1
|
Bassi MR, Cristinoi B, Buitenwerf F, Cuadrado MB, Björnsson KH, Walker MR, Partey FD, Ward AB, Ofori MF, Barfod L. Deposition of complement regulators on the surface of Plasmodium falciparum merozoites depends on the immune status of the host. PLoS Pathog 2025; 21:e1013107. [PMID: 40294075 PMCID: PMC12064020 DOI: 10.1371/journal.ppat.1013107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 05/09/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Plasmodium falciparum is responsible for the majority of malaria cases and deaths worldwide. In malaria endemic areas, natural immunity to blood stage infection is acquired over several exposures to the parasite and is thought to rely on antibodies. Antibodies can protect from severe disease through different effector functions, with complement activation lately emerging as an important feature of protective humoral responses to malaria. Plasmodium parasites have however evolved several mechanisms to evade complement attack, including the recruitment of complement down-regulatory proteins like Factor H (FH) and C1 esterase inhibitor (C1-INH). In this study, we report that merozoite-specific antibodies acquired naturally after infection activate the complement cascade in an exposure-dependent manner. Using plasma samples from convalescent children and exposed adults collected respectively in Hohoe and Accra (Ghana), we show that the ability to fix C1q and activate the classical pathway is similar for antibodies deriving from the two donors groups. However, downstream complement activation shown as deposition of the membrane attack complex (MAC) is strikingly higher with antibodies from children compared to antibodies from adults. Moreover, we demonstrate that antibodies from naturally exposed children can interfere with the merozoite recruitment of FH, but not of C1-INH. With the aim of neutralizing parasite evasion of the complement classical pathway, we develop a murine monoclonal antibody targeting PfMSP3, the binding partner of C1-INH on the merozoite surface. We demonstrate that this antibody can effectively block the binding of C1-INH to the parasite surface, unlike the naturally acquired ones. Using cryogenic electron microscopy, we obtain a low-resolution structure of the monoclonal antibody in complex with PfMSP3, which is the first reported structural data for this antigen. We propose targeting parasite antigens binding to complement down-regulators, together with leading vaccine candidate antigens, as a novel strategy to enhance the efficacy of future malaria vaccines.
Collapse
Affiliation(s)
- Maria Rosaria Bassi
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bogdan Cristinoi
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frank Buitenwerf
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Bergholt Cuadrado
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Haldrup Björnsson
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Rose Walker
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael Fokuo Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Barfod
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Odhiambo EO, Mellencamp KA, Ondigo BN, Hamre KES, Beeson JG, Opi DH, Narum DL, Ayodo G, John CC. Antibody correlates of risk of clinical malaria in an area of low and unstable malaria transmission in western Kenya. Malar J 2025; 24:73. [PMID: 40033373 PMCID: PMC11877692 DOI: 10.1186/s12936-025-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Defining antibody correlates of protection against clinical malaria in areas of low and unstable transmission is challenging because of limited malaria cases in these areas. Additionally, clinical malaria affects both adults and children in areas of low and unstable transmission, but it is unclear whether antibody correlates of protection against malaria differ with age. METHODS Blood samples were obtained from 5753 individuals in Kenyan highland area with low and seasonal malaria transmission in 2007 and recorded episodes of clinical malaria in this population from 2007 to 2017. Using a nested case-control study design, participants who developed clinical malaria (cases) were matched by age and village to those who did not (controls). Immunoglobulin (Ig)G, IgG1, IgG3, IgA and IgM responses to 16 Plasmodium falciparum antigens were compared in individuals < 5 years old (80 cases vs. 240 controls), 5-14 years old (103 cases vs. 309 controls) and ≥ 15 years old (118 cases vs. 354 controls). Antibody level was correlated with risk of clinical malaria, adjusted for malaria exposure markers. RESULTS In all age groups, most antibodies were not associated with risk of clinical malaria. In children < 5 years, higher levels of IgG to GLURP-R2 and MSP-2, IgG1 to GLURP-R2, and IgG3 to MSP-2 were associated with reduced risk of clinical malaria, while higher IgG3 levels to CSP were associated with increased risk of clinical malaria. In children 5-14 years and individuals ≥ 15 years, higher antibody levels to multiple P. falciparum antigens were associated with an increased risk of clinical malaria, and none were associated with decreased risk of clinical malaria. CONCLUSIONS Antibody correlates of protection against clinical malaria were observed only in children < 5 years old in this area of low and unstable malaria transmission. In older children and adults in this area, some antibody responses correlated with increased risk of clinical malaria. Future studies in low malaria transmission areas should evaluate the comparative contributions of cellular and humoral immunity to protection from clinical malaria in young children versus older children and adults.
Collapse
Affiliation(s)
- Eliud O Odhiambo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Kagan A Mellencamp
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Indiana University School of Medicine, Indianapolis, USA
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
| | | | | | | | - David L Narum
- National Institutes of Health (NIAID/NIH), National Institute of Allergy and Infectious Diseases, Maryland, USA
| | - George Ayodo
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|
3
|
Saleh BH, Lugaajju A, Tijani MK, Danielsson L, Morris U, Persson KEM. An immuno-inflammatory profiling of asymptomatic individuals in a malaria endemic area in Uganda. Acta Trop 2024; 260:107446. [PMID: 39488329 DOI: 10.1016/j.actatropica.2024.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Malaria caused by Plasmodium falciparum leads to the destruction of red blood cells (RBCs). A better understanding of how naturally immune individuals control infections should be valuable for future vaccine studies. Antibodies against RBCs and RBC surface antigens were measured together with different inflammatory markers in healthy adults living in a malaria endemic area of Uganda and compared to Swedish healthy adults. Antibodies binding to RBCs were clearly elevated in Ugandans compared to Swedish samples, and for RBC surface antigens the Ugandans had higher levels of antibodies against JMH, but not against Cromer or Kell. Twenty-eight percent of the Ugandans were PCR-positive for P. falciparum, and these had higher levels of IgG against parasite extract and more inhibition in functional growth/invasion assays, but levels of antibodies against RBC, RBC surface antigens, results from Direct Antiglobulin Tests (DAT) and indirect antiglobulin tests were similar when compared with PCR-negative individuals. When inflammatory markers (α-1-antitrypsin, haptoglobin, orosomucoid/α-1-acid glycoprotein, CRP, IgG, IgA and IgM) were measured there were in general almost no signs of inflammation except for clearly elevated levels of IgG. Some had low levels of haptoglobin and for orosomucoid more than half of the individuals had clearly reduced levels. There was no correlation between the inflammatory markers and PCR-positivity, antibodies against RBCs or parasites. In conclusion, for healthy adults living in a malaria endemic area, there was a clear presence of antibodies against RBCs in parallel with high levels of IgG and almost no signs of inflammation, even though many individuals were carrying parasites.
Collapse
Affiliation(s)
- Bandar Hasan Saleh
- Department of Laboratory medicine, Lund University, Lund, Sweden; Department of Clinical Microbiology and Immunology, King Abdulaziz University, Saudi Arabia
| | - Allan Lugaajju
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Lena Danielsson
- Department of Laboratory medicine, Lund University, Lund, Sweden; Clinical Chemistry and Pharmacology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina E M Persson
- Department of Laboratory medicine, Lund University, Lund, Sweden; Clinical Chemistry and Pharmacology, Office for Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
4
|
Mo Z, Lin H, Lai X, Dan P, Wu H, Luo X, Dan X, Li Y. The predominant role of IgM in grouper (Epinephelus coioides) mucosal defense against ectoparasitic protozoan infection. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110023. [PMID: 39547269 DOI: 10.1016/j.fsi.2024.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The skin mucosa of fish is exposed to significant challenges from infectious disease agents due to continuous exposure to the aqueous environment. Interestingly, bony fish have evolved to express a unique IgT, which is absent in terrestrials, that appears to play a predominant role in the mucosal-associated lymphoid tissue of the rainbow trout. Nevertheless, in other IgT-producing fish, it is unclear whether IgM or IgT is primarily responsible for protection against infections of cutaneous tissue. Here, we show that grouper IgM appears quickly within the skin following challenge by the marine parasite, Crytopcaryon irritans. These IgM-class antibodies may arise from local proliferating antibody secreting cells or may infiltrate tissue from the serum in dimer polymer form. Based on details of IgM functional responses, we conclude that grouper IgM plays a predominant role in defense against C. irritans.
Collapse
Affiliation(s)
- Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huajian Lin
- Guangdong Animal Disease Prevention and Control Center (Guangdong Animal Health and Quarantine Institute), Guangzhou, 510665, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Pengbo Dan
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaochun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Soares IF, de Oliveira Baptista B, da Silva Matos A, Rodrigues-da-Silva RN, Kujbida Junior MA, Albrecht L, Rodolphi CM, Scopel KKG, Alencar ALC, de Souza RM, Dos Santos de Souza HA, Riccio EKP, de Barros JP, Totino PRR, Daniel-Ribeiro CT, Pratt-Riccio LR, Lima-Junior JDC. Characterization of T and B cell epitopes in PvCyRPA by studying the naturally acquired immune response in Brazilian Amazon communities. Sci Rep 2024; 14:27343. [PMID: 39521783 PMCID: PMC11550457 DOI: 10.1038/s41598-024-72671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024] Open
Abstract
Plasmodium vivax, a challenging species to eliminate, causes millions of malaria cases globally annually. Developing an effective vaccine is crucial in the fight against vivax malaria, but considering the limited number of studies focusing on the identification and development of P. vivax-specific vaccine candidates, exploring new antigens is an urgent need. The merozoite protein CyRPA is essential for P. falciparum growth and erythrocyte invasion and corresponds to a promising candidate antigen. In P. vivax, a single study with multiple vaccine candidates indicates PvCyRPA with strong association with protection, outperforming classic malaria vaccine candidates. However, little is known about the specific naturally acquired response in the Americas, as well as the antigen epitope mapping. For this reason, we aimed to investigate the cellular and humoral immune response elicited against PvCyRPA in Brazilian endemic areas to identify the existence of immunodominant regions and the potential of this protein as a single or even a multi-stage specific malaria vaccine candidate for P. vivax. The results demonstrated that PvCyRPA is naturally immunogenic in Brazilian Amazon individuals previously exposed to malaria, which presented anti-PvCyRPA cytophilic antibodies. Moreover, our data show that the protein also possesses important immunogenic regions with an overlap of B and T cell epitopes. These data reinforce the possibility of including PvCyRPA in vaccine formulations for P. vivax.
