1
|
Yang X, Liu R, Jin J, Xv J, Wu J, Jin Y, Zhang Y, Chen S, Sun B, Lin MB, Reziya W, Li J, Sun H, Wang H, Yu B, Fan G, Liu W. Cancer stem cells-derived exosomal TSPAN8 enhances non-stem cancer cells stemness and promotes malignant progression in PDAC. Oncogene 2025:10.1038/s41388-025-03412-1. [PMID: 40251391 DOI: 10.1038/s41388-025-03412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
Cancer stem cells (CSC) play a crucial role in pancreatic ductal adenocarcinoma (PDAC) progression and therapeutic resistance. However, the underlying mechanisms and potential targeted treatment strategies remain poorly understood. In this study, we employed single-cell RNA sequencing and exosomal profiling, identifying TSPAN8-enriched exosomes secreted by CSC, which are associated with poor survival rates in PDAC patients. They enhanced stemness in the surrounding non-stem cancer cells (NSCC) by activating the Sonic Hedgehog (Hh) signalling pathway. This exosomal TSPAN8-Hh signalling axis significantly increases the clonogenic ability, invasiveness, and chemoresistance of PDAC cells. Furthermore, TSPAN8-enriched exosomes promoted a higher stem cell frequency, tumourigenicity, and tumour growth rate in vivo, confirming their critical roles in PDAC malignant progression. Our findings underscore the importance of TSPAN8-enriched exosomes for CSC-NSCC communication during PDAC progression.
Collapse
Affiliation(s)
- Xiaoyi Yang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Precision Research Center for Refractory Diseases, Shanghai Jiao Tong University Pioneer Research Institute for Molecular and Cell Therapies, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Rujiao Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juan Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxuan Xv
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yijie Jin
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaya Zhang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Chen
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mou-Bin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wumaier Reziya
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjian Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Sun
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongxia Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Guangjian Fan
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Precision Research Center for Refractory Diseases, Shanghai Jiao Tong University Pioneer Research Institute for Molecular and Cell Therapies, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenting Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zhang Z, Liu X, Peng C, Du R, Hong X, Xu J, Chen J, Li X, Tang Y, Li Y, Liu Y, Xu C, Liu D. Machine Learning-Aided Identification of Fecal Extracellular Vesicle microRNA Signatures for Noninvasive Detection of Colorectal Cancer. ACS NANO 2025; 19:10013-10025. [PMID: 40033785 DOI: 10.1021/acsnano.4c16698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) remains a formidable threat to human health, with considerable challenges persisting in its diagnosis, particularly during the early stages of the malignancy. In this study, we elucidated that fecal extracellular vesicle microRNA signatures (FEVOR) could serve as potent noninvasive CRC biomarkers. FEVOR was first revealed by miRNA sequencing, followed by the construction of a CRISPR/Cas13a-based detection platform to interrogate FEVOR expression across a diverse spectrum of clinical cohorts. Machine learning-driven models were subsequently developed within the realms of CRC diagnostics, prognostics, and early warning systems. In a cohort of 38 CRC patients, our diagnostic model achieved an outstanding accuracy of 97.4% (37/38), successfully identifying 37 of 38 CRC cases. This performance significantly outpaced the diagnostic efficacy of two clinically established biomarkers, CEA and CA19-9, which showed accuracies of mere 26.3% (10/38) and 7.9% (3/38), respectively. We also examined the expression levels of FEVOR in several CRC patients both before and after surgery, as well as in patients with colorectal adenomas (CA). Impressively, the results showed that FEVOR could serve as a robust prognostic indicator for CRC and a potential predictor for CA. This endeavor aimed to harness the predictive power of FEVOR for enhancing the precision and efficacy of CRC management paradigms. We envision that these findings will propel both foundational and preclinical research on CRC, as well as clinical studies.
Collapse
Affiliation(s)
- Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuyang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanyue Peng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rui Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqin Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaming Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomin Li
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yujing Tang
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Zhu XR, Zhu JQ, Gu QH, Liu N, Lu JJ, Li XH, Liu YY, Zheng X, Chen MB, Ji Y. A novel identified epithelial ligand-receptor-associated gene signature highlights POPDC3 as a potential therapy target for non-small cell lung cancer. Cell Death Dis 2025; 16:114. [PMID: 39971925 PMCID: PMC11840029 DOI: 10.1038/s41419-025-07410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
The tumor microenvironment (TME) is pivotal in non-small cell lung cancer (NSCLC) progression, influencing drug resistance and immune cell behavior through complex ligand-receptor (LR) interactions. This study developed an epithelial LR-related prognostic risk score (LRrisk) to identify biomarkers and targets in NSCLC. We identified twenty epithelial LRs with significant prognostic implications and delineated three molecular NSCLC subtypes with distinct outcomes, pathological characteristics, biological pathways, and immune profiles. The LRrisk model was constructed using twelve differentially expressed ligand-receptor interaction-related genes (LRGs), with a focus on POPDC3 (popeye domain-containing protein 3), which was overexpressed in NSCLC cells. Functional assays revealed that POPDC3 knockdown reduced cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while its overexpression promoted cancerous activities. In vivo, POPDC3 silencing hindered, and its overexpression accelerated the growth of NSCLC xenografts in nude mice. Additionally, high expression levels of POPDC3 in NSCLC tissues were associated with enhanced CD4+ T cell infiltration and increased PD-1 expression within the TME. Moreover, ectopic POPDC3 overexpression in C57BL/6 J mouse Lewis lung carcinoma (LLC) xenografts enhanced CD4+ T cell infiltration and PD-1 expression in the TME. This research establishes a robust epithelial LR-related signature, highlighting POPDC3 as a critical facilitator of NSCLC progression and a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Medical School of Jiangsu University, Zhenjiang, China
| | - Jia-Qi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Qian-Hui Gu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Medical School of Jiangsu University, Zhenjiang, China
| | - Jing-Jing Lu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Medical School of Jiangsu University, Zhenjiang, China
| | - Xiao-Hong Li
- Department of Clinical Laboratory, The First People's Hospital of Taicang, Taicang, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Medical School of Jiangsu University, Zhenjiang, China
| | - Xian Zheng
- Medical School of Jiangsu University, Zhenjiang, China.
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
- Medical School of Jiangsu University, Zhenjiang, China.
| | - Yong Ji
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
4
|
Huang G, Zheng W, Zhou Y, Wan M, Hu T. Recent advances to address challenges in extracellular vesicle-based applications for lung cancer. Acta Pharm Sin B 2024; 14:3855-3875. [PMID: 39309489 PMCID: PMC11413688 DOI: 10.1016/j.apsb.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Lung cancer, highly prevalent and the leading cause of cancer-related death globally, persists as a significant challenge due to the lack of definitive tumor markers for early diagnosis and personalized therapeutic interventions. Recently, extracellular vesicles (EVs), functioning as natural carriers for intercellular communication, have received increasing attention due to their ability to traverse biological barriers and deliver diverse biological cargoes, including cytosolic proteins, cell surface proteins, microRNA, lncRNA, circRNA, DNA, and lipids. EVs are increasingly recognized as a valuable resource for non-invasive liquid biopsy, as well as drug delivery platforms, and anticancer vaccines for precision medicine in lung cancer. Herein, given the diagnostic and therapeutic potential of tumor-associated EVs for lung cancer, we discuss this topic from a translational standpoint. We delve into the specific roles that EVs play in lung cancer carcinogenesis and offer a particular perspective on how advanced engineering technologies can overcome the current challenges and expedite and/or enhance the translation of EVs from laboratory research to clinical settings.
