1
|
Liang Y, Li H, Tang H, Zhang C, Men D, Mayer D. Bioinspired Electrolyte-Gated Organic Synaptic Transistors: From Fundamental Requirements to Applications. NANO-MICRO LETTERS 2025; 17:198. [PMID: 40122950 PMCID: PMC11930914 DOI: 10.1007/s40820-025-01708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency. Electrolyte-gated organic transistors (EGOTs) offer significant advantages as neuromorphic devices due to their ultra-low operation voltages, minimal hardwired connectivity, and similar operation environment as electrophysiology. Meanwhile, ionic-electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology. This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors. Furthermore, we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials, electrolyte, architecture, and operation mechanism. In addition, we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems. Finally, the current challenges and future development of the organic neuromorphic devices are discussed.
Collapse
Affiliation(s)
- Yuanying Liang
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, People's Republic of China.
| | - Hangyu Li
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Hu Tang
- Guangzhou Liby Group Co., Ltd, Guangzhou, 510370, People's Republic of China
| | - Chunyang Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
2
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
3
|
Talin AA, Meyer J, Li J, Huang M, Schwacke M, Chung HW, Xu L, Fuller EJ, Li Y, Yildiz B. Electrochemical Random-Access Memory: Progress, Perspectives, and Opportunities. Chem Rev 2025; 125:1962-2008. [PMID: 39960411 DOI: 10.1021/acs.chemrev.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Non-von Neumann computing using neuromorphic systems based on analogue synaptic and neuronal elements has emerged as a potential solution to tackle the growing need for more efficient data processing, but progress toward practical systems has been stymied due to a lack of materials and devices with the appropriate attributes. Recently, solid state electrochemical ion-insertion, also known as electrochemical random access memory (ECRAM) has emerged as a promising approach to realize the needed device characteristics. ECRAM is a three terminal device that operates by tuning electronic conductance in functional materials through solid-state electrochemical redox reactions. This mechanism can be considered as a gate-controlled bulk modulation of dopants and/or phases in the channel. Early work demonstrating that ECRAM can achieve nearly ideal analogue synaptic characteristics has sparked tremendous interest in this approach. More recently, the realization that electrochemical ion insertion can be used to tune the electronic properties of many types of materials including transition metal oxides, layered two-dimensional materials, organic and coordination polymers, and that the changes in conductance can span orders of magnitude has further attracted interest in ECRAM as the basis for analogue synaptic elements for inference accelerators as well as for dynamical devices that can emulate a wide range of neuronal characteristics for implementation in analogue spiking neural networks. At its core, ECRAM shares many fundamental aspects with rechargeable batteries, where ion insertion materials are used extensively for their ability to reversibly store charge and energy. Computing applications, however, present drastically different requirements: systems will require many millions of devices, scaled down to tens of nanometers, all while achieving reliable electronic-state tuning at scaled-up rates and endurances, and with minimal energy dissipation and noise. In this review, we discuss the history, basic concepts, recent progress, as well as the challenges and opportunities for different types of ECRAM, broadly grouped by their primary mobile ionic charge carrier, including Li, protons, and oxygen vacancies.
Collapse
Affiliation(s)
- A Alec Talin
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Jordan Meyer
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jingxian Li
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Miranda Schwacke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heejung W Chung
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Longlong Xu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elliot J Fuller
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Yiyang Li
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bilge Yildiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Langner P, Chiabrera F, Alayo N, Nizet P, Morrone L, Bozal-Ginesta C, Morata A, Tarancón A. Solid-State Oxide-Ion Synaptic Transistor for Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415743. [PMID: 39722152 DOI: 10.1002/adma.202415743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature. Microfabricated electrochemical synapses offer a promising approach by functioning as an analog programmable resistor based on deterministic ion-insertion mechanisms. Here, an all-solid-state oxide-ion synaptic transistor is developed, employing Bi2V0.9Cu0.1O5.35 as a superior oxide-ion conductor electrolyte and La0.5Sr0.5FeO3-δ as a variable-resistance channel able to efficiently operate at temperatures compatible with conventional electronics. This transistor exhibits essential synaptic behaviors such as long- and short-term potentiation, paired-pulse facilitation, and post-tetanic potentiation, mimicking fundamental properties of biological neural networks. Key criteria for efficient neuromorphic computing are satisfied, including excellent linear and symmetric synaptic plasticity, low energy consumption per programming pulse, and high endurance with minimal cycle-to-cycle variation. Integrated into an artificial neural network (ANN) simulation for handwritten digit recognition, the presented synaptic transistor achieved a 96% accuracy on the Modified National Institute of Standards and Technology (MNIST) dataset, illustrating the effective implementation of the device in ANNs. These findings demonstrate the potential of oxide-ion based synaptic transistors for effective implementation in analog neuromorphic computing based on iontronics.
Collapse
Affiliation(s)
- Philipp Langner
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Francesco Chiabrera
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Nerea Alayo
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Paul Nizet
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Luigi Morrone
- Institut de Ciència de Materials de Barcelona (CSIC-ICMAB), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Carlota Bozal-Ginesta
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Alex Morata
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Albert Tarancón
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
5
|
Yang Y, Li Z, Yang Z, Zhang Q, Chen Q, Jiao Y, Wang Z, Zhang X, Zhai P, Sun Z, Xiang Y, Gong Y. Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416266. [PMID: 39760262 DOI: 10.1002/adma.202416266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 102 mS cm-1 is realized, one to three orders of magnitude higher than traditional liquid or solid lithium-ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF6)-ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm-1, outperforming the bulk counterpart by ≈16 fold. At the ultralow temperature of -60 °C, the nanoconfined electrolyte also maintains a practically useful conductivity of 11 mS cm-1. Furthermore, the in situ experimental and theoretical framework enables to attribute the enhanced ionic conductivity to the layer-by-layer cations and anions distribution induced by high surface charge and nanoconfinement effects in GO nanochannels. More importantly, integrating such rapid lithium-ion transport nanochannel into the LiFePO4 (LFP) cathode significantly improves the high-rate and long-cycle performance of lithium batteries. These results exhibit the convention-breaking ionic conductivity of nanoconfined electrolytes, inspiring the development of ultrafast ion diffusion pathways based on 2D nanoconfined channels for efficient energy storage applications.
Collapse
Affiliation(s)
- Yahan Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 311115, China
- The Analysis & Testing Center, Beihang University, Beijing, 102206, China
| | - Zefeng Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | | | - Qiannan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Qian Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yuying Jiao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zixuan Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaokun Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Pengbo Zhai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 311115, China
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 311115, China
- The Analysis & Testing Center, Beihang University, Beijing, 102206, China
- Center for Micro-Nano Innovation, Beihang University, Beijing, 100029, China
| |
Collapse
|
6
|
Bou A, Gonzales C, Boix PP, Vaynzof Y, Guerrero A, Bisquert J. Kinetics of Volatile and Nonvolatile Halide Perovskite Devices: The Conductance-Activated Quasi-Linear Memristor (CALM) Model. J Phys Chem Lett 2025; 16:69-76. [PMID: 39699063 PMCID: PMC11726628 DOI: 10.1021/acs.jpclett.4c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
Memristors stand out as promising components in the landscape of memory and computing. Memristors are generally defined by a conductance mechanism containing a state variable that imparts a memory effect. The current-voltage cycling causes transitions of conductance, which are determined by different physical mechanisms, such as the formation of conducting filaments in an insulating surrounding. Here, we provide a unified description of the set and reset processes using a conductance-activated quasi-linear memristor (CALM) model with a unique voltage-dependent relaxation time of the memory variable. We focus on halide perovskite memristors and their intersection with neuroscience-inspired computing. We show that the modeling approach adeptly replicates the experimental traits of both volatile and nonvolatile memristors. Its versatility extends across various device materials and configurations, as W/SiGe/a-Si/Ag, Si/SiO2/Ag, and SrRuO3/Cr-SrZrO3/Au memristors, capturing nuanced behaviors such as scan rate and upper vertex dependence. The model also describes the response to sequences of voltage pulses that cause synaptic potentiation effects. This model is a potent tool for comprehending and probing the dynamical response of memristors by indicating the relaxation properties that control observable responses.
