evidence of activation of Na,K-ATPase signaling within both murine brain and peripheral tissues. We also noted this diet caused increases in circulating inflammatory cytokines as well as behavioral, and brain biochemical changes consistent with neurodegeneration. Adipocyte specific NaKtide affected by a doxycycline on/off expression system ameliorated all of these diet effects. These data suggest that a western diet produces cognitive decline and neurodegeneration through augmented Na,K-ATPase signaling and that antagonism of this pathway in adipocytes ameliorates the pathophysiology. If this observation is confirmed in humans, the adipocyte Na,K-ATPase may serve as a clinical target in the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rebecca Pratt
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Xiaoliang Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sneha S. Pillai
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Mishghan Zehra
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiayan Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lawrence Grover
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Brandon Henderson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sandrine Pierre
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Thomas Nelson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
11
|
Bazard P, Pineros J, Frisina RD, Bauer MA, Acosta AA, Paganella LR, Borakiewicz D, Thivierge M, Mannering FL, Zhu X, Ding B. Cochlear Inflammaging in Relation to Ion Channels and Mitochondrial Functions. Cells 2021; 10:2761. [PMID: 34685743 PMCID: PMC8534887 DOI: 10.3390/cells10102761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
The slow accumulation of inflammatory biomarker levels in the body-also known as inflammaging-has been linked to a myriad of age-related diseases. Some of these include neurodegenerative conditions such as Parkinson's disease, obesity, type II diabetes, cardiovascular disease, and many others. Though a direct correlation has not been established, research connecting age-related hearing loss (ARHL)-the number one communication disorder and one of the most prevalent neurodegenerative diseases of our aged population-and inflammaging has gained interest. Research, thus far, has found that inflammatory markers, such as IL-6 and white blood cells, are associated with ARHL in humans and animals. Moreover, studies investigating ion channels and mitochondrial involvement have shown promising relationships between their functions and inflammaging in the cochlea. In this review, we summarize key findings in inflammaging within the auditory system, the involvement of ion channels and mitochondrial functions, and lastly discuss potential treatment options focusing on controlling inflammation as we age.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren R. Paganella
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Dominika Borakiewicz
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Mark Thivierge
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Freyda L. Mannering
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
12
|
Kutz LC, Cui X, Xie JX, Mukherji ST, Terrell KC, Huang M, Wang X, Wang J, Martin AJ, Pessoa MT, Cai L, Zhu H, Heiny JA, Shapiro JI, Blanco G, Xie Z, Pierre SV. The Na/K-ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance. Acta Physiol (Oxf) 2021; 232:e13652. [PMID: 33752256 PMCID: PMC8570534 DOI: 10.1111/apha.13652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
AIM Highly prevalent diseases such as insulin resistance and heart failure are characterized by reduced metabolic flexibility and reserve. We tested whether Na/K-ATPase (NKA)-mediated regulation of Src kinase, which requires two NKA sequences specific to the α1 isoform, is a regulator of metabolic capacity that can be targeted pharmacologically. METHODS Metabolic capacity was challenged functionally by Seahorse metabolic flux analyses and glucose deprivation in LLC-PK1-derived cells expressing Src binding rat NKA α1, non-Src-binding rat NKA α2 (the most abundant NKA isoform in the skeletal muscle), and Src binding gain-of-function mutant rat NKA α2. Mice with skeletal muscle-specific ablation of NKA α1 (skα1-/-) were generated using a MyoD:Cre-Lox approach and were subjected to treadmill testing and Western diet. C57/Bl6 mice were subjected to Western diet with or without pharmacological inhibition of NKA α1/Src modulation by treatment with pNaKtide, a cell-permeable peptide designed by mapping one of the sites of NKA α1/Src interaction. RESULTS Metabolic studies in mutant cell lines revealed that the Src binding regions of NKA α1 are required to maintain metabolic reserve and flexibility. Skα1-/- mice had decreased exercise endurance and mitochondrial Complex I dysfunction. However, skα1-/- mice were resistant to Western diet-induced insulin resistance and glucose intolerance, a protection phenocopied by pharmacological inhibition of NKA α1-mediated Src regulation with pNaKtide. CONCLUSIONS These results suggest that NKA α1/Src regulatory function may be targeted in metabolic diseases. Because Src regulatory capability by NKA α1 is exclusive to endotherms, it may link the aerobic scope hypothesis of endothermy evolution to metabolic dysfunction.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeffrey X. Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kayleigh C Terrell
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Adam J Martin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Marco T Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Hua Zhu
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
13
|
Wang J, Wang X, Gao Y, Lin Z, Chen J, Gigantelli J, Shapiro JI, Xie Z, Pierre SV. Stress Signal Regulation by Na/K-ATPase As a New Approach to Promote Physiological Revascularization in a Mouse Model of Ischemic Retinopathy. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 33275652 PMCID: PMC7718810 DOI: 10.1167/iovs.61.14.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The identification of target pathways to block excessive angiogenesis while simultaneously restoring physiological vasculature is an unmet goal in the therapeutic management of ischemic retinopathies. pNaKtide, a cell-permeable peptide that we have designed by mapping the site of α1 Na/K-ATPase (NKA)/Src binding, blocks the formation of α1 NKA/Src/reactive oxygen species (ROS) amplification loops and restores physiological ROS signaling in a number of oxidative disease models. The aim of this study was to evaluate the importance of the NKA/Src/ROS amplification loop and the effect of pNaKtide in experimental ischemic retinopathy. Methods Human retinal microvascular endothelial cells (HRMECs) and retinal pigment epithelium (ARPE-19) cells were used to evaluate the effect of pNaKtide on viability, proliferation, and angiogenesis. Retinal toxicity and distribution were assessed in those cells and in the mouse. Subsequently, the role and molecular mechanism of NKA/Src in ROS stress signaling were evaluated biochemically in the retinas of mice exposed to the well-established protocol of oxygen-induced retinopathy (OIR). Finally, pNaKtide efficacy was assessed in this model. Results The results suggest a key role of α1 NKA in the regulation of ROS stress and the Nrf2 pathway in mouse OIR retinas. Inhibition of α1 NKA/Src by pNaKtide reduced pathologic ROS signaling and restored normal expression of hypoxia-inducible factor 1-α/vascular endothelial growth factor (VEGF). Unlike anti-VEGF agents, pNaKtide did promote retinal revascularization while inhibiting neovascularization and inflammation. Conclusions Targeting α1 NKA represents a novel strategy to develop therapeutics that not only inhibit neovascularization but also promote physiological revascularization in ischemic eye diseases.