Collapse
Affiliation(s)
- Gaigai Huang
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yu Zhou
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610200, China
- The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Mrozowska M, Górnicki T, Olbromski M, Partyńska AI, Dzięgiel P, Rusak A. New insights into the role of tetraspanin 6, 7, and 8 in physiology and pathology. Cancer Med 2024; 13:e7390. [PMID: 39031113 PMCID: PMC11258570 DOI: 10.1002/cam4.7390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The tetraspanin (TSPAN) family comprises 33 membrane receptors involved in various physiological processes in humans. Tetrasapanins are surface proteins expressed in cells of various organisms. They are localised to the cell membrane by four transmembrane domains (TM4SF). These domains bind several cell surface receptors and signalling proteins to tetraspanin-enriched lipid microdomains (TERM or TEM). Tetraspanins play a critical role in anchoring many proteins. They also act as a scaffold for cell signalling proteins. AIM To summarise how tetraspanins 6, 7 and 8 contribute to the carcinogenesis process in different types of cancer. METHODS To provide a comprehensive review of the role of tetraspanins 6, 7 and 8 in cancer biology, we conducted a thorough search in PubMed, Embase and performed manual search of reference list to collect and extract data. DISCUSSION The assembly of tetraspanins covers an area of approximately 100-400 nm. Tetraspanins are involved in various biological processes such as membrane fusion, aggregation, proliferation, adhesion, cell migration and differentiation. They can also regulate integrins, cell surface receptors and signalling molecules. Tetraspanins form direct bonds with proteins and other members of the tetraspanin family, forming a hierarchical network of interactions and are thought to be involved in cell and membrane compartmentalisation. Tetraspanins have been implicated in cancer progression and have been shown to have multiple binding partners and to promote cancer progression and metastasis. Clinical studies have documented a correlation between the level of tetraspanin expression and the prediction of cancer progression, including breast and lung cancer. CONCLUSIONS Tetraspanins are understudied in almost all cell types and their functions are not clearly defined. Fortunately, it has been possible to identify the basic mechanisms underlying the biological role of these proteins. Therefore, the purpose of this review is to describe the roles of tetraspanins 6, 7 and 8.
Collapse
Affiliation(s)
- Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Aleksandra Izabela Partyńska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
- Department of Human Biology, Faculty of PhysiotherapyWroclaw University of Health and Sport SciencesWroclawPoland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| |
Collapse
|
6
|
Raucci A, Cimmino W, Romanò S, Singh S, Normanno N, Polo F, Cinti S. Electrochemical detection of miRNA using commercial and hand-made screen-printed electrodes: liquid biopsy for cancer management as case of study. ChemistryOpen 2024; 13:e202300203. [PMID: 38333968 PMCID: PMC11230927 DOI: 10.1002/open.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The growth of liquid biopsy, i. e., the possibility of obtaining health information by analysing circulating species (nucleic acids, cells, proteins, and vesicles) in peripheric biofluids, is pushing the field of sensors and biosensors beyond the limit to provide decentralised solutions for nonspecialists. In particular, among all the circulating species that can be adopted in managing cancer evolution, both for diagnostic and prognostic applications, microRNAs have been highly studied and detected. The development of electrochemical devices is particularly relevant for liquid biopsy purposes, and the screen-printed electrodes (SPEs) represent one of the building blocks for producing novel portable devices. In this work, we have taken miR-2115-3p as model target (it is related to lung cancer), and we have developed a biosensor by exploiting the use of a complementary DNA probe modified with methylene blue as redox mediator. In particular, the chosen sensing architecture was applied to serum measurements of the selected miRNA, obtaining a detection limit within the low nanomolar range; in addition, various platforms were interrogated, namely commercial and hand-made SPEs, with the aim of providing the reader with some insights about the optimal platform to be used by considering both the cost and the analytical performance.
Collapse
Affiliation(s)
- Ada Raucci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Wanda Cimmino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori (IRCCS) Fondazione Pascale, Via Mariano Semmola 53, 80131, Naples, Italy
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| |
Collapse
|
7
|
Li Q, Zhan S, Yang X, Zhang Z, Sun N, Wang X, Kang J, Du R, Hong X, Yue M, Li X, Tang Y, Liu G, Liu Y, Liu D. Choline Phosphate-Grafted Nanozymes as Universal Extracellular Vesicle Probes for Bladder Cancer Detection. ACS NANO 2024; 18:16113-16125. [PMID: 38857428 DOI: 10.1021/acsnano.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Urinary extracellular vesicles (uEVs) are regarded as highly promising liquid-biopsy biomarkers for the early diagnosis and prognosis of bladder cancer (BC). However, detection of uEVs remains technically challenging owing to their huge heterogeneity and ultralow abundance in real samples. We herein present a choline phosphate-grafted platinum nanozyme (Pt@CP) that acts as a universal EV probe for the construction of a high-throughput and high-sensitivity immunoassay, which allowed multiplex profiling of uEV protein markers for BC detection. With the Pt@CP-based immunoassays, three uEV protein markers (MUC-1, CCDC25, and GLUT1) were identified for BC, by which the BC cases (n = 48), cystitis patients (n = 27), and healthy donors (n = 24) were discriminated with high clinical sensitivity and specificity (area under curve = 98.3%). For the BC cases (n = 9) after surgery, the Pt@CP-based immunoassay could report the postoperative residual tumor that cannot be observed by cystoscopy, which is clinically significant for assessing BC recurrence. This work provides generally high sensitivity for EV detection, facilitating the discovery and clinical use of EV-based biomarkers.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Saisong Zhan
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Kang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqin Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Minghao Yue
- Department of Urology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xiaomin Li
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yujing Tang
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Guangming Liu
- Department of Urology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yue Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Deng J, Liu C, Sun J. DNA-Based Nanomaterials for Analysis of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303092. [PMID: 38016069 DOI: 10.1002/adma.202303092] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Indexed: 11/30/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanovesicles comprising a myriad of molecular cargo such as proteins and nucleic acids, playing essential roles in intercellular communication and physiological and pathological processes. EVs have received substantial attention as noninvasive biomarkers for disease diagnosis and prognosis. Owing to their ability to recognize protein and nucleic acid targets, DNA-based nanomaterials with excellent programmability and modifiability provide a promising tool for the sensitive and accurate detection of molecular cargo carried by EVs. In this perspective, recent advancements in EV analysis using a variety of DNA-based nanomaterials are summarized, which can be broadly classified into three categories: linear DNA probes, DNA nanostructures, and hybrid DNA nanomaterials. The design, construction, advantages, and disadvantages of different types of DNA nanomaterials, as well as their performance for detecting EVs are reviewed. The challenges and opportunities in the field of EV analysis by DNA nanomaterials are also discussed.