1
|
Zhou S, Long H, Chen W, Qiu C, Zhang C, Xing H, Zhang J, Cheng L, Zhao C, Cheng J, Ciais P. Temperature seasonality regulates organic carbon burial in lake. Nat Commun 2025; 16:1049. [PMID: 39865073 PMCID: PMC11770112 DOI: 10.1038/s41467-025-56399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation. The Tibetan Plateau's heightened sensitivity to climate and ecosystem dynamics amplifies these effects. With declining temperature seasonality, we predict a significant slowdown or reduction in OCB across these lake sediments, leading to carbon emissions and amplified global warming.
Collapse
Affiliation(s)
- Shengfang Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Long
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Nanjing, China.
| | - Weizhe Chen
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Chunjing Qiu
- Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Can Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Hang Xing
- Key Laboratory of Humid Subtropical Eco-geographical Process (Ministry of Education), School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jingran Zhang
- School of Geography, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing, China
| | - Liangqing Cheng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Cheng Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Jun Cheng
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Sommer P, Lakner S, Nordt A, Tanneberger F, Wegmann J. Deriving a justified budget for peatland rewetting – Applying the German coal phase-out as a blueprint. LAND USE POLICY 2024; 147:107363. [DOI: 10.1016/j.landusepol.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Sommer P, Frank L. Peatland rewetting as drainage exnovation – A transition governance perspective. LAND USE POLICY 2024; 143:107191. [DOI: 10.1016/j.landusepol.2024.107191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Wang S, Liu T, Zhu E, He C, Shi Q, Feng X. Potential retention of dissolved organic matter by soil minerals during wetland water-table fluctuations. WATER RESEARCH 2024; 254:121412. [PMID: 38457944 DOI: 10.1016/j.watres.2024.121412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L-1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L-1). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.
Collapse
Affiliation(s)
- Simin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, PR China
| | - Ting Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China.
| | - Erxiong Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
5
|
Stewart AJ, Halabisky M, Babcock C, Butman DE, D'Amore DV, Moskal LM. Revealing the hidden carbon in forested wetland soils. Nat Commun 2024; 15:726. [PMID: 38272881 PMCID: PMC10810814 DOI: 10.1038/s41467-024-44888-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Inland wetlands are critical carbon reservoirs storing 30% of global soil organic carbon (SOC) within 6% of the land surface. However, forested regions contain SOC-rich wetlands that are not included in current maps, which we refer to as 'cryptic carbon'. Here, to demonstrate the magnitude and distribution of cryptic carbon, we measure and map SOC stocks as a function of a continuous, upland-to-wetland gradient across the Hoh River Watershed (HRW) in the Pacific Northwest of the U.S., comprising 68,145 ha. Total catchment SOC at 30 cm depth (5.0 TgC) is between estimates from global SOC maps (GSOC: 3.9 TgC; SoilGrids: 7.8 TgC). For wetland SOC, our 1 m stock estimates are substantially higher (Mean: 259 MgC ha-1; Total: 1.7 TgC) compared to current wetland-specific SOC maps derived from a combination of U.S. national datasets (Mean: 184 MgC ha-1; Total: 0.3 TgC). We show that total unmapped or cryptic carbon is 1.5 TgC and when added to current estimates, increases the estimated wetland SOC stock to 1.8 TgC or by 482%, which highlights the vast stores of SOC that are not mapped and contained in unprotected and vulnerable wetlands.
Collapse
Affiliation(s)
- Anthony J Stewart
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, WA, USA.