Collapse
Affiliation(s)
- Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Zhucheng Lin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - James Gigantelli
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Joseph I Shapiro
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| |
Collapse
|
14
|
Guldbrandsen HO, Staehr C, Iversen NK, Postnov DD, Matchkov VV. Does Src Kinase Mediated Vasoconstriction Impair Penumbral Reperfusion? Stroke 2021; 52:e250-e258. [PMID: 33947213 DOI: 10.1161/strokeaha.120.032737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite successful recanalization, a significant number of patients with ischemic stroke experience impaired local brain tissue reperfusion with adverse clinical outcome. The cause and mechanism of this multifactorial complication are yet to be understood. At the current moment, major attention is given to dysfunction in blood-brain barrier and capillary blood flow but contribution of exaggerated constriction of cerebral arterioles has also been suggested. In the brain, arterioles significantly contribute to vascular resistance and thus control of perfusion. Accordingly, pathological changes in arteriolar wall function can, therefore, limit sufficient reperfusion in ischemic stroke, but this has not yet received sufficient attention. Although an increased vascular tone after reperfusion has been demonstrated in several studies, the mechanism behind it remains to be characterized. Importantly, the majority of conventional mechanisms controlling vascular contraction failed to explain elevated cerebrovascular tone after reperfusion. We propose here that the Na,K-ATPase-dependent Src kinase activation are the key mechanisms responsible for elevation of cerebrovascular tone after reperfusion. The Na,K-ATPase, which is essential to control intracellular ion homeostasis, also executes numerous signaling functions. Under hypoxic conditions, the Na,K-ATPase is endocytosed from the membrane of vascular smooth muscle cells. This initiates the Src kinase signaling pathway that sensitizes the contractile machinery to intracellular Ca2+ resulting in hypercontractility of vascular smooth muscle cells and, thus, elevated cerebrovascular tone that can contribute to impaired reperfusion after stroke. This mechanism integrates with cerebral edema that was suggested to underlie impaired reperfusion and is further supported by several studies, which are discussed in this article. However, final demonstration of the molecular mechanism behind Src kinase-associated arteriolar hypercontractility in stroke remains to be done.
Collapse
Affiliation(s)
| | - Christian Staehr
- Department of Biomedicine, MEMBRANES, Health (H.O.G., C.S., V.V.M.), Aarhus University, Denmark
| | - Nina Kerting Iversen
- Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine (N.K.I.), Aarhus University, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Denmark (D.D.P.)
| | - Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health (H.O.G., C.S., V.V.M.), Aarhus University, Denmark
| |
Collapse
|
15
|
Bejček J, Spiwok V, Kmoníčková E, Rimpelová S. Na +/K +-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation. Molecules 2021; 26:molecules26071905. [PMID: 33800655 PMCID: PMC8061769 DOI: 10.3390/molecules26071905] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Maintenance of Na+ and K+ gradients across the cell plasma membrane is an essential process for mammalian cell survival. An enzyme responsible for this process, sodium-potassium ATPase (NKA), has been currently extensively studied as a potential anticancer target, especially in lung cancer and glioblastoma. To date, many NKA inhibitors, mainly of natural origin from the family of cardiac steroids (CSs), have been reported and extensively studied. Interestingly, upon CS binding to NKA at nontoxic doses, the role of NKA as a receptor is activated and intracellular signaling is triggered, upon which cancer cell death occurs, which lies in the expression of different NKA isoforms than in healthy cells. Two major CSs, digoxin and digitoxin, originally used for the treatment of cardiac arrhythmias, are also being tested for another indication—cancer. Such drug repositioning has a big advantage in smoother approval processes. Besides this, novel CS derivatives with improved performance are being developed and evaluated in combination therapy. This article deals with the NKA structure, mechanism of action, activity modulation, and its most important inhibitors, some of which could serve not only as a powerful tool to combat cancer, but also help to decipher the so-far poorly understood NKA regulation.
Collapse
Affiliation(s)
- Jiří Bejček
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Eva Kmoníčková
- Department of Pharmacology, Second Faculty of Medicine, Charles University, Plzeňská 311, 150 00 Prague, Czech Republic;
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-220-444-360
| |
Collapse
|
16
|
Babic I, Sellers D, Else PL, Nealon J, Osborne AL, Pai N, Weston-Green K. Effect of liraglutide on neural and peripheral markers of metabolic function during antipsychotic treatment in rats. J Psychopharmacol 2021; 35:284-302. [PMID: 33570012 DOI: 10.1177/0269881120981377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist that prevents metabolic side effects of the antipsychotic drugs (APDs) olanzapine and clozapine through unknown mechanisms. AIM This study aimed to investigate the effect of chronic APD and liraglutide co-treatment on key neural and peripheral metabolic signals, and acute liraglutide co-treatment on clozapine-induced hyperglycaemia. METHODS In study 1, rats were administered olanzapine (2 mg/kg), clozapine (12 mg/kg), liraglutide (0.2 mg/kg), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle for six weeks. Feeding efficiency was examined weekly. Examination of brain tissue (dorsal vagal complex (DVC) and mediobasal hypothalamus (MBH)), plasma metabolic hormones and peripheral (liver and kidney) cellular metabolism and oxidative stress was conducted. In study 2, rats were administered a single dose of clozapine (12 mg/kg), liraglutide (0.4 mg/kg), clozapine + liraglutide co-treatment or vehicle. Glucose tolerance and plasma hormone levels were assessed. RESULTS Liraglutide co-treatment prevented the time-dependent increase in feeding efficiency caused by olanzapine, which plateaued by six weeks. There was no effect of chronic treatment on melanocortinergic, GABAergic, glutamatergic or endocannabionoid markers in the MBH or DVC. Peripheral hormones and cellular metabolic markers were unaltered by chronic APD treatment. Acute liraglutide co-treatment was unable to prevent clozapine-induced hyperglycaemia, but it did alter catecholamine levels. CONCLUSION The unexpected lack of change to central and peripheral markers following chronic treatment, despite the presence of weight gain, may reflect adaptive mechanisms. Further studies examining alterations across different time points are required to continue to elucidate the mechanisms underlying the benefits of liraglutide on APD-induced metabolic side effects.
Collapse
Affiliation(s)
- Ilijana Babic
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Dominic Sellers
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Paul L Else
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jessica Nealon
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Ashleigh L Osborne
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nagesh Pai
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Katrina Weston-Green
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| |
Collapse
|
17
|
Maxwell KD, Chuang J, Chaudhry M, Nie Y, Bai F, Sodhi K, Liu J, Shapiro JI. The potential role of Na-K-ATPase and its signaling in the development of anemia in chronic kidney disease. Am J Physiol Renal Physiol 2020; 320:F234-F242. [PMID: 33356956 DOI: 10.1152/ajprenal.00244.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most prominent diseases affecting our population today. According to the Factsheet published by Centers for Disease Control and Prevention (CDC), it effects approximately 15% of the total population in the United States in some way, shape, or form. Within the myriad of symptomatology associated with CKD, one of the most prevalent factors in terms of affecting quality of life is anemia. Anemia of CKD cannot be completely attributed to one mechanism or cause, but rather has a multifactorial origin in the pathophysiology of CKD. While briefly summarizing well-documented risk factors, this review, as a hypothesis, aims to explore the possible role of Na-K-ATPase and its signaling function [especially recent identified reactive oxygen species (ROS) amplification function] in the interwoven mechanisms of development of the anemia of CKD.