Collapse
Affiliation(s)
- Agustín Bou
- Chair
for Emerging Electronic Technologies, Technical
University of Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute
for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Cedric Gonzales
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
| | - Pablo P. Boix
- Instituto
de Tecnología Química (Universitat Politècnica
de València-Agencia Estatal Consejo Superior de Investigaciones
Científicas), Av. dels Tarongers, 46022, València, Spain
| | - Yana Vaynzof
- Chair
for Emerging Electronic Technologies, Technical
University of Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute
for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Antonio Guerrero
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
| | - Juan Bisquert
- Instituto
de Tecnología Química (Universitat Politècnica
de València-Agencia Estatal Consejo Superior de Investigaciones
Científicas), Av. dels Tarongers, 46022, València, Spain
| |
Collapse
|
7
|
Kim T, Lee W, Kim Y. Trivalent Ionic Molecular Bridges as Efficient Charge-Trapping Method for All-Solid-State Organic Synaptic Transistors toward Neuromorphic Signal Processing Applications. SMALL METHODS 2024:e2401885. [PMID: 39676397 DOI: 10.1002/smtd.202401885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Achieving high retention of memory state is crucial in artificial synapse devices for neuromorphic computing systems. Of various memorizing methods, a charge-trapping method provides fast response times when it comes to the smallest size of electrons. Here, for the first time, it is demonstrated that trivalent molecular bridges with three ionic bond sites in the polymeric films can efficiently trap electrons in the organic synaptic transistors (OSTRs). A water-soluble polymer with sulfonic acid groups, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), is reacted with melamine (ML) to make trivalent molecular bridges with three ionic bond sites for the application of charge-trapping and gate-insulating layer in all-solid-state OSTRs. The OSTRs with the PAMPSA:ML layers are operated at low voltages (≤5 V) with pronounced hysteresis and high memory retention characteristics (ML = 25 mol%) and delivered excellent potentiation/depression performances under modulation of gate pulse frequency. The optimized OSTRs could successfully process analog (Morse/Braile) signals to synaptic current datasets for recognition/prediction logics with an accuracy of >95%, supporting strong potential as all-solid-state synaptic devices for neuromorphic systems in artificial intelligence applications.
Collapse
Affiliation(s)
- Taehoon Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woongki Lee
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
8
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
9
|
Zhong Y, Nayak PD, Wustoni S, Surgailis J, Parrado Agudelo JZ, Marks A, McCulloch I, Inal S. Ionic Liquid Gated Organic Electrochemical Transistors with Broadened Bandwidth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61457-61466. [PMID: 37997899 DOI: 10.1021/acsami.3c11214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The organic electrochemical transistor (OECT) is a biosignal transducer known for its high amplification but relatively slow operation. Here, we demonstrate that the use of an ionic liquid as the dielectric medium significantly improves the switching speed of a p-type enhancement-mode OECT, regardless of the gate electrode used. The OECT response time with the ionic liquid improves up to ca. 41-fold and 46-fold for the silver/silver chloride (Ag/AgCl) and gold (Au) gates, respectively, compared with devices gated with the phosphate buffered saline (PBS) solution. Notably, the transistor gain remains uncompromised, and its maximum is reached at lower voltages compared to those of PBS-gated devices with Ag/AgCl as the gate electrode. Through ultraviolet-visible spectroscopy and etching X-ray photoelectron spectroscopy characterizations, we reveal that the enhanced bandwidth is associated with the prediffused ionic liquid inside the polymer, leading to a higher doping level compared to PBS. Using the ionic liquid-gated OECTs, we successfully detect electrocardiography (ECG) signals, which exhibit a complete waveform with well-distinguished features and a stable signal baseline. By integrating nonaqueous electrolytes that enhance the device bandwidth, we unlock the potential of enhancement-mode OECTs for physiological signal acquisition and other real-time biosignal monitoring applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Prem D Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jokubas Surgailis
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jessica Z Parrado Agudelo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
10
|
Suleimenov I, Gabrielyan O, Kopishev E, Kadyrzhan A, Bakirov A, Vitulyova Y. Advanced Applications of Polymer Hydrogels in Electronics and Signal Processing. Gels 2024; 10:715. [PMID: 39590071 PMCID: PMC11593912 DOI: 10.3390/gels10110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The current state of affairs in the field of using polymer hydrogels for the creation of innovative systems for signal and image processing, of which computing is a special case, is analyzed. Both of these specific examples of systems capable of forming an alternative to the existing semiconductor-based computing technology, but assuming preservation of the used algorithmic basis, and non-trivial signal converters, the nature of which requires transition to fundamentally different algorithms of data processing, are considered. It is shown that the variability of currently developed information processing systems based on the use of polymers, including polymer hydrogels, leads to the need to search for complementary algorithms. Moreover, the well-known thesis that modern polymer science allows for the realization of functional materials with predetermined properties, at the present stage, receives a new sounding: it is acceptable to raise the question of creating systems built on a quasi-biological basis and realizing predetermined algorithms of information or image processing. Specific examples that meet this thesis are considered, in particular, promising information protection systems for UAV groups, as well as systems based on the coupling of neural networks with holograms that solve various applied problems. These and other case studies demonstrate the importance of interdisciplinary cooperation for solving problems arising from the need for further modernization of signal processing systems.
Collapse
Affiliation(s)
- Ibragim Suleimenov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan;
| | - Oleg Gabrielyan
- Department of Philosophy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Russia;
| | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Aruzhan Kadyrzhan
- Department of Space Engineering, Institute of Communications and Space Engineering, Almaty University of Power Engineering and Telecommunication Named Gumarbek Daukeev, Almaty 050040, Kazakhstan;
| | - Akhat Bakirov
- Department of Telecommunication Engineering, Almaty University of Power Engineering and Telecommunication Named Gumarbek Daukeev, Almaty 050040, Kazakhstan;
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Faculty of Chemistry and Chemical Technology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yelizaveta Vitulyova
- Department of Philosophy, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
11
|
Lee D, Sung J, Kim M, Kim NH, Lee S, Lee HY, Lee EK, Jeong D, Lee E. Controlling Long-Term Plasticity in Neuromorphic Computing Through Modulation of Ferroelectric Polarization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58940-58951. [PMID: 39418188 DOI: 10.1021/acsami.4c11731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Electrolyte-gated transistors (EGTs) have significant potential for neuromorphic computing because they can control the number of ions by mimicking neurotransmitters. However, fast depolarization of the electric double layer (EDL) makes it difficult to achieve long-term plasticity (LTP). Additionally, most research utilizing organic ferroelectric materials has been focused on basic biological functions, and the impact on nonvolatile memory properties is still lacking. Herein, we present a polyvinylidene fluoride (PVDF)-based ion-gel synaptic device using PVDF and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) to implement LTP through the introduction of ferroelectric materials. The PVDF-based polymer slows the escape rate of TFSI anions from the electrolyte/channel layer through residual polarization. The fabricated synaptic devices successfully demonstrate LTP by controlling ion adsorption under the influence of PVDF-based polymers. Furthermore, it implements synaptic functions including paired pulse facilitation (PPF), high-pass filtering, and neurotransmitter control. To validate the potential of neuromorphic computing, we successfully achieved high recognition rates for artificial/convolutional neural network (A/CNN) simulations via sequential adsorption and desorption under ferroelectric polarization with long-term potentiation/depression (LTP/D). This study provides a rational ion adsorption strategy utilizing the ferroelectric polarization caused by the introduction of a PVDF-based polymer in the dielectric layer.
