1
|
Venn AA, Tambutté E, Crovetto L, Tambutté S. pH regulation in coral photosymbiosis and calcification: a compartmental perspective. THE NEW PHYTOLOGIST 2025. [PMID: 40365728 DOI: 10.1111/nph.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/18/2025] [Indexed: 05/15/2025]
Abstract
The coral-dinoflagellate photosymbiosis and coral calcification underpin shallow water, coral reef ecosystems. This review examines the pivotal role of pH regulation in the cell physiology of these processes. Despite simple tissue organization, photosymbiotic corals maintain a complex internal microenvironment, with distinct compartments exhibiting contrasting pH levels. For example, the acidic 'symbiosome' surrounds the algal symbionts, while the alkaline 'extracellular calcifying medium' occurs at the growing front of the skeleton. We discuss how pH regulation of these compartments is crucial to the functioning of coral photosymbiosis and calcification, as well as mitigating the internal acid-base imbalances that these processes create. The role of pH regulation in the interplay between photosymbiosis and calcification is also discussed, focusing on the influence of symbiont photosynthesis on transepithelial gradients and the distribution of energy sources in the coral colony. Throughout this review, insights into pH regulation derived from previous research on ocean acidification are integrated to deepen understanding. Finally, we propose research priorities to advance knowledge of coral resilience under changing ocean conditions, such as investigating inorganic carbon concentration within coral compartments, species-specific differences and the impacts of thermal stress on pH regulation.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Lucas Crovetto
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
- Sorbonne Université - ED 515 Complexité du Vivant, 75005, Paris, France
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
| |
Collapse
|
2
|
Kuhrts L, Shaked H, Sklar J, Prudnikov E, Prévost S, Manna G, Sztucki M, Katsman A, Pokroy B. Impact of Mg 2+ and pH on amorphous calcium carbonate nanoparticle formation: Implications for biomineralization and ocean acidification. Proc Natl Acad Sci U S A 2025; 122:e2421961122. [PMID: 40343994 DOI: 10.1073/pnas.2421961122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Crystallization by amorphous calcium carbonate (ACC) particle attachment (CPA) is a prevalent biomineralization mechanism among calcifying organisms. A narrow, controlled size distribution of ACC nanoparticles is essential for macroscopic crystal formation via CPA. Using in situ synchrotron small-angle X-ray scattering, we demonstrate that synthetic magnesium-stabilized ACC (Mg-ACC) nanoparticles form with an exceptionally narrow size distribution near the spinodal line during liquid-liquid phase separation. We monitored ACC formation kinetics at pH 8.4 to 8.9 and Mg[Formula: see text] contents of 50 to 80%, observing a 2-order magnitude rise in nucleation kinetics for a 0.1 pH increase and a 6-order magnitude rise for a 10% Mg[Formula: see text] decrease. Within the binodal region, faster nucleation kinetics result in more monodisperse particles, narrowing the particle size distribution by factors of 2 for a pH increase of merely 0.1 and by a factor of 3 for a 10% Mg[Formula: see text] decrease. While the influence of Mg[Formula: see text] on calcite biomineralization is well studied, its effect on Mg-ACC formation and particle size distribution-an essential parameter in CPA-based biomineralization pathways-remained unexplored. These findings highlight the delicate interplay of pH and Mg[Formula: see text] in controlling the kinetics and thermodynamics of Mg-ACC formation, significantly impacting particle size distribution.
Collapse
Affiliation(s)
- Lucas Kuhrts
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadar Shaked
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Johanna Sklar
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Elena Prudnikov
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sylvain Prévost
- Institut Laue-Langevin, Large Scale Structures, Grenoble 38042, France
| | - Gouranga Manna
- European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Michael Sztucki
- European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Alexander Katsman
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
3
|
Tian Y, Zhang P, Huang H, Lei L, Galindo Torres SA, Li L. Internal hydrodynamics within the skeleton of Acropora pulchra coral. iScience 2025; 28:111742. [PMID: 39925420 PMCID: PMC11804786 DOI: 10.1016/j.isci.2025.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/06/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Many marine life forms, like Acropora coral, develop abiotic components to host and support the growth of living organisms. Using numerical models based on real coral samples reconstructed from micro-computed tomography (CT) scan images, we simulated internal flows inside the skeletons of Acropora pulchra coral under the influence of ambient ocean currents. The results showed that the coral's skeletal structure, with specially connected pore space, leads to the flow and material transport within and through the skeleton to assist the coral growth and stability. However, under intensified ocean acidification, the skeletal internal flow may induce the dissolution of aragonite inside the skeleton and weaken the whole coral structure.
Collapse
Affiliation(s)
- Yanmei Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- School of Engineering, Westlake University, Hangzhou 310024, China
| | - Pei Zhang
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Science, Sanya 572000, China
| | - Liang Lei
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| | - Sergio Andres Galindo Torres
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| |
Collapse
|
4
|
Vincent J, Sheldrake T. Micro-CT analysis reveals porosity driven growth banding in Caribbean coral Siderastrea siderea. Sci Rep 2025; 15:6063. [PMID: 39971762 PMCID: PMC11840155 DOI: 10.1038/s41598-025-90125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
X-radiography of massive scleractinian coral skeletons reveal light and dark couplets termed "growth bands", which are commonly related to seasonal fluctuations in environmental parameters including insolation and sea surface temperature (SST). Massive corals grow by extension of skeletal structures followed by thickening within the surface tissue layer. Therefore, an understanding of the depth in which skeletal thickening occurs is important to aid the interpretation of seasonal banding patterns. In this study, two colonies of Caribbean coral Siderastrea siderea were sampled from the north-west coast of Barbados at water depths of 5 and 15 m. The three-dimensional skeletal structure of each sample was reconstructed at high spatial resolutions using micro-computed tomography (µCT) scanning. A pixel segmentation algorithm was developed to classify different microstructures within the skeleton and to quantify spatial variations in corallite and theca porosity at the micrometer scale. The porosity reconstructions of the deeper sample reveal clearer growth banding, with a more dominant signal originating from within the corallite. Skeletal thickening occurs within the top two-thirds of the total depth of soft tissues and the rate of thickening varies between microstructures. Seasonality in the shallower sample is less clear, although porosity variability with depth is more similar across microstructures. The difference in signal origin and clarity between the two samples is attributed to the varying stability of water depth-dependent variables (i.e., insolation and wave energy). This study provides a new, powerful method of reconstructing and understanding growth strategies in massive scleractinian corals.
Collapse
Affiliation(s)
- James Vincent
- Department of Earth Sciences, University of Geneva, Genève, Switzerland.
| | - Tom Sheldrake
- Department of Earth Sciences, University of Geneva, Genève, Switzerland
| |
Collapse
|
5
|
Bell T, Iguchi A, Ohno Y, Sakai K, Yokoyama Y. Bioinformatic approach to explain how Mg from seawater may be incorporated into coral skeletons. ROYAL SOCIETY OPEN SCIENCE 2025; 12:232011. [PMID: 39845712 PMCID: PMC11750370 DOI: 10.1098/rsos.232011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/16/2024] [Accepted: 11/24/2024] [Indexed: 01/24/2025]
Abstract
Corals have been used as geochemical proxies since the 1970s, playing a prominent role in paleoceanography. However, it has not been well elucidated how aqueous ions sourced from seawater are transported and precipitated in coral skeletons. There are limited foundational methods to differentiate and quantify biogenic and abiogenic effects during skeletal formation. Especially, Mg in coral skeletons show individual variations suggesting large biogenic effects. Here, we evaluated biological complexity by investigating how coral genes evolved over geologic time scales. We focused on Mg transporter and analysed five species from genus Acropora and three species from genus Porites. Mg transporter of Acropora digitifera, Acropora hyacinthus, Acropora millepora and Porites australiensis showed higher similarity to Mg transporter of vertebrates and were reported to appear on Earth during the Pleistocene. On the other hand, Acropora palmata, Acropora tenuis and Porites astreoides showed lower or no similarity to vertebrates, and they were reported to appear on Earth before the Pleistocene. We suggest such evolutional records can be evidence to demonstrate biological complexity of Mg transport from seawater. This might explain that Mg transport is subject to evolution and why Mg incorporated in coral skeletons tends to show strong biogenic effects compared with other elements.
Collapse
Affiliation(s)
- Tomoko Bell
- Division of Science and Mathematics, Newman University, Wichita, KS67213, USA
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba305-8567, Japan
- Research laboratory on environmentally conscious developments and technologies, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba305-8567, Japan
| | - Yoshikazu Ohno
- School of Marine Biosciences, Kitasato University, Kanagawa252-0373, Japan
| | - Kazuhiko Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa905-0227, Japan
| | - Yusuke Yokoyama
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa275-8564, Japan
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo113-0033, Japan
| |
Collapse
|
6
|
Kubota A, Ohno Y, Yasumoto J, Iijima M, Suzuki M, Iguchi A, Mori-Yasumoto K, Yasumoto-Hirose M, Sakata T, Suehiro T, Nakamae K, Mizusawa N, Jimbo M, Watabe S, Yasumoto K. The Role of Polyamines in pH Regulation in the Extracellular Calcifying Medium of Scleractinian Coral Spats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22635-22645. [PMID: 39652798 DOI: 10.1021/acs.est.4c10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
This study aims to elucidate a novel mechanism for elevating the pH within the calicoblastic extracellular calcifying medium (pHECM) of corals and demonstrate the potential contribution of calcifying organisms to CO2 sequestration. Departing from traditional models that attribute the increase in pHECM primarily to H+ expulsion via Ca2+-ATPase, we emphasize the significant role of polyamines. These ubiquitous biogenic amines conveyed by calicoblastic cells through polyamine transporters demonstrate a remarkable affinity for CO2. Their ability to form stable carbamate complexes is pivotal in facilitating carbonate ion transport, which is crucial for pH regulation and skeletal structure formation. In this study, a polyamine transporter inhibitor and a polyamine biosynthesis inhibitor in conjunction with the pH-sensitive probe 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) were employed to monitor pH variations. Furthermore, FM1-43FX dye was utilized to delineate the extracellular calcifying medium (ECM), whereas calcein was applied to visualize paracellular gaps and ECM. These methodologies provide profound insights into the intricate structural and functional dynamics of coral spats calcification. Findings suggest a potential reconsideration of established models of marine calcification and highlight the necessity to reassess the role of marine calcifying organisms in the carbon cycle, particularly their influence on CO2 fluxes.