Collapse
Affiliation(s)
- Kyle D Maxwell
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Justin Chuang
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Muhammad Chaudhry
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ying Nie
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Fang Bai
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Komal Sodhi
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia.,Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Jiang Liu
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Joseph I Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
18
|
Li Y, Cui X, Wang X, Shen D, Yin A, You L, Wen J, Ji C, Guo X. Human milk derived peptide AOPDM1 attenuates obesity by restricting adipogenic differentiation through MAPK signalling. Biochim Biophys Acta Gen Subj 2020; 1865:129836. [PMID: 33370564 DOI: 10.1016/j.bbagen.2020.129836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Emerging evidence revealed peptides within breast milk may be an abundant source of potential candidates for metabolism regulation. Our previous work identified numerous peptides existed in breast milk, but its function has not been validated. Thus, our study aims to screen for novel peptides that have the potential to antagonize obesity and diabetes. METHODS A function screen was designed to identify the candidate peptide and then the peptide effect was validated by assessing lipid storage. Afterwards, the in vivo study was performed in two obese models: high-fat diet (HFD)-induced obese mice and obese ob/ob mice. For mechanism study, a RNA-seq analysis was conducted to explore the pathway that account for the biological function of peptide. RESULTS By performing a small scale screening, a peptide (AVPVQALLLNQ) termed AOPDM1 (anti-obesity peptide derived from breast milk 1) was identified to reduce lipid storage in adipocytes. Further study showed AOPDM1 suppressed adipocyte differentiation by sustaining ERK activity at later stage of differentiation which down-regulated PPARγ expression. In vivo, AOPDM1 effectively reduced fat mass and improved glucose metabolism in high-fat diet (HFD)-induced obese mice and obese ob/ob mice. CONCLUSIONS We identified a novel peptide AOPDM1 derived from breast milk could restrict adipocyte differentiation and ameliorate obesity through regulating MAPK pathway. GENERAL SIGNIFICANCE Our findings may provide a potential candidate for the discovery of therapeutic drugs for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Yun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China; Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xing Wang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Dan Shen
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Anwen Yin
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China; Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lianghui You
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Wen
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China.
| | - Xirong Guo
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China; Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
19
|
Abstract
The delivery of therapies to the cochlea is notoriously challenging. It is an organ protected by a number of barriers that need to be overcome in the drug delivery process. Additionally, there are multiple sites of possible damage within the cochlea. Despite the many potential sites of damage, acquired otologic insults preferentially damage a single location. While progress has been made in techniques for inner ear drug delivery, the current techniques remain non-specific and our ability to deliver therapies in a cell-specific manner are limited. Fortunately, there are proteins specific to various cell-types within the cochlea (e.g., hair cells, spiral ganglion cells, stria vascularis) that function as biomarkers of site-specific damage. These protein biomarkers have potential to serve as targets for cell-specific inner ear drug delivery. In this manuscript, we review the concept of biomarkers and targeted- inner ear drug delivery and the well-characterized protein biomarkers within each of the locations of interest within the cochlea. Our review will focus on targeted drug delivery in the setting of acquired otologic insults (e.g., ototoxicity, noise-induce hearing loss). The goal is not to discuss therapies to treat acquired otologic insults, rather, to establish potential concepts of how to deliver therapies in a targeted, cell-specific manner. Based on our review, it is clear that future of inner ear drug delivery is a discipline filled with potential that will require collaborative efforts among clinicians and scientists to optimize treatment of otologic insults. Graphical Abstract ![]()
Collapse
|
20
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|
21
|
Gao Y, Yuan X, Zhu Z, Wang D, Liu Q, Gu W. Research and prospect of peptides for use in obesity treatment (Review). Exp Ther Med 2020; 20:234. [PMID: 33149788 DOI: 10.3892/etm.2020.9364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes, hypertension and cardiovascular disease, are steadily increasing worldwide. Over the past few decades, numerous studies have focused on the differentiation and function of brown and beige fat, providing evidence for their therapeutic potential in treating obesity. However, no specific novel drug has been developed to treat obesity in this way. Peptides are a class of chemically active substances, which are linked together by amino acids using peptide bonds. They have specific physiological activities, including browning of white fat. As signal molecules regulated by the neuroendocrine system, the role of polypeptides, such as neuropeptide Y, brain-gut peptide and glucagon-like peptide in obesity and its related complications has been revealed. Notably, with the rapid development of peptidomics, peptide drugs have been widely used in the prevention and treatment of metabolic diseases, due to their short half-life, small apparent distribution volume, low toxicity and low side effects. The present review summarizes the progress and the new trend of peptide research, which may provide novel targets for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xuewen Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Dandan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
22
|
Khitan ZJ, Khawaja I, Mufson MA, Sanabria JR, Abraham NG, Peterson SJ, Sundaram U, Shapiro JI. Can charcoal improve outcomes in COVID-19 infections? Med Hypotheses 2020; 144:110176. [PMID: 33254498 PMCID: PMC7416710 DOI: 10.1016/j.mehy.2020.110176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 infection causes considerable morbidity and mortality, especially to those who are aged, have impaired renal function and are obese. We propose to examine the potential utility of oral activated charcoal with the hypothesis that such treatment would lower absorption of microbiome derived toxins and ameliorate systemic oxidant stress and inflammation.
Collapse
Affiliation(s)
- Zeid J Khitan
- Joan C. Edwards School of Medicine, Marshall University, United States
| | - Imran Khawaja
- Joan C. Edwards School of Medicine, Marshall University, United States
| | - Maurice A Mufson
- Joan C. Edwards School of Medicine, Marshall University, United States
| | - Juan R Sanabria
- Joan C. Edwards School of Medicine, Marshall University, United States
| | | | - Stephen J Peterson
- New York Presbyterian Brooklyn Methodist Hospital/Weill Cornell Medicine, United States
| | - Uma Sundaram
- Joan C. Edwards School of Medicine, Marshall University, United States
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, United States.
| |
Collapse
|
23
|
Pillai SS, Lakhani HV, Zehra M, Wang J, Dilip A, Puri N, O’Hanlon K, Sodhi K. Predicting Nonalcoholic Fatty Liver Disease through a Panel of Plasma Biomarkers and MicroRNAs in Female West Virginia Population. Int J Mol Sci 2020; 21:ijms21186698. [PMID: 32933141 PMCID: PMC7554851 DOI: 10.3390/ijms21186698] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Nonalcoholic fatty liver disease (NAFLD) is primarily characterized by the presence of fatty liver, hepatic inflammation and fibrogenesis eventually leading to nonalcoholic steatohepatitis (NASH) or cirrhosis. Obesity and diabetes are common risk factors associated with the development and progression of NAFLD, with one of the highest prevalence of these diseased conditions in the West Virginia population. Currently, the diagnosis of NAFLD is limited to radiologic studies and biopsies, which are not cost-effective and highly invasive. Hence, this study aimed to develop a panel and assess the progressive levels of circulatory biomarkers and miRNA expression in patients at risk for progression to NASH to allow early intervention strategies. (2) Methods: In total, 62 female patients were enrolled and blood samples were collected after 8–10 h of fasting. Computed tomography was performed on abdomen/pelvis following IV contrast administration. The patients were divided into the following groups: Healthy subjects with normal BMI and normal fasting blood glucose (Control, n = 20), Obese with high BMI and normal fasting blood glucose (Obese, n = 20) and Obese with high fasting blood glucose (Obese + DM, n = 22). Based on findings from CT, another subset was created from Obese + DM group with patients who showed signs of fatty liver infiltration (Obese + DM(FI), n = 10). ELISA was performed for measurement of plasma biomarkers and RT-PCR was performed for circulating miRNA expression. (3) Results: Our results show significantly increased levels of plasma IL-6, Leptin and FABP-1, while significantly decreased level of adiponectin in Obese, Obese + DM and Obese + DM(FI) group, as compared to healthy controls. The level of CK-18 was significantly increased in Obese + DM(FI) group as compared to control. Subsequently, the expression of miR-122, miR-34a, miR-375, miR-16 and miR-21 was significantly increased in Obese + DM and Obese + DM(FI) group as compared to healthy control. Our results also show distinct correlation of IL-6, FABP-1 and adiponectin levels with the expression of miRNAs in relation to the extent of NAFLD progression. (4) Conclusion: Our results support the clinical application of these biomarkers and miRNAs in monitoring the progression of NAFLD, suggesting a more advanced diagnostic potential of this panel than conventional methods. This panel may provide an appropriate method for early prognosis and management of NAFLD and subsequent adverse hepatic pathophysiology, potentially reducing the disease burden on the West Virginia population.