Collapse
Affiliation(s)
- Donghwa Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Junho Sung
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Minhui Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Na-Hyeon Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Young Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Dongyeong Jeong
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Eunho Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
12
|
Lee SW, Kim S, Kim KN, Sung MJ, Lee TW. Increasing the stability of electrolyte-gated organic synaptic transistors for neuromorphic implants. Biosens Bioelectron 2024; 261:116444. [PMID: 38850740 DOI: 10.1016/j.bios.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Electrolyte-gated organic synaptic transistors (EGOSTs) can have versatile synaptic plasticity in a single device, so they are promising as components of neuromorphic implants that are intended for use in neuroprosthetic electronic nerves that are energy-efficient and have simple system structure. With the advancement in transistor properties of EGOSTs, the commercialization of neuromorphic implants for practical long-term use requires consistent operation, so they must be stable in vivo. This requirement demands strategies that maintain electronic and ionic transport in the devices while implanted in the human body, and that are mechanically, environmentally, and operationally stable. Here, we cover the structure, working mechanisms, and electrical responses of EGOSTs. We then focus on strategies to ensure their stability to maintain these characteristics and prevent adverse effects on biological tissues. We also highlight state-of-the-art neuromorphic implants that incorporate these strategies. We conclude by presenting a perspective on improvements that are needed in EGOSTs to develop practical, neuromorphic implants that are long-term useable.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Somin Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwan-Nyeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Jun Sung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Bioengineering, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Zhang X, Yu H, Li W, Chen Y, Zeng N, Shi W, Ling H, Huang W, Yi M. High-Yield Production of Solution-Processed Highly Robust Organic Artificial Synapses by Thermal Treatments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46527-46537. [PMID: 39174345 DOI: 10.1021/acsami.4c08914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A promising approach for implementing biomimetic systems relies on organic electronic devices designed to emulate neural synapses. However, organic artificial synapses face challenges in achieving high yield and robustness, rendering them difficult to use in practical applications. In this work, a high-yield and highly stable bulk heterojunction (BHJ) synaptic device composed of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was fabricated via a simple solution process followed by thermal treatments. The crystallinity of P3HT and the precipitation of PCBM in BHJ films can be controlled by the thermal annealing temperatures. At 80 °C, P3HT reaches its highest crystallinity, while PCBM remains uniformly distributed. This thermal treatment significantly contributes to the fabrication of devices characterized by a high yield rate, reaching 98.43%. Additionally, this device remained operational even after being immersed in deionized water, ethanol, and seawater for 100 h. More importantly, it exhibited high elasticity over a wide temperature range from -90 to 310 °C. Finally, this device was utilized to construct a biomimetic vehicle with autonomous memory learning capabilities. After repeated training, the avoidance time was optimized by 31.4%. The robust P3HT:PCBM artificial synapses hold great promise for advancing the development of biomimetic electronic products in extreme environments.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Haipeng Yu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wen Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Ye Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Nuolan Zeng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wei Shi
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Mingdong Yi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
14
|
Yuan Y, Patel RK, Banik S, Reta TB, Bisht RS, Fong DD, Sankaranarayanan SKRS, Ramanathan S. Proton Conducting Neuromorphic Materials and Devices. Chem Rev 2024; 124:9733-9784. [PMID: 39038231 DOI: 10.1021/acs.chemrev.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Neuromorphic computing and artificial intelligence hardware generally aims to emulate features found in biological neural circuit components and to enable the development of energy-efficient machines. In the biological brain, ionic currents and temporal concentration gradients control information flow and storage. It is therefore of interest to examine materials and devices for neuromorphic computing wherein ionic and electronic currents can propagate. Protons being mobile under an external electric field offers a compelling avenue for facilitating biological functionalities in artificial synapses and neurons. In this review, we first highlight the interesting biological analog of protons as neurotransmitters in various animals. We then discuss the experimental approaches and mechanisms of proton doping in various classes of inorganic and organic proton-conducting materials for the advancement of neuromorphic architectures. Since hydrogen is among the lightest of elements, characterization in a solid matrix requires advanced techniques. We review powerful synchrotron-based spectroscopic techniques for characterizing hydrogen doping in various materials as well as complementary scattering techniques to detect hydrogen. First-principles calculations are then discussed as they help provide an understanding of proton migration and electronic structure modification. Outstanding scientific challenges to further our understanding of proton doping and its use in emerging neuromorphic electronics are pointed out.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ranjan Kumar Patel
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Suvo Banik
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tadesse Billo Reta
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ravindra Singh Bisht
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shriram Ramanathan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Chen S, Zhou Z, Hou K, Wu X, He Q, Tang CG, Li T, Zhang X, Jie J, Gao Z, Mathews N, Leong WL. Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot. Nat Commun 2024; 15:7056. [PMID: 39147776 PMCID: PMC11327256 DOI: 10.1038/s41467-024-51403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The emulation of tactile sensory nerves to achieve advanced sensory functions in robotics with artificial intelligence is of great interest. However, such devices remain bulky and lack reliable competence to functionalize further synaptic devices with proprioceptive feedback. Here, we report an artificial organic afferent nerve with low operating bias (-0.6 V) achieved by integrating a pressure-activated organic electrochemical synaptic transistor and artificial mechanoreceptors. The dendritic integration function for neurorobotics is achieved to perceive directional movement of object, further reducing the control complexity by exploiting the distributed and parallel networks. An intelligent robot assembled with artificial afferent nerve, coupled with a closed-loop feedback program is demonstrated to rapidly implement slip recognition and prevention actions upon occurrence of object slippage. The spatiotemporal features of tactile patterns are well differentiated with a high recognition accuracy after processing spike-encoded signals with deep learning model. This work represents a breakthrough in mimicking synaptic behaviors, which is essential for next-generation intelligent neurorobotics and low-power biomimetic electronics.
Collapse
Affiliation(s)
- Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, PR China
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kunqi Hou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cindy G Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ting Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiujuan Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, PR China
| | - Jiansheng Jie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, PR China
| | - Zhiyi Gao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, PR China
| | - Nripan Mathews
- Energy Research Institute @ NTU, Nanyang Technological University, Singapore, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Bongartz LM, Kantelberg R, Meier T, Hoffmann R, Matthus C, Weissbach A, Cucchi M, Kleemann H, Leo K. Bistable organic electrochemical transistors: enthalpy vs. entropy. Nat Commun 2024; 15:6819. [PMID: 39122689 PMCID: PMC11316041 DOI: 10.1038/s41467-024-51001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Organic electrochemical transistors (OECTs) underpin a range of emerging technologies, from bioelectronics to neuromorphic computing, owing to their unique coupling of electronic and ionic charge carriers. In this context, various OECT systems exhibit significant hysteresis in their transfer curve, which is frequently leveraged to achieve non-volatility. Meanwhile, a general understanding of its physical origin is missing. Here, we introduce a thermodynamic framework that readily explains the emergence of bistable OECT operation via the interplay of enthalpy and entropy. We validate this model through temperature-resolved characterizations, material manipulation, and thermal imaging. Further, we reveal deviations from Boltzmann statistics for the subthreshold swing and reinterpret existing literature. Capitalizing on these findings, we finally demonstrate a single-OECT Schmitt trigger, thus compacting a multi-component circuit into a single device. These insights provide a fundamental advance for OECT physics and its application in non-conventional computing, where symmetry-breaking phenomena are pivotal to unlock new paradigms of information processing.
Collapse
Affiliation(s)
- Lukas M Bongartz
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany.
| | - Richard Kantelberg
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Tommy Meier
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Raik Hoffmann
- Fraunhofer Institute for Photonic Microsystems IPMS, Center Nanoelectronic Technologies, An der Bartlake 5, 01099, Dresden, Germany
| | - Christian Matthus
- Chair of Circuit Design and Network Theory (CCN), Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Helmholtzstr. 18, 01069, Dresden, Germany
| | - Anton Weissbach
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Matteo Cucchi
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Hans Kleemann
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Karl Leo
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| |
Collapse
|
17
|
van Doremaele ERW, Stevens T, Ringeling S, Spolaor S, Fattori M, van de Burgt Y. Hardware implementation of backpropagation using progressive gradient descent for in situ training of multilayer neural networks. SCIENCE ADVANCES 2024; 10:eado8999. [PMID: 38996020 PMCID: PMC11244533 DOI: 10.1126/sciadv.ado8999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Neural network training can be slow and energy-expensive due to the frequent transfer of weight data between digital memory and processing units. Neuromorphic systems can accelerate neural networks by performing multiply-accumulate operations in parallel using nonvolatile analog memory. However, executing the widely used backpropagation training algorithm in multilayer neural networks requires information-and therefore storage-of the partial derivatives of the weight values preventing suitable and scalable implementation in hardware. Here, we propose a hardware implementation of the backpropagation algorithm that progressively updates each layer using in situ stochastic gradient descent, avoiding this storage requirement. We experimentally demonstrate the in situ error calculation and the proposed progressive backpropagation method in a multilayer hardware-implemented neural network. We confirm identical learning characteristics and classification performance compared to conventional backpropagation in software. We show that our approach can be scaled to large and deep neural networks, enabling highly efficient training of advanced artificial intelligence computing systems.
Collapse
Affiliation(s)
- Eveline R. W. van Doremaele
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
| | - Tim Stevens
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
| | - Stijn Ringeling
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
| | - Simone Spolaor
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
| | - Marco Fattori
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
| | - Yoeri van de Burgt
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven 5612AP, Netherlands
| |
Collapse
|
18
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
19
|
Kim H, Won Y, Song HW, Kwon Y, Jun M, Oh JH. Organic Mixed Ionic-Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306191. [PMID: 38148583 PMCID: PMC11251567 DOI: 10.1002/advs.202306191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Indexed: 12/28/2023]
Abstract
The field of organic mixed ionic-electronic conductors (OMIECs) has gained significant attention due to their ability to transport both electrons and ions, making them promising candidates for various applications. Initially focused on inorganic materials, the exploration of mixed conduction has expanded to organic materials, especially polymers, owing to their advantages such as solution processability, flexibility, and property tunability. OMIECs, particularly in the form of polymers, possess both electronic and ionic transport functionalities. This review provides an overview of OMIECs in various aspects covering mechanisms of charge transport including electronic transport, ionic transport, and ionic-electronic coupling, as well as conducting/semiconducting conjugated polymers and their applications in organic bioelectronics, including (multi)sensors, neuromorphic devices, and electrochromic devices. OMIECs show promise in organic bioelectronics due to their compatibility with biological systems and the ability to modulate electronic conduction and ionic transport, resembling the principles of biological systems. Organic electrochemical transistors (OECTs) based on OMIECs offer significant potential for bioelectronic applications, responding to external stimuli through modulation of ionic transport. An in-depth review of recent research achievements in organic bioelectronic applications using OMIECs, categorized based on physical and chemical stimuli as well as neuromorphic devices and circuit applications, is presented.