Collapse
Affiliation(s)
- Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | | | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | | | | | - Ana Luiza Carneiro Alencar
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Rodrigo Medeiros de Souza
- Laboratório de Doenças infecciosas na Amazônia Ocidental - Universidade Federal do Acre, Cruzeiro do Sul, AC, Brazil
| | | | | | | | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, RJ, Brazil
| | | | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Soares da Veiga GT, Donassolo RA, Forcellini S, Ferraboli JW, Kujbida Junior MA, Nisimura LM, Bassai LW, Kessler RL, Serpeloni M, Bittencourt NC, Salazar YEAR, Guimarães LFF, Louzada J, Barros DKADS, Lopes SCP, Carvalho LH, Nóbrega de Sousa T, Kano FS, Costa FTM, Fanini Wowk P, Albrecht L. Exploring the naturally acquired response to Pvs47 gametocyte antigen. Front Immunol 2024; 15:1455454. [PMID: 39450180 PMCID: PMC11499161 DOI: 10.3389/fimmu.2024.1455454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Malaria represents a challenging global public health task, with Plasmodium vivax being the predominant parasite in Brazil and the most widely distributed species throughout the world. Developing a vaccine against P. vivax malaria demands innovative strategies, and targeting gametocyte antigens shows promise for blocking transmission prevention. Among these antigens, Pvs47, expressed in gametocytes, has shown remarkable efficacy in transmission blocking. However, remains underexplored in vaccine formulations. This study employed in silico methods to comprehensively characterize the physicochemical properties, structural attributes, epitope presence, and conservation profile of Pvs47. Additionally, we assessed its antigenicity in individuals exposed to malaria in endemic Brazilian regions. Recombinant protein expression occurred in a eukaryotic system, and antigenicity was evaluated using immunoenzymatic assays. The responses of naturally acquired IgM, total IgG, and IgG subclasses were analyzed in three groups of samples from Amazon region. Notably, all samples exhibited anti-Pvs47 IgM and IgG antibodies, with IgG3 predominating. Asymptomatic patients demonstrated stronger IgG responses and more diverse subclass responses. Anti-Pvs47 IgM and IgG responses in symptomatic individuals decrease over time. Furthermore, we observed a negative correlation between anti-Pvs47 IgM response and gametocytemia in samples of symptomatic patients, indicating a gametocyte-specific response. Additionally, negative correlation was observed among anti-Pvs47 antibody response and hematocrit levels. Furthermore, comparative analysis with widely characterized blood antigens, PvAMA1 and PvMSP119, revealed that Pvs47 was equally or more recognized than both proteins. In addition, there is positive correlation between P. vivax blood asexual and sexual stage immune responses. In summary, our study unveils a significant prevalence of anti-Pvs47 antibodies in diverse Amazonian samples and the importance of IgM response for gametocytes depuration. These findings regarding the in silico characterization and antigenicity of Pvs47 provide crucial insights for potential integration into P. vivax vaccine formulations.
Collapse
Affiliation(s)
| | - Rafael Amaral Donassolo
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Sofia Forcellini
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Julia Weber Ferraboli
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Mario Antonio Kujbida Junior
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Líndice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | | | | | | | - Najara Carneiro Bittencourt
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Yanka Evellyn Alves R. Salazar
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Luiz Felipe Ferreira Guimarães
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Jaime Louzada
- Laboratório de Parasitologia e Monitoramento de Artrópodes Vetores na Amazônia, Centro de Ciências da Saúde, Universidade Federal de Roraima (UFRR), Boa Vista, Brazil
| | | | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil
| | - Luzia Helena Carvalho
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Tais Nóbrega de Sousa
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Flora Satiko Kano
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Pryscilla Fanini Wowk
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| |
Collapse
|
7
|
Reyes RA, Turner L, Ssewanyana I, Jagannathan P, Feeney ME, Lavstsen T, Greenhouse B, Bol S, Bunnik EM. Differences in phenotype between long-lived memory B cells against Plasmodium falciparum merozoite antigens and variant surface antigens. PLoS Pathog 2024; 20:e1012661. [PMID: 39466842 PMCID: PMC11542837 DOI: 10.1371/journal.ppat.1012661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in ten Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University, Stanford, California, United States of America
| | - Margaret E. Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sebastiaan Bol
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
8
|
Tumbo A, Lorenz FR, Yang ASP, Sefried S, Schindler T, Mpina M, Dangy JP, Milando FA, Rashid MA, Nyaulingo G, Ramadhani K, Jongo S, Felgner PL, Abebe Y, Sim BKL, Church LWP, Richie TL, Billingsley PF, Murshedkar T, Hoffman SL, Abdulla S, Kremsner PG, Mordmüller B, Daubenberger C, Fendel R. PfSPZ Vaccine induces focused humoral immune response in HIV positive and negative Tanzanian adults. EBioMedicine 2024; 108:105364. [PMID: 39353279 PMCID: PMC11464252 DOI: 10.1016/j.ebiom.2024.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.
Collapse
Affiliation(s)
- Anneth Tumbo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Freia-Raphaella Lorenz
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Sefried
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Maximilian Mpina
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Jean-Pierre Dangy
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Mohammed A Rashid
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Gloria Nyaulingo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Kamaka Ramadhani
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Said Jongo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | | | - Yonas Abebe
- Sanaria Inc., Rockville, Maryland, United States
| | | | | | | | | | | | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| |
Collapse
|
9
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Rodolphi CM, Soares IF, Matos ADS, Rodrigues-da-Silva RN, Ferreira MU, Pratt-Riccio LR, Totino PRR, Scopel KKG, Lima-Junior JDC. Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study. Antibodies (Basel) 2024; 13:69. [PMID: 39189240 PMCID: PMC11348034 DOI: 10.3390/antib13030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Malaria is a serious health problem worldwide affecting mainly children and socially vulnerable people. The biological particularities of P. vivax, such as the ability to generate dormant liver stages, the rapid maturation of gametocytes, and the emergence of drug resistance, have contributed to difficulties in disease control. In this context, developing an effective vaccine has been considered a fundamental tool for the efficient control and/or elimination of vivax malaria. Although recombinant proteins have been the main strategy used in designing vaccine prototypes, synthetic immunogenic peptides have emerged as a viable alternative for this purpose. Considering, therefore, that in the Brazilian endemic population, little is known about the profile of the humoral immune response directed to synthetic peptides that represent different P. vivax proteins, the present work aimed to map the epitope-specific antibodies' profiles to synthetic peptides representing the linear portions of the ookinete and sporozoite cell passage protein (CelTOS), thrombospondin-related adhesive protein (TRAP), and cysteine-rich protective antigen (CyRPA) proteins in the acute (AC) and convalescent phases (Conv30 and Conv180 after infection) of vivax malaria. The results showed that the studied subjects responded to all proteins for at least six months following infection. For IgM, a few individuals (3-21%) were positive during the acute phase of the disease; the highest frequencies were observed for IgG (28-57%). Regarding the subclasses, IgG2 and IgG3 stood out as the most prevalent for all peptides. During the follow-up, the stability of IgG was observed for all peptides. Only one significant positive correlation was observed between IgM and exposure time. We conclude that for all the peptides, the immunodominant epitopes are recognized in the exposed population, with similar frequency and magnitude. However, if the antibodies detected in this study are potential protectors, this needs to be investigated.
Collapse
Affiliation(s)
- Cinthia Magalhães Rodolphi
- Research Centre of Parasitology, Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Isabela Ferreira Soares
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| | - Ada da Silva Matos
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| | | | - Marcelo Urbano Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo 05508-220, Brazil;
| | - Lilian Rose Pratt-Riccio
- Laboratory for Malaria Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.R.P.-R.); (P.R.R.T.)
- Center for Research, Diagnosis, and Training in Malaria of Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Paulo Renato Rivas Totino
- Laboratory for Malaria Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.R.P.-R.); (P.R.R.T.)
- Center for Research, Diagnosis, and Training in Malaria of Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Kézia Katiani Gorza Scopel
- Research Centre of Parasitology, Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Josué da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| |
Collapse
|
11
|
Rosenkranz M, Nkumama IN, Ogwang R, Kraker S, Blickling M, Mwai K, Odera D, Tuju J, Fürle K, Frank R, Chepsat E, Kapulu MC, Study Team CS, Osier FH. Full-length MSP1 is a major target of protective immunity after controlled human malaria infection. Life Sci Alliance 2024; 7:e202301910. [PMID: 38803222 PMCID: PMC11106525 DOI: 10.26508/lsa.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Irene N Nkumama
- B Cell Immunology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sara Kraker
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marie Blickling
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Dennis Odera
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Emily Chepsat
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chmi-Sika Study Team
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith Ha Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
12
|
Gbaguidi MLE, Adamou R, Edslev S, Hansen A, Domingo ND, Dechavanne C, Massougbodji A, Garcia A, Theisen M, Milet J, Donadi EA, Courtin D. IgG and IgM responses to the Plasmodium falciparum asexual stage antigens reflect respectively protection against malaria during pregnancy and infanthood. Malar J 2024; 23:154. [PMID: 38764069 PMCID: PMC11103834 DOI: 10.1186/s12936-024-04970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is a public health issue mostly seen in tropical countries. Until now, there is no effective malaria vaccine against antigens specific to the blood-stage of P. falciparum infection. Because the pathogenesis of malarial disease results from blood-stage infection, it is essential to identify the most promising blood-stage vaccine candidate antigens under natural exposure to malaria infection. METHODS A cohort of 400 pregnant women and their infants was implemented in South Benin. An active and passive protocol of malaria surveillance was established during pregnancy and infancy to precisely ascertain malaria infections during the follow-up. Twenty-eight antibody (Ab) responses specific to seven malaria candidate vaccine antigens were repeatedly quantified during pregnancy (3 time points) and infancy (6 time points) in order to study the Ab kinetics and their protective role. Abs were quantified by ELISA and logistic, linear and cox-proportional hazard model were performed to analyse the associations between Ab responses and protection against malaria in mothers and infants, taking into account socio-economic factors and for infants an environmental risk of exposure. RESULTS The levels of IgM against MSP1, MSP2 and MSP3 showed an early protective response against the onset of symptomatic malaria infections starting from the 18th month of life, whereas no association was found for IgG responses during infancy. In women, some IgG responses tend to be associated with a protection against malaria risk along pregnancy and at delivery, among them IgG3 against GLURP-R0 and IgG2 against MSP1. CONCLUSION The main finding suggests that IgM should be considered in vaccine designs during infanthood. Investigation of the functional role played by IgM in malaria protection needs further attention.