Collapse
Affiliation(s)
- Sneha S. Pillai
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Hari Vishal Lakhani
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Mishghan Zehra
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Jiayan Wang
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Anum Dilip
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Nitin Puri
- Departments of Biomedical Sciences and Medical Education, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Kathleen O’Hanlon
- Departments of Family Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Komal Sodhi
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
24
|
Sodhi K, Denvir J, Liu J, Sanabria JR, Chen Y, Silverstein R, Xie Z, Abraham NG, Shapiro JI. Oxidant-Induced Alterations in the Adipocyte Transcriptome: Role of the Na,K-ATPase Oxidant Amplification Loop. Int J Mol Sci 2020; 21:ijms21165923. [PMID: 32824688 PMCID: PMC7460641 DOI: 10.3390/ijms21165923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Recently we have noted that adipocyte specific expression of the peptide, NaKtide, which was developed to attenuate the Na,K-ATPase oxidant amplification loop, could ameliorate the phenotypical features of uremic cardiomyopathy. We performed this study to better characterize the cellular transcriptomes that are involved in various biological pathways associated with adipocyte function occurring with renal failure. (2) Methods: RNAseq was performed on the visceral adipose tissue of animals subjected to partial nephrectomy. Specific expression of NaKtide in adipocytes was achieved using an adiponectin promoter. To better understand the cause of gene expression changes in vivo, 3T3L1 adipocytes were exposed to indoxyl sulfate (IS) or oxidized low density lipoprotein (oxLDL), with and without pNaKtide (the cell permeant form of NaKtide). RNAseq was also performed on these samples. (3) Results: We noted a large number of adipocyte genes were altered in experimental renal failure. Adipocyte specific NaKtide expression reversed most of these abnormalities. High correlation with some cardiac specific phenotypical features was noted amongst groups of these genes. In the murine adipocytes, both IS and oxLDL induced similar pathway changes as were noted in vivo, and pNaKtide appeared to reverse these changes. Network analysis demonstrated tremendous similarities between the network revealed by gene expression analysis with IS compared with oxLDL, and the combined in vitro dataset was noted to also have considerable similarity to that seen in vivo with experimental renal failure. (4) Conclusions: This study suggests that the myriad of phenotypical features seen with experimental renal failure may be fundamentally linked to oxidant stress within adipocytes.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Juan R. Sanabria
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.C.); (R.S.)
| | - Roy Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.C.); (R.S.)
| | - Zijian Xie
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
- Correspondence: ; Tel.: +1-(304)-691-1704
| |
Collapse
|
25
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
26
|
Sodhi K, Wang X, Chaudhry MA, Lakhani HV, Zehra M, Pratt R, Nawab A, Cottrill CL, Snoad B, Bai F, Denvir J, Liu J, Sanabria JR, Xie Z, Abraham NG, Shapiro JI. Central Role for Adipocyte Na,K-ATPase Oxidant Amplification Loop in the Pathogenesis of Experimental Uremic Cardiomyopathy. J Am Soc Nephrol 2020; 31:1746-1760. [PMID: 32587074 PMCID: PMC7460907 DOI: 10.1681/asn.2019101070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/28/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Oxidative stress in adipocyte plays a central role in the pathogenesis of obesity as well as in the associated cardiovascular complications. The putative uremic toxin indoxyl sulfate induces oxidative stress and dramatically alters adipocyte phenotype in vitro. Mice that have undergone partial nephrectomy serve as an experimental model of uremic cardiomyopathy. This study examined the effects on adipocytes of administering a peptide that reduces oxidative stress to the mouse model. METHODS A lentivirus vector introduced the peptide NaKtide with an adiponectin promoter into the mouse model of experimental uremic cardiomyopathy, intraperitoneally. Then adipocyte-specific expression of the peptide was assessed for mice fed a standard diet compared with mice fed a western diet enriched in fat and fructose. RESULTS Partial nephrectomy induced cardiomyopathy and anemia in the mice, introducing oxidant stress and an altered molecular phenotype of adipocytes that increased production of systemic inflammatory cytokines instead of accumulating lipids, within 4 weeks. Consumption of a western diet significantly worsened the adipocyte oxidant stress, but expression of NaKtide in adipocytes completely prevented the worsening. The peptide-carrying lentivirus achieved comparable expression in skeletal muscle, but did not ameliorate the disease phenotype. CONCLUSIONS Adipocyte-specific expression of NaKtide, introduced with a lentiviral vector, significantly ameliorated adipocyte dysfunction and uremic cardiomyopathy in partially nephrectomized mice. These data suggest that the redox state of adipocytes controls the development of uremic cardiomyopathy in mice subjected to partial nephrectomy. If confirmed in humans, the oxidative state of adipocytes may be a therapeutic target in chronic renal failure.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Xiaoliang Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Muhammad Aslam Chaudhry
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Mishghan Zehra
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Rebecca Pratt
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Athar Nawab
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Cameron L. Cottrill
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Brian Snoad
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Fang Bai
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Juan R. Sanabria
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
27
|
Tobore TO. Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behav Brain Res 2020; 384:112560. [DOI: 10.1016/j.bbr.2020.112560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
28
|
Zhang W, Shen D, Li Y, Zhong H, Wang X, Cui XW, Shi CM, Ji CB, Guo XR, Chen L. A novel peptide RIFV suppresses human adipocyte differentiation through the inhibition of C/EBP-β expression. Nutr Metab (Lond) 2020; 16:88. [PMID: 31889968 PMCID: PMC6929371 DOI: 10.1186/s12986-019-0414-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/12/2019] [Indexed: 01/12/2023] Open
Abstract
Background Obesity is a global epidemic disease that increases the risk of metabolic syndrome. However, therapeutic drugs for obesity are still scarce. In recent years, peptides have been identified as new biological regulators. RIFV (R-I-F-V-P-I-K-G-R-P-A-P), a novel active peptide from our peptide database. Methods We performed oil red O staining and triglyceride measurement to analyze the influence of RIFV on white preadipocytes differentiation. Then the effects of RIFV on cell proliferation, apoptosis and cell cycle were determined by using CCK-8 assay and flow cytometry. The mRNA and protein levels of adipogenesis-related genes were respectively detected by qRT-PCR and western blot. Rescue experiment was conducted to confirm whether RIFV could regulate adipocytes differentiation via targeting C/EBP-β. Finally, the luciferase reporter gene assay was performed to verify the regulation of RIFV on C/EBP-β gene. Results RIFV was revealed to inhibit the differentiation of human white adipocytes without affecting their proliferation. Additionally, RIFV could also suppress the differentiation of mouse primary white preadipocytes isolated from inguinal fat tissues. Furthermore, RIFV may have an inhibitory effect on adipogenesis by inhibiting the regulation of the adipogenic gene C/EBP-β. Conclusions Our results indicated that RIFV may be a novel essential regulator of adipocyte differentiation and represents a therapeutic strategy for obesity and related complications.