Collapse
Affiliation(s)
- Hyunwook Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yousang Won
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Hyun Woo Song
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
20
|
Krauhausen I, Griggs S, McCulloch I, den Toonder JMJ, Gkoupidenis P, van de Burgt Y. Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics. Nat Commun 2024; 15:4765. [PMID: 38834541 DOI: 10.1038/s41467-024-48881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Biological systems interact directly with the environment and learn by receiving multimodal feedback via sensory stimuli that shape the formation of internal neuronal representations. Drawing inspiration from biological concepts such as exploration and sensory processing that eventually lead to behavioral conditioning, we present a robotic system handling objects through multimodal learning. A small-scale organic neuromorphic circuit locally integrates and adaptively processes multimodal sensory stimuli, enabling the robot to interact intelligently with its surroundings. The real-time handling of sensory stimuli via low-voltage organic neuromorphic devices with synaptic functionality forms multimodal associative connections that lead to behavioral conditioning, and thus the robot learns to avoid potentially dangerous objects. This work demonstrates that adaptive neuro-inspired circuitry with multifunctional organic materials, can accommodate locally efficient bio-inspired learning for advancing intelligent robotics.
Collapse
Affiliation(s)
- Imke Krauhausen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jaap M J den Toonder
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Yoeri van de Burgt
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
21
|
Liu S, Akinwande D, Kireev D, Incorvia JAC. Graphene-Based Artificial Dendrites for Bio-Inspired Learning in Spiking Neuromorphic Systems. NANO LETTERS 2024. [PMID: 38819288 DOI: 10.1021/acs.nanolett.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks.
Collapse
Affiliation(s)
- Samuel Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jean Anne C Incorvia
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
22
|
Liu X, Dai S, Zhao W, Zhang J, Guo Z, Wu Y, Xu Y, Sun T, Li L, Guo P, Yang J, Hu H, Zhou J, Zhou P, Huang J. All-Photolithography Fabrication of Ion-Gated Flexible Organic Transistor Array for Multimode Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312473. [PMID: 38385598 DOI: 10.1002/adma.202312473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Organic ion-gated transistors (OIGTs) demonstrate commendable performance for versatile neuromorphic systems. However, due to the fragility of organic materials to organic solvents, efficient and reliable all-photolithography methods for scalable manufacturing of high-density OIGT arrays with multimode neuromorphic functions are still missing, especially when all active layers are patterned in high-density. Here, a flexible high-density (9662 devices per cm2) OIGT array with high yield and minimal device-to-device variation is fabricated by a modified all-photolithography method. The unencapsulated flexible array can withstand 1000 times' bending at a radius of 1 mm, and 3 months' storage test in air, without obvious performance degradation. More interesting, the OIGTs can be configured between volatile and nonvolatile modes, suitable for constructing reservoir computing systems to achieve high accuracy in classifying handwritten digits with low training costs. This work proposes a promising design of organic and flexible electronics for affordable neuromorphic systems, encompassing both array and algorithm aspects.
Collapse
Affiliation(s)
- Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shilei Dai
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Weidong Zhao
- School of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yutong Xu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Tongrui Sun
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Li Li
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Pu Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jie Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junhe Zhou
- School of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
23
|
Han Y, Lee S, Lee EK, Yoo H, Jang BC. Strengthening Multi-Factor Authentication Through Physically Unclonable Functions in PVDF-HFP-Phase-Dependent a-IGZO Thin-Film Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309221. [PMID: 38454740 PMCID: PMC11095217 DOI: 10.1002/advs.202309221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Indexed: 03/09/2024]
Abstract
For enhanced security in hardware-based security devices, it is essential to extract various independent characteristics from a single device to generate multiple keys based on specific values. Additionally, the secure destruction of authentication information is crucial for the integrity of the data. Doped amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) using poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) induce a dipole doping effect through a phase-transition process, creating physically unclonable function (PUF) devices for secure user information protection. The PUF security key, generated at VGS = 20 V in a 20 × 10 grid, demonstrates uniformity of 42% and inter-Hamming distance (inter-HD) of 49.79% in the β-phase of PVDF-HFP. However, in the γ-phase, the uniformity drops to 22.5%, and inter-HD decreases to 35.74%, indicating potential security key destruction during the phase transition. To enhance security, a multi-factor authentication (MFA) system is integrated, utilizing five security keys extracted from various TFT parameters. The security keys from turn-on voltage (VON), VGS = 20 V, VGS = 30 V, mobility, and threshold voltage (Vth) exhibit near-ideal uniformities and inter-HDs, with the highest values of 58% and 51.68%, respectively. The dual security system, combining phase transition and MFA, establishes a robust protection mechanism for privacy-sensitive user information.
Collapse
Affiliation(s)
- Youngmin Han
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120South Korea
| | - Subin Lee
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120South Korea
| | - Eun Kwang Lee
- Department of Chemical EngineeringPukyong National UniversityBusan48513South Korea
| | - Hocheon Yoo
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120South Korea
| | - Byung Chul Jang
- School of Electronics EngineeringKyungpook National University80 Daehakro, BukguDaegu41566Republic of Korea
- School of Electronics and Electrical EngineeringKyungpook National University80 Daehakro, BukguDaegu41566Republic of Korea
| |
Collapse
|
24
|
Cho KG, Lee KH, Frisbie CD. Tuning Gate Potential Profiles and Current-Voltage Characteristics of Polymer Electrolyte-Gated Transistors by Capacitance Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19309-19317. [PMID: 38591355 DOI: 10.1021/acsami.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We demonstrate that the transfer characteristics of electrolyte-gated transistors (EGTs) with polythiophene semiconductor channels are a strong function of gate/electrolyte interfacial contact area, i.e., gate size. Polythiophene EGTs with gate/electrolyte areas much larger than the channel/electrolyte areas show a clear peak in the drain current vs gate voltage (ID-VG) behavior, as well as peak voltage hysteresis between the forward and reverse VG sweeps. Polythiophene EGTs with small gate/electrolyte areas, on the other hand, exhibit current plateaus in the ID-VG behavior and a gate-size-dependent hysteresis loop between turn on and off. The qualitatively different transport behaviors are attributed to the relative sizes of the gate/electrolyte and channel/electrolyte interface capacitances, which are proportional to interfacial area. These interfacial capacitances are in series with each other such that the total capacitance of the full gate/electrolyte/channel stack is dominated by the interface with the smallest capacitance or area. For EGTs with large gates, most of the applied VG is dropped at the channel/electrolyte interface, leading to very high charge accumulations, up to ∼0.3 holes per ring (hpr) in the case of polythiophene semiconductors. The large charge density results in sub-band-filling and a marked decrease in hole mobility, giving rise to the peak in ID-VG. For EGTs with small gates, hole accumulation saturates near 0.15 hpr, band-filling does not occur, and hole mobility is maintained at a fixed value, which leads to the ID plateau. Potential drops at the interfaces are confirmed by in situ potential measurements inside a gate/electrolyte/polymer semiconductor stack. Hole accumulations are measured with gate current-gate voltage (IG-VG) measurements acquired simultaneously with the ID-VG characteristics. Overall, our measurements demonstrate that remarkably different ID behavior can be obtained for polythiophene EGTs by controlling the magnitude of the gate-electrolyte interfacial capacitance.
Collapse
Affiliation(s)
- Kyung Gook Cho
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Keun Hyung Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials Inha University, Incheon 22212, Republic of Korea
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Bakry A, Yadav P, Chen SYE, Luscombe CK. The unexpected fast polymerization during the synthesis of a glycolated polythiophene. Faraday Discuss 2024; 250:74-82. [PMID: 37994514 DOI: 10.1039/d3fd00146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Conjugated polymers with ethylene glycol side chains are emerging as ideal materials for bioelectronics, particularly for application in organic electrochemical transistors (OECTs). To improve the OECT device performance, it is important to develop an efficient synthetic strategy that will provide access to novel high-performing materials besides focusing on molecular design. While a lot of efforts are being devoted to designing of new polymers by modifying the glycol side chains, understanding how their nature affects the polymerization kinetics and eventually the polymer structure and properties is not known. In this work, we have studied the influence of the content of the ethylene glycol side chain and its linkage on the formation of the active Grignard monomer species upon Grignard metathesis in three thiophene derivatives. A strong dependence of the monomer's concentration on polymerization was noted in our study indicating that for synthesizing P3MEEMT, a high-performing OECT material, by Kumada catalyst transfer polymerization (KCTP) a minimum of 0.15 M monomer is needed. Furthermore, kinetic studies by GPC show uncontrolled polymerization behavior contrary to the controlled chain growth characteristics of the KCTP.