| | - Meghan Halabisky
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, WA, USA
| | - Chad Babcock
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
| | - David E Butman
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, WA, USA
| | - David V D'Amore
- Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Juneau, AK, USA
| | - L Monika Moskal
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, WA, USA
| |
Collapse
|
6
|
Qin L, Tian W, Freeman C, Jia Z, Yin X, Gao C, Zou Y, Jiang M. Changes in bacterial communities during rice cultivation remove phenolic constraints on peatland carbon preservation. ISME COMMUNICATIONS 2024; 4:ycae022. [PMID: 38500699 PMCID: PMC10945358 DOI: 10.1093/ismeco/ycae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
Northern peatlands contain ~30% of terrestrial carbon (C) stores, but in recent decades, 14% to 20% of the stored C has been lost because of conversion of the peatland to cropland. Microorganisms are widely acknowledged as primary decomposers, but the keystone taxa within the bacterial community regulating C loss from cultivated peatlands remain largely unknown. In this study, we investigated the bacterial taxa driving peat C mineralization during rice cultivation. Cultivation significantly decreased concentrations of soil organic C, dissolved organic C (DOC), carbohydrates, and phenolics but increased C mineralization rate (CMR). Consistent with the classic theory that phenolic inhibition creates a "latch" that reduces peat C decomposition, phenolics were highly negatively correlated with CMR in cultivated peatlands, indicating that elimination of inhibitory phenolics can accelerate soil C mineralization. Bacterial communities were significantly different following peatland cultivation, and co-occurrence diagnosis analysis revealed substantial changes in network clusters of closely connected nodes (modules) and bacterial keystone taxa. Specifically, in cultivated peatlands, bacterial modules were significantly negatively correlated with phenolics, carbohydrates, and DOC. While keystone taxa Xanthomonadales, Arthrobacter, and Bacteroidetes_vadinHA17 can regulate bacterial modules and promote carbon mineralization. Those observations indicated that changes in bacterial modules can promote phenolic decomposition and eliminate phenolic inhibition of labile C decomposition, thus accelerating soil organic C loss during rice cultivation. Overall, the study provides deeper insights into microbe-driven peat C loss during rice cultivation and highlights the crucial role of keystone bacterial taxa in the removal of phenolic constraints on peat C preservation.
Collapse
Affiliation(s)
- Lei Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wei Tian
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China
| | - Chris Freeman
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Zhongjun Jia
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaolei Yin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chuanyu Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuanchun Zou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ming Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
7
|
Jones MW, Peters GP, Gasser T, Andrew RM, Schwingshackl C, Gütschow J, Houghton RA, Friedlingstein P, Pongratz J, Le Quéré C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci Data 2023; 10:155. [PMID: 36991071 PMCID: PMC10060593 DOI: 10.1038/s41597-023-02041-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Anthropogenic emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have made significant contributions to global warming since the pre-industrial period and are therefore targeted in international climate policy. There is substantial interest in tracking and apportioning national contributions to climate change and informing equitable commitments to decarbonisation. Here, we introduce a new dataset of national contributions to global warming caused by historical emissions of carbon dioxide, methane, and nitrous oxide during the years 1851-2021, which are consistent with the latest findings of the IPCC. We calculate the global mean surface temperature response to historical emissions of the three gases, including recent refinements which account for the short atmospheric lifetime of CH4. We report national contributions to global warming resulting from emissions of each gas, including a disaggregation to fossil and land use sectors. This dataset will be updated annually as national emissions datasets are updated.
Collapse
Grants
- NE/V01417X/1 RCUK | Natural Environment Research Council (NERC)
- 821003 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 820846 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 101003536 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 776810 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 820846 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 101003536 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 776810 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 821003 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- 821003 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Environment (H2020 Societal Challenges - Climate Action, Environment, Resource Efficiency and Raw Materials)
- RP\R1\191063 Royal Society
- RP\R1\191063 Royal Society
Collapse
Affiliation(s)
- Matthew W Jones
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia (UEA), Norwich, UK.
| | - Glen P Peters
- CICERO Center for International Climate Research, Oslo, Norway
| | - Thomas Gasser
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Robbie M Andrew
- CICERO Center for International Climate Research, Oslo, Norway
| | | | - Johannes Gütschow
- Department of Transformation Pathways, Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | | | - Pierre Friedlingstein
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Julia Pongratz
- Ludwig Maximilian University of Munich, Munich, Germany
- Max Planck Institute for Meteorology, Hamburg, Germany
| | - Corinne Le Quéré
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia (UEA), Norwich, UK
| |
Collapse
|
8
|
Fluet-Chouinard E, Stocker BD, Zhang Z, Malhotra A, Melton JR, Poulter B, Kaplan JO, Goldewijk KK, Siebert S, Minayeva T, Hugelius G, Joosten H, Barthelmes A, Prigent C, Aires F, Hoyt AM, Davidson N, Finlayson CM, Lehner B, Jackson RB, McIntyre PB. Extensive global wetland loss over the past three centuries. Nature 2023; 614:281-286. [PMID: 36755174 DOI: 10.1038/s41586-022-05572-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 11/17/2022] [Indexed: 02/10/2023]
Abstract
Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.