Collapse
Affiliation(s)
- Wen Zhang
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China.,2Department of Internal Medicine, Nantong Maternal and Child Health Care Hospital, Affiliated to Nantong University, Nantong, China
| | - Dan Shen
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yun Li
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Hong Zhong
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xing Wang
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xian-Wei Cui
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chun-Mei Shi
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chen-Bo Ji
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xi-Rong Guo
- 3Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Chen
- 1Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
29
|
Pratt R, Lakhani HV, Zehra M, Desauguste R, Pillai SS, Sodhi K. Mechanistic Insight of Na/K-ATPase Signaling and HO-1 into Models of Obesity and Nonalcoholic Steatohepatitis. Int J Mol Sci 2019; 21:ijms21010087. [PMID: 31877680 PMCID: PMC6982200 DOI: 10.3390/ijms21010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a multifaceted pathophysiological condition that has been associated with lipid accumulation, adipocyte dysfunction, impaired mitochondrial biogenesis and an altered metabolic profile. Redox imbalance and excessive release of inflammatory mediators have been intricately linked in obesity-associated phenotypes. Hence, understanding the mechanisms of redox signaling pathways and molecular targets exacerbating oxidative stress is crucial in improving health outcomes. The activation of Na/K-ATPase/Src signaling, and its downstream pathways, by reactive oxygen species (ROS) has been recently implicated in obesity and subsequent nonalcoholic steatohepatitis (NASH), which causes further production of ROS creating an oxidant amplification loop. Apart from that, numerous studies have also characterized antioxidant properties of heme oxygenase 1 (HO-1), which is suppressed in an obese state. The induction of HO-1 restores cellular redox processes, which contributes to inhibition of the toxic milieu. The novelty of these independent mechanisms presents a unique opportunity to unravel their potential as molecular targets for redox regulation in obesity and NASH. The attenuation of oxidative stress, by understanding the underlying molecular mechanisms and associated mediators, with a targeted treatment modality may provide for improved therapeutic options to combat clinical disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Komal Sodhi
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
30
|
Abstract
The term uraemic cardiomyopathy refers to the cardiac abnormalities that are seen in patients with chronic kidney disease (CKD). Historically, this term was used to describe a severe cardiomyopathy that was associated with end-stage renal disease and characterized by severe functional abnormalities that could be reversed following renal transplantation. In a modern context, uraemic cardiomyopathy describes the clinical phenotype of cardiac disease that accompanies CKD and is perhaps best characterized as diastolic dysfunction seen in conjunction with left ventricular hypertrophy and fibrosis. A multitude of factors may contribute to the pathogenesis of uraemic cardiomyopathy, and current treatments only modestly improve outcomes. In this Review, we focus on evolving concepts regarding the roles of fibroblast growth factor 23 (FGF23), inflammation and systemic oxidant stress and their interactions with more established mechanisms such as pressure and volume overload resulting from hypertension and anaemia, respectively, activation of the renin-angiotensin and sympathetic nervous systems, activation of the transforming growth factor-β (TGFβ) pathway, abnormal mineral metabolism and increased levels of endogenous cardiotonic steroids.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| |
Collapse
|
31
|
Liang T, Xu X, Ye D, Chen W, Gao B, Huang Y. Caspase/AIF/apoptosis pathway: a new target of puerarin for diabetes mellitus therapy. Mol Biol Rep 2019; 46:4787-4797. [PMID: 31228042 PMCID: PMC8782775 DOI: 10.1007/s11033-019-04925-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Pancreatic β cell damage is one of the crucial factors responsible for the development of type 2 diabetes mellitus (T2DM). Previous studies have suggested that puerarin (PR) could regulate the activities of the mitochondrial respiratory chain complex in diabetic nephropathy (DN); however, whether PR can inhibit pancreatic β-cell apoptosis in T2DM remains to be elucidated. In the present study, T2DM mice induced by high-fat diet and streptozotocin (STZ) injection were used as a working model to investigate the mechanism of PR on pancreatic β cell apoptosis. The results showed that PR decreased the serum fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) levels but significantly increased the fasting blood insulin (FINS) and high-density lipoprotein (HDL) levels. Furthermore, decreased caspase-3, 8, 9 and apoptosis-inducing factor (AIF) proteins in the pancreas were detected by Western blot analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining demonstrated that the pancreatic β cell apoptosis was inhibited by PR. Furthermore, PR improved the histopathological changes in pancreatic tissue in T2DM mice. Collectively, the data show that PR can protect the β cells from apoptotic death in a mouse model of T2DM through regulating the expression of apoptosis-related protein-AIF and caspase family proteins.
Collapse
Affiliation(s)
- Tao Liang
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xiaohui Xu
- Affiliated Tumor Hospital of Guangxi Medical University, Institute of Cancer Prevention and Treatment of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Dongmei Ye
- Department of Clinical Pharmacy, Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Wenxia Chen
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Biyun Gao
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Yanjun Huang
- Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
32
|
Xie JX, Zhang S, Cui X, Zhang J, Yu H, Khalaf FK, Malhotra D, Kennedy DJ, Shapiro JI, Tian J, Haller ST. Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma. Nephrol Dial Transplant 2019; 33:1138-1149. [PMID: 29294050 DOI: 10.1093/ndt/gfx334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have highlighted a critical role for CD40 in the pathogenesis of renal injury and fibrosis. However, little is currently understood about the regulation of CD40 in this setting. Methods We use novel Na/K-ATPase cell lines and inhibitors in order to demonstrate the regulatory function of Na/K-ATPase with regards to CD40 expression and function. We utilize 5/6 partial nephrectomy as well as direct infusion of a Na/K-ATPase ligand to demonstrate this mechanism exists in vivo. Results We demonstrate that knockdown of the α1 isoform of Na/K-ATPase causes a reduction in CD40 while rescue of the α1 but not the α2 isoform restores CD40 expression in renal epithelial cells. Second, because the major functional difference between α1 and α2 is the ability of α1 to form a functional signaling complex with Src, we examined whether the Na/K-ATPase/Src complex is important for CD40 expression. We show that a gain-of-Src binding α2 mutant restores CD40 expression while loss-of-Src binding α1 reduces CD40 expression. Furthermore, loss of a functional Na/K-ATPase/Src complex also disrupts CD40 signaling. Importantly, we show that use of a specific Na/K-ATPase/Src complex antagonist, pNaKtide, can attenuate cardiotonic steroid (CTS)-induced induction of CD40 expression in vitro. Conclusions Because the Na/K-ATPase/Src complex is also a key player in the pathogenesis of renal injury and fibrosis, our new findings suggest that Na/K-ATPase and CD40 may comprise a pro-fibrotic feed-forward loop in the kidney and that pharmacological inhibition of this loop may be useful in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Jeffrey X Xie
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Shungang Zhang
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | - Jue Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Joseph I Shapiro
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
33
|
Staehr C, Hangaard L, Bouzinova EV, Kim S, Rajanathan R, Boegh Jessen P, Luque N, Xie Z, Lykke-Hartmann K, Sandow SL, Aalkjaer C, Matchkov VV. Smooth muscle Ca 2+ sensitization causes hypercontractility of middle cerebral arteries in mice bearing the familial hemiplegic migraine type 2 associated mutation. J Cereb Blood Flow Metab 2019; 39. [PMID: 29513112 PMCID: PMC6681533 DOI: 10.1177/0271678x18761712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/-G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/-G301R and WT showed similar contractile responses. The Atp1a2+/-G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/-G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/-G301R mice had reduced resting blood flow through MCA in comparison with WT mice. FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.