Collapse
Affiliation(s)
- Azusa Kubota
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yoshikazu Ohno
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Jun Yasumoto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nakagusuku, Nishihara, Okinawa 903-0213, Japan
| | - Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kanami Mori-Yasumoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | - Tsuyoshi Sakata
- Biological Laboratory, Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Takaaki Suehiro
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Kaho Nakamae
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Nanami Mizusawa
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Mitsuru Jimbo
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Ko Yasumoto
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
7
|
Gardella G, Castillo Alvarez MC, Presslee S, Finch AA, Penkman K, Kröger R, Clog M, Allison N. Contrasting the Effects of Aspartic Acid and Glycine in Free Amino Acid and Peptide Forms on the Growth Rate, Morphology, Composition, and Structure of Synthetic Aragonites. CRYSTAL GROWTH & DESIGN 2024; 24:9379-9390. [PMID: 39583629 PMCID: PMC11583211 DOI: 10.1021/acs.cgd.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Corals and mollusks produce aragonite skeletons and shells containing highly acidic proteins, rich in aspartic acid (Asp) and glycine (Gly). These biomolecules are pivotal in controlling biomineral formation. We explore the effects of l-Asp, Gly, and two peptides: glycyl-l-aspartic acid (Gly-Asp) and tetra-aspartic acid (Asp4) on the precipitation rate, crystal morphology, and CO3 group rotational disorder (inferred from Raman spectroscopy) in aragonite precipitated in vitro at the approximate pH, [Ca2+], and Ωar occurring in coral calcification media. All of the biomolecules, except Gly, inhibit aragonite precipitation. Biomolecules are incorporated into the aragonite and create CO3 group rotational disorder in the following order: Asp4 > Asp = Gly-Asp > Gly. Asp4 inhibits aragonite precipitation more than Asp at comparable solution concentrations, but Asp reduces aragonite precipitation more effectively than Asp4 for each Asp residue incorporated into the aragonite. At the highest solution concentration, the molar ratio of Asp4:CaCO3 in the aragonite is 1:690. We observe a significant inverse relationship between the aragonite precipitation rate and aragonite Raman spectrum ν1 peak fwhm across the entire data set. Tetra-aspartic acid inhibits aragonite precipitation at all concentrations, suggesting that the aspartic acid-rich domains of coral skeletal proteins influence biomineralization by suppressing mineral formation, thereby shaping skeletal morphology and preventing uncontrolled precipitation.
Collapse
Affiliation(s)
- Giacomo Gardella
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
- Scottish
Oceans Institute, University of St. Andrews, St Andrews KY16 8LB, U.K.
| | - Maria Cristina Castillo Alvarez
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
- Scottish
Oceans Institute, University of St. Andrews, St Andrews KY16 8LB, U.K.
| | - Sam Presslee
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Adrian A. Finch
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
| | - Kirsty Penkman
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Roland Kröger
- Department
of Physics, University of York, York YO10 5DD, U.K.
| | | | - Nicola Allison
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
- Scottish
Oceans Institute, University of St. Andrews, St Andrews KY16 8LB, U.K.
| |
Collapse
|
8
|
Zhang H, Wang X, Qu M, Yu H, Yin J, Liu X, Liu Y, Zhang B, Zhang Y, Wei Z, Yang F, Wang J, Shi C, Fan G, Sun J, Long L, Hutchins DA, Bowler C, Lin S, Wang D, Lin Q. Genome of Halimeda opuntia reveals differentiation of subgenomes and molecular bases of multinucleation and calcification in algae. Proc Natl Acad Sci U S A 2024; 121:e2403222121. [PMID: 39302967 PMCID: PMC11441479 DOI: 10.1073/pnas.2403222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.
Collapse
Affiliation(s)
- Hao Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Xin Wang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Meng Qu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Haiyan Yu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Jianping Yin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | | | - Yuhong Liu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Bo Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Yanhong Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Zhangliang Wei
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Fangfang Yang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan430074, China
| | - Lijuan Long
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - David A. Hutchins
- Department of Biological Sciences, Marine and Environmental Biology, University of Southern California, Los Angeles, CA90007
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Paris Sciences et Lettres Research University, Paris75005, France
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT06340
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Qiang Lin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
9
|
Crovetto L, Venn AA, Sevilgen D, Tambutté S, Tambutté E. Spatial variability of and effect of light on the cœlenteron pH of a reef coral. Commun Biol 2024; 7:246. [PMID: 38424314 PMCID: PMC10904758 DOI: 10.1038/s42003-024-05938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Coral reefs, the largest bioconstruction on Earth, are formed by calcium carbonate skeletons of corals. Coral skeleton formation commonly referred to as calcification occurs in a specific compartment, the extracellular calcifying medium (ECM), located between the aboral ectoderm and the skeleton. Calcification models often assume a direct link between the surrounding seawater and the ECM. However, the ECM is separated from the seawater by several tissue layers and the cœlenteron, which contains the cœlenteric fluid found in both polyps and cœnosarc (tissue connecting the polyps). Symbiotic dinoflagellate-containing cells line the cœlenteron and their photosynthetic activity contributes to changes in the chemistry of the cœlenteric fluid, particularly with respect to pH. The aim of our study is to compare cœlenteron pH between the cœnosarc and polyps and to compare areas of high or low dinoflagellate density based on tissue coloration. To achieve this, we use liquid ion exchange (LIX) pH microsensors to profile pH in the cœlenteron of polyps and the cœnosarc in different regions of the coral colony in light and darkness. We interpret our results in terms of what light and dark exposure means for proton gradients between the ECM and the coelenteron, and how this could affect calcification.
Collapse
Affiliation(s)
- Lucas Crovetto
- Marine Biology Department, Centre Scientifique de Monaco, 98000, Monaco
- Sorbonne Université - ED 515 Complexité du Vivant, 75005, Paris, France
| | - Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 98000, Monaco
| | - Duygu Sevilgen
- Marine Biology Department, Centre Scientifique de Monaco, 98000, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000, Monaco.
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000, Monaco
| |
Collapse
|
10
|
Schmidt CA, Tambutté E, Venn AA, Zou Z, Castillo Alvarez C, Devriendt LS, Bechtel HA, Stifler CA, Anglemyer S, Breit CP, Foust CL, Hopanchuk A, Klaus CN, Kohler IJ, LeCloux IM, Mezera J, Patton MR, Purisch A, Quach V, Sengkhammee JS, Sristy T, Vattem S, Walch EJ, Albéric M, Politi Y, Fratzl P, Tambutté S, Gilbert PUPA. Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals. Nat Commun 2024; 15:1812. [PMID: 38418834 PMCID: PMC10901822 DOI: 10.1038/s41467-024-46117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.
Collapse
Affiliation(s)
- Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Alexander A Venn
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | | | - Laurent S Devriendt
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Carolyn P Breit
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor L Foust
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrii Hopanchuk
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor N Klaus
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Isaac J Kohler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Jaiden Mezera
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Madeline R Patton
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Annie Purisch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Virginia Quach
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Tarak Sristy
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Shreya Vattem
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Evan J Walch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Marie Albéric
- Sorbonne Université/CNRS, Laboratoire de chimie de la matière condensée, 75005, Paris, France
| | - Yael Politi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Canesi M, Douville É, Bordier L, Dapoigny A, Coulibaly GE, Montagna P, Béraud É, Allemand D, Planes S, Furla P, Gilson E, Roberty S, Zoccola D, Reynaud S. Porites' coral calcifying fluid chemistry regulation under normal- and low-pH seawater conditions in Palau Archipelago: Impacts on growth properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168552. [PMID: 38007109 DOI: 10.1016/j.scitotenv.2023.168552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
Ongoing ocean acidification is known to be a major threat to tropical coral reefs. To date, only few studies have evaluated the impacts of natural long-term exposure to low-pH seawater on the chemical regulation and growth of reef-building corals. This work investigated the different responses of the massive Porites coral living at normal (pHsw ~ 8.03) and naturally low-pH (pHsw ~ 7.85) seawater conditions at Palau over the last decades. Our results show that both Porites colonies maintained similar carbonate properties (pHcf, [CO32-]cf, DICcf, and Ωcf) within their calcifying fluid since 1972. However, the Porites skeleton of the more acidified conditions revealed a significantly lower density (~ 1.21 ± 0.09 g·cm-3) than the skeleton from the open-ocean site (~ 1.41 ± 0.07 g·cm-3). Overall, both Porites colonies exerted a strong biological control to maintain stable calcifying fluid carbonate chemistry that favored the calcification process, especially under low-pH conditions. However, the decline in skeletal density observed at low pH provides critical insights into Porites vulnerability to future global change.