Collapse
Affiliation(s)
- Mahugnon L Erasme Gbaguidi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- IRD, MERIT, Université Paris Cité, 75006, Paris, France
- Centre d'Etude Et de Recherche Sur Les Pathologies Associées À La Grossesse Et À L'Enfance, Cotonou, Bénin
| | - Rafiou Adamou
- IRD, MERIT, Université Paris Cité, 75006, Paris, France
- Centre d'Etude Et de Recherche Sur Les Pathologies Associées À La Grossesse Et À L'Enfance, Cotonou, Bénin
| | - Sofie Edslev
- Institut de Recherche Clinique du Bénin, Abomey-Calavi, Benin
| | - Anita Hansen
- Institut de Recherche Clinique du Bénin, Abomey-Calavi, Benin
| | - Nadia D Domingo
- Centre d'Etude Et de Recherche Sur Les Pathologies Associées À La Grossesse Et À L'Enfance, Cotonou, Bénin
| | | | | | - André Garcia
- IRD, MERIT, Université Paris Cité, 75006, Paris, France
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | | | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - David Courtin
- IRD, MERIT, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
13
|
Peraire J, García-Pardo G, Chafino S, Sánchez A, Botero-Gallego M, Olona M, Espineira S, Reverté L, Skouridou V, Peiró ÓM, Gómez-Bertomeu F, Vidal F, O' Sullivan CK, Rull A. Immunoglobulins in COVID-19 pneumonia: from the acute phase to the recovery phase. Eur J Med Res 2024; 29:223. [PMID: 38581072 PMCID: PMC10998353 DOI: 10.1186/s40001-024-01824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND COVID-19 pneumonia causes hyperinflammatory response that culminates in acute respiratory syndrome (ARDS) related to increased multiorgan dysfunction and mortality risk. Antiviral-neutralizing immunoglobulins production reflect the host humoral status and illness severity, and thus, immunoglobulin (Ig) circulating levels could be evidence of COVID-19 prognosis. METHODS The relationship among circulating immunoglobulins (IgA, IgG, IgM) and COVID-19 pneumonia was evaluated using clinical information and blood samples in a COVID-19 cohort composed by 320 individuals recruited during the acute phase and followed up to 4 to 8 weeks (n = 252) from the Spanish first to fourth waves. RESULTS COVID-19 pneumonia development depended on baseline Ig concentrations. Circulating IgA levels together with clinical features at acute phase was highly associated with COVID-19 pneumonia development. IgM was positively correlated with obesity (ρb = 0.156, P = 0.020), dyslipemia (ρb = 0.140, P = 0.029), COPD (ρb = 0.133, P = 0.037), cancer (ρb = 0.173, P = 0.007) and hypertension (ρb = 0.148, P = 0.020). Ig concentrations at recovery phase were related to COVID-19 treatments. CONCLUSIONS Our results provide valuable information on the dynamics of immunoglobulins upon SARS-CoV-2 infection or other similar viruses.
Collapse
Affiliation(s)
- Joaquim Peraire
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili (URV), Tarragona, Spain
| | - Graciano García-Pardo
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili (URV), Tarragona, Spain
| | - Silvia Chafino
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Sánchez
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Maryluz Botero-Gallego
- Universitat Rovira I Virgili (URV), Tarragona, Spain
- INTERFIBIO Consolidated Research Group, Tarragona, Spain
| | - Montserrat Olona
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili (URV), Tarragona, Spain
| | - Sonia Espineira
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Universitat Rovira I Virgili (URV), Tarragona, Spain
| | - Laia Reverté
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Vasso Skouridou
- Universitat Rovira I Virgili (URV), Tarragona, Spain
- INTERFIBIO Consolidated Research Group, Tarragona, Spain
| | - Óscar M Peiró
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Universitat Rovira I Virgili (URV), Tarragona, Spain
| | - Fréderic Gómez-Bertomeu
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili (URV), Tarragona, Spain
| | - Francesc Vidal
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili (URV), Tarragona, Spain
| | - Ciara K O' Sullivan
- Universitat Rovira I Virgili (URV), Tarragona, Spain.
- INTERFIBIO Consolidated Research Group, Tarragona, Spain.
| | - Anna Rull
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain.
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Universitat Rovira I Virgili (URV), Tarragona, Spain.
| |
Collapse
|
14
|
Tandel N, Patel D, Thakkar M, Shah J, Tyagi RK, Dalai SK. Poly(I:C) and R848 ligands show better adjuvanticity to induce B and T cell responses against the antigen(s). Heliyon 2024; 10:e26887. [PMID: 38455541 PMCID: PMC10918150 DOI: 10.1016/j.heliyon.2024.e26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Poly(I:C) and R848, synthetic ligands that activate Toll-like receptor 3 (TLR3) and TLR7/8 respectively, have been well-established for their ability to stimulate the immune system and induce antigen-specific immune responses. These ligands are capable of inducing the production of cytokines and chemokines, and hence support the activation and differentiation of B and T cells. We saw the long-lasting and perdurable immune responses by these adjuvants essentially required for an efficacious subunit vaccine. In this study, we investigated the potential of poly(I:C) and R848 to elicit B and T cell responses to the OVA antigen. We assessed the stimulatory effects of these ligands on the immune system, their impact on B and T cell activation, and their ability to enhanced generation of B and T cells. Collectively, our findings contribute to the understanding how poly(I:C) and R848 can be utilized as an adjuvant system to enhance immune responses to protein-based subunit vaccines. In the end, this work provides insights for the development of novel vaccination strategies and improving the vaccine efficacy. Present work shall help formulate newer strategies for subunit vaccines to address the infectious diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Digna Patel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Mansi Thakkar
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Jagrut Shah
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K. Dalai
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
16
|
Abad P, Coronado M, Vincelle-Nieto Á, Pérez-Benavente S, Fobil JN, Puyet A, Diez A, Reyes-Palomares A, Azcárate IG, Bautista JM. Shotgun Characterization of the Circulating IgM Antigenome of an Infectious Pathogen by Immunocapture-LC-MS/MS from Dried Serum Spots. J Proteome Res 2024; 23:633-643. [PMID: 38183416 DOI: 10.1021/acs.jproteome.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
One of the main challenges in compiling the complete collection of protein antigens from pathogens for the selection of vaccine candidates or intervention targets is to acquire a broad enough representation of them to be recognized by the highly diversified immunoglobulin repertoire in human populations. Dried serum spot sampling (DSS) retains a large repertoire of circulating immunoglobulins from each individual that can be representative of a population, according to the sample size. In this work, shotgun proteomics of an infectious pathogen based on DSS sampling coupled with IgM immunoprecipitation, liquid chromatography-mass spectrometry (LC-MS/MS), and bioinformatic analyses was combined to characterize the circulating IgM antigenome. Serum samples from a malaria endemic region at different clinical statuses were studied to optimize IgM binding efficiency and antibody leaching by varying serum/immunomagnetic bead ratios and elution conditions. The method was validated using Plasmodium falciparum extracts identifying 110 of its IgM-reactive antigens while minimizing the presence of human proteins and antibodies. Furthermore, the IgM antigen recognition profile differentiated between malaria-infected and noninfected individuals at the time of sampling. We conclude that a shotgun proteomics approach offers advantages in providing a high-throughput, reliable, and clean way to identify IgM-recognized antigens from trace amounts of serum. The mass spectrometry raw data and metadata have been deposited with ProteomeXchange via MassIVE with the PXD identifier PXD043800.
Collapse
Affiliation(s)
- Paloma Abad
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Montserrat Coronado
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - África Vincelle-Nieto
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Julius N Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P.O. Box LG 13, G-4381 Legon, Ghana
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Isabel G Azcárate
- Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
| | - José M Bautista
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
17
|
Mortazavi SE, Lugaajju A, Nylander M, Danielsson L, Tijani MK, Beeson JG, Persson KEM. Acquisition of complement fixing antibodies targeting Plasmodium falciparum merozoites in infants and their mothers in Uganda. Front Immunol 2023; 14:1295543. [PMID: 38090561 PMCID: PMC10715273 DOI: 10.3389/fimmu.2023.1295543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Background Antibody-mediated complement fixation has previously been associated with protection against malaria in naturally acquired immunity. However, the process of early-life development of complement-fixing antibodies in infants, both in comparison to their respective mothers and to other immune parameters, remains less clear. Results We measured complement-fixing antibodies in newborns and their mothers in a malaria endemic area over 5 years follow-up and found that infants' complement-fixing antibody levels were highest at birth, decreased until six months, then increased progressively until they were similar to birth at five years. Infants with high levels at birth experienced a faster decay of complement-fixing antibodies but showed similar levels to the low response group of newborns thereafter. No difference was observed in antibody levels between infant cord blood and mothers at delivery. The same result was found when categorized into high and low response groups, indicating placental transfer of antibodies. Complement-fixing antibodies were positively correlated with total schizont-specific IgG and IgM levels in mothers and infants at several time points. At nine months, complement-fixing antibodies were negatively correlated with total B cell frequency and osteopontin concentrations in the infants, while positively correlated with atypical memory B cells and P. falciparum-positive atypical memory B cells. Conclusion This study indicates that complement-fixing antibodies against P. falciparum merozoites are produced in the mothers and placentally-transferred, and they are acquired in infants over time during the first years of life. Understanding early life immune responses is crucial for developing a functional, long lasting malaria vaccine.