Collapse
Affiliation(s)
| | - Lise Hangaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Sukhan Kim
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Nathan Luque
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Zijian Xie
- 3 Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | | | - Shaun L Sandow
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | | | | |
Collapse
|
34
|
Yan Y, Wang J, Chaudhry MA, Nie Y, Sun S, Carmon J, Shah PT, Bai F, Pratt R, Brickman C, Sodhi K, Kim JH, Pierre S, Malhotra D, Rankin GO, Xie ZJ, Shapiro JI, Liu J. Metabolic Syndrome and Salt-Sensitive Hypertension in Polygenic Obese TALLYHO/JngJ Mice: Role of Na/K-ATPase Signaling. Int J Mol Sci 2019; 20:ijms20143495. [PMID: 31315267 PMCID: PMC6678942 DOI: 10.3390/ijms20143495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/06/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022] Open
Abstract
We have demonstrated that Na/K-ATPase acts as a receptor for reactive oxygen species (ROS), regulating renal Na+ handling and blood pressure. TALLYHO/JngJ (TH) mice are believed to mimic the state of obesity in humans with a polygenic background of type 2 diabetes. This present work is to investigate the role of Na/K-ATPase signaling in TH mice, focusing on susceptibility to hypertension due to chronic excess salt ingestion. Age-matched male TH and the control C57BL/6J (B6) mice were fed either normal diet or high salt diet (HS: 2, 4, and 8% NaCl) to construct the renal function curve. Na/K-ATPase signaling including c-Src and ERK1/2 phosphorylation, as well as protein carbonylation (a commonly used marker for enhanced ROS production), were assessed in the kidney cortex tissues by Western blot. Urinary and plasma Na+ levels were measured by flame photometry. When compared to B6 mice, TH mice developed salt-sensitive hypertension and responded to a high salt diet with a significant rise in systolic blood pressure indicative of a blunted pressure-natriuresis relationship. These findings were evidenced by a decrease in total and fractional Na+ excretion and a right-shifted renal function curve with a reduced slope. This salt-sensitive hypertension correlated with changes in the Na/K-ATPase signaling. Specifically, Na/K-ATPase signaling was not able to be stimulated by HS due to the activated baseline protein carbonylation, phosphorylation of c-Src and ERK1/2. These findings support the emerging view that Na/K-ATPase signaling contributes to metabolic disease and suggest that malfunction of the Na/K-ATPase signaling may promote the development of salt-sensitive hypertension in obesity. The increased basal level of renal Na/K-ATPase-dependent redox signaling may be responsible for the development of salt-sensitive hypertension in polygenic obese TH mice.
Collapse
Affiliation(s)
- Yanling Yan
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Jiayan Wang
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Muhammad A Chaudhry
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ying Nie
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Shuyan Sun
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
- Hebei Medical University, Shijiazhuang 50017, China
| | - Jazmin Carmon
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Preeya T Shah
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Fang Bai
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rebecca Pratt
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Cameron Brickman
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Komal Sodhi
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jung Han Kim
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sandrine Pierre
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Deepak Malhotra
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Gary O Rankin
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Zi-Jian Xie
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Joseph I Shapiro
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiang Liu
- Departments of Clinical & Translational Sciences, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
35
|
The Adipocyte Na/K-ATPase Oxidant Amplification Loop is the Central Regulator of Western Diet-Induced Obesity and Associated Comorbidities. Sci Rep 2019; 9:7927. [PMID: 31138824 PMCID: PMC6538745 DOI: 10.1038/s41598-019-44350-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Abstract
Obesity has become a worldwide epidemic. We have previously reported that systemic administration of pNaKtide which targets the Na/K-ATPase oxidant amplification loop (NKAL) was able to decrease systemic oxidative stress and adiposity in mice fed a high fat and fructose supplemented western diet (WD). As adipocytes are believed to play a central role in the development of obesity and its related comorbidities, we examined whether lentiviral-mediated adipocyte-specific expression of NaKtide, a peptide derived from the N domain of the alpha1 Na/K-ATPase subunit, could ameliorate the effects of the WD. C57BL6 mice were fed a WD, which activated Na/K-ATPase signaling in the adipocytes and induced an obese phenotype and caused an increase in plasma levels of leptin, IL-6 and TNFα. WD also decreased locomotor activity, expression of the D2 receptor and tyrosine hydroxylase in brain tissue, while markers of neurodegeneration and neuronal apoptosis were increased following the WD. Selective adipocyte expression of NaKtide in these mice fed a WD attenuated all of these changes including the brain biochemical alterations and behavioral adaptations. These data suggest that adipocyte derived cytokines play an essential role in the development of obesity induced by a WD and that targeting the adipocyte NKAL loop may serve as an effective therapeutic strategy.
Collapse
|
36
|
Abstract
The Na,K-ATPase is an enzyme essential for ion homeostasis in all cells. Over the last decades, it has been well-established that in addition to the transport of Na+/K+ over the cell membrane, the Na,K-ATPase acts as a receptor transducing humoral signals intracellularly. It has been suggested that ouabain-like compounds serve as endogenous modulators of this Na,K-ATPase signal transduction. The molecular mechanisms underlying Na,K-ATPase signaling are complicated and suggest the confluence of divergent biological pathways. This review discusses recent updates on the Na,K-ATPase signaling pathways characterized or suggested in vascular smooth muscle cells. The conventional view on this signaling is based on a microdomain structure where the Na,K-ATPase controls the Na,Ca-exchanger activity via modulation of intracellular Na+ in the spatially restricted submembrane space. This, in turn, affects intracellular Ca2+ and Ca2+ load in the sarcoplasmic reticulum leading to modulation of contractility as well as gene expression. An ion-transport-independent signal transduction from the Na,K-ATPase is based on molecular interactions. This was primarily characterized in other cell types but recently also demonstrated in vascular smooth muscles. The downstream signaling from the Na,K-ATPase includes Src and phosphatidylinositol-4,5-bisphosphate 3 kinase signaling pathways and generation of reactive oxygen species. Moreover, in vascular smooth muscle cells the interaction between the Na,K-ATPase and proteins responsible for Ca2+ homeostasis, e.g., phospholipase C and inositol triphosphate receptors, contributes to an integration of the signaling pathways. Recent update on the Na,K-ATPase dependent intracellular signaling and the significance for physiological functions and pathophysiological changes are discussed in this review.