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Choi Y, Akyildiz K, Seong J, Lee Y, Jeong E, Park JS, Lee DH, Kim K, Koo HJ, Choi J. Dielectrophoretic Capture of Cancer-Derived Small-Extracellular-Vesicle-Bound Janus Nanoparticles via Lectin-Glycan Interaction. Adv Healthc Mater 2024; 13:e2302313. [PMID: 38124514 DOI: 10.1002/adhm.202302313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Glycosylation is closely related to cellular metabolism and disease progression. In particular, glycan levels in cancer cells and tissues increase during cancer progression. This upregulation of glycosylation in cancer cells may provide a basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. Here, they developed a detection technology for pancreatic cancer cell-derived small extracellular vesicles (PC-sEVs) based on lectin-glycan interactions. Lectins specific for sialic acids are conjugated to Janus nanoparticles to induce interactions with PC-sEVs in a dielectrophoretic (DEP) system. PC-sEVs are selectively bound to the lectin-conjugated Janus nanoparticles (lectin-JNPs) with an affinity comparable to that of conventionally used carbohydrate antigen 19-9 (CA19-9) antibodies. Furthermore, sEVs-bound Lectin-JNPs (sEVs-Lec-JNPs) are manipulated between two electrodes to which an AC signal is applied for DEP capture. In addition, the proposed DEP system can be used to trap the sEVs-Lec-JNP on the electrodes. Their results, which are confirmed by lectin-JNPs using the proposed DEP system followed by target gene analysis, provide a basis for the development of a new early diagnostic marker based on the glycan characteristics of PC-sEVs. In turn, these novel detection methods could overcome the shortcomings of commercially available pancreatic cancer detection techniques.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Kubra Akyildiz
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jihyun Seong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yangwoo Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Jin-Seok Park
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| |
Collapse
|
10
|
Yang J, Zhang Z, Lam JSW, Fan H, Fu NY. Molecular Regulation and Oncogenic Functions of TSPAN8. Cells 2024; 13:193. [PMID: 38275818 PMCID: PMC10814125 DOI: 10.3390/cells13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ziyan Zhang
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanne Shi Woon Lam
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
11
|
Zhong T, Zhang J, Liu X, Li H. TRIM17-mediated ubiquitination and degradation of RBM38 promotes cisplatin resistance in non-small cell lung cancer. Cell Oncol (Dordr) 2023; 46:1493-1507. [PMID: 37219768 DOI: 10.1007/s13402-023-00825-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Cisplatin (CDDP)-based chemotherapy is commonly used to treat advanced non-small cell lung cancer (NSCLC). However, the efficacy is limited by the development of drug resistance. Tripartite motif (TRIM) proteins typically have E3 ubiquitin ligase activities and modulate protein stability. In the present study, we screened for chemosensitivity-regulating TRIM proteins using CDDP-resistant NSCLC cell lines. We show that TRIM17 is upregulated in CDDP-resistant NSCLC cells and tumors compared to CDDP-sensitive counterparts. NSCLC patients with high TRIM17 expression in tumors have shorter progression-free survival than those with low TRIM17 expression after CDDP chemotherapy. Knockdown of TRIM17 increases the sensitivity of NSCLC cells to CDDP both in vitro and in vivo. In contrast, overexpression of TRIM17 promotes CDDP resistance in NSCLC cells. TRIM17-mediated CDDP resistance is associated with attenuation of reactive oxygen species (ROS) production and DNA damage. Mechanistically, TRIM17 interacts with RBM38 and promotes K48-linked ubiquitination and degradation of RBM38. TRIM17-induced CDDP resistance is remarkably reversed by RBM38. Additionally, RBM38 enhances CDDP-induced production of ROS. In conclusion, TRIM17 upregulation drives CDDP resistance in NSCLC largely by promoting RBM38 ubiquitination and degradation. Targeting TRIM17 may represent a promising strategy for improving CDDP-based chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Tian Zhong
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Hongmin Li
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Ge W, Gong Y, Li Y, Wu N, Ruan Y, Xu T, Shu Y, Qiu W, Wang Y, Zhao C. IL-17 induces non-small cell lung cancer metastasis via GCN5-dependent SOX4 acetylation enhancing MMP9 gene transcription and expression. Mol Carcinog 2023; 62:1399-1416. [PMID: 37294072 DOI: 10.1002/mc.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Interleukin-17 (IL-17), a potent proinflammatory cytokine, can trigger the metastasis of non-small cell lung cancer (NSCLC). However, the underlying mechanism involved in IL-17-induced NSCLC cell metastasis remains unclear. In this study, we found that not only the expression of IL-17, IL-17RA, and/or general control nonrepressed protein 5 (GCN5), SRY-related HMG-BOX gene 4 (SOX4), and matrix metalloproteinase 9 (MMP9) was increased in the NSCLC tissues and in the IL-17-stimulated NSCLC cells, but also IL-17 treatment could enhance NSCLC cell migration and invasion. Further mechanism exploration revealed that IL-17-upregulated GCN5 and SOX4 could bind to the same region (-915 to -712 nt) of downstream MMP9 gene promoter driving its gene transcription. In the process, GCN5 could mediate SOX4 acetylation at lysine 118 (K118, a newly identified site) boosting MMP9 gene expression as well as cell migration and invasion. Moreover, the SOX4 acetylation or MMP9 induction and metastatic nodule number in the lung tissues of the BALB/c nude mice inoculated with the NSCLC cells stably infected by corresponding LV-shGCN5 or LV-shSOX4, LV-shMMP9 plus IL-17 incubation were markedly reduced. Overall, our findings implicate that NSCLC metastasis is closely associated with IL-17-GCN5-SOX4-MMP9 axis.
Collapse
Affiliation(s)
- Wen Ge
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajuan Gong
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Li
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningxia Wu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Ruan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Shi S, Wu T, Ma Z, Zhang X, Xu K, Tian Q, Gao L, Yin X, Xu S, Yang S. Serum-derived extracellular vesicles promote the growth and metastasis of non-small cell lung cancer by delivering the m6A methylation regulator HNRNPC through the regulation of DLGAP5. J Cancer Res Clin Oncol 2023; 149:4639-4651. [PMID: 36175801 DOI: 10.1007/s00432-022-04375-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Serum-derived extracellular vesicles (EVs) have been reported to play an important role in non-small cell lung cancer (NSCLC). The current study sought to explore the effect of serum-EVs delivering m6A methylation regulator heterogeneous nuclear ribonucleoprotein C (HNRNPC) on the development of NSCLC through the regulation of discs large-associated protein 5 (DLGAP5). METHODS NSCLC-related RNA-Seq and clinical data were first obtained from the TCGA database to screen differentially expressed m6A-related regulators, which were intersected with the differential genes in NSCLC-related microarray GSE43458 obtained from the GEO database for survival analysis and clinical correlation analysis. Correlation between HNRNPC and DLGAP5 expression was evaluated. Serum-EVs were isolated and identified, and the uptake of EVs by A549 cells was visualized using fluorescence microscopy. In vivo xenograft tumor models and tumor metastasis models were constructed in nude mice to observe growth and metastasis of NSCLC cells. RESULTS HNRNPC was associated with poor prognosis and metastasis of NSCLC, and further implicated in the regulation of DNA replication and cell cycle-related pathways. HNRNPC might promote the growth and metastasis of NSCLC by identifying m6A modification of DLGAP5 mRNA. Serum-EVs delivered HNRNPC to NSCLC cells in vitro. In vivo experimentation further confirmed that serum-EVs could deliver HNRNPC to promote the growth and metastasis of NSCLC cells in nude mice. CONCLUSIONS Our findings highlight that serum-EVs can deliver HNRNPC to NSCLC cells, wherein HNRNPC recognizes the m6A modification of DLGAP5 mRNA, thus ultimately promoting NSCLC growth and metastasis.