Collapse
Affiliation(s)
- Marine Canesi
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 911 91 Gif-sur-Yvette, France; Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000 Monaco, Principality of Monaco, Monaco; LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco.
| | - Éric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 911 91 Gif-sur-Yvette, France
| | - Louise Bordier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 911 91 Gif-sur-Yvette, France
| | - Arnaud Dapoigny
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 911 91 Gif-sur-Yvette, France
| | - Gninwoyo Eric Coulibaly
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 911 91 Gif-sur-Yvette, France
| | - Paolo Montagna
- Istituto di Scienze Polari (ISP), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy; National Biodiversity Future Center S.c.a.r.l., Piazza Marina 61, Palermo, Italy
| | - Éric Béraud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000 Monaco, Principality of Monaco, Monaco; LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000 Monaco, Principality of Monaco, Monaco; LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco
| | - Serge Planes
- Laboratoire d'Excellence "CORAIL", PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100 Perpignan, France
| | - Paola Furla
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco; Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France
| | - Eric Gilson
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco; Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France; Department of Medical Genetics, CHU, Nice, France
| | - Stephane Roberty
- InBioS - Animal Physiology and Ecophysiology, Department of Biology, Ecology & Evolution, University of Liège, Liège, Belgium
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000 Monaco, Principality of Monaco, Monaco; LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000 Monaco, Principality of Monaco, Monaco; LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco
| |
Collapse
|
12
|
Conci N, Griesshaber E, Rivera-Vicéns RE, Schmahl WW, Vargas S, Wörheide G. Molecular and mineral responses of corals grown under artificial Calcite Sea conditions. GEOBIOLOGY 2024; 22:e12586. [PMID: 38385602 DOI: 10.1111/gbi.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions-primarily in the molar ratio of magnesium and calcium during so-called 'Calcite' (mMg:mCa below 2) or 'Aragonite' seas (mMg:mCa above 2)-have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral Heliopora coerulea and the aragonitic scleractinian Montipora digitata were exposed to Calcite Sea-like mMg:mCa with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO3 polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower mMg:mCa ratios, while concurrent calcite presence was only detected in M. digitata. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the M. digitata skeleton organic matrix (SkOM), was found to consistently change at lower mMg:mCa. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater mMg:mCa. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in H. coerulea in one experimental replicate and at an mMg:mCa of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered mMg:mCa.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, Crystallography, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ramón E Rivera-Vicéns
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Wolfgang W Schmahl
- Department of Earth and Environmental Sciences, Crystallography, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
- SNSB - Mineralogische Staatssammlung, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
- SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
13
|
Ram S, Erez J. Anion elements incorporation into corals skeletons: Experimental approach for biomineralization and paleo-proxies. Proc Natl Acad Sci U S A 2023; 120:e2306627120. [PMID: 37917794 PMCID: PMC10636356 DOI: 10.1073/pnas.2306627120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
The elemental composition of coral skeletons provides important information for palaeoceanographic reconstructions and coral biomineralization. Partition of anions and their stable isotopes in coral skeleton enables the reconstruction of past seawater carbonate chemistry, paleo-CO2, and past climates. Here, we investigated the partition of B, S, As, Br, I, and Mo into the skeletons of two corals, Acropora cervicornis and Pocillopora damicornis, as a function of calcium and carbonate concentrations.* Anion-to-calcium ratio in the corals (An/CaCoral) were correlated with the equivalent ratios in the culturing seawater (An/CO32-SW). Negative intercepts of these relationships suggest a higher CO32- concentration in the coral extracellular calcifying fluid (ECF) relative to seawater, from which the skeleton precipitates. The enrichment factor of CO32- at the ECF was 2.5 for A. cervicornis and 1.9 for P. damicornis, consistent with their relative calcification rates. The CO32-ECF concentrations thus calculated are similar to those proposed by previous studies based on B/Ca coupled with δ11B, as well as by direct measurements using microsensors and fluorescent dyes. Rayleigh fractionation modeling demonstrates a uniform Ca utilization at various CaSW concentrations, providing further evidence that coral calcification occurs directly from a semiclosed seawater reservoir as reported previously. The partition coefficients reported in this study for B, S, As, Br, I, and Mo open up wide possibilities for past ocean chemistry reconstructions based on Br having long residence time (~160 Ma) in the ocean. Other elements like S, Mo, B, as well as pCO2 may also be calculated based on these elements in fossil coral.
Collapse
Affiliation(s)
- Sharon Ram
- The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Jonathan Erez
- The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| |
Collapse
|
14
|
Canesi M, Douville E, Montagna P, Taviani M, Stolarski J, Bordier L, Dapoigny A, Coulibaly GEH, Simon AC, Agelou M, Fin J, Metzl N, Iwankow G, Allemand D, Planes S, Moulin C, Lombard F, Bourdin G, Troublé R, Agostini S, Banaigs B, Boissin E, Boss E, Bowler C, de Vargas C, Flores M, Forcioli D, Furla P, Gilson E, Galand PE, Pesant S, Sunagawa S, Thomas OP, Vega Thurber R, Voolstra CR, Wincker P, Zoccola D, Reynaud S. Differences in carbonate chemistry up-regulation of long-lived reef-building corals. Sci Rep 2023; 13:11589. [PMID: 37463961 DOI: 10.1038/s41598-023-37598-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.
Collapse
Affiliation(s)
- Marine Canesi
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France.
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco.
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Paolo Montagna
- Institute of Polar Sciences (ISP), CNR, Via Gobetti 101, 40129, Bologna, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Marco Taviani
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- Institute of Marine Sciences (ISMAR), CNR, Via Gobetti 101, 40129, Bologna, Italy
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, 00818, Warsaw, Poland
| | - Louise Bordier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Arnaud Dapoigny
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Gninwoyo Eric Hermann Coulibaly
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | | | | | - Jonathan Fin
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005, Paris, France
| | - Nicolas Metzl
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005, Paris, France
| | - Guillaume Iwankow
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| | - Serge Planes
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | | | - Fabien Lombard
- Institut de la Mer de Villefranche Sur Mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 06230, Villefranche-sur-Mer, France
| | | | | | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Emilie Boissin
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Sorbonne Université, 29680, Roscoff, France
| | - Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Didier Forcioli
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
| | - Paola Furla
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
| | - Eric Gilson
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
- Department of Medical Genetics, CHU, Nice, France
| | - Pierre E Galand
- CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Sorbonne Université, 66650, Banyuls sur Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, 97331, USA
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| |
Collapse
|
15
|
Tinoco A, Mitchison-Field L, Bradford J, Renicke C, Perrin D, Bay L, Pringle J, Cleves P. Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution. Proc Natl Acad Sci U S A 2023; 120:e2216144120. [PMID: 37276409 PMCID: PMC10268325 DOI: 10.1073/pnas.2216144120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4γ, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4γ is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4γ, but not the closely related and apparently ancestral SLC4β, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4γ are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4γ mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4γ for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.
Collapse
Affiliation(s)
- Amanda I. Tinoco
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD21218
- Applied BioSciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lorna M. Y. Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD21218
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Jacob Bradford
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD4001, Australia
- School of Computer Science, Queensland University of Technology, Brisbane, QLD4001, Australia
| | - Christian Renicke
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Dimitri Perrin
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD4001, Australia
- School of Computer Science, Queensland University of Technology, Brisbane, QLD4001, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, QLD4810, Australia
| | - John R. Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Phillip A. Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD21218
- Applied BioSciences, Macquarie University, Sydney, NSW2109, Australia
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
16
|
Willard HF, Deutekom ES, Allemand D, Tambutté S, Kaandorp JA. Testing hypotheses on the calcification in scleractinian corals using a spatio-temporal model that shows a high degree of robustness. J Theor Biol 2023; 561:111382. [PMID: 36610694 DOI: 10.1016/j.jtbi.2022.111382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
Calcification in photosynthetic scleractinian corals is a complicated process that involves many different biological, chemical, and physical sub-processes that happen within and around the coral tissue. Identifying and quantifying the role of separate processes in vivo or in vitro is difficult or not possible. A computational model can facilitate this research by simulating the sub-processes independently. This study presents a spatio-temporal model of the calcification physiology, which is based on processes that are considered essential for calcification: respiration, photosynthesis, Ca2+-ATPase, carbonic anhydrase. The model is used to test different hypotheses considering ion transport across the calicoblastic cells and Light Enhanced Calcification (LEC). It is also used to quantify the effect of ocean acidification (OA) on the Extracellular Calcifying Medium (ECM) and ATP-consumption of Ca2+-ATPase. It was able to reproduce the experimental data of three separate studies and finds that paracellular transport plays a minor role compared to transcellular transport. In the model, LEC results from increased Ca2+-ATPase activity in combination with increased metabolism. Implementing OA increases the concentration of CO2 throughout the entire tissue, thereby increasing the availability of CO3- in the ECM. As a result, the model finds that calcification becomes more energy-demanding and the calcification rate increases.