Collapse
Affiliation(s)
- Etienne Fluet-Chouinard
- Department of Earth System Science, Stanford University, Stanford, CA, USA. .,Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA. .,Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.
| | - Benjamin D Stocker
- Department of Environmental Systems Science, ETH Zurich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Institute of Geography, University of Bern, Bern, Switzerland.,Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Zhen Zhang
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Avni Malhotra
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Joe R Melton
- Climate Research Division, Environment and Climate Change Canada, Victoria, British Columbia, Canada
| | - Benjamin Poulter
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD, USA
| | - Jed O Kaplan
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kees Klein Goldewijk
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Stefan Siebert
- Department of Crop Sciences, Georg-August-Universität Göttingen, Goettingen, Germany.,Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | | | - Gustaf Hugelius
- Department of Earth System Science, Stanford University, Stanford, CA, USA.,Department of Physical Geography, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Hans Joosten
- Faculty of Mathematics and Natural Sciences, Peatland Studies and Paleoecology, University of Greifswald, Greifswald, Germany.,Greifswald Mire Centre, Greifswald, Germany
| | - Alexandra Barthelmes
- Faculty of Mathematics and Natural Sciences, Peatland Studies and Paleoecology, University of Greifswald, Greifswald, Germany.,Greifswald Mire Centre, Greifswald, Germany
| | - Catherine Prigent
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Paris, France.,Estellus, Paris, France
| | - Filipe Aires
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Paris, France.,Estellus, Paris, France
| | - Alison M Hoyt
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Nick Davidson
- Nick Davidson Environmental, Queens House, Wigmore, UK.,Gulbali Institute for Land, Water and Society, Charles Sturt University, Elizabeth Mitchell Drive, Albury, New South Wales, Australia
| | - C Max Finlayson
- Gulbali Institute for Land, Water and Society, Charles Sturt University, Elizabeth Mitchell Drive, Albury, New South Wales, Australia.,IHE Delft, Institute for Water Education, Delft, The Netherlands
| | - Bernhard Lehner
- Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA.,Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, CA, USA
| | - Peter B McIntyre
- Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Tedeschi LO, Beauchemin KA. Galyean appreciation club review: a holistic perspective of the societal relevance of beef production and its impacts on climate change. J Anim Sci 2023; 101:skad024. [PMID: 36645233 PMCID: PMC10022392 DOI: 10.1093/jas/skad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
This article provides a science-based, data-driven perspective on the relevance of the beef herd in the U.S. to our society and greenhouse gas (GHG) contribution to climate change. Cattle operations are subject to criticism for their environmental burden, often based on incomplete information disseminated about their social, economic, nutritional, and ecological benefits and detriments. The 2019 data published by the U.S. Environmental Protection Agency reported that U.S. beef cattle emitted 22.6% of the total agricultural emissions, representing about 2.2% of the total anthropogenic emissions of CO2 equivalent (CO2e). Simulations from a computer model developed to address global energy and climate challenges, set to use extreme improvements in livestock and crop production systems, indicated a potential reduction in global CO2e emissions of 4.6% but without significant enhancement in the temperature change by 2030. There are many natural and anthropogenic sources of CH4 emissions. Contrary to the increased contribution of peatlands and water reservoirs to atmospheric CO2e, the steady decrease in the U.S. cattle population is estimated to have reduced its methane (CH4) emissions by about 30% from 1975 to 2021. This CH4 emission deacceleration of 2.46 Mt CO2e/yr2 might be even more significant than reported. Many opportunities exist to mitigate CH4 emissions of beef production, leading to a realistic prospect of a 5% to 15% reduction in the short term after considering the overlapping impacts of combined strategies. Reduction strategies include feeding synthetic chemicals that inactivate the methyl-coenzyme M reductase (the enzyme that catalyzes the last step of methanogenesis in the rumen), red seaweed or algae extracts, ionophore antibiotics, phytochemicals (e.g., condensed tannins and essential oils), and other nutritional manipulations. The proposed net-zero concept might not solve the global warming problem because it will only balance future anthropogenic GHG emissions with anthropogenic removals, leaving global warming on a standby state. Recommendations for consuming red meat products should consider human nutrition, health, and disease and remain independent of controversial evidence of causational relationships with perceived negative environmental impacts of beef production that are not based on scientific data.