Collapse
Affiliation(s)
- Abdulrahman Bakry
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 9040495, Japan.
| | - Preeti Yadav
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 9040495, Japan.
| | - Shin-Ya Emerson Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 9040495, Japan.
| |
Collapse
|
26
|
Kwak H, Kim N, Jeon S, Kim S, Woo J. Electrochemical random-access memory: recent advances in materials, devices, and systems towards neuromorphic computing. NANO CONVERGENCE 2024; 11:9. [PMID: 38416323 PMCID: PMC10902254 DOI: 10.1186/s40580-024-00415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Artificial neural networks (ANNs), inspired by the human brain's network of neurons and synapses, enable computing machines and systems to execute cognitive tasks, thus embodying artificial intelligence (AI). Since the performance of ANNs generally improves with the expansion of the network size, and also most of the computation time is spent for matrix operations, AI computation have been performed not only using the general-purpose central processing unit (CPU) but also architectures that facilitate parallel computation, such as graphic processing units (GPUs) and custom-designed application-specific integrated circuits (ASICs). Nevertheless, the substantial energy consumption stemming from frequent data transfers between processing units and memory has remained a persistent challenge. In response, a novel approach has emerged: an in-memory computing architecture harnessing analog memory elements. This innovation promises a notable advancement in energy efficiency. The core of this analog AI hardware accelerator lies in expansive arrays of non-volatile memory devices, known as resistive processing units (RPUs). These RPUs facilitate massively parallel matrix operations, leading to significant enhancements in both performance and energy efficiency. Electrochemical random-access memory (ECRAM), leveraging ion dynamics in secondary-ion battery materials, has emerged as a promising candidate for RPUs. ECRAM achieves over 1000 memory states through precise ion movement control, prompting early-stage research into material stacks such as mobile ion species and electrolyte materials. Crucially, the analog states in ECRAMs update symmetrically with pulse number (or voltage polarity), contributing to high network performance. Recent strides in device engineering in planar and three-dimensional structures and the understanding of ECRAM operation physics have marked significant progress in a short research period. This paper aims to review ECRAM material advancements through literature surveys, offering a systematic discussion on engineering assessments for ion control and a physical understanding of array-level demonstrations. Finally, the review outlines future directions for improvements, co-optimization, and multidisciplinary collaboration in circuits, algorithms, and applications to develop energy-efficient, next-generation AI hardware systems.
Collapse
Affiliation(s)
- Hyunjeong Kwak
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nayeon Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Seonuk Jeon
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Seyoung Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Jiyong Woo
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
27
|
Zhong Y, Lopez-Larrea N, Alvarez-Tirado M, Casado N, Koklu A, Marks A, Moser M, McCulloch I, Mecerreyes D, Inal S. Eutectogels as a Semisolid Electrolyte for Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1841-1854. [PMID: 38435047 PMCID: PMC10902863 DOI: 10.1021/acs.chemmater.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) are signal transducers offering high amplification, which makes them particularly advantageous for detecting weak biological signals. While OECTs typically operate with aqueous electrolytes, those employing solid-like gels as the dielectric layer can be excellent candidates for constructing wearable electrophysiology probes. Despite their potential, the impact of the gel electrolyte type and composition on the operation of the OECT and the associated device design considerations for optimal performance with a chosen electrolyte have remained ambiguous. In this work, we investigate the influence of three types of gel electrolytes-hydrogels, eutectogels, and iongels, each with varying compositions on the performance of OECTs. Our findings highlight the superiority of the eutectogel electrolyte, which comprises poly(glycerol 1,3-diglycerolate diacrylate) as the polymer matrix and choline chloride in combination with 1,3-propanediol deep eutectic solvent as the ionic component. This eutectogel electrolyte outperforms hydrogel and iongel counterparts of equivalent dimensions, yielding the most favorable transient and steady-state performance for both p-type depletion and p-type/n-type enhancement mode transistors gated with silver/silver chloride (Ag/AgCl). Furthermore, the eutectogel-integrated enhancement mode OECTs exhibit exceptional operational stability, reflected in the absence of signal-to-noise ratio (SNR) variation in the simulated electrocardiogram (ECG) recordings conducted continuously over a period of 5 h, as well as daily measurements spanning 30 days. Eutectogel-based OECTs also exhibit higher ECG signal amplitudes and SNR than their counterparts, utilizing the commercially available hydrogel, which is the most common electrolyte for cutaneous electrodes. These findings underscore the potential of eutectogels as a semisolid electrolyte for OECTs, particularly in applications demanding robust and prolonged physiological signal monitoring.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naroa Lopez-Larrea
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Marta Alvarez-Tirado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Nerea Casado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Anil Koklu
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Maximilian Moser
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Iain McCulloch
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - David Mecerreyes
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
28
|
Yang W, Feng K, Ma S, Liu B, Wang Y, Ding R, Jeong SY, Woo HY, Chan PKL, Guo X. High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors: The Impacts of Halogen Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305416. [PMID: 37572077 DOI: 10.1002/adma.202305416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity. Consequently, f-BTI2g-TVTF delivers a state-of-the-art µC* of 90.2 F cm-1 V-1 s-1 with a remarkable electron mobility of 0.41 cm2 V-1 s-1 in OECTs and an excellent power factor of 64.2 µW m-1 K-2 in OTEs. An OECT-based inverter amplifier is further demonstrated with voltage gain up to 148 V V-1 , which is among the highest values for OECT inverters. Such results shed light on the impacts of halogen atoms on developing high-performing n-type PMIECs.
Collapse
Affiliation(s)
- Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Riqing Ding
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Paddy Kwok Leung Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science and Technology Park, Shatin, Hong Kong, 999077, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
29
|
Guo Z, Zhang J, Yang B, Li L, Liu X, Xu Y, Wu Y, Guo P, Sun T, Dai S, Liang H, Wang J, Zou Y, Xiong L, Huang J. Organic High-Temperature Synaptic Phototransistors for Energy-Efficient Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310155. [PMID: 38100140 DOI: 10.1002/adma.202310155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Organic optoelectronic synaptic devices that can reliably operate in high-temperature environments (i.e., beyond 121°C) or remain stable after high-temperature treatments have significant potential in biomedical electronics and bionic robotic engineering. However, it is challenging to acquire this type of organic devices considering the thermal instability of conventional organic materials and the degradation of photoresponse mechanisms at high temperatures. Here, high-temperature synaptic phototransistors (HTSPs) based on thermally stable semiconductor polymer blends as the photosensitive layer are developed, successfully simulating fundamental optical-modulated synaptic characteristics at a wide operating temperature range from room temperature to 220°C. Robust optoelectronic performance can be observed in HTSPs even after experiencing 750 h of the double 85 testing due to the enhanced operational reliability. Using HTSPs, Morse-code optical decoding scheme and the visual object recognition capability are also verified at elevated temperatures. Furthermore, flexible HTSPs are fabricated, demonstrating an ultralow power consumption of 12.3 aJ per synaptic event at a low operating voltage of -0.05 mV. Overall, the conundrum of achieving reliable optical-modulated neuromorphic applications while balancing low power consumption can be effectively addressed. This research opens up a simple but effective avenue for the development of high-temperature and energy-efficient wearable optoelectronic devices in neuromorphic computing applications.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ben Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Li Li
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yutong Xu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Pu Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Tongrui Sun
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shilei Dai
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Haixia Liang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jun Wang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yidong Zou
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200434, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200434, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
30
|
Seo D, Kang S, Ryou H, Shin M, Hwang WS. Wide-Range Synaptic Current Responses with a Liquid Ga Electrode via a Surface Redox Reaction in a NaOH Solution at Different Molar Concentrations. ACS OMEGA 2023; 8:41495-41501. [PMID: 37970006 PMCID: PMC10634217 DOI: 10.1021/acsomega.3c05352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
A liquid Ga-based synaptic device with two-terminal electrodes is demonstrated in NaOH solutions at 50 °C. The proposed electrochemical redox device using the liquid Ga electrode in the NaOH solution can emulate various biological synapses that require different decay constants. The device exhibits a wide range of current decay times from 60 to 320 ms at different NaOH mole concentrations from 0.2 to 1.6 M. This research marks a step forward in the development of flexible and biocompatible neuromorphic devices that can be utilized for a range of applications where different synaptic strengths are required lasting from a few milliseconds to seconds.
Collapse
Affiliation(s)
- Dahee Seo
- Department
of Materials Science and Engineering, Korea
Aerospace University, Goyang 10540, Republic
of Korea
- Department
of Smart Air Mobility, Korea Aerospace University, Goyang 10540, Republic of Korea
| | - Seongyeon Kang
- Department
of Materials Science and Engineering, Korea
Aerospace University, Goyang 10540, Republic
of Korea
| | - Heejoong Ryou
- Department
of Materials Science and Engineering, Korea
Aerospace University, Goyang 10540, Republic
of Korea
- Department
of Smart Air Mobility, Korea Aerospace University, Goyang 10540, Republic of Korea
| | - Myunghun Shin
- School
of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic
of Korea
| | - Wan Sik Hwang
- Department
of Materials Science and Engineering, Korea
Aerospace University, Goyang 10540, Republic
of Korea
- Department
of Smart Air Mobility, Korea Aerospace University, Goyang 10540, Republic of Korea
| |
Collapse
|
31
|
Yang GG, Kim DH, Samal S, Choi J, Roh H, Cunin CE, Lee HM, Kim SO, Dincă M, Gumyusenge A. Polymer-Based Thermally Stable Chemiresistive Sensor for Real-Time Monitoring of NO 2 Gas Emission. ACS Sens 2023; 8:3687-3692. [PMID: 37721017 DOI: 10.1021/acssensors.3c01530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We present a thermally stable, mechanically compliant, and sensitive polymer-based NO2 gas sensor design. Interconnected nanoscale morphology driven from spinodal decomposition between conjugated polymers tethered with polar side chains and thermally stable matrix polymers offers judicious design of NO2-sensitive and thermally tolerant thin films. The resulting chemiresitive sensors exhibit stable NO2 sensing even at 170 °C over 6 h. Controlling the density of polar side chains along conjugated polymer backbone enables optimal design for coupling high NO2 sensitivity, selectivity, and thermal stability of polymer sensors. Lastly, thermally stable films are used to implement chemiresistive sensors onto flexible and heat-resistant substrates and demonstrate a reliable gas sensing response even after 500 bending cycles at 170 °C. Such unprecedented sensor performance as well as environmental stability are promising for real-time monitoring of gas emission from vehicles and industrial chemical processes.