Collapse
Affiliation(s)
- Helena F Willard
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Eva S Deutekom
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Denis Allemand
- Centre Scientifique de Monaco, Avenue Saint Martin, 98000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Avenue Saint Martin, 98000, Monaco
| | - Jaap A Kaandorp
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Chang WW, Thies AB, Tresguerres M, Hu MY. Soluble adenylyl cyclase coordinates intracellular pH homeostasis and biomineralization in calcifying cells of a marine animal. Am J Physiol Cell Physiol 2023; 324:C777-C786. [PMID: 36779665 DOI: 10.1152/ajpcell.00524.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pHi) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pHi imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pHi regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pHi regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO2-induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal.
Collapse
Affiliation(s)
| | - Angus B Thies
- Scripps Institution of Oceanography, University of California San Diego, California, United States
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, California, United States
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
18
|
Optimising a method for aragonite precipitation in simulated biogenic calcification media. PLoS One 2022; 17:e0278627. [PMID: 36459517 PMCID: PMC9718392 DOI: 10.1371/journal.pone.0278627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
Resolving how factors such as temperature, pH, biomolecules and mineral growth rate influence the geochemistry and structure of biogenic CaCO3, is essential to the effective development of palaeoproxies. Here we optimise a method to precipitate the CaCO3 polymorph aragonite from seawater, under tightly controlled conditions that simulate the saturation state (Ω) of coral calcification fluids. We then use the method to explore the influence of aspartic acid (one of the most abundant amino acids in coral skeletons) on aragonite structure and morphology. Using ≥200 mg of aragonite seed (surface area 0.84 m2), to provide a surface for mineral growth, in a 330 mL seawater volume, generates reproducible estimates of precipitation rate over Ωaragonite = 6.9-19.2. However, unseeded precipitations are highly variable in duration and do not provide consistent estimates of precipitation rate. Low concentrations of aspartic acid (1-10 μM) promote aragonite formation, but high concentrations (≥ 1 mM) inhibit precipitation. The Raman spectra of aragonite precipitated in vitro can be separated from the signature of the starting seed by ensuring that at least 60% of the analysed aragonite is precipitated in vitro (equivalent to using a seed of 200 mg and precipitating 300 mg aragonite in vitro). Aspartic acid concentrations ≥ 1mM caused a significant increase in the full width half maxima of the Raman aragonite v1 peak, reflective of increased rotational disorder in the aragonite structure. Changes in the organic content of coral skeletons can drive variations in the FWHM of the Raman aragonite ν1 peak, and if not accounted for, may confuse the interpretation of calcification fluid saturation state from this parameter.
Collapse
|
19
|
Lewis BM, Suggett DS, Prentis PJ, Nothdurft LD. Cellular adaptations leading to coral fragment attachment on artificial substrates in Acropora millepora (Am-CAM). Sci Rep 2022; 12:18431. [PMID: 36319668 PMCID: PMC9626494 DOI: 10.1038/s41598-022-23134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Reproductive propagation by asexual fragmentation in the reef-building coral Acropora millepora depends on (1) successful attachment to the reef substrate through modification of soft tissues and (2) a permanent bond with skeletal encrustation. Despite decades of research examining asexual propagation in corals, the initial response, cellular reorganisation, and development leading to fragment substrate attachment via a newly formed skeleton has not been documented in its entirety. Here, we establish the first "coral attachment model" for this species ("Am-CAM") by developing novel methods that allow correlation of fluorescence and electron microscopy image data with in vivo microscopic time-lapse imagery. This multi-scale imaging approach identified three distinct phases involved in asexual propagation: (1) the contact response of the coral fragment when contact with the substrate, followed by (2) fragment stabilisation through anchoring by the soft tissue, and (3) formation of a "lappet-like appendage" structure leading to substrate bonding of the tissue for encrustation through the onset of skeletal calcification. In developing Am-CAM, we provide new biological insights that can enable reef researchers, managers and coral restoration practitioners to begin evaluating attachment effectiveness, which is needed to optimise species-substrate compatibility and achieve effective outplanting.
Collapse
Affiliation(s)
- Brett M. Lewis
- grid.1024.70000000089150953School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD Australia
| | - David S. Suggett
- grid.117476.20000 0004 1936 7611Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW Australia
| | - Peter J. Prentis
- grid.1024.70000000089150953Centre for Agriculture and Bioeconomy and School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD Australia
| | - Luke D. Nothdurft
- grid.1024.70000000089150953School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
20
|
Brown KT, Mello-Athayde MA, Sampayo EM, Chai A, Dove S, Barott KL. Environmental memory gained from exposure to extreme pCO 2 variability promotes coral cellular acid-base homeostasis. Proc Biol Sci 2022; 289:20220941. [PMID: 36100023 PMCID: PMC9470260 DOI: 10.1098/rspb.2022.0941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.
Collapse
Affiliation(s)
- Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matheus A Mello-Athayde
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aaron Chai
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sophie Dove
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Hughes DJ, Raina JB, Nielsen DA, Suggett DJ, Kühl M. Disentangling compartment functions in sessile marine invertebrates. Trends Ecol Evol 2022; 37:740-748. [PMID: 35570130 DOI: 10.1016/j.tree.2022.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023]
Abstract
Sessile invertebrates are frequently sampled and processed whole for downstream analyses. However, their apparent structural simplicity is deceptive as these organisms often harbour discrete compartments. These compartments have physicochemical conditions that differ markedly from neighbouring tissues, and that have likely evolved to support specific functions. Here, we argue that such compartments should be specifically targeted when characterising sessile invertebrate biology and we use the coral gastrovascular cavity to support our argument. This complex compartment displays steep and dynamic chemical gradients, harbours distinct microorganisms, and presumably plays a key role in coral biology. Disentangling the functions played by (and amongst) compartments will likely provide transformative insight into the biology of sessile invertebrates and their future under environmental change.
Collapse
Affiliation(s)
- David J Hughes
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia.
| | - Jean-Baptiste Raina
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia.
| | - Daniel A Nielsen
- University of Technology Sydney, School of Life Sciences, Ultimo, NSW 2007, Australia
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia
| | - Michael Kühl
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia; Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK 3000 Helsingør, Denmark.
| |
Collapse
|
22
|
Cryer SE, Schlosser C, Allison N. The combined effects of ocean acidification and copper on the physiological responses of the tropical coral Stylophora pistillata. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105610. [PMID: 35358910 DOI: 10.1016/j.marenvres.2022.105610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
A decrease in ocean pH of 0.3 units will likely double the proportion of dissolved copper (Cu) present as the free metal ion, Cu2+, the most bioavailable form of Cu, and one of the most common marine pollutants. We assess the impact of ocean acidification and Cu, separately and in combination, on calcification, photosynthesis and respiration of sub-colonies of a single tropical Stylophora pistillata colony. After 15 days of treatment, total calcification rates were significantly decreased in corals exposed to high seawater pCO2 (∼1000-μatm, 2100 scenario) and at both ambient (1.6-1.9 nmols) and high (2.5-3.6 nmols) dissolved Cu concentrations compared to controls. The effect was increased when both stressors were combined. Coral respiration rates were significantly reduced by the combined stressors after 2 weeks of exposure, indicating the importance of experiment duration. It is therefore likely rising atmospheric CO2 will exacerbate the negative effects of Cu pollution to S. pistillata.
Collapse
Affiliation(s)
- S E Cryer
- School of Earth and Environmental Science, University of St Andrews, Irvine Building, North Street, St Andrews, KY16 9AL, UK; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.
| | - C Schlosser
- Department of Chemical Oceanography, GEOMAR-Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - N Allison
- School of Earth and Environmental Science, University of St Andrews, Irvine Building, North Street, St Andrews, KY16 9AL, UK
| |
Collapse
|
23
|
Comeau S, Cornwall CE, Shlesinger T, Hoogenboom M, Mana R, McCulloch MT, Rodolfo-Metalpa R. pH variability at volcanic CO 2 seeps regulates coral calcifying fluid chemistry. GLOBAL CHANGE BIOLOGY 2022; 28:2751-2763. [PMID: 35119159 DOI: 10.1111/gcb.16093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Coral reefs are iconic ecosystems with immense ecological, economic and cultural value, but globally their carbonate-based skeletal construction is threatened by ocean acidification (OA). Identifying coral species that have specialised mechanisms to maintain high rates of calcification in the face of declining seawater pH is of paramount importance in predicting future species composition, and growth of coral reefs. Here, we studied multiple coral species from two distinct volcanic CO2 seeps in Papua New Guinea to assess their capacity to control their calcifying fluid (CF) chemistry. Several coral species living under conditions of low mean seawater pH, but with either low or high variability in seawater pH, were examined and compared with those living in 'normal' (non-seep) ambient seawater pH. We show that when mean seawater pH is low but highly variable, corals have a greater ability to maintain constant pHcf in their CF, but this characteristic was not linked with changes in abundance. Within less variable low pH seawater, corals with limited reductions in pHcf at the seep sites compared with controls tended to be more abundant at the seep site than at the control site. However, this finding was strongly influenced by a single species (Montipora foliosa), which was able to maintain complete pHcf homeostasis. Overall, although our findings indicate that there might be an association between ecological success and greater pHcf homeostasis, further research with additional species and at more sites with differing seawater pH regimes is required to solidify inferences regarding coral ecological success under future OA.