Collapse
Affiliation(s)
- Susanne E. Mortazavi
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Maria Nylander
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lena Danielsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Muyideen Kolapo Tijani
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Cellular Parasitology Program, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - James G. Beeson
- The Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Kristina E. M. Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
18
|
de Assis GMP, de Alvarenga DAM, Souza LBE, Sánchez-Arcila JC, Silva EFE, de Pina-Costa A, Gonçalves GHP, Souza JCDJ, Nunes AJD, Pissinatti A, Moreira SB, Torres LDM, Costa HL, Tinoco HDP, Pereira VDS, Soares IDS, de Sousa TN, Ntumngia FB, Adams JH, Kano FS, Hirano ZMB, Pratt-Riccio LR, Daniel-Ribeiro CT, Ferreira JO, Carvalho LH, Alves de Brito CF. IgM antibody responses against Plasmodium antigens in neotropical primates in the Brazilian Atlantic Forest. Front Cell Infect Microbiol 2023; 13:1169552. [PMID: 37829607 PMCID: PMC10565664 DOI: 10.3389/fcimb.2023.1169552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/11/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Zoonotic transmission is a challenge for the control and elimination of malaria. It has been recorded in the Atlantic Forest, outside the Amazon which is the endemic region in Brazil. However, only very few studies have assessed the antibody response, especially of IgM antibodies, in Neotropical primates (NP). Therefore, in order to contribute to a better understanding of the immune response in different hosts and facilitate the identification of potential reservoirs, in this study, naturally acquired IgM antibody responses against Plasmodium antigens were evaluated, for the first time, in NP from the Atlantic Forest. Methods The study was carried out using 154 NP samples from three different areas of the Atlantic Forest. IgM antibodies against peptides of the circumsporozoite protein (CSP) from different Plasmodium species and different erythrocytic stage antigens were detected by ELISA. Results Fifty-nine percent of NP had IgM antibodies against at least one CSP peptide and 87% against at least one Plasmodium vivax erythrocytic stage antigen. Levels of antibodies against PvAMA-1 were the highest compared to the other antigens. All families of NP showed IgM antibodies against CSP peptides, and, most strikingly, against erythrocytic stage antigens. Generalized linear models demonstrated that IgM positivity against PvCSP and PvAMA-1 was associated with PCR-detectable blood-stage malaria infection and the host being free-living. Interestingly, animals with IgM against both PvCSP and PvAMA-1 were 4.7 times more likely to be PCR positive than animals that did not have IgM for these two antigens simultaneously. Discussion IgM antibodies against different Plasmodium spp. antigens are present in NP from the Atlantic Forest. High seroprevalence and antibody levels against blood-stage antigens were observed, which had a significant association with molecular evidence of infection. IgM antibodies against CSP and AMA-1 may be used as a potential marker for the identification of NP infected with Plasmodium, which are reservoirs of malaria in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Gabriela Maíra Pereira de Assis
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | | - Luisa Braga e Souza
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Juan Camilo Sánchez-Arcila
- School of Natural Sciences, Molecular and Cell Biology Department, University of California, Merced, Merced, CA, United States
| | | | - Anielle de Pina-Costa
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
- Escola de Enfermagem Aurora de Afonso Costa, Departamento de Doenças infecciosas e Parasitárias, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | - Ana Julia Dutra Nunes
- Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Programa de conservação do Bugio Ruivo, Perini Business Park, Joinville, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, Brazil
- Centro Universitário Serra dos Órgãos (Unifeso), Teresópolis, Brazil
| | - Silvia Bahadian Moreira
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, Brazil
| | - Leticia de Menezes Torres
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Helena Lott Costa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | | | | - Irene da Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Taís Nóbrega de Sousa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Francis Babila Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Zelinda Maria Braga Hirano
- Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Programa de conservação do Bugio Ruivo, Perini Business Park, Joinville, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Joseli Oliveira Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Luzia Helena Carvalho
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | |
Collapse
|
19
|
Gonçalves J, Melro M, Alenquer M, Araújo C, Castro-Neves J, Amaral-Silva D, Ferreira F, Ramalho JS, Charepe N, Serrano F, Pontinha C, Amorim MJ, Soares H. Balance between maternal antiviral response and placental transfer of protection in gestational SARS-CoV-2 infection. JCI Insight 2023; 8:e167140. [PMID: 37490342 PMCID: PMC10544212 DOI: 10.1172/jci.insight.167140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
The intricate interplay between maternal immune response to SARS-CoV-2 and the transfer of protective factors to the fetus remains unclear. By analyzing mother-neonate dyads from second and third trimester SARS-CoV-2 infections, our study shows that neutralizing antibodies (NAbs) are infrequently detected in cord blood. We uncovered that this is due to impaired IgG-NAb placental transfer in symptomatic infection and to the predominance of maternal SARS-CoV-2 NAbs of the IgA and IgM isotypes, which are prevented from crossing the placenta. Crucially, the balance between maternal antiviral response and transplacental transfer of IgG-NAbs appears to hinge on IL-6 and IL-10 produced in response to SARS-CoV-2 infection. In addition, asymptomatic maternal infection was associated with expansion of anti-SARS-CoV-2 IgM and NK cell frequency. Our findings identify a protective role for IgA/IgM-NAbs in gestational SARS-CoV-2 infection and open the possibility that the maternal immune response to SARS-CoV-2 infection might benefit the neonate in 2 ways, first by skewing maternal immune response toward immediate viral clearance, and second by endowing the neonate with protective mechanisms to curtail horizontal viral transmission in the critical postnatal period, via the priming of IgA/IgM-NAbs to be transferred by the breast milk and via NK cell expansion in the neonate.
Collapse
Affiliation(s)
- Juliana Gonçalves
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Magda Melro
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Marta Alenquer
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | - Catarina Araújo
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Júlia Castro-Neves
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Daniela Amaral-Silva
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Filipe Ferreira
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | | | - Nádia Charepe
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- CHRC, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Fátima Serrano
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- CHRC, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Carlos Pontinha
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | - Helena Soares
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| |
Collapse
|
20
|
Rosenkranz M, Fürle K, Hibbert J, Ulmer A, Ali A, Giese T, Blank A, Haefeli WE, Böhnlein E, Lanzer M, Thomson-Luque R. Multifunctional IgG/IgM antibodies and cellular cytotoxicity are elicited by the full-length MSP1 SumayaVac-1 malaria vaccine. NPJ Vaccines 2023; 8:112. [PMID: 37558673 PMCID: PMC10412566 DOI: 10.1038/s41541-023-00701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
Radical control of malaria likely requires a vaccine that targets both the asymptomatic liver stages and the disease-causing blood stages of the human malaria parasite Plasmodium falciparum. While substantial progress has been made towards liver stage vaccines, the development of a blood stage vaccine is lagging behind. We have recently conducted a first-in-human clinical trial to evaluate the safety and immunogenicity of the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as adjuvant. Here, we show that the vaccine, termed SumayaVac-1, elicited both a humoral and cellular immune response as well as a recall T cell memory. The induced IgG and IgM antibodies were able to stimulate various Fc-mediated effector mechanisms associated with protection against malaria, including phagocytosis, release of reactive oxygen species, production of IFN-γ as well as complement activation and fixation. The multifunctional activity of the humoral immune response remained for at least 6 months after vaccination and was comparable to that of naturally acquired anti-MSP1 antibodies from semi-immune adults from Kenya. We further present evidence of SumayaVac-1 eliciting a recallable cellular cytotoxicity by IFN-γ producing CD8+ T cells. Our study revitalizes MSP1FL as a relevant blood stage vaccine candidate and warrants further evaluation of SumayaVac-1 in a phase II efficacy trial.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Ulmer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arin Ali
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University Hospital and German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Antje Blank
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Lanzer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Sumaya-Biotech GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
21
|
Matos ADS, Soares IF, Baptista BDO, de Souza HADS, Chaves LB, Perce-da-Silva DDS, Riccio EKP, Albrecht L, Totino PRR, Rodrigues-da-Silva RN, Daniel-Ribeiro CT, Pratt-Riccio LR, Lima-Junior JDC. Construction, Expression, and Evaluation of the Naturally Acquired Humoral Immune Response against Plasmodium vivax RMC-1, a Multistage Chimeric Protein. Int J Mol Sci 2023; 24:11571. [PMID: 37511330 PMCID: PMC10380678 DOI: 10.3390/ijms241411571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Lana Bitencourt Chaves
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Imunologia Básica e Aplicada, Centro Universitário Arthur Sá Earp Neto/Faculdade de Medicina de Petrópolis (UNIFASE/FMP), Petrópolis 25680-120, RJ, Brazil
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Curitiba 81350-010, PR, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Nunes Rodrigues-da-Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
22
|
Sharma G, Chatterjee S, Chakraborty C, Kim JC. Advances in Nanozymes as a Paradigm for Viral Diagnostics and Therapy. Pharmacol Rev 2023; 75:739-757. [PMID: 36707250 DOI: 10.1124/pharmrev.122.000719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Over the past few decades, humankind has constantly encountered new viral species that create havoc in the socioeconomic balance worldwide. Among the method to combat these novel viral infections, fast and point-of-care diagnosis is of prime importance to contain the spreading of viral infections. However, most sensitive diagnostic systems for viral infections are time-consuming and require well-trained professionals, making it difficult for the patients. In recent years nanozymes emerged as promising therapeutic and fast diagnostic tools due to their multienzyme-like catalytic performance. Nanozymes can be designed using inorganic or organic components with tailorable physicochemical surface properties, enabling the attachment of various molecules and species on the surface of the nanozyme for specific recognition. In addition to the composition, the multienzyme-like catalytic performance can be modulated by the shape and size of the nanoparticles. Due to their multicatalytic abilities, nanozymes can be used for fast diagnosis and therapy for viral infections. Here we attempt to focus on the insights and recent explorations on the advances in designing various types of nanozymes as a theranostic tool for viral infections. Thus, this review intends to generate interest in the clinical translation of nanozymes as a theranostic tool for viral infections by providing knowledge about the multidisciplinary potential of nanozyme. SIGNIFICANCE STATEMENT: The multienzyme-like properties of nanozymes suggest their role in diagnosing and treating various diseases. Although the potential roles of nanozymes for various viral infections have been studied in the last few decades, no review provides recent explorations on designing various types of nanozymes for the detection and treatment of viral infections. This review provides insights into designing nanozymes to diagnose and treat viral infections, assisting future researchers in developing clinically translatable nanozymes to combat novel viral infections.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| | - Srijan Chatterjee
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| | - Chiranjib Chakraborty
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| |
Collapse
|
23
|
Ji C, Shen H, Su C, Li Y, Chen S, Sharp TH, Xiao J. Plasmodium falciparum has evolved multiple mechanisms to hijack human immunoglobulin M. Nat Commun 2023; 14:2650. [PMID: 37156765 PMCID: PMC10167334 DOI: 10.1038/s41467-023-38320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Plasmodium falciparum causes the most severe malaria in humans. Immunoglobulin M (IgM) serves as the first line of humoral defense against infection and potently activates the complement pathway to facilitate P. falciparum clearance. A number of P. falciparum proteins bind IgM, leading to immune evasion and severe disease. However, the underlying molecular mechanisms remain unknown. Here, using high-resolution cryo-electron microscopy, we delineate how P. falciparum proteins VAR2CSA, TM284VAR1, DBLMSP, and DBLMSP2 target IgM. Each protein binds IgM in a different manner, and together they present a variety of Duffy-binding-like domain-IgM interaction modes. We further show that these proteins interfere directly with IgM-mediated complement activation in vitro, with VAR2CSA exhibiting the most potent inhibitory effect. These results underscore the importance of IgM for human adaptation of P. falciparum and provide critical insights into its immune evasion mechanism.
Collapse
Affiliation(s)
- Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, PR China
| | - Hao Shen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yaxin Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Shihua Chen
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center, 2300, RC, Leiden, The Netherlands
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, PR China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
24
|
Niaré K, Chege T, Rosenkranz M, Mwai K, Saßmannshausen Z, Odera D, Nyamako L, Tuju J, Alfred T, Waitumbi JN, Ogutu B, Sirima SB, Awandare G, Kouriba B, Rayner JC, Osier FHA. Characterization of a novel Plasmodium falciparum merozoite surface antigen and potential vaccine target. Front Immunol 2023; 14:1156806. [PMID: 37122725 PMCID: PMC10140549 DOI: 10.3389/fimmu.2023.1156806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Detailed analyses of genetic diversity, antigenic variability, protein localization and immunological responses are vital for the prioritization of novel malaria vaccine candidates. Comprehensive approaches to determine the most appropriate antigen variants needed to provide broad protection are challenging and consequently rarely undertaken. Methods Here, we characterized PF3D7_1136200, which we named Asparagine-Rich Merozoite Antigen (ARMA) based on the analysis of its sequence, localization and immunogenicity. We analyzed IgG and IgM responses against the common variants of ARMA in independent prospective cohort studies in Burkina Faso (N = 228), Kenya (N = 252) and Mali (N = 195) using a custom microarray, Div-KILCHIP. Results We found a marked population structure between parasites from Africa and Asia. African isolates shared 34 common haplotypes, including a dominant pair although the overall selection pressure was directional (Tajima's D = -2.57; Fu and Li's F = -9.69; P < 0.02). ARMA was localized to the merozoite surface, IgG antibodies induced Fc-mediated degranulation of natural killer cells and strongly inhibited parasite growth in vitro. We found profound serological diversity, but IgG and IgM responses were highly correlated and a hierarchical clustering analysis identified only three major serogroups. Protective IgG and IgM antibodies appeared to target both cross-reactive and distinct epitopes across variants. However, combinations of IgG and IgM antibodies against selected variants were associated with complete protection against clinical episodes of malaria. Discussion Our systematic strategy exploits genomic data to deduce the handful of antigen variants with the strongest potential to induce broad protection and may be broadly applicable to other complex pathogens for which effective vaccines remain elusive.