Collapse
Affiliation(s)
- Geon Gug Yang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dong-Ha Kim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Sanket Samal
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jungwoo Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Heejung Roh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Camille E Cunin
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Hyuck Mo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Aristide Gumyusenge
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Nikam RD, Lee J, Lee K, Hwang H. Exploring the Cutting-Edge Frontiers of Electrochemical Random Access Memories (ECRAMs) for Neuromorphic Computing: Revolutionary Advances in Material-to-Device Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302593. [PMID: 37300356 DOI: 10.1002/smll.202302593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Advanced materials and device engineering has played a crucial role in improving the performance of electrochemical random access memory (ECRAM) devices. ECRAM technology has been identified as a promising candidate for implementing artificial synapses in neuromorphic computing systems due to its ability to store analog values and its ease of programmability. ECRAM devices consist of an electrolyte and a channel material sandwiched between two electrodes, and the performance of these devices depends on the properties of the materials used. This review provides a comprehensive overview of material engineering strategies to optimize the electrolyte and channel materials' ionic conductivity, stability, and ionic diffusivity to improve the performance and reliability of ECRAM devices. Device engineering and scaling strategies are further discussed to enhance ECRAM performance. Last, perspectives on the current challenges and future directions in developing ECRAM-based artificial synapses in neuromorphic computing systems are provided.
Collapse
Affiliation(s)
- Revannath Dnyandeo Nikam
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Jongwon Lee
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Kyumin Lee
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyunsang Hwang
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| |
Collapse
|
33
|
Dai S, Liu X, Liu Y, Xu Y, Zhang J, Wu Y, Cheng P, Xiong L, Huang J. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300329. [PMID: 36891745 DOI: 10.1002/adma.202300329] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Living organisms have a very mysterious and powerful sensory computing system based on ion activity. Interestingly, studies on iontronic devices in the past few years have proposed a promising platform for simulating the sensing and computing functions of living organisms, because: 1) iontronic devices can generate, store, and transmit a variety of signals by adjusting the concentration and spatiotemporal distribution of ions, which analogs to how the brain performs intelligent functions by alternating ion flux and polarization; 2) through ionic-electronic coupling, iontronic devices can bridge the biosystem with electronics and offer profound implications for soft electronics; 3) with the diversity of ions, iontronic devices can be designed to recognize specific ions or molecules by customizing the charge selectivity, and the ionic conductivity and capacitance can be adjusted to respond to external stimuli for a variety of sensing schemes, which can be more difficult for electron-based devices. This review provides a comprehensive overview of emerging neuromorphic sensory computing by iontronic devices, highlighting representative concepts of both low-level and high-level sensory computing and introducing important material and device breakthroughs. Moreover, iontronic devices as a means of neuromorphic sensing and computing are discussed regarding the pending challenges and future directions.
Collapse
Affiliation(s)
- Shilei Dai
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Xu Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Youdi Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Yutong Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
| | - Jia Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
34
|
Talin AA, Li Y, Robinson DA, Fuller EJ, Kumar S. ECRAM Materials, Devices, Circuits and Architectures: A Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204771. [PMID: 36354177 DOI: 10.1002/adma.202204771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Indexed: 06/16/2023]
Abstract
Non-von-Neumann computing using neuromorphic systems based on two-terminal resistive nonvolatile memory elements has emerged as a promising approach, but its full potential has not been realized due to the lack of materials and devices with the appropriate attributes. Unlike memristors, which require large write currents to drive phase transformations or filament growth, electrochemical random access memory (ECRAM) decouples the "write" and "read" operations using a "gate" electrode to tune the conductance state through charge-transfer reactions, and every electron transferred through the external circuit in ECRAM corresponds to the migration of ≈1 ion used to store analogue information. Like static dopants in traditional semiconductors, electrochemically inserted ions modulate the conductivity by locally perturbing a host's electronic structure; however, ECRAM does so in a dynamic and reversible manner. The resulting change in conductance can span orders of magnitude, from gradual increments needed for analog elements, to large, abrupt changes for dynamically reconfigurable adaptive architectures. In this in-depth perspective, the history of ECRAM, the recent progress in devices spanning organic, inorganic, and 2D materials, circuits, architectures, the rich portfolio of challenging, fundamental questions, and how ECRAM can be harnessed to realize a new paradigm for low-power neuromorphic computing are discussed.
Collapse
Affiliation(s)
- A Alec Talin
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Yiyang Li
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Suhas Kumar
- Sandia National Laboratories, Livermore, CA, 94551, USA
| |
Collapse
|
35
|
Huang M, Schwacke M, Onen M, Del Alamo J, Li J, Yildiz B. Electrochemical Ionic Synapses: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205169. [PMID: 36300807 DOI: 10.1002/adma.202205169] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Artificial neural networks based on crossbar arrays of analog programmable resistors can address the high energy challenge of conventional hardware in artificial intelligence applications. However, state-of-the-art two-terminal resistive switching devices based on conductive filament formation suffer from high variability and poor controllability. Electrochemical ionic synapses are three-terminal devices that operate by electrochemical and dynamic insertion/extraction of ions that control the electronic conductivity of a channel in a single solid-solution phase. They are promising candidates for programmable resistors in crossbar arrays because they have shown uniform and deterministic control of electronic conductivity based on ion doping, with very low energy consumption. Here, the desirable specifications of these programmable resistors are presented. Then, an overview of the current progress of devices based on Li+ , O2- , and H+ ions and material systems is provided. Achieving nanosecond speed, low operation voltage (≈1 V), low energy consumption, with complementary metal-oxide-semiconductor compatibility all simultaneously remains a challenge. Toward this goal, a physical model of the device is constructed to provide guidelines for the desired material properties to overcome the remaining challenges. Finally, an outlook is provided, including strategies to advance materials toward the desirable properties and the future opportunities for electrochemical ionic synapses.
Collapse
Affiliation(s)
- Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Schwacke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Murat Onen
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jesús Del Alamo
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
36
|
Chen S, Zhang T, Tappertzhofen S, Yang Y, Valov I. Electrochemical-Memristor-Based Artificial Neurons and Synapses-Fundamentals, Applications, and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301924. [PMID: 37199224 DOI: 10.1002/adma.202301924] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Artificial neurons and synapses are considered essential for the progress of the future brain-inspired computing, based on beyond von Neumann architectures. Here, a discussion on the common electrochemical fundamentals of biological and artificial cells is provided, focusing on their similarities with the redox-based memristive devices. The driving forces behind the functionalities and the ways to control them by an electrochemical-materials approach are presented. Factors such as the chemical symmetry of the electrodes, doping of the solid electrolyte, concentration gradients, and excess surface energy are discussed as essential to understand, predict, and design artificial neurons and synapses. A variety of two- and three-terminal memristive devices and memristive architectures are presented and their application for solving various problems is shown. The work provides an overview of the current understandings on the complex processes of neural signal generation and transmission in both biological and artificial cells and presents the state-of-the-art applications, including signal transmission between biological and artificial cells. This example is showcasing the possibility for creating bioelectronic interfaces and integrating artificial circuits in biological systems. Prospectives and challenges of the modern technology toward low-power, high-information-density circuits are highlighted.
Collapse
Affiliation(s)
- Shaochuan Chen
- Institute of Materials in Electrical Engineering 2 (IWE2), RWTH Aachen University, Sommerfeldstraße 24, 52074, Aachen, Germany
| | - Teng Zhang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Stefan Tappertzhofen
- Chair for Micro- and Nanoelectronics, Department of Electrical Engineering and Information Technology, TU Dortmund University, Martin-Schmeisser-Weg 4-6, D-44227, Dortmund, Germany
| | - Yuchao Yang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
- Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, 102206, China
| | - Ilia Valov
- Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Institute of Electrochemistry and Energy Systems "Acad. E. Budewski", Bulgarian Academy of Sciences, Acad. G. Bonchev 10, 1113, Sofia, Bulgaria
| |
Collapse
|
37
|
Robinson DA, Foster ME, Bennett CH, Bhandarkar A, Webster ER, Celebi A, Celebi N, Fuller EJ, Stavila V, Spataru CD, Ashby DS, Marinella MJ, Krishnakumar R, Allendorf MD, Talin AA. Tunable Intervalence Charge Transfer in Ruthenium Prussian Blue Analog Enables Stable and Efficient Biocompatible Artificial Synapses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207595. [PMID: 36437049 DOI: 10.1002/adma.202207595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Emerging concepts for neuromorphic computing, bioelectronics, and brain-computer interfacing inspire new research avenues aimed at understanding the relationship between oxidation state and conductivity in unexplored materials. This report expands the materials playground for neuromorphic devices to include a mixed valence inorganic 3D coordination framework, a ruthenium Prussian blue analog (RuPBA), for flexible and biocompatible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. The electrochemically tunable degree of mixed valency and electronic coupling between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory computations and application of electron transfer theory to in situ spectroscopy of intervalence charge transfer. Retention of programmed states is improved by nearly two orders of magnitude compared to extensively studied organic polymers, thus reducing the frequency, complexity, and energy costs associated with error correction schemes. This report demonstrates dopamine-mediated plasticity of RuPBA synapses and biocompatibility of RuPBA with neuronal cells, evoking prospective application for brain-computer interfacing.