Collapse
Affiliation(s)
- Steeve Comeau
- CNRS-INSU, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche- sur-mer, France
- ARC Centre of Excellence for Coral Reef Studies and Ocean Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Christopher E Cornwall
- ARC Centre of Excellence for Coral Reef Studies and Ocean Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Mia Hoogenboom
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Ralph Mana
- School of Natural and Physical Sciences, University of Papua New Guinea, Port Moresby, National Capital District, Papua New Guinea
| | - Malcolm T McCulloch
- ARC Centre of Excellence for Coral Reef Studies and Ocean Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| | | |
Collapse
|
24
|
Fietzke J, Wall M. Distinct fine-scale variations in calcification control revealed by high-resolution 2D boron laser images in the cold-water coral Lophelia pertusa. SCIENCE ADVANCES 2022; 8:eabj4172. [PMID: 35302850 PMCID: PMC8932653 DOI: 10.1126/sciadv.abj4172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/26/2022] [Indexed: 05/18/2023]
Abstract
Coral calcification is a complex biologically controlled process of hard skeleton formation, and it is influenced by environmental conditions. The chemical composition of coral skeletons responds to calcification conditions and can be used to gain insights into both the control asserted by the organism and the environment. Boron and its isotopic composition have been of particular interest because of links to carbon chemistry and pH. In this study, we acquired high-resolution boron images (concentration and isotopes) in a skeleton sample of the azooxanthellate cold-water coral Lophelia pertusa. We observed high boron variability at a small spatial scale related to skeletal structure. This implies differences in calcification control during different stages of skeleton formation. Our data point to bicarbonate active transport as a critical pathway during early skeletal growth, and the variable activity rates explain the majority of the observed boron systematic.
Collapse
Affiliation(s)
- Jan Fietzke
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
- Corresponding author.
| | - Marlene Wall
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
25
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
26
|
Schmidt C, Stifler CA, Luffey EL, Fordyce BI, Ahmed A, Barreiro Pujol G, Breit CP, Davison SS, Klaus CN, Koehler IJ, LeCloux IM, Matute Diaz C, Nguyen CM, Quach V, Sengkhammee JS, Walch EJ, Xiong MM, Tambutté E, Tambutté S, Mass T, Gilbert PUPA. Faster Crystallization during Coral Skeleton Formation Correlates with Resilience to Ocean Acidification. J Am Chem Soc 2022; 144:1332-1341. [PMID: 35037457 PMCID: PMC8796227 DOI: 10.1021/jacs.1c11434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 01/18/2023]
Abstract
The mature skeletons of hard corals, termed stony or scleractinian corals, are made of aragonite (CaCO3). During their formation, particles attaching to the skeleton's growing surface are calcium carbonate, transiently amorphous. Here we show that amorphous particles are observed frequently and reproducibly just outside the skeleton, where a calicoblastic cell layer envelops and deposits the forming skeleton. The observation of particles in these locations, therefore, is consistent with nucleation and growth of particles in intracellular vesicles. The observed extraskeletal particles range in size between 0.2 and 1.0 μm and contain more of the amorphous precursor phases than the skeleton surface or bulk, where they gradually crystallize to aragonite. This observation was repeated in three diverse genera of corals, Acropora sp., Stylophora pistillata─differently sensitive to ocean acidification (OA)─and Turbinaria peltata, demonstrating that intracellular particles are a major source of material during the additive manufacturing of coral skeletons. Thus, particles are formed away from seawater, in a presumed intracellular calcifying fluid (ICF) in closed vesicles and not, as previously assumed, in the extracellular calcifying fluid (ECF), which, unlike ICF, is partly open to seawater. After particle attachment, the growing skeleton surface remains exposed to ECF, and, remarkably, its crystallization rate varies significantly across genera. The skeleton surface layers containing amorphous pixels vary in thickness across genera: ∼2.1 μm in Acropora, 1.1 μm in Stylophora, and 0.9 μm in Turbinaria. Thus, the slow-crystallizing Acropora skeleton surface remains amorphous and soluble longer, including overnight, when the pH in the ECF drops. Increased skeleton surface solubility is consistent with Acropora's vulnerability to OA, whereas the Stylophora skeleton surface layer crystallizes faster, consistent with Stylophora's resilience to OA. Turbinaria, whose response to OA has not yet been tested, is expected to be even more resilient than Stylophora, based on the present data.
Collapse
Affiliation(s)
- Connor
A. Schmidt
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Cayla A. Stifler
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Emily L. Luffey
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Benjamin I. Fordyce
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Asiya Ahmed
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | - Carolyn P. Breit
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Sydney S. Davison
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Connor N. Klaus
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Isaac J. Koehler
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Isabelle M. LeCloux
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Celeo Matute Diaz
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Catherine M. Nguyen
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Virginia Quach
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jaden S. Sengkhammee
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Evan J. Walch
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Max M. Xiong
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Eric Tambutté
- Department
of Marine Biology, Centre Scientifique de
Monaco, 98000 Monaco, Principality of
Monaco
| | - Sylvie Tambutté
- Department
of Marine Biology, Centre Scientifique de
Monaco, 98000 Monaco, Principality of
Monaco
| | - Tali Mass
- Marine
Biology Department, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | - Pupa U. P. A. Gilbert
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Departments
of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Drake JL, Varsano N, Mass T. Genetic basis of stony coral biomineralization: History, trends and future prospects. J Struct Biol 2021; 213:107782. [PMID: 34455069 PMCID: PMC7611647 DOI: 10.1016/j.jsb.2021.107782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth's oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011. In this review, we detail what is known to date about the genetic basis of the stony coral biomineralization process, with a focus on advances in the last several years as well as ways that physical and chemical tools can be combined with genetics, and then propose next steps forward for the coming decade.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Neta Varsano
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel.
| |
Collapse
|
28
|
Mor Khalifa G, Levy S, Mass T. The calcifying interface in a stony coral primary polyp: An interplay between seawater and an extracellular calcifying space. J Struct Biol 2021; 213:107803. [PMID: 34695544 DOI: 10.1016/j.jsb.2021.107803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Stony coral exoskeletons build the foundation for the most biologically diverse marine ecosystems on Earth, coral reefs, which face major threats due to many anthropogenic-related stressors. Therefore, understanding coral biomineralization mechanisms is crucial for coral reef management in the coming decades and for using coral skeletons in geochemical studies. This study combines in-vivo imaging with cryo-electron microscopy and cryo-elemental mapping to gain novel insights into the biological microenvironment and the ion pathways that facilitate biomineralization in primary polyps of the stony coral Stylophora pistillata. We document increased tissue permeability in the primary polyp and a highly dispersed cell packing in the tissue directly responsible for producing the coral skeleton. This tissue arrangement may facilitate the intimate involvement of seawater at the mineralization site, also documented here. We further observe an extensive filopodial network containing carbon-rich vesicles extruding from some of the calicoblastic cells. Single-cell RNA-Sequencing data interrogation supports these morphological observations by showing higher expression of genes involved in filopodia and vesicle structure and function in the calicoblastic cells. These observations provide a new conceptual framework for resolving the ion pathway from the external seawater to the tissue-mineral interface in stony coral biomineralization processes.
Collapse
Affiliation(s)
- Gal Mor Khalifa
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
29
|
Steininger F, Revsbech NP, Koren K. Total Dissolved Inorganic Carbon Sensor Based on Amperometric CO 2 Microsensor and Local Acidification. ACS Sens 2021; 6:2529-2533. [PMID: 34264060 DOI: 10.1021/acssensors.1c01140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a dipping probe total dissolved inorganic carbon (DIC) microsensor based on a localized acidic microenvironment in front of an amperometric CO2 microsensor. The acidic milieu facilitates conversion of bicarbonate and carbonate to CO2, which in turn is reduced at a silver cathode. Interfering oxygen is removed by an acidic CrCl2 oxygen trap. Theoretical simulations of microsensor functioning were performed to find a suitable compromise between response time and near-complete conversion of bicarbonate to CO2. The sensor exhibited a linear response over a wide range of 0-8 mM DIC, with a calculated LOD of 5 μM and a 90% response time of 150 s. The sensor was successfully tested in measuring DIC in bottled mineral water and seawater. This DIC microsensor holds the potential to become an important tool in environmental sensing and beyond for measurements of DIC at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Fabian Steininger
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Niels Peter Revsbech
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
31
|
Conci N, Vargas S, Wörheide G. The Biology and Evolution of Calcite and Aragonite Mineralization in Octocorallia. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Octocorallia (class Anthozoa, phylum Cnidaria) is a group of calcifying corals displaying a wide diversity of mineral skeletons. This includes skeletal structures composed of different calcium carbonate polymorphs (aragonite and calcite). This represents a unique feature among anthozoans, as scleractinian corals (subclass Hexacorallia), main reef builders and focus of biomineralization research, are all characterized by an aragonite exoskeleton. From an evolutionary perspective, the presence of aragonitic skeletons in Octocorallia is puzzling as it is observed in very few species and has apparently originated during a Calcite sea (i.e., time interval characterized by calcite-inducing seawater conditions). Despite this, octocorals have been systematically overlooked in biomineralization studies. Here we review what is known about octocoral biomineralization, focusing on the evolutionary and biological processes that underlie calcite and aragonite formation. Although differences in research focus between octocorals and scleractinians are often mentioned, we highlight how strong variability also exists between different octocoral groups. Different main aspects of octocoral biomineralization have been in fact studied in a small set of species, including the (calcitic) gorgonian Leptogorgia virgulata and/or the precious coral Corallium rubrum. These include descriptions of calcifying cells (scleroblasts), calcium transport and chemistry of the calcification fluids. With the exception of few histological observations, no information on these features is available for aragonitic octocorals. Availability of sequencing data is also heterogeneous between groups, with no transcriptome or genome available, for instance, for the clade Calcaxonia. Although calcite represents by far the most common polymorph deposited by octocorals, we argue that studying aragonite-forming could provide insight on octocoral, and more generally anthozoan, biomineralization. First and foremost it would allow to compare calcification processes between octocoral groups, highlighting homologies and differences. Secondly, similarities (exoskeleton) between Heliopora and scleractinian skeletons, would provide further insight on which biomineralization features are driven by skeleton characteristics (shared by scleractinians and aragonitic octocorals) and those driven by taxonomy (shared by octocorals regardless of skeleton polymorph). Including the diversity of anthozoan mineralization strategies into biomineralization studies remains thus essential to comprehensively study how skeletons form and evolved within this ecologically important group of marine animals.