Collapse
Affiliation(s)
- Karamoko Niaré
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- *Correspondence: Karamoko Niaré, ; Faith H. A. Osier,
| | - Timothy Chege
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Zoe Saßmannshausen
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Odera
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Nyamako
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - James Tuju
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - Tiono Alfred
- Public Health Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - John N. Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Bernhards Ogutu
- Kenya Medical Research Institute, Centre for Clinical Research, Nairobi, Kenya
| | | | - Gordon Awandare
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Bourema Kouriba
- Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Centre d’Infectiologie Charles Mérieux-Mali, Bamako, Mali
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Faith H. A. Osier
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Karamoko Niaré, ; Faith H. A. Osier,
| |
Collapse
|
25
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The Defensive Interactions of Prominent Infectious Protozoan Parasites: The Host's Complement System. Biomolecules 2022; 12:1564. [PMID: 36358913 PMCID: PMC9687244 DOI: 10.3390/biom12111564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2023] Open
Abstract
The complement system exerts crucial functions both in innate immune responses and adaptive humoral immunity. This pivotal system plays a major role dealing with pathogen invasions including protozoan parasites. Different pathogens including parasites have developed sophisticated strategies to defend themselves against complement killing. Some of these strategies include the employment, mimicking or inhibition of host's complement regulatory proteins, leading to complement evasion. Therefore, parasites are proven to use the manipulation of the complement system to assist them during infection and persistence. Herein, we attempt to study the interaction´s mechanisms of some prominent infectious protozoan parasites including Plasmodium, Toxoplasma, Trypanosoma, and Leishmania dealing with the complement system. Moreover, several crucial proteins that are expressed, recruited or hijacked by parasites and are involved in the modulation of the host´s complement system are selected and their role for efficient complement killing or lysis evasion is discussed. In addition, parasite's complement regulatory proteins appear as plausible therapeutic and vaccine targets in protozoan parasitic infections. Accordingly, we also suggest some perspectives and insights useful in guiding future investigations.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein 38811, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein 38811, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
26
|
Morajkar RV, Kumar AS, Kunkalekar RK, Vernekar AA. Advances in nanotechnology application in biosafety materials: A crucial response to COVID-19 pandemic. BIOSAFETY AND HEALTH 2022; 4:347-363. [PMID: 35765656 PMCID: PMC9225943 DOI: 10.1016/j.bsheal.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has adversely affected the public domain causing unprecedented cases and high mortality across the globe. This has brought back the concept of biosafety into the spotlight to solve biosafety problems in developing diagnostics and therapeutics to treat COVID-19. The advances in nanotechnology and material science in combination with medicinal chemistry have provided a new perspective to overcome this crisis. Herein, we discuss the efforts of researchers in the field of material science in developing personal protective equipment (PPE), detection devices, vaccines, drug delivery systems, and medical equipment. Such a synergistic approach of disciplines can strengthen the research to develop biosafety products in solving biosafety problems.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Akhil S Kumar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Rohan K Kunkalekar
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| |
Collapse
|
27
|
Abstract
The thick mucus layer covering of the intestinal epithelium has received increasing attention, owing to its protective role in intestinal infection. However, the exact mechanisms by which the mucus increases intestinal resistance against viral infection remain largely unclear. Here, we identify prominent antiviral activity of the small intestinal mucus and extracted total mucus proteins, as evidenced by their inhibitory effects against porcine epidemic diarrhea virus (PEDV) infection. Of all the extracted mucus proteins, mucin 2 and fraction III (~70 kDa) exhibited potent antiviral activity. We further evaluated the antiviral effects of three candidate factors in fraction III and found that calpain-1 contributed substantially to its antiviral activity. In vivo studies demonstrated that oral administration of calpain-1 provided effective protection against intestinal PEDV infection. As a calcium-activated cysteine protease, calpain-1 inhibited viral invasion by binding to and hydrolyzing the S1 domain of the viral spike protein. The region between amino acids 297 and 337 in the b domain of PEDV S1 protein was critical for calpain-1-mediated hydrolysis. Further investigation indicated that calpain-1 could be produced by goblet cells between intestinal epithelia. Taken together, the results of our study revealed calpain-1 to be a novel antiviral protein in porcine small intestinal mucus, suggesting that calpain-1 has potential for defending against intestinal infections.
Collapse
|
28
|
The impact of human complement on the clinical outcome of malaria infection. Mol Immunol 2022; 151:19-28. [PMID: 36063583 DOI: 10.1016/j.molimm.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
The tropical disease malaria remains a major cause of global morbidity. Once transmitted to the human by a blood-feeding mosquito, the unicellular malaria parasite comes into contact with the complement system and continues to interact with human complement during its intraerythrocytic replication cycles. In the course of infection, both the classical and the alternative pathway of complement are activated, leading to parasite opsonization and lysis as well as the induction of complement-binding antibodies. While complement activity can be linked to the severity of malaria, it remains to date unclear, whether human complement is beneficial for protective immunity or if extensive complement reactions may rather enhance pathogenesis. In addition, the parasite has evolved molecular strategies to circumvent attack by human complement and has even developed means to utilize complement factors as mediators of host cell infection. In this review, we highlight current knowledge on the role of human complement for the progression of malaria infection. We discuss the various types of interactions between malaria parasites and complement factors with regard to immunity and infection outcome and set a special emphasis on the dual role of complement in the context of parasite fitness.
Collapse
|
29
|
Abad P, Marín-García P, Heras M, Fobil JN, Hutchful AG, Diez A, Puyet A, Reyes-Palomares A, Azcárate IG, Bautista JM. Microscopic and submicroscopic infection by Plasmodium falciparum: Immunoglobulin M and A profiles as markers of intensity and exposure. Front Cell Infect Microbiol 2022; 12:934321. [PMID: 36118030 PMCID: PMC9478039 DOI: 10.3389/fcimb.2022.934321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Assessment of serological Plasmodium falciparum–specific antibodies in highly endemic areas provides valuable information about malaria status and parasite exposure in the population. Although serological evidence of Plasmodium exposure is commonly determined by Plasmodium-specific immunoglobulin G (IgG) levels; IgM and IgA are likely markers of malaria status that remain relatively unexplored. Previous studies on IgM and IgA responses have been based on their affinity for single antigens with shortage of immune responses analysis against the whole Plasmodium proteome. Here, we provide evidence of how P. falciparum infection triggers the production of specific IgM and IgA in plasma and its relationship with parasite density and changes in hematological parameters. A total of 201 individuals attending a hospital in Breman Asikuma, Ghana, were recruited into this study. Total and P. falciparum–specific IgM, IgA, and IgG were assessed by ELISA and examined in relation to age (0–5, 14–49, and ≥50 age ranges); infection (submicroscopic vs. microscopic malaria); pregnancy and hematological parameters. Well-known IgG response was used as baseline control. P. falciparum–specific IgM and IgA levels increased in the population with the age, similarly to IgG. These data confirm that acquired humoral immunity develops by repeated infections through the years endorsing IgM and IgA as exposure markers in endemic malaria regions. High levels of specific IgA and IgM in children were associated with microscopic malaria and worse prognosis, because most of them showed severe anemia. This new finding shows that IgM and IgA may be used as diagnostic markers in this age group. We also found an extremely high prevalence of submicroscopic malaria (46.27% on average) accompanied by IgM and IgA levels indistinguishable from those of uninfected individuals. These data, together with the observed lack of sensitivity of rapid diagnostic tests (RDTs) compared to PCR, invoke the urgent need to implement diagnostic markers for submicroscopic malaria. Overall, this study opens the potential use of P. falciparum–specific IgM and IgA as new serological markers to predict malaria status in children and parasite exposure in endemic populations. The difficulties in finding markers of submicroscopic malaria are highlighted, emphasizing the need to explore this field in depth.
Collapse
Affiliation(s)
- Paloma Abad
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | | | - Marcos Heras
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Julius N. Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alfred G. Hutchful
- Laboratory of Hematology and Infectious Diseases, Our Lady of Grace Hospital, Breman-Asikuma, Ghana
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel G. Azcárate
- Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| |
Collapse
|
30
|
Vargas-Villavicencio JA, Cañedo-Solares I, Correa D. Anti-Toxoplasma gondii IgM Long Persistence: What Are the Underlying Mechanisms? Microorganisms 2022; 10:microorganisms10081659. [PMID: 36014077 PMCID: PMC9415799 DOI: 10.3390/microorganisms10081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosis of Toxoplasma gondii acute infection was first attempted by detection of specific IgM antibodies, as for other infectious diseases. However, it was noted that this immunoglobulin declines slowly and may last for months or even years. Apart from the diagnostic problem imposed on clinical management, this phenomenon called our attention due to the underlying phenomena that may be causing it. We performed a systematic comparison of reports studying IgM antibody kinetics, and the data from the papers were used to construct comparative plots and other graph types. It became clear that this phenomenon is quite generalized, and it may also occur in animals. Moreover, this is not a technical issue, although some tests make more evident the prolonged IgM decay than others. We further investigated biological reasons for its occurrence, i.e., infection dynamics (micro-reactivation–encystment, reinfection and reactivation), parasite strain relevance, as well as host innate, natural B cell responses and Ig class-switch problems inflicted by the parasite. The outcomes of these inquiries are presented and discussed herein.