Collapse
Affiliation(s)
| | | | | | | | | | - Aleyna Celebi
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Nisa Celebi
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | | | | | | | - David S Ashby
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Matthew J Marinella
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | | | | | - A Alec Talin
- Sandia National Laboratories, Livermore, CA, 94550, USA
| |
Collapse
|
38
|
Halaksa R, Kim JH, Thorley KJ, Gilhooly‐Finn PA, Ahn H, Savva A, Yoon M, Nielsen CB. The Influence of Regiochemistry on the Performance of Organic Mixed Ionic and Electronic Conductors. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304390. [PMID: 38528843 PMCID: PMC10962556 DOI: 10.1002/ange.202304390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 03/27/2024]
Abstract
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a μC* product of 267 F V-1 cm-1 s-1.
Collapse
Affiliation(s)
- Roman Halaksa
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ji Hwan Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Karl J. Thorley
- Center for Applied Energy ResearchUniversity of KentuckyLexingtonKY40511USA
| | | | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECHPohang37673Republic of Korea
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Myung‐Han Yoon
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
39
|
Halaksa R, Kim JH, Thorley KJ, Gilhooly‐Finn PA, Ahn H, Savva A, Yoon M, Nielsen CB. The Influence of Regiochemistry on the Performance of Organic Mixed Ionic and Electronic Conductors. Angew Chem Int Ed Engl 2023; 62:e202304390. [PMID: 37204070 PMCID: PMC10962546 DOI: 10.1002/anie.202304390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a μC* product of 267 F V-1 cm-1 s-1 .
Collapse
Affiliation(s)
- Roman Halaksa
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ji Hwan Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Karl J. Thorley
- Center for Applied Energy ResearchUniversity of KentuckyLexingtonKY40511USA
| | | | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECHPohang37673Republic of Korea
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Myung‐Han Yoon
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
40
|
Choi Y, Ho DH, Kim S, Choi YJ, Roe DG, Kwak IC, Min J, Han H, Gao W, Cho JH. Physically defined long-term and short-term synapses for the development of reconfigurable analog-type operators capable of performing health care tasks. SCIENCE ADVANCES 2023; 9:eadg5946. [PMID: 37406117 PMCID: PMC10321737 DOI: 10.1126/sciadv.adg5946] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Extracting valuable information from the overflowing data is a critical yet challenging task. Dealing with high volumes of biometric data, which are often unstructured, nonstatic, and ambiguous, requires extensive computer resources and data specialists. Emerging neuromorphic computing technologies that mimic the data processing properties of biological neural networks offer a promising solution for handling overflowing data. Here, the development of an electrolyte-gated organic transistor featuring a selective transition from short-term to long-term plasticity of the biological synapse is presented. The memory behaviors of the synaptic device were precisely modulated by restricting ion penetration through an organic channel via photochemical reactions of the cross-linking molecules. Furthermore, the applicability of the memory-controlled synaptic device was verified by constructing a reconfigurable synaptic logic gate for implementing a medical algorithm without further weight-update process. Last, the presented neuromorphic device demonstrated feasibility to handle biometric information with various update periods and perform health care tasks.
Collapse
Affiliation(s)
- Yongsuk Choi
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dong Hae Ho
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Young Jin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Gue Roe
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - In Cheol Kwak
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
41
|
Samal S, Roh H, Cunin CE, Yang GG, Gumyusenge A. Molecularly Hybridized Conduction in DPP-Based Donor-Acceptor Copolymers toward High-Performance Iono-Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207554. [PMID: 36734196 DOI: 10.1002/smll.202207554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Indexed: 05/04/2023]
Abstract
Iono-electronics, that is, transducing devices able to translate ionic injection into electrical output, continue to demand a variety of mixed ionic-electronic conductors (MIECs). Though polar sidechains are widely used in designing novel polymer MIECs, it remains unclear to chemists how much balance is needed between the two antagonistic modes of transport (ion permeability and electronic charge transport) to yield high-performance materials. Here, the impact of molecularly hybridizing ion permeability and charge mobility in semiconducting polymers on their performance in electrochemical and synaptic transistors is investigated. A series of diketopyrrolopyrrole (DPP)-based copolymers are employed to demonstrate the multifunctionality attained by controlling the density of polar sidechains along the backbone. Notably, efficient electrochemical signal transduction and reliable synaptic plasticity are demonstrated via controlled ion insertion and retention. The newly designed DPP-based copolymers further demonstrate unprecedented thermal tolerance among organic mixed ionic-electronic conductors, a key property in the manufacturing of organic electronics.
Collapse
Affiliation(s)
- Sanket Samal
- Massachusetts Institute of Technology, Department of Materials Science & Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Heejung Roh
- Massachusetts Institute of Technology, Department of Materials Science & Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Camille E Cunin
- Massachusetts Institute of Technology, Department of Materials Science & Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Geon Gug Yang
- Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Aristide Gumyusenge
- Massachusetts Institute of Technology, Department of Materials Science & Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| |
Collapse
|
42
|
LeCroy G, Cendra C, Quill TJ, Moser M, Hallani R, Ponder JF, Stone K, Kang SD, Liang AYL, Thiburce Q, McCulloch I, Spano FC, Giovannitti A, Salleo A. Role of aggregates and microstructure of mixed-ionic-electronic-conductors on charge transport in electrochemical transistors. MATERIALS HORIZONS 2023. [PMID: 37089107 DOI: 10.1039/d3mh00017f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Synthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design. However, other parameters such as the initial microstructure and microstructural rearrangements during electrochemical charging are equally important and are influenced by backbone and side chain chemistry. In this study, we employ a polymer system to investigate the fundamental electrochemical charging mechanisms of OMIECs. We couple in situ electronic charge transport measurements and spectroelectrochemistry with ex situ X-ray scattering electrochemical charging experiments and find that polymer chains planarize during electrochemical charging. Our work shows that the most effective conductivity modulation is related to electrochemical accessibility of well-ordered, interconnected aggregates that host high mobility electronic charge carriers. Electrochemical stress cycling induces microstructural changes, but we find that these aggregates can largely maintain order, providing insights on the structural stability and reversibility of electrochemical charging in these systems. This work shows the importance of material design for creating OMIECs that undergo structural rearrangements to accommodate ions and electronic charge carriers during which percolating networks are formed for efficient electronic charge transport.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | - Rawad Hallani
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - James F Ponder
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
- UES, Inc., Dayton, Ohio 45432, USA
| | - Kevin Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stephen D Kang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Iain McCulloch
- Department of Chemistry, Oxford University, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Gupta GK, Kim IJ, Park Y, Kim MK, Lee JS. Inorganic Perovskite Quantum Dot-Mediated Photonic Multimodal Synapse. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18055-18064. [PMID: 37000192 DOI: 10.1021/acsami.2c23218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Artificial synapse is the basic unit of a neuromorphic computing system. However, there is a need to explore suitable synaptic devices for the emulation of synaptic dynamics. This study demonstrates a photonic multimodal synaptic device by implementing a perovskite quantum dot charge-trapping layer in the organic poly(3-hexylthiophene-2,5-diyl) (P3HT) channel transistor. The proposed device presents favorable band alignment that facilitates spatial separation of photogenerated charge carriers. The band alignment serves as the basis of optically induced charge trapping, which enables nonvolatile memory characteristics in the device. Furthermore, high photoresponse and excellent synaptic characteristics, such as short-term plasticity, long-term plasticity, excitatory postsynaptic current, and paired-pulse facilitation, are obtained through gate voltage regulation. Photosynaptic characteristics obtained from the device showed a multiwavelength response and a large dynamic range (∼103) that is suitable for realizing a highly accurate artificial neural network. Moreover, the device showed nearly linear synaptic weight update characteristics with incremental depression electric gate pulse. The simulation based on the experimental data showed excellent pattern recognition accuracy (∼85%) after 120 epochs. The results of this study demonstrate the feasibility of the device as an optical synapse in the next-generation neuromorphic system.