Collapse
Affiliation(s)
- Shanshan Shi
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Tong Wu
- Graduate School of Zunyi Medical University, No. 6, Xuefu West Road, Xinpuxin District, Zunyi, 563003, Guizhou Province, People's Republic of China
| | - Zechen Ma
- Medical College, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiudi Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Ke Xu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Qi Tian
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Liming Gao
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Xiaobo Yin
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Shufeng Xu
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China.
| | - Shengbo Yang
- Graduate School of Zunyi Medical University, No. 6, Xuefu West Road, Xinpuxin District, Zunyi, 563003, Guizhou Province, People's Republic of China.
| |
Collapse
|
14
|
Sohal IS, Kasinski AL. Emerging diversity in extracellular vesicles and their roles in cancer. Front Oncol 2023; 13:1167717. [PMID: 37397375 PMCID: PMC10312242 DOI: 10.3389/fonc.2023.1167717] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Extracellular vesicles have undergone a paradigm shift from being considered as 'waste bags' to being central mediators of cell-to-cell signaling in homeostasis and several pathologies including cancer. Their ubiquitous nature, ability to cross biological barriers, and dynamic regulation during changes in pathophysiological state of an individual not only makes them excellent biomarkers but also critical mediators of cancer progression. This review highlights the heterogeneity in extracellular vesicles by discussing emerging subtypes, such as migrasomes, mitovesicles, and exophers, as well as evolving components of extracellular vesicles such as the surface protein corona. The review provides a comprehensive overview of our current understanding of the role of extracellular vesicles during different stages of cancer including cancer initiation, metabolic reprogramming, extracellular matrix remodeling, angiogenesis, immune modulation, therapy resistance, and metastasis, and highlights gaps in our current knowledge of extracellular vesicle biology in cancer. We further provide a perspective on extracellular vesicle-based cancer therapeutics and challenges associated with bringing them to the clinic.
Collapse
Affiliation(s)
- Ikjot S. Sohal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Li Q, Zhang Z, Wang F, Wang X, Zhan S, Yang X, Xu C, Liu D. Reversible zwitterionic coordination enables rapid, high-yield, and high-purity isolation of extracellular vesicles from biofluids. SCIENCE ADVANCES 2023; 9:eadf4568. [PMID: 37058564 PMCID: PMC10104463 DOI: 10.1126/sciadv.adf4568] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) hold great clinical value as promising diagnostic biomarkers and therapeutic agents. This field, however, is hindered by technical challenges in the isolation of EVs from biofluids for downstream purposes. We here report a rapid (<30 min) isolation method for EV extraction from diverse biofluids with yield and purity exceeding 90%. These high performances are ascribed to the reversible zwitterionic coordination between the phosphatidylcholine (PC) on EV membranes and the "PC-inverse" choline phosphate (CP) decorated on magnetic beads. By coupling this isolation method with proteomics, a set of differentially expressed proteins on the EVs were identified as potential colon cancer biomarkers. Last, we demonstrated that the EVs in various clinically relevant biofluids, such as blood serum, urine, and saliva, can also be isolated efficiently, outperforming the conventional approaches in terms of simplicity, speed, yield, and purity.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fengchao Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Saisong Zhan
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Zhou Z, Yang Z, Zhou L, Yang M, He S. The versatile roles of testrapanins in cancer from intracellular signaling to cell-cell communication: cell membrane proteins without ligands. Cell Biosci 2023; 13:59. [PMID: 36941633 PMCID: PMC10025802 DOI: 10.1186/s13578-023-00995-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
The tetraspanins (TSPANs) are a family of four-transmembrane proteins with 33 members in mammals. They are variably expressed on the cell surface, various intracellular organelles and vesicles in nearly all cell types. Different from the majority of cell membrane proteins, TSPANs do not have natural ligands. TSPANs typically organize laterally with other membrane proteins to form tetraspanin-enriched microdomains (TEMs) to influence cell adhesion, migration, invasion, survival and induce downstream signaling. Emerging evidence shows that TSPANs can regulate not only cancer cell growth, metastasis, stemness, drug resistance, but also biogenesis of extracellular vesicles (exosomes and migrasomes), and immunomicroenvironment. This review summarizes recent studies that have shown the versatile function of TSPANs in cancer development and progression, or the molecular mechanism of TSPANs. These findings support the potential of TSPANs as novel therapeutic targets against cancer.
Collapse
Affiliation(s)
- Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China.
| | - Zihan Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Pontis F, Roz L, Fortunato O, Bertolini G. The metastatic niche formation: focus on extracellular vesicle-mediated dialogue between lung cancer cells and the microenvironment. Front Oncol 2023; 13:1116783. [PMID: 37207158 PMCID: PMC10189117 DOI: 10.3389/fonc.2023.1116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world, with the majority of patients presenting with advanced or metastatic disease at first diagnosis. The lungs are also one of the most common sites of metastasis from lung cancer and other tumors. Understanding the mechanisms that regulate metastasis formation from primary lung cancer and in the lungs is therefore fundamental unmet clinical need. One of the first steps during the establishment of lung cancer metastases includes the formation of the pre-metastatic niche (PMN) at distant organs, which may occur even during the early phases of cancer development. The PMN is established through intricate cross-talk between primary tumor-secreted factors and stromal components at distant sites. Mechanisms controlling primary tumor escape and seeding of distant organs rely on specific properties of tumor cells but are also tightly regulated by interactions with stromal cells at the metastatic niche that finally dictate the success of metastasis establishment. Here, we summarize the mechanisms underlying pre-metastatic niche formation starting from how lung primary tumor cells modulate distant sites through the release of several factors, focusing on Extracellular Vesicles (EVs). In this context, we highlight the role of lung cancer-derived EVs in the modulation of tumor immune escape. Then, we illustrate the complexity of Circulating Tumor Cells (CTCs) that represent the seeds of metastasis and how interactions with stromal and immune cells can help their metastatic dissemination. Finally, we evaluate the contribution of EVs in dictating metastasis development at the PMN through stimulation of proliferation and control of disseminated tumor cell dormancy. Overall, we present an overview of different steps in the lung cancer metastatic cascade, focusing on the EV-mediated interactions between tumor cells and stromal/immune cells.