Collapse
Affiliation(s)
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Dolores Correa
- Dirección de Investigación/Centro de Investigación en Ciencias de la Salud, FCS, Universidad Anáhuac México Campus Norte, Av Universidad Anáhuc 46, Lomas Anáhuac, Huixquilucan 52786, Mexico
- Correspondence: ; Tel.: +52-(55)-5627-0210-7637
| |
Collapse
|
31
|
Tayipto Y, Rosado J, Gamboa D, White MT, Kiniboro B, Healer J, Opi DH, Beeson JG, Takashima E, Tsuboi T, Harbers M, Robinson L, Mueller I, Longley RJ. Assessment of IgG3 as a serological exposure marker for Plasmodium vivax in areas with moderate-high malaria transmission intensity. Front Cell Infect Microbiol 2022; 12:950909. [PMID: 36017364 PMCID: PMC9395743 DOI: 10.3389/fcimb.2022.950909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
A more sensitive surveillance tool is needed to identify Plasmodium vivax infections for treatment and to accelerate malaria elimination efforts. To address this challenge, our laboratory has developed an eight-antigen panel that detects total IgG as serological markers of P. vivax exposure within the prior 9 months. The value of these markers has been established for use in areas with low transmission. In moderate-high transmission areas, there is evidence that total IgG is more long-lived than in areas with low transmission, resulting in poorer performance of these markers in these settings. Antibodies that are shorter-lived may be better markers of recent infection for use in moderate-high transmission areas. Using a multiplex assay, the antibody temporal kinetics of total IgG, IgG1, IgG3, and IgM against 29 P. vivax antigens were measured over 36 weeks following asymptomatic P. vivax infection in Papua New Guinean children (n = 31), from an area with moderate-high transmission intensity. IgG3 declined faster to background than total IgG, IgG1, and IgM. Based on these kinetics, IgG3 performance was then assessed for classifying recent exposure in a cohort of Peruvian individuals (n = 590; age 3-85 years) from an area of moderate transmission intensity. Using antibody responses against individual antigens, the highest performance of IgG3 in classifying recent P. vivax infections in the prior 9 months was to one of the Pv-fam-a proteins assessed (PVX_125728) (AUC = 0.764). Surprisingly, total IgG was overall a better marker of recent P. vivax infection, with the highest individual classification performance to RBP2b1986-2653 (PVX_094255) (AUC = 0.838). To understand the acquisition of IgG3 in this Peruvian cohort, relevant epidemiological factors were explored using a regression model. IgG3 levels were positively associated with increasing age, living in an area with (relatively) higher transmission intensity, and having three or more PCR-detected blood-stage P. vivax infections within the prior 13 months. Overall, we found that IgG3 did not have high accuracy for detecting recent exposure to P. vivax in the Peruvian cohort, with our data suggesting that this is due to the high levels of prior exposure required to acquire high IgG3 antibody levels.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason Rosado
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Dionicia Gamboa
- Laboratorio International Centers of Excellence for Malaria Research (ICEMR)-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael T. White
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Benson Kiniboro
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Julie Healer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - D. Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Eizo Takashima
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Leanne Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Rhea J. Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Rogier E, Nace D, Dimbu PR, Wakeman B, Beeson JG, Drakeley C, Tetteh K, Plucinski M. Antibody dynamics in children with first or repeat Plasmodium falciparum infections. Front Med (Lausanne) 2022; 9:869028. [PMID: 35928289 PMCID: PMC9343764 DOI: 10.3389/fmed.2022.869028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin (Ig) production during and after infection with Plasmodium parasites is one of the greatest adaptive immune defenses the human host has against this parasite. Infection with P. falciparum has been shown to induce different B cell maturation responses dependent upon the age of the patient, number of previous exposures, and severity of the disease. Described here are dynamics of Ig responses to a panel of 32 P. falciparum antigens by patients followed for 42 days and classified individuals as showing characteristics of an apparent first P. falciparum infection (naïve) or a repeat exposure (non-naïve). Six parameters were modeled to characterize the dynamics of IgM, IgG1, IgG3, and IgA for these two exposure groups with differences assessed among Ig isotypes/subclasses and unique antigens. Naïve patients had significantly longer periods of time to reach peak Ig titer (range 4–7 days longer) and lower maximum Ig titers when compared with non-naïve patients. Modeled time to seronegativity was significantly higher in non-naïve patients for IgM and IgA, but not for the two IgG subclasses. IgG1 responses to Rh2030, HSP40, and PfAMA1 were at the highest levels for non-naïve participants and may be used to predict previous or nascent exposure by themselves. The analyses presented here demonstrate the differences in the development of the Ig response to P. falciparum if the infection represents a boosting response or a primary exposure. Consistency in Ig isotype/subclasses estimates and specific data for P. falciparum antigens can better guide interpretation of seroepidemiological data among symptomatic persons.
Collapse
Affiliation(s)
- Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
- *Correspondence: Eric Rogier,
| | - Doug Nace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | - Brian Wakeman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - James G. Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin Tetteh
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mateusz Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
- U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
33
|
Chan JA, Loughland JR, de la Parte L, Okano S, Ssewanyana I, Nalubega M, Nankya F, Musinguzi K, Rek J, Arinaitwe E, Tipping P, Bourke P, Andrew D, Dooley N, SheelaNair A, Wines BD, Hogarth PM, Beeson JG, Greenhouse B, Dorsey G, Kamya M, Hartel G, Minigo G, Feeney M, Jagannathan P, Boyle MJ. Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nat Commun 2022; 13:4159. [PMID: 35851033 PMCID: PMC9293980 DOI: 10.1038/s41467-022-31880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/08/2022] [Indexed: 01/29/2023] Open
Abstract
T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica R Loughland
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | | | - Satomi Okano
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Mayimuna Nalubega
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Peta Tipping
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | - Peter Bourke
- Division of Medicine, Cairns Hospital, Manunda, QLD, Australia
| | - Dean Andrew
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Dooley
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Griffith University, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Grant Dorsey
- University of California San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gunter Hartel
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
- College of Health and Human Sciences, Charles Darwin University, Darwin, NT, Australia
| | - Margaret Feeney
- University of California San Francisco, San Francisco, CA, USA
| | | | - Michelle J Boyle
- Burnet Institute, Melbourne, VIC, Australia.
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia.
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
34
|
Dassah S, Adu B, Tiendrebeogo RW, Singh SK, Arthur FKN, Sirima SB, Theisen M. GMZ2 Vaccine-Induced Antibody Responses, Naturally Acquired Immunity and the Incidence of Malaria in Burkinabe Children. Front Immunol 2022; 13:899223. [PMID: 35720297 PMCID: PMC9200992 DOI: 10.3389/fimmu.2022.899223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
GMZ2 is a malaria vaccine candidate evaluated in a phase 2b multi-centre trial. Here we assessed antibody responses and the association of naturally acquired immunity with incidence of malaria in one of the trial sites, Banfora in Burkina Faso. The analysis included 453 (GMZ2 = 230, rabies = 223) children aged 12-60 months old. Children were followed-up for clinical malaria episodes for 12 months after final vaccine administration. Antibody levels against GMZ2 and eleven non-GMZ2 antigens were measured on days 0 and 84 (one month after final vaccine dose). Vaccine efficacy (VE) differed by age group (interaction, (12-35 months compared to 36-60 months), p = 0.0615). During the twelve months of follow-up, VE was 1% (95% confidence interval [CI] -17%, 17%) and 23% ([CI] 3%, 40%) in the 12 - 35 and 36 - 60 months old children, respectively. In the GMZ2 group, day 84 anti-GMZ2 IgG levels were associated with reduced incidence of febrile malaria during the follow up periods of 1-6 months (hazard ratio (HR) = 0.87, 95%CI = (0.77, 0.98)) and 7-12 months (HR = 0.84, 95%CI = (0.71, 0.98)) in the 36-60 months old but not in 12-35 months old children. Multivariate analysis involving day 84 IgG levels to eleven non-vaccine antigens, identified MSP3-K1 and GLURP-R2 to be associated with reduced incidence of malaria during the 12 months of follow up. The inclusion of these antigens might improve GMZ2 vaccine efficacy.
Collapse
Affiliation(s)
- Sylvester Dassah
- Navrongo Health Research Centre, Navrongo, Ghana.,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Régis W Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Senté (GRAS), Ouagadougou, Burkina Faso
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
36
|
Gonzales SJ, Clarke KN, Batugedara G, Garza R, Braddom AE, Reyes RA, Ssewanyana I, Garrison KC, Ippolito GC, Greenhouse B, Bol S, Bunnik EM. A Molecular Analysis of Memory B Cell and Antibody Responses Against Plasmodium falciparum Merozoite Surface Protein 1 in Children and Adults From Uganda. Front Immunol 2022; 13:809264. [PMID: 35720313 PMCID: PMC9201334 DOI: 10.3389/fimmu.2022.809264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.
Collapse
Affiliation(s)
- S. Jake Gonzales
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kathleen N. Clarke
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gayani Batugedara
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ashley E. Braddom
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kendra C. Garrison
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Gregory C. Ippolito
- Department of Molecular Biosciences and Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
37
|
Kimingi HW, Kinyua AW, Achieng NA, Wambui KM, Mwangi S, Nguti R, Kivisi CA, Jensen ATR, Bejon P, Kapulu MC, Abdi AI, Kinyanjui SM. Breadth of Antibodies to Plasmodium falciparum Variant Surface Antigens Is Associated With Immunity in a Controlled Human Malaria Infection Study. Front Immunol 2022; 13:894770. [PMID: 35711446 PMCID: PMC9195513 DOI: 10.3389/fimmu.2022.894770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Plasmodium falciparum variant surface antigens (VSAs) contribute to malaria pathogenesis by mediating cytoadhesion of infected red blood cells to the microvasculature endothelium. In this study, we investigated the association between anti-VSA antibodies and clinical outcome in a controlled human malaria infection (CHMI) study. Method We used flow cytometry and ELISA to measure levels of IgG antibodies to VSAs of five heterologous and one homologous P. falciparum parasite isolates, and to two PfEMP1 DBLβ domains in blood samples collected a day before the challenge and 14 days after infection. We also measured the ability of an individual's plasma to inhibit the interaction between PfEMP1 and ICAM1 using competition ELISA. We then assessed the association between the antibody levels, function, and CHMI defined clinical outcome during a 21-day follow-up period post infection using Cox proportional hazards regression. Results Antibody levels to the individual isolate VSAs, or to two ICAM1-binding DBLβ domains of PfEMP1, were not associated with a significantly reduced risk of developing parasitemia or of meeting treatment criteria after the challenge after adjusting for exposure. However, anti-VSA antibody breadth (i.e., cumulative response to all the isolates) was a significant predictor of reduced risk of requiring treatment [HR 0.23 (0.10-0.50) p= 0.0002]. Conclusion The breadth of IgG antibodies to VSAs, but not to individual isolate VSAs, is associated with protection in CHMI.