Collapse
|
37
|
Shen D, Li Y, Wang X, Wang F, Huang F, Cao Y, You L, wen J, Wang Y, Cui X, Ji C, Guo X. A novel peptide suppresses adipogenic differentiation through activation of the AMPK pathway. Biochem Biophys Res Commun 2019; 510:395-402. [DOI: 10.1016/j.bbrc.2019.01.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/25/2019] [Indexed: 12/25/2022]
|
38
|
Li Y, Wang X, Wang F, You L, Xu P, Cao Y, Chen L, Wen J, Guo X, Cui X, Ji C. Identification of intracellular peptides associated with thermogenesis in human brown adipocytes. J Cell Physiol 2018; 234:7104-7114. [PMID: 30387133 DOI: 10.1002/jcp.27465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Xing Wang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Fei Wang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Lianghui You
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Yan Cao
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Ling Chen
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Juan Wen
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Xirong Guo
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital) Nanjing China
| |
Collapse
|
39
|
Xiong S, Yang X, Yan X, Hua F, Zhu M, Guo L, Wu Z, Bian JS. Immunization with Na+/K+ ATPase DR peptide prevents bone loss in an ovariectomized rat osteoporosis model. Biochem Pharmacol 2018; 156:281-290. [DOI: 10.1016/j.bcp.2018.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
|
40
|
Attenuation of Na/K-ATPase/Src/ROS amplification signal pathway with pNaktide ameliorates myocardial ischemia-reperfusion injury. Int J Biol Macromol 2018; 118:1142-1148. [DOI: 10.1016/j.ijbiomac.2018.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022]
|
41
|
Uremic Toxins Activates Na/K-ATPase Oxidant Amplification Loop Causing Phenotypic Changes in Adipocytes in In Vitro Models. Int J Mol Sci 2018; 19:ijms19092685. [PMID: 30201874 PMCID: PMC6164729 DOI: 10.3390/ijms19092685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Oxidant stress plays a key role in the development of chronic kidney disease (CKD). Experimental CKD leads to accumulation of uremic toxins (UT) in the circulation resulting in increased ROS production, which in turn, is known to activate the Na/K-ATPase/ROS amplification loop. Studies in a murine model of obesity have shown that increased oxidative stress in plasma is due to increased ROS and cytokine production from dysfunctional adipocytes. Therefore, we hypothesized that adipocytes exposed to UTs will activate the Na/K-ATPase oxidant amplification loop causing redox imbalance and phenotypic alterations in adipocytes. We also aimed to demonstrate that the Na/K-ATPase signaling antagonist, pNaKtide, attenuates these pathophysiological consequences. Methods: In the first set of experiments, 3T3-L1 murine pre-adipocytes were treated with varying concentrations of UTs, indoxyl sulfate (IS) (50, 100 and 250 µM) and p-cresol (50, 100 and 200 µM), with or without pNaKtide (0.7 µM) for five days in adipogenic media, followed by Oil Red O staining to study adipogenesis. RT-PCR analysis was performed to study expression of adipogenic, apoptotic and inflammatory markers, while DHE staining evaluated the superoxide levels in UT treated cells. In a second set of experiments, visceral fat was obtained from the West Virginian population. MSCs were isolated and cultured in adipogenic media for 14 days, which was treated with indoxyl sulfate (0, 25, 50 and 100 µM) with or without pNaKtide (1 µM). MSC-derived adipocytes were evaluated for morphological and molecular analysis of the above markers. Results: Our results demonstrated that 3T3-L1 cells and MSCs-derived adipocytes, treated with UTs, exhibited a significant decrease in adipogenesis and apoptosis through activation of the Na/K-ATPase/ROS amplification loop. The treatment with pNaKtide in 3T3-L1 cells and MSC-derived adipocytes negated the effects of UTs and restored cellular redox in adipocytes. We noted a varying effect of pNaKtide, in adipocytes treated with UTs, on inflammatory markers, adipogenic marker and superoxide levels in 3T3-L1 cells and MSC-derived adipocytes. Conclusions: This study demonstrates for the first time that the Na/K-ATPase/ROS amplification loop activated by elevated levels of UTs has varying effect on phenotypic alterations in adipocytes in various in vitro models. Thus, we propose that, if proven in humans, inhibition of Na/K-ATPase amplification of oxidant stress in CKD patients may ultimately be a novel way to combat adipocyte dysfunction and metabolic imbalance in these patients.
Collapse
|
42
|
Bouzinova EV, Hangaard L, Staehr C, Mazur A, Ferreira A, Chibalin AV, Sandow SL, Xie Z, Aalkjaer C, Matchkov VV. The α2 isoform Na,K-ATPase modulates contraction of rat mesenteric small artery via cSrc-dependent Ca 2+ sensitization. Acta Physiol (Oxf) 2018; 224:e13059. [PMID: 29480968 DOI: 10.1111/apha.13059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
AIMS The Na,K-ATPase is involved in a large number of regulatory activities including cSrc-dependent signalling. Upon inhibition of the Na,K-ATPase with ouabain, cSrc activation is shown to occur in many cell types. This study tests the hypothesis that acute potentiation of agonist-induced contraction by ouabain is mediated through Na,K-ATPase-cSrc signalling-dependent sensitization of vascular smooth muscle cells to Ca2+ . METHODS Agonist-induced rat mesenteric small artery contraction was examined in vitro under isometric conditions and in vivo in anaesthetized rats. Arterial wall tension and [Ca2+ ]i in vascular smooth muscle cells were measured simultaneously. Changes in cSrc and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation were analysed by Western blot. Protein expression was examined with immunohistochemistry. The α1 and α2 isoforms of the Na,K-ATPase were transiently downregulated by siRNA transfection in vivo. RESULTS Ten micromolar ouabain, but not digoxin, potentiated contraction to noradrenaline. This effect was not endothelium-dependent. Ouabain sensitized smooth muscle cells to Ca2+ , and this was associated with increased phosphorylation of cSrc and MYPT1. Inhibition of tyrosine kinase by genistein, PP2 or pNaKtide abolished the potentiating effect of ouabain on arterial contraction and Ca2+ sensitization. Downregulation of the Na,K-ATPase α2 isoform made arterial contraction insensitive to ouabain and tyrosine kinase inhibition. CONCLUSION Data suggest that micromolar ouabain potentiates agonist-induced contraction of rat mesenteric small artery via Na,K-ATPase-dependent cSrc activation, which increases Ca2+ sensitization of vascular smooth muscle cells by MYPT1 phosphorylation. This mechanism may be critical for acute control of vascular tone.
Collapse
Affiliation(s)
- E. V. Bouzinova
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | - L. Hangaard
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | - C. Staehr
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | - A. Mazur
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | - A. Ferreira
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | - A. V. Chibalin
- Department of Molecular Medicine and Surgery; Integrative Physiology; Karolinska Institutet; Stockholm Sweden
| | - S. L. Sandow
- Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore Qld Australia
| | - Z. Xie
- Marshall Institute for Interdisciplinary Research; Marshall University; Huntington WV USA
| | - C. Aalkjaer
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | - V. V. Matchkov
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| |
Collapse
|
43
|
The Na/K-ATPase Signaling: From Specific Ligands to General Reactive Oxygen Species. Int J Mol Sci 2018; 19:ijms19092600. [PMID: 30200500 PMCID: PMC6163532 DOI: 10.3390/ijms19092600] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
The signaling function of the Na/K-ATPase has been established for 20 years and is widely accepted in the field, with many excellent reports and reviews not cited here. Even though there is debate about the underlying mechanism, the signaling function is unquestioned. This short review looks back at the evolution of Na/K-ATPase signaling, from stimulation by cardiotonic steroids (also known as digitalis-like substances) as specific ligands to stimulation by reactive oxygen species (ROS) in general. The interplay of cardiotonic steroids and ROS in Na/K-ATPase signaling forms a positive-feedback oxidant amplification loop that has been implicated in some pathophysiological conditions.