Collapse
|
18
|
Extracellular vesicle isolation, purification and evaluation in cancer diagnosis. Expert Rev Mol Med 2022; 24:e41. [PMID: 36268744 DOI: 10.1017/erm.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Strategies for non-invasive biomarker discovery in early detection of cancer are an urgent need. Extracellular vesicles (EVs) have generated increasing attention from the scientific community and are under intensive investigations due to their unique biological profiles and their non-invasive nature. EVs are membrane-enclosed vesicles with variable sizes and function. Such vesicles are actively secreted from multiple cell types and are considered as key vehicles for inter-cellular communications and signalling. The stability and potential to easily cross biological barriers enable EVs for exerting durable effects on target cells. These along with easy access to such vesicles, the consistent secretion from tumour during all stages of tumorigenesis and their content providing a reservoir of molecules as well as mirroring the identity of the cell of origin are virtues that have made EVs appealing to be assessed in liquid biopsy approaches and for using as a promising resource of biomarkers in cancer diagnosis and therapy and monitoring targeted cancer therapy. Early detection of EVs will guide time-scheduled personalised therapy. Surveying reliable and sensitive methods for rapid isolation of EVs from biofluids, the purity of isolated vesicles and their molecular profiling and marker specification for clinical translation in patients with cancer are issues in the area and the hot topics of many recent studies. Here, the focus is over methods for EV isolation and stratification for digging more information about liquid biopsy-based diagnosis. Extending knowledge regarding EV-based strategies is a key to validate independent patient follow-up for cancer diagnosis at early stages and inspecting the efficacy of therapeutics.
Collapse
|
19
|
Ling B, Zhang Z, Xiang Z, Cai Y, Zhang X, Wu J. Advances in the application of proteomics in lung cancer. Front Oncol 2022; 12:993781. [PMID: 36237335 PMCID: PMC9552298 DOI: 10.3389/fonc.2022.993781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although the incidence and mortality of lung cancer have decreased significantly in the past decade, it is still one of the leading causes of death, which greatly impairs people's life and health. Proteomics is an emerging technology that involves the application of techniques for identifying and quantifying the overall proteins in cells, tissues and organisms, and can be combined with genomics, transcriptomics to form a multi-omics research model. By comparing the content of proteins between normal and tumor tissues, proteomics can be applied to different clinical aspects like diagnosis, treatment, and prognosis, especially the exploration of disease biomarkers and therapeutic targets. The applications of proteomics have promoted the research on lung cancer. To figure out potential applications of proteomics associated with lung cancer, we summarized the role of proteomics in studies about tumorigenesis, diagnosis, prognosis, treatment and resistance of lung cancer in this review, which will provide guidance for more rational application of proteomics and potential therapeutic strategies of lung cancer.
Collapse
Affiliation(s)
- Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of Yancheng, Yancheng, China
| | - Zhengyu Zhang
- Nanjing Medical University School of Medicine, Nanjing, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqi Cai
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Zhang
- Stomatology Hospital, School of stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
20
|
Xie Y, Yang L, Cao P, Li S, Zhang W, Dang W, Xin S, Jiang M, Xin Y, Li J, Long S, Wang Y, Zhang S, Yang Y, Lu J. Plasma Exosomal Proteomic Pattern of Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis. Front Microbiol 2022; 13:821311. [PMID: 35464963 PMCID: PMC9019563 DOI: 10.3389/fmicb.2022.821311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a life-threatening syndrome, which is caused by EBV infection that is usually refractory to treatment and shows relapse. The development of new biomarkers for the early diagnosis and clinical treatment of EBV-HLH is urgently needed. Exosomes have been shown to mediate various biological processes and are ideal non-invasive biomarkers. Here, we present the differential plasma exosomal proteome of a patient with EBV-HLH before vs. during treatment and with that of his healthy twin brother. A tandem mass tag-labeled LC-MS technique was employed for proteomic detection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that differential proteomic profiles were related to virus infection, coagulopathy, nervous system dysfunction, imbalance of immune response, and abnormal liver function. The candidate biomarkers were first identified in the patient’s plasma exosomes at different treatment and follow-up time points. Then, 14 additional EBV-HLH exosome samples were used to verify six differentially expressed proteins. The upregulation of C-reactive protein, moesin, galectin three-binding protein, and heat shock cognate 71 kDa protein and the downregulation of plasminogen and fibronectin 1 could serve as potential biomarkers of EBV-HLH. This plasma exosomal proteomic analysis provides new insights into the diagnostic and therapeutic biomarkers of EBV-HLH.
Collapse
Affiliation(s)
- Yan Xie
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yujie Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yang Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
- *Correspondence: Jianhong Lu,
| |
Collapse
|
21
|
Xu Q, Pan Y, Liu X, Gao Y, Luan X, Zeng F, Zhou D, Long W, Wang Y, Song Y. Hypoxia‐Responsive Platinum Supernanoparticles for Urinary Microfluidic Monitoring of Tumors. Angew Chem Int Ed Engl 2022; 61:e202114239. [DOI: 10.1002/anie.202114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Qin Xu
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Yongchun Pan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xinli Liu
- Life Science Institute Guangxi Medical University Nanning 530021 China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Fei Zeng
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yujun Song
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| |
Collapse
|
22
|
Ji Y, You Y, Wu Y, Wang M, He Q, Zhou X, Chen L, Sun X, Liu Y, Fu X, Kwan HY, Zuo Q, Luo R, Zhao X. Overexpression of miR-328-5p influences cell growth and migration to promote NSCLC progression by targeting LOXL4. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:301. [PMID: 35433959 PMCID: PMC9011230 DOI: 10.21037/atm-22-345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Background Lung cancer is the leading cause of cancer-associated mortality worldwide, and most lung cancers are classified as non-small cell lung cancer (NSCLC). MiR-328 influence the progression of multiple tumors, but the role of miR-328-5p in NSCLC has not been elucidated. The aim of this study was to illuminate the oncogenic role and potential molecular mechanisms of the miR-328-5p and lysyl oxidase like 4 (LOXL4) in NSCLC. Methods Expression of miR-328-5p was detected by real-time quantitative polymerase chain reaction (qRT-PCR) in tumor and non-tumor adjacent tissues. After Lentivirus-miR-328-5p was employed to intervene this miRNA in NSCLC cell lines, RT-qPCR was used to detect the expression levels of miR-328-5p. Cell Counting Kit-8 (CCK-8), cell colony formation, flow cytometry, wound healing, Transwell assays were used to determine the malignant phenotypes of NSCLC cells. Nude mice models of subcutaneous tumors were established to observe the effect of miR-328-5p on tumorigenesis. Targeting the 3'UTR of LOXL4 by miR-328-5p was verified by integrated analysis including transcriptome sequencing, dual-luciferase and western-blot assays. Results High miR-328-5p level was observed in NSCLC cells from The Cancer Genome Atlas (TCGA) database and tumor tissues collected from NSCLC patients. Overexpressed miR-328-5p promoted NSCLC cell proliferation, survival, and migration, and promoted tumor growth in vivo. Knockdown of miR-328-5p suppressed tumorigenic activities. Transcriptome sequencing analysis revealed that LOXL4 was downregulated by miR-328-5p, which was confirmed by dual-luciferase reporter and western-blot assays. Conclusions miR-328-5p showed targeted regulation of LOXL4 to promote cell proliferation and migration in NSCLC.