Collapse
Affiliation(s)
- Hannah W. Kimingi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Ann W. Kinyua
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nicole A. Achieng
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy M. Wambui
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaban Mwangi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roselyne Nguti
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Cheryl A. Kivisi
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | - Anja T. R. Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Melisa C. Kapulu
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Abdirahman I. Abdi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | - Samson M. Kinyanjui
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
- School of Business Studies, Strathmore University, Nairobi, Kenya
| |
Collapse
|
38
|
Studniberg SI, Ioannidis LJ, Utami RAS, Trianty L, Liao Y, Abeysekera W, Li‐Wai‐Suen CSN, Pietrzak HM, Healer J, Puspitasari AM, Apriyanti D, Coutrier F, Poespoprodjo JR, Kenangalem E, Andries B, Prayoga P, Sariyanti N, Smyth GK, Cowman AF, Price RN, Noviyanti R, Shi W, Garnham AL, Hansen DS. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol Syst Biol 2022; 18:e10824. [PMID: 35475529 PMCID: PMC9045086 DOI: 10.15252/msb.202110824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/12/2023] Open
Abstract
Clinical immunity to P. falciparum malaria is non-sterilizing, with adults often experiencing asymptomatic infection. Historically, asymptomatic malaria has been viewed as beneficial and required to help maintain clinical immunity. Emerging views suggest that these infections are detrimental and constitute a parasite reservoir that perpetuates transmission. To define the impact of asymptomatic malaria, we pursued a systems approach integrating antibody responses, mass cytometry, and transcriptional profiling of individuals experiencing symptomatic and asymptomatic P. falciparum infection. Defined populations of classical and atypical memory B cells and a TH2 cell bias were associated with reduced risk of clinical malaria. Despite these protective responses, asymptomatic malaria featured an immunosuppressive transcriptional signature with upregulation of pathways involved in the inhibition of T-cell function, and CTLA-4 as a predicted regulator in these processes. As proof of concept, we demonstrated a role for CTLA-4 in the development of asymptomatic parasitemia in infection models. The results suggest that asymptomatic malaria is not innocuous and might not support the induction of immune processes to fully control parasitemia or efficiently respond to malaria vaccines.
Collapse
Affiliation(s)
- Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Retno A S Utami
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia,Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Leily Trianty
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Yang Liao
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Connie S N Li‐Wai‐Suen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Halina M Pietrzak
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | | | - Dwi Apriyanti
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | | | | | | | | | - Pak Prayoga
- Papuan Health and Community FoundationPapuaIndonesia
| | | | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| | | | - Wei Shi
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
39
|
Fitri LE, Widaningrum T, Endharti AT, Prabowo MH, Winaris N, Nugraha RYB. Malaria diagnostic update: From conventional to advanced method. J Clin Lab Anal 2022; 36:e24314. [PMID: 35247002 PMCID: PMC8993657 DOI: 10.1002/jcla.24314] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Update diagnostic methods play essential roles in dealing with the current global malaria situation and decreasing malaria incidence. AIM Global malaria control programs require the availability of adequate laboratory tests in the quick and convenient field. RESULTS There are several methods to find out the existence of parasites within the blood. The oldest one is by microscopy, which is still a gold standard, although rapid diagnostic tests (RDTs) have rapidly become a primary diagnostic test in many endemic areas. Because of microscopy and RDTs limitation, novel serological and molecular methods have been developed. Many kinds of polymerase chain reaction (PCR) provide rapid results and higher specificity and sensitivity. The loop-mediated isothermal amplification (LAMP) and biosensing-based molecular techniques as point of care tests (POCT) will become a cost-effective approach to advance diagnostic testing. CONCLUSION Despite conventional techniques are still being used in the field, the exploration and field implementation of advanced techniques for the diagnosis of malaria are still being developed rapidly.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | - Tarina Widaningrum
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Department of PharmacologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | | | | | - Nuning Winaris
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | - Rivo Yudhinata Brian Nugraha
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| |
Collapse
|
40
|
Liu ZSJ, Sattabongkot J, White M, Chotirat S, Kumpitak C, Takashima E, Harbers M, Tham WH, Healer J, Chitnis CE, Tsuboi T, Mueller I, Longley RJ. Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand. BMC Med 2022; 20:89. [PMID: 35260169 PMCID: PMC8904165 DOI: 10.1186/s12916-022-02281-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium vivax (P. vivax) is the dominant Plasmodium spp. causing the disease malaria in low-transmission regions outside of Africa. These regions often feature high proportions of asymptomatic patients with sub-microscopic parasitaemia and relapses. Naturally acquired antibody responses are induced after Plasmodium infection, providing partial protection against high parasitaemia and clinical episodes. However, previous work has failed to address the presence and maintenance of such antibody responses to P. vivax particularly in low-transmission regions. METHODS We followed 34 patients in western Thailand after symptomatic P. vivax infections to monitor antibody kinetics over 9 months, during which no recurrent infections occurred. We assessed total IgG, IgG subclass and IgM levels to up to 52 P. vivax proteins every 2-4 weeks using a multiplexed Luminex® assay and identified protein-specific variation in antibody longevity. Mathematical modelling was used to generate the estimated half-life of antibodies, long-, and short-lived antibody-secreting cells. RESULTS Generally, an increase in antibody level was observed within 1-week post symptomatic infection, followed by an exponential decay of different rates. We observed mostly IgG1 dominance and IgG3 sub-dominance in this population. IgM responses followed similar kinetic patterns to IgG, with some proteins unexpectedly inducing long-lived IgM responses. We also monitored antibody responses against 27 IgG-immunogenic antigens in 30 asymptomatic individuals from a similar region. Our results demonstrate that most antigens induced robust and long-lived total IgG responses following asymptomatic infections in the absence of (detected) boosting infections. CONCLUSIONS Our work provides new insights into the development and maintenance of naturally acquired immunity to P. vivax and will guide the potential use of serology to indicate immune status and/or identify populations at risk.
Collapse
Affiliation(s)
- Zoe Shih-Jung Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Current affiliation: Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3220, Australia
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eizo Takashima
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan and RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | | | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhea J Longley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
41
|
Olanlokun JO, Okoro PO, Olorunsogo OO. The roles of betulinic acid on circulating concentrations of creatine kinase and immunomodulation in mice infected with chloroquine-susceptible and resistant strains of Plasmodium berghei. J Parasit Dis 2022; 46:124-132. [PMID: 35299933 PMCID: PMC8901915 DOI: 10.1007/s12639-021-01407-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Complete malarial therapy depends largely on the immunological and inflammatory response of the host to the invading potentials of malarial parasite. In this study, we evaluated the roles of betulinic acid on immunological response, anti-inflammatory potentials, cardiac and skeletal muscle tissue damage in mice infected with chloroquine susceptible (NK 65) and resistant (ANKA) strains of Plasmodium berghei. Serum Interleukins 1β and 6 (IL-1β, IL-6), tumour necrosis factor alpha (TNF-α), immunoglobulins G and M (IgG and IgM), C-reactive protein (CRP) and creatine kinase (CK) were determined using ELISA technique. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma glutammyl transferase (GGT) were determined using ELISA technique. The results showed that betulinic acid decreased the levels of IL-1β, IL-6, TNF-α and CRP relative to the infected control. The IgG and IgM levels significantly increased in both models while CK did not decrease significantly in both models although serum AST, ALT and GGT significantly decreased compared to the infected control. These results showed that betulinic acid possessed anti-inflammatory, immunomodulatory and remediating effects on tissue damage. Furthermore, the decrease in activity of CK brought about by betulinic acid is indicative of decrease in cardiac and skeletal muscle injury which is a major pathological concern in Plasmodium infection and treatment.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Praise Oghenegare Okoro
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
42
|
O'Flaherty K, Roe M, Fowkes FJ. The role of naturally acquired antimalarial antibodies in subclinical
Plasmodium
spp. infection. J Leukoc Biol 2022; 111:1097-1105. [PMID: 35060185 PMCID: PMC9303632 DOI: 10.1002/jlb.5mr1021-537r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Katherine O'Flaherty
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
| | - Merryn Roe
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
| | - Freya J.I. Fowkes
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
- Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health, The University of Melbourne Melbourne Australia
- Department of Infectious Disease Monash University Melbourne Australia
| |
Collapse
|
43
|
Walker IS, Chung AW, Damelang T, Rogerson SJ. Analysis of Antibody Reactivity to Malaria Antigens by Microsphere-Based Multiplex Immunoassay. Methods Mol Biol 2022; 2470:309-325. [PMID: 35881355 DOI: 10.1007/978-1-0716-2189-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein multiplex assays enable serological analysis of multiple target proteins simultaneously, using relatively small volumes of patient sample per assay. Here we present a detailed protocol to analyze antibody reactivity to malaria antigens by microsphere-based multiplex assay (xMAP technology). This method involves coupling of recombinant proteins to fluorescently labeled microspheres; simultaneous exposure of all microspheres to plasma or sera, and detection of antigen-specific antibodies with a fluorescent labeled anti-human Fc region antibody. In addition to total IgG, this assay can be adapted to measure multiple properties of the antibody Fc region, including subclass, isotype, and Fc receptor or complement C1q binding.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Medicine, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
Oyong DA, Loughland JR, Soon MSF, Chan JA, Andrew D, Wines BD, Hogarth PM, Olver SD, Collinge AD, Varelias A, Beeson JG, Kenangalem E, Price RN, Anstey NM, Minigo G, Boyle MJ. Adults with Plasmodium falciparum malaria have higher magnitude and quality of circulating T-follicular helper cells compared to children. EBioMedicine 2022; 75:103784. [PMID: 34968760 PMCID: PMC8718734 DOI: 10.1016/j.ebiom.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Protective malarial antibodies are acquired more rapidly in adults than children, independently of cumulative exposure, however the cellular responses mediating these differences are unknown. CD4 T-follicular helper (Tfh) cells have key roles in inducing antibodies, with Th2-Tfh cell activation associated with antibody development in malaria. Whether Tfh cell activation in malaria is age dependent is unknown and no studies have compared Tfh cell activation in children and adults with malaria. METHODS We undertook a comprehensive study of Tfh cells, along with B cells and antibody induction in children and adults with malaria. Activation and proliferation of circulating Tfh (cTfh) cell subsets was measured ex vivo and parasite-specific Tfh cell frequencies and functions studied with Activation Induced Marker (AIM) assays and intracellular cytokine staining. FINDINGS During acute malaria, the magnitude of cTfh cell activation was higher in adults than in children and occurred across all cTfh cell subsets in adults but was restricted only to the Th1-cTfh subset in children. Further, adults had higher levels of parasite-specific cTfh cells, and cTfh cells which produced more Th2-Tfh associated cytokine IL-4. Consistent with a role of higher Tfh cell activation in rapid immune development in adults, adults had higher activation of B cells during infection and higher induction of antibodies 7 and 28 days after malaria compared to children. INTERPRETATION Our data provide evidence that age impacts Tfh cell activation during malaria, and that these differences may influence antibody induction after treatment. Findings have important implications for vaccine development in children. FUNDING This word was supported by the National Health and Medical Research Council of Australia, Wellcome Trust, Charles Darwin University Menzies School of Health Research, Channel 7 Children's Research Foundation, and National Health Institute.