Collapse
Affiliation(s)
- Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77845-2471, USA
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| |
Collapse
|
10
|
Valujeva K, Freed EK, Nipers A, Jauhiainen J, Schulte RPO. Pathways for governance opportunities: Social network analysis to create targeted and effective policies for agricultural and environmental development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116563. [PMID: 36308958 DOI: 10.1016/j.jenvman.2022.116563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Participatory techniques are widely recognized as essential in addressing the challenges of agri-environmental policy and decision-making. Furthermore, it is well known that stakeholder analysis and social network analysis are useful methods in the identification of actors that are involved in a system and the connections between them. To identify key stakeholders and improve the transfer of information from national-to farm-level, we compared a stakeholder analysis with farmer-centric networks for primary productivity, carbon regulation and biodiversity through the case study of Latvia. Farmer-centric networks show a higher number of stakeholders communicating on the topic of primary productivity network comparing to other topics. We found three pathways for improving knowledge transfer in agri-environmental governance: horizontal strengthening of farming community, horizontal strengthening of policy departments, and vertical strengthening between policy departments and farmers. The first step is to ensure that policy-makers have a common understanding of the results that should be achieved. The second step is the transfer of know-how between farmers to develop new solutions. The third step is the training of advisers in the land multifunctionality and the strengthening of communication and knowledge transfer between policy departments and farmers in order to jointly achieve the desired direction at that national level. Long-term cooperation between many stakeholders, including knowledge transfer, the development and implementation of solutions, and monitoring are essential in order to adequately address global societal challenges. The application of our mixed methods approach to elucidate pathways for improved governance of knowledge and information is of direct relevance to other jurisdictions seeking to transition towards multifunctional and sustainable land management.
Collapse
Affiliation(s)
- Kristine Valujeva
- Farming Systems Ecology Group, Wageningen University and Research, the Netherlands; Scientific Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, Latvia; Institute of Economics and Regional Development, Latvia University of Life Sciences and Technologies, Latvia.
| | - Elizabeth K Freed
- Farming Systems Ecology Group, Wageningen University and Research, the Netherlands
| | - Aleksejs Nipers
- Institute of Economics and Regional Development, Latvia University of Life Sciences and Technologies, Latvia
| | | | - Rogier P O Schulte
- Farming Systems Ecology Group, Wageningen University and Research, the Netherlands
| |
Collapse
|
11
|
