1
|
Alale TY, Sormunen JJ, Vesterinen EJ, Klemola T, Knott KE, Baltazar‐Soares M. Genomic signatures of hybridization between Ixodes ricinus and Ixodes persulcatus in natural populations. Ecol Evol 2024; 14:e11415. [PMID: 38770117 PMCID: PMC11103643 DOI: 10.1002/ece3.11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Identifying hybridization between common pathogen vectors is essential due to the major public health implications through risks associated with hybrid's enhanced pathogen transmission potential. The hard-ticks Ixodes ricinus and Ixodes persulcatus are the two most common vectors of tick-borne pathogens that affect human and animal health in Europe. Ixodes ricinus is a known native species in Finland with a well-known distribution, whereas I. persulcatus has expanded in range and abundance over the past 60 years, and currently it appears the most common tick species in certain areas in Finland. Here we used double-digest restriction site-associated DNA (ddRAD) sequencing on 186 ticks (morphologically identified as 92 I. ricinus, and 94 I. persulcatus) collected across Finland to investigate whether RAD generated single nucleotide polymorphisms (SNPs) can discriminate tick species and identify potential hybridization events. Two different clustering methods were used to assign specific species based on how they clustered and identified hybrids among them. We were able to discriminate between the two tick species and identified 11 putative hybrids with admixed genomic proportions ranging from approximately 24 to 76 percent. Four of these hybrids were morphologically identified as I. ricinus while the remaining seven were identified as I. persulcatus. Our results thus indicate that RAD SNPs are robust in identifying both species of the ticks as well as putative hybrids. These results further suggest ongoing hybridization between I. ricinus and I. persulcatus in their natural populations in Finland. The unique ability of RAD markers to discriminate between tick species and hybrids adds a useful aspect to tick evolutionary studies. Our findings align with previous studies and suggest a shared evolutionary history between the species, with instances of individuals possessing a considerable proportion of the other species' genome. This study is a significant step in understanding the formation of hybridization zones due to range expansion potentially associated with climate change.
Collapse
Affiliation(s)
- Theophilus Yaw Alale
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Jani J. Sormunen
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - K. Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
2
|
Katifelis H, Mukha I, Bouziotis P, Vityuk N, Tsoukalas C, Lazaris AC, Lyberopoulou A, Theodoropoulos GE, Efstathopoulos EP, Gazouli M. Ag/Au Bimetallic Nanoparticles Inhibit Tumor Growth and Prevent Metastasis in a Mouse Model. Int J Nanomedicine 2020; 15:6019-6032. [PMID: 32848399 PMCID: PMC7429210 DOI: 10.2147/ijn.s251760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To evaluate the antitumor efficacy of Ag3Au1Trp1:2NPs in a SCID mouse cancer model, with respect to their effect on tumor growth, on tumor's metastatic potential and the underlying molecular mechanism. SUBJECTS AND METHODS Ag3Au1Trp1:2NPs were radiolabeled with Gallium-68 and the biodistribution was studied in Swiss mice without tumors and in SCID mice bearing tumors. SCID mice received intratumoral Ag3Au1Trp1:2NPs and tumor size was measured using calipers. Lung and liver tissues were extracted and studied microscopically for the detection of any metastatic sites. Changes in the Caspase-3 and TNF-related apoptosis-inducing ligand (TRAIL) were also investigated using real-time PCR and Western blot techniques, respectively. RESULTS In the 4T1 tumor-bearing SCID mice, Ag3Au1Trp1:2NPs showed quick passive accumulation at tumor sites at 30 mins post-injection. Mice that received the highest dose of NPs (5.6mg/mL) demonstrated a 1.9-fold lower tumor volume compared to that of the control group at 11 days post-injection, while mice that did not receive NPs showed metastatic sites in liver and lung. Extracted tumor tissue of treated mice revealed increased Casp-3 mRNA levels as well as elevated TRAIL protein levels. CONCLUSION Based on our results, Ag3Au1Trp1:2NPs express anti-tumor and anti-metastatic effects in vivo. Ag3Au1Trp1:2NPs also reach tumor site via the enhancement and retention effect which results in the apoptotic death of cancerous cells selectively via the extrinsic TRAIL-dependent pathway.
Collapse
Affiliation(s)
- Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iuliia Mukha
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Nadiia Vityuk
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Charalampos Tsoukalas
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Andreas C Lazaris
- 1st Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Lyberopoulou
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George E Theodoropoulos
- 1st Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
He M, Yi QY, Zhang WY, Bai L, Du F, Gu YY, Liu YJ, Wei P. Evaluation of anticancer activity in vitro and in vivo of iridium(iii) polypyridyl complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj01001g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three new iridium(iii) polypyridyl complexes were synthesized. The cytotoxic activity in vitro and in vivo, apoptosis, cell cycle arrest, mitochondrial membrane potential, ROS and the expression of Bcl-2 family proteins were investigated.