Collapse
Affiliation(s)
- Yanzhao Ji
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, China
| | - Yanting You
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifen Wu
- Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Min Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liqian Chen
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Sun
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanyan Liu
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Luo
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Lu X, An L, Fan G, Zang L, Huang W, Li J, Liu J, Ge W, Huang Y, Xu J, Du S, Cao Y, Zhou T, Yin H, Yu L, Jiao S, Wang H. EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res 2022; 32:359-374. [PMID: 35197608 PMCID: PMC8975831 DOI: 10.1038/s41422-022-00628-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
TSPAN family of proteins are generally considered to assemble as multimeric complexes on the plasma membrane. Our previous work uncovered that TSPAN8 can translocate into the nucleus as a membrane-free form, a process that requires TSPAN8 palmitoylation and association with cholesterol to promote its extraction from the plasma membrane and subsequent binding with 14-3-3θ and importin-β. However, what upstream signal(s) regulate(s) the nuclear translocation of TSPAN8, the potential function of TSPAN8 in the nucleus, and the underlying molecular mechanisms all remain unclear. Here, we demonstrate that, epidermal growth factor receptor (EGFR) signaling induces TSPAN8 nuclear translocation by activating the kinase AKT, which in turn directly phosphorylates TSPAN8 at Ser129, an event essential for its binding with 14-3-3θ and importin ß1. In the nucleus, phosphorylated TSPAN8 interacts with STAT3 to enhance its chromatin occupancy and therefore regulates transcription of downstream cancer-promoting genes, such as MYC, BCL2, MMP9, etc. The EGFR-AKT-TSPAN8-STAT3 axis was found to be hyperactivated in multiple human cancers, and associated with aggressive phenotype and dismal prognosis. We further developed a humanized monoclonal antibody hT8Ab4 that specifically recognizes the large extracellular loop of TSPAN8 (TSPAN8-LEL), thus being able to block the extraction of TSPAN8 from the plasma membrane and consequently its nuclear localization. Importantly, both in vitro and in vivo studies demonstrated an antitumor effect of hT8Ab4. Collectively, we discovered an unconventional function of TSPAN8 and dissected the underlying molecular mechanisms, which not only showcase a new layer of biological complexity of traditional membrane proteins, but also shed light on TSPAN8 as a novel therapeutic target for refractory cancers.
Collapse
Affiliation(s)
- Xiaoqing Lu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Breast Surgery, Shanxi Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Guangjian Fan
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Zang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjian Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Jingxuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqian Du
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijing Yin
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Xu Q, Pan Y, Liu X, Gao Y, Luan X, Zeng F, Zhou D, Long W, Wang Y, Song Y. Hypoxia‐Responsive Platinum Supernanoparticles for Urinary Microfluidic Monitoring of Tumors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qin Xu
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Yongchun Pan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xinli Liu
- Life Science Institute Guangxi Medical University Nanning 530021 China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Fei Zeng
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yujun Song
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Anal Chim Acta 2022; 1207:339461. [DOI: 10.1016/j.aca.2022.339461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
26
|
Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021; 13:5633. [PMID: 34830787 PMCID: PMC8616161 DOI: 10.3390/cancers13225633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.
Collapse
Affiliation(s)
- Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| |
Collapse
|
27
|
Wang T, Wang X, Wang H, Li L, Zhang C, Xiang R, Tan X, Li Z, Jiang C, Zheng L, Xiao L, Yue S. High TSPAN8 expression in epithelial cancer cell-derived small extracellular vesicles promote confined diffusion and pronounced uptake. J Extracell Vesicles 2021; 10:e12167. [PMID: 34796683 PMCID: PMC8602930 DOI: 10.1002/jev2.12167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
Small extracellular vesicles (sEVs) play a key role in intercellular communication. Cargo molecules carried by sEVs may affect the phenotype and function of recipient cells. Epithelial cancer cell-derived sEVs, particularly those enriched in CD151 or tetraspanin8 (TSPAN8) and associated integrins, promote tumour progression. The mechanism of binding and modulation of sEVs to recipient cells remains elusive. Here, we used genetically engineered breast cancer cells to derive TSPAN8-enriched sEVs and evaluated the impact of TSPAN8 on target cell membrane's diffusion and transport properties. The single-particle tracking technique showed that TSPAN8 significantly promoted sEV binding via confined diffusion. Functional assays indicated that the transgenic TSPAN8-sEV cargo increased cancer cell motility and epithelial-mesenchymal transition (EMT). In vivo, transgenic TSPAN8-sEV promoted uptake of sEVs in the liver, lung, and spleen. We concluded that TSPAN8 encourages the sEV-target cell interaction via forced confined diffusion and significantly increases cell motility. Therefore, TSPAN8-sEV may serve as an important direct or indirect therapeutic target.
Collapse
Affiliation(s)
- Teng Wang
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Xin Wang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of ChemistryNankai UniversityTianjinChina
| | - Haobin Wang
- Department of Breast & Thyroid SurgeryThe Third People's Hospital of ChengduThe Affiliated Hospital of Southwest Jiaotong UniversityThe Second Chengdu Hospital Affiliated to Chongqing Medical UniversityChengduSichuanChina
| | - Luhan Li
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Chenhong Zhang
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Rong Xiang
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Xiaoyue Tan
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Zongjin Li
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Chunyang Jiang
- Department of Thoracic SurgeryTianjin Union Medical CenterTianjinChina
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of ChemistryNankai UniversityTianjinChina
| | - Shijing Yue
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| |
Collapse
|
28
|
Xia M, Cao H, Zheng J, Yao Y, Xu F, Lu G, Ma Y, Zhou J. A novel stilbene derivative (GMQ3) suppressed proliferation and induced apoptosis in lung cancer via the p38-MAPK/SIRT1 pathway. Biochem Pharmacol 2021; 193:114808. [PMID: 34678220 DOI: 10.1016/j.bcp.2021.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lung cancer is the primary cause of cancer-related mortality worldwide. The anticancer effect of stilbene has been noted in various tumor types. GMQ3, which has a stilbene-mimicking skeleton, is a novel small-molecule compound with promising antitumor activity. Our results revealed that GMQ3 not only suppressed cell proliferation and cell migration of lung cancer cells but also led to G1 phase cell cycle arrest and triggered caspase-dependent apoptosis. Furthermore, investigation of the molecular mechanism showed that GMQ3 could inhibited proliferation and induced apoptosis via the p38-MAPK/SIRT1 pathway both in vitro and in vivo. Xenograft tumor mouse models showed that GMQ3 significantly inhibited tumor growth in vivo without affecting body weight. Our findings indicated that GMQ3 exerts a strong anticancer action by suppressing cell proliferation, inhibiting cell migration and inducing cell apoptosis. Moreover, the efficacy of GMQ3 was enhanced in the presence of CDK4/6 inhibitor Abemaciclib. We conclude that GMQ3 is a promising agent with potential for lung cancer.