Collapse
Affiliation(s)
- Damian A Oyong
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Jessica R Loughland
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alika D Collinge
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia; Department of Microbiology, Monash University, VIC, Australia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Michelle J Boyle
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Burnet Institute, Melbourne, VIC, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia.
| |
Collapse
|
45
|
Mugo RM, Mwai K, Mwacharo J, Shee FM, Musyoki JN, Wambua J, Otieno E, Bejon P, Ndungu FM. Seven-year kinetics of RTS, S/AS01-induced anti-CSP antibodies in young Kenyan children. Malar J 2021; 20:452. [PMID: 34856981 PMCID: PMC8641151 DOI: 10.1186/s12936-021-03961-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND RTS,S/AS01, the leading malaria vaccine has been recommended by the WHO for widespread immunization of children at risk. RTS,S/AS01-induced anti-CSP IgG antibodies are associated with the vaccine efficacy. Here, the long-term kinetics of RTS,S/AS01-induced antibodies was investigated. METHODS 150 participants were randomly selected from the 447 children who participated in the RTS,S/AS01 phase IIb clinical trial in 2007 from Kilifi-Kenya. Cumulatively, the retrospective follow-up period was 93 months with annual plasma samples collection. The levels of anti-CSP IgM, total IgG, IgG1, IgG2, IgG3, and IgG4 antibodies were then determined using an enzyme-linked immunosorbent assay. RESULTS RTS,S/AS01 induced high levels of anti-CSP IgG antibodies which exhibited a rapid waning over 6.5 months post-vaccination, followed by a slower decay over the subsequent years. RTS,S/AS01-induced anti-CSP IgG antibodies remained elevated above the control group levels throughout the 7 years follow-up period. The anti-CSP IgG antibodies were mostly IgG1, IgG3, IgG2, and to a lesser extent IgG4. IgG2 predominated in later timepoints. RTS,S/AS01 also induced high levels of anti-CSP IgM antibodies which increased above the control group levels by month 3. The controls exhibited increasing levels of the anti-CSP IgM antibodies which caught up with the RTS,S/AS01 vaccinees levels by month 21. In contrast, there were no measurable anti-CSP IgG antibodies among the controls. CONCLUSION RTS,S/AS01-induced anti-CSP IgG antibodies kinetics are consistent with long-lived but waning vaccine efficacy. Natural exposure induces anti-CSP IgM antibodies in children, which increases with age, but does not induce substantial levels of anti-CSP IgG antibodies.
Collapse
Affiliation(s)
- Robert M Mugo
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya.
- Institute of Immunology, Center for Infection Medicine, Freie Universtät Berlin, 14163, Berlin, Germany.
- Department of Biological Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya.
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Jedidah Mwacharo
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Faiz M Shee
- Department of Biological Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | - Jennifer N Musyoki
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Juliana Wambua
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Edward Otieno
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francis M Ndungu
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya.
- Institute of Immunology, Center for Infection Medicine, Freie Universtät Berlin, 14163, Berlin, Germany.
- Department of Biological Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Infectious Diseases, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
46
|
Kurtovic L, Drew DR, Dent AE, Kazura JW, Beeson JG. Antibody Targets and Properties for Complement-Fixation Against the Circumsporozoite Protein in Malaria Immunity. Front Immunol 2021; 12:775659. [PMID: 34925347 PMCID: PMC8671933 DOI: 10.3389/fimmu.2021.775659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (CSP) forms the basis of leading subunit malaria vaccine candidates. However, the mechanisms and specific targets of immunity are poorly defined. Recent findings suggest that antibody-mediated complement-fixation and activation play an important role in immunity. Here, we investigated the regions of CSP targeted by functional complement-fixing antibodies and the antibody properties associated with this activity. We quantified IgG, IgM, and functional complement-fixing antibody responses to different regions of CSP among Kenyan adults naturally exposed to malaria (n=102) and using a series of rabbit vaccination studies. Individuals who acquired functional complement-fixing antibodies had higher IgG, IgM and IgG1 and IgG3 to CSP. Acquired complement-fixing antibodies targeted the N-terminal, central-repeat, and C-terminal regions of CSP, and positive responders had greater antibody breadth compared to those who were negative for complement-fixing antibodies (p<0.05). Using rabbit vaccinations as a model, we confirmed that IgG specific to the central-repeat and non-repeat regions of CSP could effectively fix complement. However, vaccination with near full length CSP in rabbits poorly induced antibodies to the N-terminal region compared to naturally-acquired immunity in humans. Poor induction of N-terminal antibodies was also observed in a vaccination study performed in mice. IgG and IgM to all three regions of CSP play a role in mediating complement-fixation, which has important implications for malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Damien R. Drew
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western University, Cleveland, OH, United States
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western University, Cleveland, OH, United States
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Webster R, Sekuloski S, Odedra A, Woolley S, Jennings H, Amante F, Trenholme KR, Healer J, Cowman AF, Eriksson EM, Sathe P, Penington J, Blanch AJ, Dixon MWA, Tilley L, Duffy MF, Craig A, Storm J, Chan JA, Evans K, Papenfuss AT, Schofield L, Griffin P, Barber BE, Andrew D, Boyle MJ, de Labastida Rivera F, Engwerda C, McCarthy JS. Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine. BMC Med 2021; 19:293. [PMID: 34802442 PMCID: PMC8606250 DOI: 10.1186/s12916-021-02150-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. METHODS The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naïve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 × 105 (2 subjects), or 3 × 106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). RESULTS None of the subjects who were administered with 1800 or 1.8 × 105 parasites developed parasitemia; 3/4 subjects administered 3× 106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. CONCLUSIONS This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrp- strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (number: ACTRN12617000824369 ; date: 06 June 2017).
Collapse
Affiliation(s)
- Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Silvana Sekuloski
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Current address: PharmOut, 111 Eagle Street, Brisbane, Queensland, 4000, Australia
| | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen Woolley
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, UK.,Centre of Defence Pathology, Royal Centre for Defence Medicine, Joint Hospital Group, Birmingham, UK
| | - Helen Jennings
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priyanka Sathe
- Current address: Medicines Development for Global Health Limited, 18 Kavanagh Street, Southbank, Victoria, 3006, Australia
| | - Jocelyn Penington
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Adam J Blanch
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Matthew W A Dixon
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Leann Tilley
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Janet Storm
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Krystal Evans
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Current address: GSK, 436 Johnston Street, Abbotsford, Victoria, 3067, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia.,Department of Medicine and Infectious Diseases, Mater Hospital and Mater Research, Brisbane, Australia
| | | | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
48
|
Ayanful-Torgby R, Sarpong E, Abagna HB, Donu D, Obboh E, Mensah BA, Adjah J, Williamson KC, Amoah LE. Persistent Plasmodium falciparum infections enhance transmission-reducing immunity development. Sci Rep 2021; 11:21380. [PMID: 34725428 PMCID: PMC8560775 DOI: 10.1038/s41598-021-00973-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Subclinical infections that serve as reservoir populations to drive transmission remain a hurdle to malaria control. Data on infection dynamics in a geographical area is required to strategically design and implement malaria interventions. In a longitudinal cohort, we monitored Plasmodium falciparum infection prevalence and persistence, and anti-parasite immunity to gametocyte and asexual antigens for 10 weeks. Of the 100 participants, only 11 were never infected, whilst 16 had persistent infections detected by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and one participant had microscopic parasites at all visits. Over 70% of the participants were infected three or more times, and submicroscopic gametocyte prevalence was high, ≥ 48% of the parasite carriers. Naturally induced responses against recombinant Pfs48/45.6C, Pfs230proC, and EBA175RIII-V antigens were not associated with either infection status or gametocyte carriage, but the antigen-specific IgG titers inversely correlated with parasite and gametocyte densities consistent with partial immunity. Longitudinal analysis of gametocyte diversity indicated at least four distinct clones circulated throughout the study period. The high prevalence of children infected with distinct gametocyte clones coupled with marked variation in infection status at the individual level suggests ongoing transmission and should be targeted in malaria control programs.
Collapse
Affiliation(s)
- Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Hamza B Abagna
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dickson Donu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Benedicta A Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joshua Adjah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kim C Williamson
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
49
|
Nguyen HTT, Guevarra RB, Magez S, Radwanska M. Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis. PLoS Pathog 2021; 17:e1010026. [PMID: 34762705 PMCID: PMC8610246 DOI: 10.1371/journal.ppat.1010026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/23/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Salivarian trypanosomes are extracellular protozoan parasites causing infections in a wide range of mammalian hosts, with Trypanosoma evansi having the widest geographic distribution, reaching territories far outside Africa and occasionally even Europe. Besides causing the animal diseases, T. evansi can cause atypical Human Trypanosomosis. The success of this parasite is attributed to its capacity to evade and disable the mammalian defense response. To unravel the latter, we applied here for the first time a scRNA-seq analysis on splenocytes from trypanosome infected mice, at two time points during infection, i.e. just after control of the first parasitemia peak (day 14) and a late chronic time point during infection (day 42). This analysis was combined with flow cytometry and ELISA, revealing that T. evansi induces prompt activation of splenic IgM+CD1d+ Marginal Zone and IgMIntIgD+ Follicular B cells, coinciding with an increase in plasma IgG2c Ab levels. Despite the absence of follicles, a rapid accumulation of Aicda+ GC-like B cells followed first parasitemia peak clearance, accompanied by the occurrence of Xbp1+ expressing CD138+ plasma B cells and Tbx21+ atypical CD11c+ memory B cells. Ablation of immature CD93+ bone marrow and Vpreb3+Ly6d+Ighm+ expressing transitional spleen B cells prevented mature peripheral B cell replenishment. Interestingly, AID-/- mice that lack the capacity to mount anti-parasite IgG responses, exhibited a superior defense level against T. evansi infections. Here, elevated natural IgMs were able to exert in vivo and in vitro trypanocidal activity. Hence, we conclude that in immune competent mice, trypanosomosis associated B cell activation and switched IgG production is rapidly induced by T. evansi, facilitating an escape from the detrimental natural IgM killing activity, and resulting in increased host susceptibility. This unique role of IgM and its anti-trypanosome activity are discussed in the context of the dilemma this causes for the future development of anti-trypanosome vaccines.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin B. Guevarra
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: A novel approach to accelerate towards elimination. Parasitol Int 2021; 87:102492. [PMID: 34728377 DOI: 10.1016/j.parint.2021.102492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is the most widespread causative agent of human malaria in the world. Despite the ongoing implementation of malaria control programs, the rate of case reduction has declined over the last 5 years. Hence, surveillance of malaria transmission should be in place to identify and monitor areas that require intensified malaria control interventions. Serological tools may offer additional insights into transmission intensity over parasite and entomological measures, especially as transmission levels decline. Antibodies can be detected in the host system for months to even years after parasite infections have been cleared from the blood, enabling malaria exposure history to be captured. Because the Plasmodium parasite expresses more than 5000 proteins, it is important to a) understand antibody longevity following infection and b) measure antibodies to more than one antigen in order to accurately inform on the exposure and/or immune status of populations. This review summarises current practices for surveillance of P. vivax malaria, the current state of research into serological exposure markers and their potential role for accelerating malaria elimination, and discusses further studies that need to be undertaken to see such technology implemented in malaria-endemic areas.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Zoe Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, Victoria, Australia; School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|