Collapse
|
44
|
Khalaf FK, Dube P, Mohamed A, Tian J, Malhotra D, Haller ST, Kennedy DJ. Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na⁺/K⁺-ATPase. Int J Mol Sci 2018; 19:E2576. [PMID: 30200235 PMCID: PMC6165267 DOI: 10.3390/ijms19092576] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
In 1972 Neal Bricker presented the "trade-off" hypothesis in which he detailed the role of physiological adaptation processes in mediating some of the pathophysiology associated with declines in renal function. In the late 1990's Xie and Askari published seminal studies indicating that the Na⁺/K⁺-ATPase (NKA) was not only an ion pump, but also a signal transducer that interacts with several signaling partners. Since this discovery, numerous studies from multiple laboratories have shown that the NKA is a central player in mediating some of these long-term "trade-offs" of the physiological adaptation processes which Bricker originally proposed in the 1970's. In fact, NKA ligands such as cardiotonic steroids (CTS), have been shown to signal through NKA, and consequently been implicated in mediating both adaptive and maladaptive responses to volume overload such as fibrosis and oxidative stress. In this review we will emphasize the role the NKA plays in this "trade-off" with respect to CTS signaling and its implication in inflammation and fibrosis in target organs including the heart, kidney, and vasculature. As inflammation and fibrosis exhibit key roles in the pathogenesis of a number of clinical disorders such as chronic kidney disease, heart failure, atherosclerosis, obesity, preeclampsia, and aging, this review will also highlight the role of newly discovered NKA signaling partners in mediating some of these conditions.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Amal Mohamed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| |
Collapse
|
45
|
Banerjee M, Cui X, Li Z, Yu H, Cai L, Jia X, He D, Wang C, Gao T, Xie Z. Na/K-ATPase Y260 Phosphorylation-mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci Rep 2018; 8:12322. [PMID: 30120256 PMCID: PMC6098021 DOI: 10.1038/s41598-018-29995-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We report here the identification of α1 Na/K-ATPase as a major regulator of the proto-oncogene Src kinase and the role of this regulation in control of Warburg effect and tumor growth. Specifically, we discovered Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site and that Y260 phosphorylation is required for Src-mediated signal transduction in response to a number of stimuli including EGF. As such, it enables a dynamic control of aerobic glycolysis. However, such regulation appears to be lost or attenuated in human cancers as the expression of Na/K-ATPase α1 was significantly decreased in prostate, breast and kidney cancers, and further reduced in corresponding metastatic lesions in patient samples. Consistently, knockdown of α1 Na/K-ATPase led to a further increase in lactate production and the growth of tumor xenograft. These findings suggest that α1 Na/K-ATPase works as a tumor suppressor and that a loss of Na/K-ATPase-mediated Src regulation may lead to Warburg phenotype in cancer.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Zhichuan Li
- Department of Physiology and Pharmacology and Medicine, University of Toledo College of Medicine, Toledo, Ohio, 43614, USA
| | - Hui Yu
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xuelian Jia
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Daheng He
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA.
| |
Collapse
|
46
|
Quantum Modeling: A Bridge between the Pumping and Signaling Functions of Na/K-ATPase. Int J Mol Sci 2018; 19:ijms19082347. [PMID: 30096926 PMCID: PMC6121303 DOI: 10.3390/ijms19082347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Although the signaling function of Na/K-ATPase has been studied for decades, the chasm between the pumping function and the signaling function of Na/K-ATPase is still an open issue. This article explores the relationship between ion pumping and signaling with attention to the amplification of oxidants through this signaling function. We specifically consider the Na/K-ATPase with respect to its signaling function as a superposition of different states described for its pumping function. We then examine how alterations in the relative amounts of these states could alter signaling through the Src-EGFR-ROS pathway. Using assumptions based on some experimental observations published by our laboratories and others, we develop some predictions regarding cellular oxidant stress.
Collapse
|
47
|
The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19072139. [PMID: 30041449 PMCID: PMC6073138 DOI: 10.3390/ijms19072139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022] Open
Abstract
Aging has been associated with a series of pathophysiological processes causing general decline in the overall health of the afflicted population. The cumulative line of evidence suggests an important role of oxidative stress in the development and progression of the aging process and metabolic abnormalities, exacerbating adipocyte dysfunction, cardiovascular diseases, and associated complications at the same time. In recent years, robust have established the implication of Na/K-ATPase signaling in causing oxidative stress and alterations in cellular mechanisms, in addition to its distinct pumping function. Understanding the underlying molecular mechanisms and exploring the possible sources of pro-oxidants may allow for developing therapeutic targets in these processes and formulate novel intervention strategies for patients susceptible to aging and associated complications, such as obesity and cardiovascular disease. The attenuation of oxidative stress with targeted treatment options can improve patient outcomes and significantly reduce economic burden.
Collapse
|
48
|
Abstract
As aging involves oxidant injury, we examined the role of the recently described Na/K-ATPase oxidant amplification loop (NKAL). First, C57Bl6 old mice were given a western diet to stimulate oxidant injury or pNaKtide to antagonize the NKAL. The western diet accelerated functional and morphological evidence for aging whereas pNaKtide attenuated these changes. Next, human dermal fibroblasts (HDFs) were exposed to different types of oxidant stress in vitro each of which increased expression of senescence markers, cell-injury, and apoptosis as well as stimulated the NKAL. Further stimulation of the NKAL with ouabain augmented cellular senescence whereas treatment with pNaKtide attenuated it. Although N-Acetyl Cysteine and Vitamin E also ameliorated overall oxidant stress to a similar degree as pNaKtide, the pNaKtide produced protection against senescence that was substantially greater than that seen with either antioxidant. In particular, pNaKtide appeared to specifically ameliorate nuclear oxidant stress to a greater degree. These data demonstrate that the NKAL is intimately involved in the aging process and may serve as a target for anti-aging interventions.
Collapse
|
49
|
Yan X, Xun M, Wu L, Du X, Zhang F, Zheng J. DRm217 attenuates myocardial ischemia-reperfusion injury via stabilizing plasma membrane Na + -K + -ATPase, inhibiting Na + -K + -ATPase/ROS pathway and activating PI3K/Akt and ERK1/2. Toxicol Appl Pharmacol 2018; 349:62-71. [DOI: 10.1016/j.taap.2018.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/17/2022]
|
50
|
Cheng X, Song Y, Wang Y. pNaKtide ameliorates renal interstitial fibrosis through inhibition of sodium-potassium adenosine triphosphatase-mediated signaling pathways in unilateral ureteral obstruction mice. Nephrol Dial Transplant 2018; 34:242-252. [DOI: 10.1093/ndt/gfy107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/17/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Xi Cheng
- Renal Division, Department of Medicine, Peking University First Hospital
- Institute of Nephrology, Peking University
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education
| | - Yi Song
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Yu Wang
- Renal Division, Department of Medicine, Peking University First Hospital
- Institute of Nephrology, Peking University
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education
| |
Collapse
|