Collapse
Affiliation(s)
- Mengling Xia
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - He Cao
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zheng
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Xu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Jia Y, Shen P, Yan T, Zhou W, Sun J, Han X. Microfluidic Tandem Mechanical Sorting System for Enhanced Cancer Stem Cell Isolation and Ingredient Screening. Adv Healthc Mater 2021; 10:e2100985. [PMID: 34486235 DOI: 10.1002/adhm.202100985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Robust isolation of cancer stem cells (CSCs) in a high-throughput, label-free manner is critical for understanding tumor heterogeneity and developing therapeutic strategies targeting CSCs. Cell-mechanics-based microfluidic sorting systems provide efficient and specific platforms for investigation of stem cell-like characteristics on the basis of cell deformability and cell-substrate adhesion properties. In the present study, a microfluidic tandem mechanical sorting system is developed to enrich CSCs with high flexibility and low adhesive capacity. In the integrated microfluidic system, cancer cells are driven by hydrodynamic forces to flow continuously through two featured devices, which are functionalized with sequentially variable microbarriers and surface-coated fluid mixing microchannels, respectively. Collected deformable and low-adhesive cancer cells exhibit enhanced stem cell-like properties with higher stemness and metastasis capacity both in vitro and in vivo, compared with each single device separation. Using these devices, bioactive natural compound screening targeting CSCs is performed and a potent therapeutic compound isoliquiritigenin from licorice is identified to inhibit the lung cancer stem cell phenotype. Taken together, this microfluidic tandem mechanical sorting system can facilitate drug screening targeting CSCs and the analysis of signals regulating CSC function in drug resistance.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Tao Yan
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Weijia Zhou
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xin Han
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| |
Collapse
|
30
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Liu Y, Xia Y, Smollar J, Mao W, Wan Y. The roles of small extracellular vesicles in lung cancer: Molecular pathology, mechanisms, diagnostics, and therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188539. [PMID: 33892051 DOI: 10.1016/j.bbcan.2021.188539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Small extracellular vesicles (sEVs) are submicron-sized, lipid-bilayer-enclosed particles that are released from cells. A variety of tissue-specific molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively encapsulated into sEVs and delivered to nearby and distant recipient cells. Incontestable and growing evidence shows the important biological roles and the clinical relevance of sEVs in tumors. In particular, recent studies validate sEVs can be used for early tumor diagnostics, staging, and treatment monitoring. Moreover, sEVs have been used as drug delivery nanocarriers, cancer vaccines, and antigen conferrers. While still in its infancy, the field of sEV-based fundamental and translational studies has been rapidly advancing. This review comprehensively examines the latest sEV-related studies in lung cancers, encompassing extracellular vesicles and their roles in lung cancer pathophysiology, diagnostics, and therapeutics. The state-of-the-art technologies for sEV isolation, downstream molecular analyses, and sEV-based therapies indicate their potency as tools for understanding the pathology and promising clinical management of lung cancers.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jillian Smollar
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| |
Collapse
|
32
|
Xue VW, Yang C, Wong SCC, Cho WCS. Proteomic profiling in extracellular vesicles for cancer detection and monitoring. Proteomics 2021; 21:e2000094. [PMID: 33665903 DOI: 10.1002/pmic.202000094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-size lipid vesicles released by cells, which play essential biological functions in intercellular communication. Increasing evidence indicates that EVs participate in cancer development, including invasion, migration, metastasis, and cancer immune modulation. One of the key mechanisms is that EVs affect different cells in the tumor microenvironment through surface-anchor proteins and protein cargos. Moreover, proteins specifically expressed in tumor-derived EVs can be applied in cancer diagnosis and monitoring. Besides, the EV proteome also helps to understand drug resistance in cancers and to guide clinical medication. With the development of mass spectrometry and array-based multi-protein detection, the research of EV proteomics has entered a new era. The high-throughput parallel proteomic profiling based on these new platforms allows us to study the impact of EV proteome on cancer progression more comprehensively and to describe the proteomic landscape in cancers with more details. In this article, we review the role and function of different types of EVs in cancer progression. More importantly, we summarize the proteomic profiling of EVs based on different methods and the application of EV proteome in cancer detection and monitoring.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Chenxi Yang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Sze Chuen Cesar Wong
- Faculty of Health and Social Sciences, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | |
Collapse
|
33
|
Weng J, Xiang X, Ding L, Wong ALA, Zeng Q, Sethi G, Wang L, Lee SC, Goh BC. Extracellular vesicles, the cornerstone of next-generation cancer diagnosis? Semin Cancer Biol 2021; 74:105-120. [PMID: 33989735 DOI: 10.1016/j.semcancer.2021.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.
Collapse
Affiliation(s)
- Jiayi Weng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 20203, China
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
34
|
Sun D, Zhao Z, Spiegel S, Liu Y, Fan J, Amrollahi P, Hu J, Lyon CJ, Wan M, Hu TY. Dye-free spectrophotometric measurement of nucleic acid-to-protein ratio for cell-selective extracellular vesicle discrimination. Biosens Bioelectron 2021; 179:113058. [PMID: 33592557 PMCID: PMC7995647 DOI: 10.1016/j.bios.2021.113058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
Extracellular vesicles (EVs) can represent a novel source of disease biomarkers, and are under intensive study for their clinical potential. Most EV-based cancer diagnostic studies have focused on establishing EV assays that detect increased expression of a single cancer-associated marker or marker signatures based on multiplex detection of these biomarkers. EV biomarker readouts can be obscured by high background signal leading to false positives, and may markedly differ between analyses due to variation in sample purity during EV isolation. This can obstruct the comparisons among studies and lead to conflicting conclusions. This work reports that the nucleic acid to protein UV absorption ratio of an EV is a cell-specific EV characteristic. This EV collective attribute can be measured at low-cost to discriminate EVs derived from malignant and non-malignant cells rather than employing single markers that may be cancer- or subtype-specific. Our work also highlighted the application for accessing purity in EV preparations irrelevant to EV yield. It can be employed to distinguish from patients with and without malignant disease upon analysis of EVs isolated from their serum samples.
Collapse
Affiliation(s)
- Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101M, Fargo, ND, 58102, USA.
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah Spiegel
- School of Biological and Health Systems Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave. B 140D, Tempe, AZ, 85287-5001, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA
| | - Pouya Amrollahi
- School of Biological and Health Systems Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave. B 140D, Tempe, AZ, 85287-5001, USA
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Shichuan, 610041, China
| | - Christopher J Lyon
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Shichuan, 610041, China
| | - Tony Y Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA.