Collapse
|
32
|
Sun CY, Gránásy L, Stifler CA, Zaquin T, Chopdekar RV, Tamura N, Weaver JC, Zhang JAY, Goffredo S, Falini G, Marcus MA, Pusztai T, Schoeppler V, Mass T, Gilbert PUPA. Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations. Acta Biomater 2021; 120:277-292. [PMID: 32590171 PMCID: PMC7116570 DOI: 10.1016/j.actbio.2020.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023]
Abstract
Spherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO3) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them. In 7 of the 12 species, we observed a skeletal structural motif not observed previously: randomly oriented, equant crystals, which we termed "sprinkles". In Acropora pharaonis, these sprinkles are localized at the CoCs, while in 6 other species, sprinkles are either layered at the growth front (GF) of the spherulites, or randomly distributed. At the nano- and micro-scale, coral skeletons fill space as much as single crystals of aragonite. Based on these observations, we tentatively propose a spherulite formation mechanism in which growth front nucleation (GFN) of randomly oriented sprinkles, competition for space, and coarsening produce spherulites, rather than the previously assumed slightly misoriented nucleations termed "non-crystallographic branching". Phase-field simulations support this mechanism, and, using a minimal set of thermodynamic parameters, are able to reproduce all of the microstructural variation observed experimentally in all of the investigated coral skeletons. Beyond coral skeletons, other spherulitic systems, from aspirin to semicrystalline polymers and chocolate, may also form according to the mechanism for spherulite formation proposed here. STATEMENT OF SIGNIFICANCE: Understanding the fundamental mechanisms of spherulite nucleation and growth has broad ranging applications in the fields of metallurgy, polymers, food science, and pharmaceutical production. Using the skeletons of reef-building corals as a model system for investigating these processes, we propose a new spherulite growth mechanism that can not only explain the micro-structural diversity observed in distantly related coral species, but may point to a universal growth mechanism in a wide range of biologically and technologically relevant spherulitic materials systems.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA; Materials Science Program, University of Wisconsin, Madison, WI 53706, USA
| | - László Gránásy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, 1525 Budapest, Hungary
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Tal Zaquin
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jun A Y Zhang
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, I-40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tamás Pusztai
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, 1525 Budapest, Hungary
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA; Departments of Chemistry, Geoscience, Materials Science, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea. Sci Rep 2021; 11:472. [PMID: 33436642 PMCID: PMC7804963 DOI: 10.1038/s41598-020-78778-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023] Open
Abstract
Boron isotopic and elemental analysis of coral aragonite can give important insights into the calcification strategies employed in coral skeletal construction. Traditional methods of analysis have limited spatial (and thus temporal) resolution, hindering attempts to unravel skeletal heterogeneity. Laser ablation mass spectrometry allows a much more refined view, and here we employ these techniques to explore boron isotope and co-varying elemental ratios in the tropical coral Siderastrea siderea. We generate two-dimensional maps of the carbonate parameters within the calcification medium that deposited the skeleton, which reveal large heterogeneities in carbonate chemistry across the macro-structure of a coral polyp. These differences have the potential to bias proxy interpretations, and indicate that different processes facilitated precipitation of different parts of the coral skeleton: the low-density columella being precipitated from a fluid with a carbonate composition closer to seawater, compared to the high-density inter-polyp walls where aragonite saturation was ~ 5 times that of external seawater. Therefore, the skeleton does not precipitate from a spatially homogeneous fluid and its different parts may thus have varying sensitivity to environmental stress. This offers new insights into the mechanisms behind the response of the S. siderea skeletal phenotype to ocean acidification.
Collapse
|
34
|
Guillermic M, Cameron LP, De Corte I, Misra S, Bijma J, de Beer D, Reymond CE, Westphal H, Ries JB, Eagle RA. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. SCIENCE ADVANCES 2021; 7:7/2/eaba9958. [PMID: 33523983 PMCID: PMC7793579 DOI: 10.1126/sciadv.aba9958] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/11/2020] [Indexed: 06/04/2023]
Abstract
The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation-the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.
Collapse
Affiliation(s)
- Maxence Guillermic
- Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive E, Los Angeles, CA 90095, USA
- Institut Universitaire Européen de la Mer, LGO, Rue Dumont d'Urville, Université de Brest Occidentale, 29280, Plouzané, France
| | - Louise P Cameron
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA 01908, USA
- McLean Laboratory, Woods Hole Oceanographic Institution,360 Woods Hole Rd, Falmouth, MA 02543, USA
- The Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Ilian De Corte
- Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive E, Los Angeles, CA 90095, USA
| | - Sambuddha Misra
- Centre for Earth Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- The Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Jelle Bijma
- Marine Biogeosciences, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Claire E Reymond
- The Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (CUG), 388 Lumo Rd, Hongshan, Wuhan 430074, P. R. China
| | - Hildegard Westphal
- The Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
- Department of Geosciences, Bremen University, 28359 Bremen, Germany
| | - Justin B Ries
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA 01908, USA
- The Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Robert A Eagle
- Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive E, Los Angeles, CA 90095, USA
- Institut Universitaire Européen de la Mer, LGO, Rue Dumont d'Urville, Université de Brest Occidentale, 29280, Plouzané, France
| |
Collapse
|
35
|
Tambutté E, Ganot P, Venn AA, Tambutté S. A role for primary cilia in coral calcification? Cell Tissue Res 2020; 383:1093-1102. [PMID: 33330957 PMCID: PMC7960582 DOI: 10.1007/s00441-020-03343-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Cilia are evolutionarily conserved organelles that extend from the surface of cells and are found in diverse organisms from protozoans to multicellular organisms. Motile cilia play various biological functions by their beating motion, including mixing fluids and transporting food particles. Non-motile cilia act as sensors that signal cells about their microenvironment. In corals, cilia have been described in some of the cell layers but never in the calcifying epithelium, which is responsible for skeleton formation. In the present study, we used scanning electron microscopy and immunolabelling to investigate the cellular ciliature of the different tissue layers of the coral Stylophora pistillata, with a focus on the calcifying calicoblastic ectoderm. We show that the cilium of the calcifying cells is different from the cilium of the other cell layers. It is much shorter, and more importantly, its base is structurally distinct from the base observed in cilia of the other tissue layers. Based on these structural observations, we conclude that the cilium of the calcifying cells is a primary cilium. From what is known in other organisms, primary cilia are sensors that signal cells about their microenvironment. We discuss the implications of the presence of a primary cilium in the calcifying epithelium for our understanding of the cellular physiology driving coral calcification and its environmental sensitivity.
Collapse
Affiliation(s)
- Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco.
| |
Collapse
|
36
|
Sun CY, Stifler CA, Chopdekar RV, Schmidt CA, Parida G, Schoeppler V, Fordyce BI, Brau JH, Mass T, Tambutté S, Gilbert PUPA. From particle attachment to space-filling coral skeletons. Proc Natl Acad Sci U S A 2020; 117:30159-30170. [PMID: 33188087 PMCID: PMC7720159 DOI: 10.1073/pnas.2012025117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reef-building corals and their aragonite (CaCO3) skeletons support entire reef ecosystems, yet their formation mechanism is poorly understood. Here we used synchrotron spectromicroscopy to observe the nanoscale mineralogy of fresh, forming skeletons from six species spanning all reef-forming coral morphologies: Branching, encrusting, massive, and table. In all species, hydrated and anhydrous amorphous calcium carbonate nanoparticles were precursors for skeletal growth, as previously observed in a single species. The amorphous precursors here were observed in tissue, between tissue and skeleton, and at growth fronts of the skeleton, within a low-density nano- or microporous layer varying in thickness from 7 to 20 µm. Brunauer-Emmett-Teller measurements, however, indicated that the mature skeletons at the microscale were space-filling, comparable to single crystals of geologic aragonite. Nanoparticles alone can never fill space completely, thus ion-by-ion filling must be invoked to fill interstitial pores. Such ion-by-ion diffusion and attachment may occur from the supersaturated calcifying fluid known to exist in corals, or from a dense liquid precursor, observed in synthetic systems but never in biogenic ones. Concomitant particle attachment and ion-by-ion filling was previously observed in synthetic calcite rhombohedra, but never in aragonite pseudohexagonal prisms, synthetic or biogenic, as observed here. Models for biomineral growth, isotope incorporation, and coral skeletons' resilience to ocean warming and acidification must take into account the dual formation mechanism, including particle attachment and ion-by-ion space filling.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Ganesh Parida
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Jack H Brau
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Tali Mass
- Marine Biology Department, University of Haifa, 31905 Haifa, Israel
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706;
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
- Department of Geoscience, University of Wisconsin, Madison, WI 53706
- Department of Materials Science, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
37
|
Chang Y, Han H, Liu T, Yuan S, Chen S, Guo Y, Yang L, Ma X. Cell-tailored calcium carbonate particles with different crystal forms from nanoparticle to nano/microsphere. RSC Adv 2020; 10:43233-43241. [PMID: 35514929 PMCID: PMC9058178 DOI: 10.1039/d0ra07393h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
Inspired by biomineralization, the first synthesis of size-tunable calcium carbonates from nanoparticles (YC-CaCO3 NPs) to nano/microspheres (YC-CaCO3 N/MSs) with a porous structure was accomplished using a facile method under the mediation of the secretion from yeast cells (YCs). The biomolecules derived from the secretion of YCs were used as conditioning and stabilizing agents to control the biosynthesis of the YC-CaCO3 materials. The morphology and crystal forms of YC-CaCO3 materials can be affected by the biomolecules from the secretion of YCs. With increasing concentrations of biomolecules, the morphologies of the obtained CaCO3 materials changed from nanoparticles to nano/microspheres with a porous structure, while the crystal forms transformed from amorphous to calcite. Functional investigations showed that YC-CaCO3 NSs with a porous structure effectively acted as anticancer drug carriers with accurate and selective drug release in tumor tissue, which suggests that they have great potential to function as a therapeutic delivery system. These application features are mainly attributed to the satisfactory biocompatibility and biodegradability, high drug-loading capacity, and pH-dependent sustained drug release performance of the porous YC-CaCO3 NSs. The biomimetic synthesis strategy of YC-CaCO3 materials mediated by YC secretion not only helps to shed light on the biomineralization mechanism in organisms, but may also lead to a new means of biosynthesizing organic-inorganic nanocomposites.