Richardson CJ, Flanagan NE, Wang H, Ho M. Annual carbon sequestration and loss rates under altered hydrology and fire regimes in southeastern USA pocosin peatlands. GLOBAL CHANGE BIOLOGY 2022; 28:6370-6384. [PMID: 36054687 DOI: 10.1111/gcb.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Peatlands drained for agriculture or forestry are susceptible to the rapid release of greenhouse gases (GHGs) through enhanced microbial decomposition and increased frequency of deep peat fires. We present evidence that rewetting drained subtropical wooded peatlands (STWPs) along the southeastern USA coast, primarily pocosin bogs, could prevent significant carbon (C) losses. To quantify GHG emissions and storage from drained and rewetted pocosin we used eddy covariance techniques, the first such estimates that have been applied to this major bog type, on a private drained (PD) site supplemented by static chamber measurements at PD and Pocosin Lakes National Wildlife Refuge. Net ecosystem exchange measurements showed that the loss was 21.2 Mg CO2 ha-1 year-1 (1 Mg = 106 g) in the drained pocosin. Under a rewetted scenario, where the annual mean water table depth (WTD) decreased from 60 to 30 cm, the C loss was projected to fall to 2 Mg CO2 ha-1 year-1 , a 94% reduction. If the WTD was 20 cm, the peatlands became a net carbon sink (-3.3 Mg CO2 ha-1 year-1 ). Hence, net C reductions could reach 24.5 Mg CO2 ha-1 year-1 , and when scaled up to the 4000 ha PD site nearly 100,000 Mg CO2 year-1 of creditable C could be amassed. We conservatively estimate among the 0.75 million ha of southeastern STWPs, between 450 and 770 km2 could be rewet, reducing annual GHG emissions by 0.96-1.6 Tg (1 Tg = 1012 g) of CO2 , through suppressed microbial decomposition and 1.7-2.8 Tg via fire prevention, respectively. Despite covering <0.01% of US land area, rewetting drained pocosin can potentially provide 2.4% of the annual CO2 nationwide reduction target of 0.18 Pg (1 Pg = 1015 g). Suggesting pocosin restoration can contribute disproportionately to the US goal of achieving net-zero emission by 2050.
Collapse
Affiliation(s)
- Curtis J Richardson
- Nicholas School of the Environment, Duke University Wetland Center, Duke University, Durham, North Carolina, USA
| | - Neal E Flanagan
- Nicholas School of the Environment, Duke University Wetland Center, Duke University, Durham, North Carolina, USA
| | - Hongjun Wang
- Nicholas School of the Environment, Duke University Wetland Center, Duke University, Durham, North Carolina, USA
| | - Mengchi Ho
- Nicholas School of the Environment, Duke University Wetland Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
O'Sullivan M, Friedlingstein P, Sitch S, Anthoni P, Arneth A, Arora VK, Bastrikov V, Delire C, Goll DS, Jain A, Kato E, Kennedy D, Knauer J, Lienert S, Lombardozzi D, McGuire PC, Melton JR, Nabel JEMS, Pongratz J, Poulter B, Séférian R, Tian H, Vuichard N, Walker AP, Yuan W, Yue X, Zaehle S. Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat Commun 2022; 13:4781. [PMID: 35970991 PMCID: PMC9378641 DOI: 10.1038/s41467-022-32416-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2 and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil, where models do not even agree on the direction of change in carbon stocks over the past 60 years. This uncertainty is driven by plant productivity, allocation, and turnover response to atmospheric CO2 (and to a smaller extent to LULCC), and the response of soil to LULCC (and to a lesser extent climate). Overall, differences in turnover explain ~70% of model spread in both vegetation and soil carbon changes. Further analysis of internal plant and soil (individual pools) cycling is needed to reduce uncertainty in the controlling processes behind the global land carbon sink. The global net land sink is relatively well constrained. However, the responsible drivers and above/below-ground partitioning are highly uncertain. Model issues regarding turnover of individual plant and soil components are responsible.
Collapse
Affiliation(s)
- Michael O'Sullivan
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK.