| |
Collapse
|
35
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
36
|
Gheytanchi E, Saeednejad Zanjani L, Ghods R, Abolhasani M, Shahin M, Vafaei S, Naseri M, Fattahi F, Madjd Z. High expression of tumor susceptibility gene 101 (TSG101) is associated with more aggressive behavior in colorectal carcinoma. J Cancer Res Clin Oncol 2021; 147:1631-1646. [PMID: 33616717 DOI: 10.1007/s00432-021-03561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Identification of genetic determinants such as exosomal content that drives progression and metastasis of colorectal cancer (CRC) has received considerable attention. The present study aims to identify a suitable biomarker in CRC tissues and exosomes based on bioinformatics data to evaluate its expression patterns in CRC tissues as well as its clinicopathological significance. MATERIALS AND METHODS Protein-protein interaction (PPI) network and enrichment analysis were applied to identify up-regulated genes that contributed in CRC exosomes to select the marker. The expression patterns and clinical significance of selected exosomal marker were evaluated in tissue microarrays (TMAs) of 445 CRC tumors and 39 adjacent normal tissues using immunohistochemistry method. RESULTS Based on bioinformatics data, TSG101 gene was prominent amongst the tumor tissues and exosomes. Expression of TSG101 was significantly up-regulated in tumor cells compared to adjacent normal tissues (p-value = 0.04). Moreover, higher expressions of TSG101 (cytoplasmic and nuclear) were significantly associated with tumor differentiation (p-value = 0.042) and distant metastasis (p-value = 0.027). A significant association was found in the cytoplasmic expression of TSG101 between well and moderate tumor differentiation (p-value = 0.005) as well as moderate and poor differentiation (p-value = 0.050). CONCLUSION These findings indicate that the exploration of crosstalk between exosome content and CRC may be valuable for the development of novel exosomal biomarkers. Increased expression of TSG101, as a promising exosome marker, is more associated with more aggressive tumor behaviors, metastasis, and progression of CRC, which paves the way for therapeutic strategies and CRC management. However, further investigations are warranted to clarify the molecular mechanisms of TSG101 in CRC.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran
| | - Roya Ghods
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Shahin
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Stiller C, Viktorsson K, Paz Gomero E, Hååg P, Arapi V, Kaminskyy VO, Kamali C, De Petris L, Ekman S, Lewensohn R, Karlström AE. Detection of Tumor-Associated Membrane Receptors on Extracellular Vesicles from Non-Small Cell Lung Cancer Patients via Immuno-PCR. Cancers (Basel) 2021; 13:cancers13040922. [PMID: 33671772 PMCID: PMC7926549 DOI: 10.3390/cancers13040922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Lung cancer is often detected at late stages when metastases are present and the genomic make-ups of the tumors are heterogeneous. Analyses of genomic alterations in non-small-cell lung cancer (NSCLC) have revealed mutated tumor-associated membrane receptors and fusion proteins, which can be targeted via tyrosine kinase inhibitors (TKIs). TKIs initially often have a good effect, but a fraction of the tumor lesions may develop resistance through additional mutations in the targeted kinases or by increased expression/function of other membrane receptors. Detection of TKI-bypassing mechanisms is difficult in tissue biopsies as these analyze only a subpart of tumors or lesions. Liquid biopsies based on tumor-secreted small extracellular vesicles (sEVs) into body fluids can assess tumor heterogeneity. We present an immuno-PCR method for the detection of the epidermal growth factor receptor (EGFR), the human epidermal growth factor receptor 2 (HER2), and the insulin-like growth factor 1 receptor (IGF-1R) on sEVs. Initial investigations of sEVs from EGFR-mutant NSCLC tumor cells or pleural effusion (PE) fluid from patients with NSCLC or benign diseases showed different protein profiles for individual sEV samples. Further development of the immuno-PCR could complement DNA/mRNA-based assays detecting kinase mutations to allow longitudinal treatment monitoring of diverse TKI-bypassing mechanisms. Abstract Precision cancer medicine for non-small-cell lung cancer (NSCLC) has increased patient survival. Nevertheless, targeted agents towards tumor-associated membrane receptors only result in partial remission for a limited time, calling for approaches which allow longitudinal treatment monitoring. Rebiopsy of tumors in the lung is challenging, and metastatic lesions may have heterogeneous signaling. One way ahead is to use liquid biopsies such as circulating tumor DNA or small extracellular vesicles (sEVs) secreted by the tumor into blood or other body fluids. Herein, an immuno-PCR-based detection of the tumor-associated membrane receptors EGFR, HER2, and IGF-1R on CD9-positive sEVs from NSCLC cells and pleural effusion fluid (PE) of NSCLC patients is developed utilizing DNA conjugates of antibody mimetics and affibodies, as detection agents. Results on sEVs purified from culture media of NSCLC cells treated with anti-EGFR siRNA, showed that the reduction of EGFR expression can be detected via immuno-PCR. Protein profiling of sEVs from NSCLC patient PE samples revealed the capacity to monitor EGFR, HER2, and IGF-1R with the immuno-PCR method. We detected a significantly higher EGFR level in sEVs derived from a PE sample of a patient with an EGFR-driven NSCLC adenocarcinoma than in sEVs from PE samples of non-EGFR driven adenocarcinoma patients or in samples from patients with benign lung disease. In summary, we have developed a diagnostic method for sEVs in liquid biopsies of cancer patients which may be used for longitudinal treatment monitoring to detect emerging bypassing resistance mechanisms in a noninvasive way.
Collapse
Affiliation(s)
- Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Elizabeth Paz Gomero
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vitaliy O. Kaminskyy
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Caroline Kamali
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Correspondence: ; Tel.: +46-8-790-99-78
| |
Collapse
|
38
|
Mo Z, Cheong JYA, Xiang L, Le MTN, Grimson A, Zhang DX. Extracellular vesicle-associated organotropic metastasis. Cell Prolif 2021; 54:e12948. [PMID: 33145869 PMCID: PMC7791170 DOI: 10.1111/cpr.12948] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis refers to the progressive dissemination of primary tumour cells and their colonization of other tissues and is associated with most cancer-related mortalities. The disproportional and systematic distribution pattern of distant metastasis in different cancers has been well documented, as is termed metastatic organotropism, a process orchestrated by a combination of anatomical, pathophysiological, genetic and biochemical factors. Extracellular vesicles (EVs), nanosized cell-derived membrane-bound particles known to mediate intercellular communication, are now considered crucial in organ-specific metastasis. Here, we review and summarize recent findings regarding EV-associated organotropic metastasis as well as some of the general mechanisms by which EVs contribute to this important process in cancer and provide a future perspective on this emerging topic. We highlight studies that demonstrate a role of tumour-derived EVs in organotropic metastasis via pre-metastatic niche modulation. The bioactive cargo carried by EVs is of diagnostic and prognostic values, and counteracting the functions of such EVs may be a novel therapeutic strategy targeting metastasis. Further investigations are warranted to better understand the functions and mechanisms of EVs in organotropic metastasis and accelerate the relevant clinical translation.
Collapse
Affiliation(s)
- Zhenzhen Mo
- Department of PaediatricsPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jia Yang Alex Cheong
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lirong Xiang
- Department of PaediatricsPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Minh T. N. Le
- Institute for Digital Medicine and Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Andrew Grimson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Daniel Xin Zhang
- Department of Biomedical SciencesJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong SAR
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| |
Collapse
|
39
|
Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors-More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci 2020; 21:ijms21249531. [PMID: 33333768 PMCID: PMC7765243 DOI: 10.3390/ijms21249531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tetraspanins/immunology
- Tetraspanins/metabolism
Collapse
|
40
|
Critical Roles of Tumor Extracellular Vesicles in the Microenvironment of Thoracic Cancers. Int J Mol Sci 2020; 21:ijms21176024. [PMID: 32825667 PMCID: PMC7504491 DOI: 10.3390/ijms21176024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are critical mediators of intercellular communication between tumor cells and other cells located in the microenvironment but also in more distant sites. Exosomes are small EVs that can carry a variety of molecules, such as lipids, proteins, and non-coding RNA, especially microRNAs (miRNAs). In thoracic cancers, including lung cancers and malignant pleural mesothelioma, EVs contribute to the immune-suppressive tumor microenvironment and to tumor growth and metastasis. In this review, we discuss the recent understanding of how exosomes behave in thoracic cancers and how and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy, with a special focus on exosomal miRNAs.
Collapse
|