Collapse
Affiliation(s)
- Yi Chang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huijuan Han
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang Henan 453007 P. R. China
| | - Tingting Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shibao Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuting Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Lin Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
38
|
Drake JL, Whitelegge JP, Jacobs DK. First sequencing of ancient coral skeletal proteins. Sci Rep 2020; 10:19407. [PMID: 33173075 PMCID: PMC7655939 DOI: 10.1038/s41598-020-75846-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene fossil invertebrate, the stony coral Orbicella annularis. This fossil retains total hydrolysable amino acids of a roughly similar composition to extracts from modern O. annularis skeletons, with the amino acid data rich in Asx (Asp + Asn) and Glx (Glu + Gln) typical of invertebrate skeletal proteins. It also retains several proteins, including a highly acidic protein, also known from modern coral skeletal proteomes that we sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. A combination of degradation or amino acid racemization inhibition of trypsin digestion appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil invertebrate biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA.
- Department of Marine Biology, University of Haifa, Haifa, Israel.
| | | | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA.
| |
Collapse
|
39
|
Venn AA, Bernardet C, Chabenat A, Tambutté E, Tambutté S. Paracellular transport to the coral calcifying medium: effects of environmental parameters. J Exp Biol 2020; 223:jeb227074. [PMID: 32675232 DOI: 10.1242/jeb.227074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Coral calcification relies on the transport of ions and molecules to the extracellular calcifying medium (ECM). Little is known about paracellular transport (via intercellular junctions) in corals and other marine calcifiers. Here, we investigated whether the permeability of the paracellular pathway varied in different environmental conditions in the coral Stylophora pistillata Using the fluorescent dye calcein, we characterised the dynamics of calcein influx from seawater to the ECM and showed that increases in paracellular permeability (leakiness) induced by hyperosmotic treatment could be detected by changes in calcein influx rates. We then used the calcein-imaging approach to investigate the effects of two environmental stressors on paracellular permeability: seawater acidification and temperature change. Under conditions of seawater acidification (pH 7.2) known to depress pH in the ECM and the calcifying cells of S. pistillata, we observed a decrease in half-times of calcein influx, indicating increased paracellular permeability. By contrast, high temperature (31°C) had no effect, whereas low temperature (20°C) caused decreases in paracellular permeability. Overall, our study establishes an approach to conduct further in vivo investigation of paracellular transport and suggests that changes in paracellular permeability could form an uncharacterised aspect of the physiological response of S. pistillata to seawater acidification.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Coralie Bernardet
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Apolline Chabenat
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| |
Collapse
|
40
|
Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat Ecol Evol 2020; 4:1531-1538. [DOI: 10.1038/s41559-020-01291-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
|
41
|
The role of aspartic acid in reducing coral calcification under ocean acidification conditions. Sci Rep 2020; 10:12797. [PMID: 32733044 PMCID: PMC7393068 DOI: 10.1038/s41598-020-69556-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Biomolecules play key roles in regulating the precipitation of CaCO3 biominerals but their response to ocean acidification is poorly understood. We analysed the skeletal intracrystalline amino acids of massive, tropical Porites spp. corals cultured over different seawater pCO2. We find that concentrations of total amino acids, aspartic acid/asparagine (Asx), glutamic acid/glutamine and alanine are positively correlated with seawater pCO2 and inversely correlated with seawater pH. Almost all variance in calcification rates between corals can be explained by changes in the skeletal total amino acid, Asx, serine and alanine concentrations combined with the calcification media pH (a likely indicator of the dissolved inorganic carbon available to support calcification). We show that aspartic acid inhibits aragonite precipitation from seawater in vitro, at the pH, saturation state and approximate aspartic acid concentrations inferred to occur at the coral calcification site. Reducing seawater saturation state and increasing [aspartic acid], as occurs in some corals at high pCO2, both serve to increase the degree of inhibition, indicating that biomolecules may contribute to reduced coral calcification rates under ocean acidification.
Collapse
|
42
|
Regulation of coral calcification by the acid-base sensing enzyme soluble adenylyl cyclase. Biochem Biophys Res Commun 2020; 525:576-580. [PMID: 32115151 DOI: 10.1016/j.bbrc.2020.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Coral calcification is intricately linked to the chemical composition of the fluid in the extracellular calcifying medium (ECM), which is situated between the calcifying cells and the skeleton. Here we demonstrate that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) is expressed in calcifying cells of the coral Stylophora pistillata. Furthermore, pharmacological inhibition of sAC in coral microcolonies resulted in acidification of the ECM as estimated by the pH-sensitive ratiometric indicator SNARF, and decreased calcification rates, as estimated by calcein labeling of crystal growth. These results indicate that sAC activity modulates some of the molecular machinery involved in producing the coral skeleton, which could include ion-transporting proteins and vesicular transport. To our knowledge this is the first study to directly demonstrate biological regulation of the alkaline pH of the coral ECM and its correlation with calcification.
Collapse
|
43
|
Ganot P, Tambutté E, Caminiti-Segonds N, Toullec G, Allemand D, Tambutté S. Ubiquitous macropinocytosis in anthozoans. eLife 2020; 9:50022. [PMID: 32039759 PMCID: PMC7032929 DOI: 10.7554/elife.50022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
Transport of fluids, molecules, nutrients or nanoparticles through coral tissues are poorly documented. Here, we followed the flow of various tracers from the external seawater to within the cells of all tissues in living animals. After entering the general coelenteric cavity, we show that nanoparticles disperse throughout the tissues via the paracellular pathway. Then, the ubiquitous entry gate to within the cells' cytoplasm is macropinocytosis. Most cells form large vesicles of 350-600 nm in diameter at their apical side, continuously internalizing their surrounding medium. Macropinocytosis was confirmed using specific inhibitors of PI3K and actin polymerization. Nanoparticle internalization dynamics is size dependent and differs between tissues. Furthermore, we reveal that macropinocytosis is likely a major endocytic pathway in other anthozoan species. The fact that nearly all cells of an animal are continuously soaking in the environment challenges many aspects of the classical physiology viewpoints acquired from the study of bilaterians.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Gaëlle Toullec
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
44
|
Melzner F, Mark FC, Seibel BA, Tomanek L. Ocean Acidification and Coastal Marine Invertebrates: Tracking CO 2 Effects from Seawater to the Cell. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:499-523. [PMID: 31451083 DOI: 10.1146/annurev-marine-010419-010658] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last few decades, numerous studies have investigated the impacts of simulated ocean acidification on marine species and communities, particularly those inhabiting dynamic coastal systems. Despite these research efforts, there are many gaps in our understanding, particularly with respect to physiological mechanisms that lead to pathologies. In this review, we trace how carbonate system disturbances propagate from the coastal environment into marine invertebrates and highlight mechanistic links between these disturbances and organism function. We also point toward several processes related to basic invertebrate biology that are severely understudied and prevent an accurate understanding of how carbonate system dynamics influence organismic homeostasis and fitness-related traits. We recommend that significant research effort be directed to studying cellular phenotypes of invertebrates acclimated or adapted to elevated seawater pCO2 using biochemical and physiological methods.