| | - Pierre Friedlingstein
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK.,Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Paris, France
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - Peter Anthoni
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Almut Arneth
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Vivek K Arora
- Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
| | - Vladislav Bastrikov
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Christine Delire
- CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
| | - Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Atul Jain
- Department of Atmospheric Sciences, University of Illinois, Urbana, IL, 61821, USA
| | - Etsushi Kato
- Institute of Applied Energy (IAE), Minato-ku, Tokyo, 105-0003, Japan
| | - Daniel Kennedy
- National Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO, 80305, USA
| | - Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,CSIRO Oceans and Atmosphere, Canberra, ACT, 2101, Australia
| | - Sebastian Lienert
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Danica Lombardozzi
- National Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO, 80305, USA
| | | | - Joe R Melton
- Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
| | - Julia E M S Nabel
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany.,Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Julia Pongratz
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany.,Ludwig-Maximilians-Universität München, Luisenstr. 37, 80333, München, Germany
| | - Benjamin Poulter
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD, 20771, USA
| | - Roland Séférian
- CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
| | - Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA
| | - Nicolas Vuichard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Anthony P Walker
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - Wenping Yuan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, 510245, China
| | - Xu Yue
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), Nanjing, China
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
13
|
Impact of Plant-Based Amendments on Water-Soluble Nitrogen Release Dynamics in Cultivated Peatlands. NITROGEN 2022. [DOI: 10.3390/nitrogen3030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Drained cultivated peatlands have been an essential agricultural resource for many years. To slow and reduce the degradation of these soils, which increases with drainage, the use of plant-based amendments (straw, wood chips, and biochar) has been proposed. Literature on the effects of such amendments in cultivated peatlands is scarce, and questions have been raised regarding the impact of this practice on nutrient cycling, particularly nitrogen (N) dynamics. By means of a six-month incubation experiment, this study assessed the effects of four plant-based amendments (biochar, a forest mix, willow, and miscanthus) on the release kinetics of water-soluble N pools (mineral and organic) in two histosols of differing degrees of decomposition (Haplosaprist and Haplohemist). The amendment rate was set at 15 Mg ha−1 on a dry weight basis. The N release kinetics were significantly impacted by soil type and amendment. Miscanthus and willow were the amendments that most reduced the release of soluble organic N (SON) and mineral N (minN). The addition of plant-based amendments reduced the total amount of released N pools during the incubation (cumulative N pools) by 50.3 to 355.2 mg kg−1, depending on the soil type, the N pool, and the type of amendment. A significant relationship was found between microbial biomass N, urease activity, and the cumulative N at the end of the incubation. The results showed that the input of plant-based amendments in cultivated peatland decreases N release, which could have a beneficial impact by decreasing N leaching; however, it could also restrict crop growth. Further research is needed to fully assess the impact of such amendments used in cultivated peatlands on N and on C fluxes at the soil–plant and soil–atmosphere interfaces to determine if they constitute a long-term solution for more sustainable agriculture.
Collapse
|
14
|
Heikkinen J, Keskinen R, Kostensalo J, Nuutinen V. Climate change induces carbon loss of arable mineral soils in boreal conditions. GLOBAL CHANGE BIOLOGY 2022; 28:3960-3973. [PMID: 35298094 PMCID: PMC9325001 DOI: 10.1111/gcb.16164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
One-fourth of the global soil organic carbon (SOC) is stored in the boreal region, where climate change is predicted to be faster than the global average. Planetary warming is accelerated if climate change promotes SOC release into the atmosphere as carbon dioxide. However, the soil carbon-climate feedbacks have been poorly confirmed by SOC measurements despite their importance on global climate. In this study, we used data collected as part of the Finnish arable soil monitoring program to study the influence of climate change, management practices, and historical land use on changes in SOC content using a Bayesian approach. Topsoil samples (n = 385) collected nationwide in 2009 and 2018 showed that SOC content has decreased at the rate of 0.35% year-1 on average. Based on the Bayesian modeling of our data, we can say with a certainty of 79%-91% that increase in summertime (May-Sep) temperature has resulted in SOC loss while increased precipitation has resulted in SOC loss with a certainty of 90%-97%. The exact percentages depend on the climate dataset used. Historical land use was found to influence the SOC content for decades after conversion to cropland. Former organic soils with a high SOC-to-fine-fraction ratio were prone to high SOC loss. In fields with long cultivation history (>100 years), however, the SOC-to-fine-fraction ratio had stabilized to approximately 0.03-0.04 and the changes in SOC content leveled off. Our results showed that, although arable SOC sequestration can be promoted by diversifying crop rotations and by cultivating perennial grasses, it is unlikely that improved management practices are sufficient to counterbalance the climate change-induced SOC losses in boreal conditions. This underlines the importance of the reduction of greenhouse gas emissions to avoid the acceleration of planetary warming.
Collapse
Affiliation(s)
| | | | | | - Visa Nuutinen
- Natural Resources Institute Finland (Luke)JokioinenFinland
| |
Collapse
|