Collapse
Affiliation(s)
- Goutam Kumar Gupta
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ik-Jyae Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngjun Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min-Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
44
|
Awate S, Mostek B, Kumari S, Dong C, Robinson JA, Xu K, Fullerton-Shirey SK. Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15785-15796. [PMID: 36926818 PMCID: PMC10064313 DOI: 10.1021/acsami.2c13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Electric-double-layer (EDL) gating can induce large capacitance densities (∼1-10 μF cm-2) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage (VG) that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied VG without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which VG is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 1013 cm-2 for electrons and 1.4 × 1013 cm-2 for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO4, is decreased from 1 μm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm-1 μm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.
Collapse
Affiliation(s)
- Shubham
Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brendan Mostek
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shalini Kumari
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Joshua A. Robinson
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Ke Xu
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School
of Chemistry and Materials Science, Rochester
Institute of Technology, Rochester, New York 14623, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
45
|
Hollingsworth WR, Johnston AR, Jia M, Luo L, Park Y, Meier W, Palmer J, Rolandi M, Ayzner AL. Influence of Backbone Regioregularity on the Optoelectronic and Mechanical Response of Conjugated Polyelectrolyte-Based Hydrogels. J Phys Chem B 2023; 127:2277-2285. [PMID: 36882905 PMCID: PMC10026064 DOI: 10.1021/acs.jpcb.3c00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The ability to form robust, optoelectronically responsive, and mechanically tunable hydrogels using facile processing is desirable for sensing, biomedical, and light-harvesting applications. We demonstrate that such a hydrogel can be formed using aqueous complexation between one conjugated and one nonconjugated polyelectrolyte. We show that the rheological properties of the hydrogel can be tuned using the regioregularity of the conjugated polyelectrolyte (CPE) backbone, leading to significantly different mesoscale gel morphologies. We also find that the exciton dynamics in the long-time limit reflect differences in the underlying electronic connectivity of the hydrogels as a function CPE regioregularity. The influence of excess small ions on the hydrogel structure and the exciton dynamics similarly depends on the regioregularity in a significant way. Finally, electrical impedance measurements lead us to infer that these hydrogels can act as mixed ionic/electronic conductors. We believe that such gels possess an attractive combination of physical-chemical properties that can be leveraged in multiple applications.
Collapse
Affiliation(s)
- William R Hollingsworth
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Anna R Johnston
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Manping Jia
- Electrical and Computer Engineering Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Le Luo
- Electrical and Computer Engineering Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Yunjeong Park
- Electrical and Computer Engineering Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Walter Meier
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Jack Palmer
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Alexander L Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
46
|
Quill TJ, LeCroy G, Halat DM, Sheelamanthula R, Marks A, Grundy LS, McCulloch I, Reimer JA, Balsara NP, Giovannitti A, Salleo A, Takacs CJ. An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. NATURE MATERIALS 2023; 22:362-368. [PMID: 36797383 DOI: 10.1038/s41563-023-01476-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Mixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.
Collapse
Affiliation(s)
- Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David M Halat
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rajendar Sheelamanthula
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Lorena S Grundy
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Iain McCulloch
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nitash P Balsara
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
47
|
Gonzales C, Guerrero A. Mechanistic and Kinetic Analysis of Perovskite Memristors with Buffer Layers: The Case of a Two-Step Set Process. J Phys Chem Lett 2023; 14:1395-1402. [PMID: 36738280 PMCID: PMC9940207 DOI: 10.1021/acs.jpclett.2c03669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
With the increasing demand for artificially intelligent hardware systems for brain-inspired in-memory and neuromorphic computing, understanding the underlying mechanisms in the resistive switching of memristor devices is of paramount importance. Here, we demonstrate a two-step resistive switching set process involving a complex interplay among mobile halide ions/vacancies (I-/VI+) and silver ions (Ag+) in perovskite-based memristors with thin undoped buffer layers. The resistive switching involves an initial gradual increase in current associated with a drift-related halide migration within the perovskite bulk layer followed by an abrupt resistive switching associated with diffusion of mobile Ag+ conductive filamentary formation. Furthermore, we develop a dynamical model that explains the characteristic I-V curve that helps to untangle and quantify the switching regimes consistent with the experimental memristive response. This further insight into the two-step set process provides another degree of freedom in device design for versatile applications with varying levels of complexity.
Collapse
|
48
|
Heo S, Kwon J, Sung M, Lee S, Cho Y, Jung H, You I, Yang C, Lee J, Noh YY. Large Transconductance of Electrochemical Transistors Based on Fluorinated Donor-Acceptor Conjugated Polymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1629-1638. [PMID: 36592389 DOI: 10.1021/acsami.2c16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic electrochemical transistors (OECTs) have enormous potential for use in biosignal amplifiers, analyte sensors, and neuromorphic electronics owing to their exceptionally large transconductance. However, it is challenging to simultaneously achieve high charge carrier mobility and volumetric capacitance, the two most important figures of merit in OECTs. Herein, a method of achieving high-performance OECT with donor-acceptor conjugated copolymers by introducing fluorine units is proposed. A series of cyclopentadithiophene-benzothiadiazole (CDT-BT) copolymers for use in high-performance OECTs with enhanced charge carrier mobility (from 0.65 to 1.73 cm2·V-1·s-1) and extended volumetric capacitance (from 44.8 to 57.6 F·cm-3) by fluorine substitution is achieved. The increase in the volumetric capacitance of the fluorinated polymers is attributed to either an increase in the volume at which ions can enter the film or a decrease in the effective distance between the ions and polymer backbones. The fluorine substitution increases the backbone planarity of the CDT-BT copolymers, enabling more efficient charge carrier transport. The fluorination strategy of this work suggests the more versatile use of conjugated polymers for high-performance OECTs.
Collapse
Affiliation(s)
- Seongmin Heo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jimin Kwon
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Mingi Sung
- Division of Chemical Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan47011, Republic of Korea
| | - Seunglok Lee
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan44919, Republic of Korea
| | - Yongjoon Cho
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan44919, Republic of Korea
| | - Haksoon Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Insang You
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan44919, Republic of Korea
| | - Junghoon Lee
- Division of Chemical Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan47011, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
49
|
Chen J, Zhou Y, Yan J, Liu J, Xu L, Wang J, Wan T, He Y, Zhang W, Chai Y. Room-temperature valley transistors for low-power neuromorphic computing. Nat Commun 2022; 13:7758. [PMID: 36522374 PMCID: PMC9755139 DOI: 10.1038/s41467-022-35396-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Valley pseudospin is an electronic degree of freedom that promises highly efficient information processing applications. However, valley-polarized excitons usually have short pico-second lifetimes, which limits the room-temperature applicability of valleytronic devices. Here, we demonstrate room-temperature valley transistors that operate by generating free carrier valley polarization with a long lifetime. This is achieved by electrostatic manipulation of the non-trivial band topology of the Weyl semiconductor tellurium (Te). We observe valley-polarized diffusion lengths of more than 7 μm and fabricate valley transistors with an ON/OFF ratio of 105 at room temperature. Moreover, we demonstrate an ion insertion/extraction device structure that enables 32 non-volatile memory states with high linearity and symmetry in the Te valley transistor. With ultralow power consumption (~fW valley contribution), we enable the inferring process of artificial neural networks, exhibiting potential for applications in low-power neuromorphic computing.
Collapse
Affiliation(s)
- Jiewei Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Yue Zhou
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jianmin Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Jidong Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, 518060, Shenzhen, China
| | - Lin Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Jingli Wang
- Frontier Institute of Chip and System, Fudan University, Shanghai, China
| | - Tianqing Wan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuhui He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, 518060, Shenzhen, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
50
|
Wang H, Chen Y, Ni Z, Samorì P. An Electrochemical-Electret Coupled Organic Synapse with Single-Polarity Driven Reversible Facilitation-to-Depression Switching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205945. [PMID: 36201378 DOI: 10.1002/adma.202205945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Neuromorphic engineering and artificial intelligence demands hardware elements that emulates synapse algorithms. During the last decade electrolyte-gated organic conjugated materials have been explored as a platform for artificial synapses for neuromorphic computing. Unlike biological synapses, in current devices the synaptic facilitation and depression are triggered by voltages with opposite polarity. To enhance the reliability and simplify the operation of the synapse without lowering its sophisticated functionality, here, an electrochemical-electret coupled organic synapse (EECS) possessing a reversible facilitation-to-depression switch, is devised. Electret charging counterbalances channel conductance changes due to electrochemical doping, inducing depression without inverting the gate polarity. Overall, EECS functions as a threshold-controlled synaptic switch ruled by its amplitude-dependent, dual-modal operation, which can well emulate information storage and erase as in real synapses. By varying the energy level offset between the channel material and the electret, the EECS's transition threshold can be adjusted for specific applications, e.g., imparting additional light responsiveness to the device operation. The novel device architecture represents a major step forward in the development of artificial organic synapses with increased functional complexity and it opens new perspectives toward the fabrication of abiotic neural networks with higher reliability, efficiency, and endurance.
Collapse
Affiliation(s)
- Hanlin Wang
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Yusheng Chen
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|