Collapse
Affiliation(s)
- Frank Melzner
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany;
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Brad A Seibel
- College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA;
| | - Lars Tomanek
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California 93407, USA;
| |
Collapse
|
45
|
Drake JL, Mass T, Stolarski J, Von Euw S, van de Schootbrugge B, Falkowski PG. How corals made rocks through the ages. GLOBAL CHANGE BIOLOGY 2020; 26:31-53. [PMID: 31696576 PMCID: PMC6942544 DOI: 10.1111/gcb.14912] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/03/2023]
Abstract
Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Stanislas Von Euw
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Paul G Falkowski
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
46
|
Bernardet C, Tambutté E, Techer N, Tambutté S, Venn AA. Ion transporter gene expression is linked to the thermal sensitivity of calcification in the reef coral Stylophora pistillata. Sci Rep 2019; 9:18676. [PMID: 31822787 PMCID: PMC6904480 DOI: 10.1038/s41598-019-54814-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Coral calcification underpins biodiverse reef ecosystems, but the physiology underlying the thermal sensitivity of corals to changing seawater temperatures remains unclear. Furthermore, light is also a key factor in modulating calcification rates, but a mechanistic understanding of how light interacts with temperature to affect coral calcification is lacking. Here, we characterized the thermal performance curve (TPC) of calcification of the wide-spread, model coral species Stylophora pistillata, and used gene expression analysis to investigate the role of ion transport mechanisms in thermally-driven declines in day and nighttime calcification. Focusing on genes linked to transport of dissolved inorganic carbon (DIC), calcium and H+, our study reveals a high degree of coherence between physiological responses (e.g. calcification and respiration) with distinct gene expression patterns to the different temperatures in day and night conditions. At low temperatures, calcification and gene expression linked to DIC transport processes were downregulated, but showed little response to light. By contrast, at elevated temperature, light had a positive effect on calcification and stimulated a more functionally diverse gene expression response of ion transporters. Overall, our findings highlight the role of mechanisms linked to DIC, calcium and H+ transport in the thermal sensitivity of coral calcification and how this sensitivity is influenced by light.
Collapse
Affiliation(s)
- C Bernardet
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - E Tambutté
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco
| | | | - S Tambutté
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco
| | - A A Venn
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco.
| |
Collapse
|
47
|
Conci N, Wörheide G, Vargas S. New Non-Bilaterian Transcriptomes Provide Novel Insights into the Evolution of Coral Skeletomes. Genome Biol Evol 2019; 11:3068-3081. [PMID: 31518412 PMCID: PMC6824150 DOI: 10.1093/gbe/evz199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
A general trend observed in animal skeletomes-the proteins occluded in animal skeletons-is the copresence of taxonomically widespread and lineage-specific proteins that actively regulate the biomineralization process. Among cnidarians, the skeletomes of scleractinian corals have been shown to follow this trend. However, distributions and phylogenetic analyses of biomineralization-related genes are often based on only a few species, with other anthozoan calcifiers such as octocorals (soft corals), not being fully considered. We de novo assembled the transcriptomes of four soft-coral species characterized by different calcification strategies (aragonite skeleton vs. calcitic sclerites) and data-mined published nonbilaterian transcriptome resources to construct a taxonomically comprehensive sequence database to map the distribution of scleractinian and octocoral skeletome components. Cnidaria shared no skeletome proteins with Placozoa or Ctenophora, but did share some skeletome proteins with Porifera, such as galaxin-related proteins. Within Scleractinia and Octocorallia, we expanded the distribution for several taxonomically restricted genes such as secreted acidic proteins, scleritin, and carbonic anhydrases, and propose an early, single biomineralization-recruitment event for galaxin sensu stricto. Additionally, we show that the enrichment of acidic residues within skeletogenic proteins did not occur at the Corallimorpharia-Scleractinia transition, but appears to be associated with protein secretion into the organic matrix. Finally, the distribution of octocoral calcification-related proteins appears independent of skeleton mineralogy (i.e., aragonite/calcite) with no differences in the proportion of shared skeletogenic proteins between scleractinians and aragonitic or calcitic octocorals. This points to skeletome homogeneity within but not between groups of calcifying cnidarians, although some proteins such as galaxins and SCRiP-3a could represent instances of commonality.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- SNSB—Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
48
|
Neder M, Laissue PP, Akiva A, Akkaynak D, Albéric M, Spaeker O, Politi Y, Pinkas I, Mass T. Mineral formation in the primary polyps of pocilloporoid corals. Acta Biomater 2019; 96:631-645. [PMID: 31302296 DOI: 10.1016/j.actbio.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
In reef-building corals, larval settlement and its rapid calcification provides a unique opportunity to study the bio-calcium carbonate formation mechanism involving skeleton morphological changes. Here we investigate the mineral formation of primary polyps, just after settlement, in two species of the pocilloporoid corals: Stylophora pistillata (Esper, 1797) and Pocillopora acuta (Lamarck, 1816). We show that the initial mineral phase is nascent Mg-Calcite, with rod-like morphology in P. acuta, and dumbbell morphology in S. pistillata. These structures constitute the first layer of the basal plate which is comparable to Rapid Accretion Deposits (Centers of Calcification, CoC) in adult coral skeleton. We found also that the rod-like/dumbbell Mg-Calcite structures in subsequent growth step will merge into larger aggregates by deposition of aragonite needles. Our results suggest that a biologically controlled mineralization of initial skeletal deposits occurs in three steps: first, vesicles filled with divalent ions are formed intracellularly. These vesicles are then transferred to the calcification site, forming nascent Mg-Calcite rod/pristine dumbbell structures. During the third step, aragonite crystals develop between these structures forming spherulite-like aggregates. STATEMENT OF SIGNIFICANCE: Coral settlement and recruitment periods are highly sensitive to environmental conditions. Successful mineralization during these periods is vital and influences the coral's chances of survival. Therefore, understanding the exact mechanism underlying carbonate precipitation is highly important. Here, we used in vivo microscopy, spectroscopy and molecular methods to provide new insights into mineral development. We show that the primary polyp's mineral arsenal consists of two types of minerals: Mg-Calcite and aragonite. In addition, we provide new insights into the ion pathway by showing that divalent ions are concentrated in intracellular vesicles and are eventually deposited at the calcification site.
Collapse
Affiliation(s)
- Maayan Neder
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | | | - Anat Akiva
- Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Derya Akkaynak
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel; Department of Marine Technologies, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Marie Albéric
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Oliver Spaeker
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Yael Politi
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.
| |
Collapse
|
49
|
DeCarlo TM, Comeau S, Cornwall CE, Gajdzik L, Guagliardo P, Sadekov A, Thillainath EC, Trotter J, McCulloch MT. Investigating marine bio-calcification mechanisms in a changing ocean with in vivo and high-resolution ex vivo Raman spectroscopy. GLOBAL CHANGE BIOLOGY 2019; 25:1877-1888. [PMID: 30689259 PMCID: PMC6916197 DOI: 10.1111/gcb.14579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/20/2023]
Abstract
Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the mechanisms of bio-calcification. Here, we present Raman spectroscopy techniques for characterizing the skeletal mineralogy and calcifying fluid chemistry of marine calcifying organisms such as corals, coralline algae, foraminifera, and fish (carbonate otoliths). First, our in vivo Raman technique is the ideal tool for investigating non-classical mineralization pathways. This includes calcification by amorphous particle attachment, which has recently been controversially suggested as a mechanism by which corals resist the negative effects of ocean acidification. Second, high-resolution ex vivo Raman mapping reveals complex banding structures in the mineralogy of marine calcifiers, and provides a tool to quantify calcification responses to environmental variability on various timescales from days to years. We describe the new insights into marine bio-calcification that our techniques have already uncovered, and we consider the wide range of questions regarding calcifier responses to global change that can now be proposed and addressed with these new Raman spectroscopy tools.
Collapse
Affiliation(s)
- Thomas M. DeCarlo
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| | - Steeve Comeau
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
- Present address:
Sorbonne Université, CNRS‐INSU, Laboratoire d'Océanographie de 30 Villefranche181 chemin du Lazaret, F–06230 Villefranche‐sur‐merFrance
| | - Christopher E. Cornwall
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
- Present address:
School of Biological SciencesVictoria University of WellingtonWellingtonNew‐Zealand
| | - Laura Gajdzik
- School of Molecular and Life Sciences, TrEnD LaboratoryCurtin UniversityBentleyWestern AustraliaAustralia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Aleksey Sadekov
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| | - Emma C. Thillainath
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Julie Trotter
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Earth SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Malcolm T. McCulloch
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| |
Collapse
|
50
|
Effects of light and darkness on pH regulation in three coral species exposed to seawater acidification. Sci Rep 2019; 9:2201. [PMID: 30778093 PMCID: PMC6379376 DOI: 10.1038/s41598-018-38168-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
The resilience of corals to ocean acidification has been proposed to rely on regulation of extracellular calcifying medium pH (pHECM), but few studies have compared the capacity of coral species to control this parameter at elevated pCO2. Furthermore, exposure to light and darkness influences both pH regulation and calcification in corals, but little is known about its effect under conditions of seawater acidification. Here we investigated the effect of acidification in light and darkness on pHECM, calcifying cell intracellular pH (pHI), calcification, photosynthesis and respiration in three coral species: Stylophora pistillata, Pocillopora damicornis and Acropora hyacinthus. We show that S. pistillata was able to maintain pHECM under acidification in light and darkness, but pHECM decreased in P. damicornis and A. hyacinthus to a much greater extent in darkness than in the light. Acidification depressed calcifying cell pHI in all three species, but we identified an unexpected positive effect of light on pHI. Calcification rate and pHECM decreased together under acidification, but there are inconsistencies in their relationship indicating that other physiological parameters are likely to shape how coral calcification responds to acidification. Overall our study reveals interspecies differences in coral regulation of pHECM and pHI when exposed to acidification, influenced by exposure to light and darkness.
Collapse
|