Collapse
Affiliation(s)
- Miao He
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Qiao-Yan Yi
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Wen-Yao Zhang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Lan Bai
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Fan Du
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Yi-Ying Gu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Yun-Jun Liu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery
| | - Peng Wei
- School of Bioscience and Biopharmaceutics
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|
4
|
Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of Ficus beecheyana and their phenolic components. J Food Drug Anal 2018; 26:182-192. [PMID: 29389554 PMCID: PMC9332673 DOI: 10.1016/j.jfda.2017.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the antioxidant and anticancer effects of ethanolic and aqueous extracts of the roots of Ficus beecheyana (EERFB and AERFB) and their phenolic components. In this study, total phenolic content and antioxidant activity of EERFB were higher than those of AERFB. Major phenolic compounds in the extracts were gallic acid, p-hydroxybenzoic acid, caffeic acid, chlorogenic acid, p-coumaric acid, and rutin; which were identified by high-performance liquid chromatography. Flow cytometric analysis of HL-60 cells exposed to EERFB showed that the percentage of apoptotic cells increased in a dose-dependent manner. EERFB treatment resulted in the loss of mitochondrial membrane potential and induced the apoptosis of HL-60 cells through a Fas- and mitochondrial-mediated pathway. Finally, pretreatment with general caspase-9/−3 inhibitors prevented EERFB from inhibiting cell viability in HL-60 cells. Our finding suggests that EERFB is an agent that may have antioxidant activity and inhibit the growth of cancer cells.
Collapse
|
5
|
Khalilpour S, Behnammanesh G, Abdul Majid AMS, Tamayol A, Abdul Majid AS. Assessment of neuroprotective properties of Rhus coriaria L. ethanol extract in an in vitro model of retinal degeneration. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Affiliation(s)
- Mohammad Madjid
- School of Medicine, Center for Biosecurity and Public Health, University of Texas-Houston Health Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
7
|
Valldorf B, Fittler H, Deweid L, Ebenig A, Dickgiesser S, Sellmann C, Becker J, Zielonka S, Empting M, Avrutina O, Kolmar H. Ein Apoptose-induzierendes Heptamer, das effizient den Todesrezeptor 5 bündelt. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bernhard Valldorf
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Heiko Fittler
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Aileen Ebenig
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Stephan Dickgiesser
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Carolin Sellmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Janine Becker
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Stefan Zielonka
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Martin Empting
- Helmholtz Institute for Pharmacological Research Saarland (HIPS); Universitätscampus E8 1 66123 Saarbrücken Deutschland
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| |
Collapse
|
8
|
Valldorf B, Fittler H, Deweid L, Ebenig A, Dickgiesser S, Sellmann C, Becker J, Zielonka S, Empting M, Avrutina O, Kolmar H. An Apoptosis-Inducing Peptidic Heptad That Efficiently Clusters Death Receptor 5. Angew Chem Int Ed Engl 2016; 55:5085-9. [PMID: 26991930 DOI: 10.1002/anie.201511894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Indexed: 11/11/2022]
Abstract
Multivalent ligands of death receptors hold particular promise as tumor cell-specific therapeutic agents because they induce an apoptotic cascade in cancerous cells. Herein, we present a modular approach to generate death receptor 5 (DR5) binding constructs comprising multiple copies of DR5 targeting peptide (DR5TP) covalently bound to biomolecular scaffolds of peptidic nature. This strategy allows for efficient oligomerization of synthetic DR5TP-derived peptides in different spatial orientations using a set of enzyme-promoted conjugations or recombinant production. Heptameric constructs based on a short (60-75 residues) scaffold of a C-terminal oligomerization domain of human C4b binding protein showed remarkable proapoptotic activity (EC50=3 nm) when DR5TP was ligated to its carboxy terminus. Our data support the notion that inter-ligand distance, relative spatial orientation and copy number of receptor-binding modules are key prerequisites for receptor activation and cell killing.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Heiko Fittler
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Aileen Ebenig
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Stephan Dickgiesser
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Carolin Sellmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Janine Becker
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Stefan Zielonka
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmacological Research Saarland (HIPS), Universitätscampus E8 1, 66123, Saarbrücken, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany.
| |
Collapse
|
9
|
Abstract
Previous studies proposed that myosin-Va regulates apoptosis by sequestering pro-apoptotic Bmf to the actin cytoskeleton through dynein light chain-2 (DLC2). Adhesion loss or other cytoskeletal perturbations would unleash Bmf, allowing it to bind and inhibit pro-survival Bcl2 proteins. Here, we demonstrated that overexpression of a myosin-Va medial tail fragment (MVaf) harboring the binding site for DLC2 dramatically decreased melanoma cell viability. Morphological and molecular changes, including surface blebbing, mitochondrial outer membrane permeabilization, cytochrome-c and Smac release, as well as caspase-9/-3 activation and DNA fragmentation indicated that melanoma cells died of apoptosis. Immobilized MVaf interacted directly with DLCs, but complexed MVaf/DLCs did not interact with Bmf. Overexpression of DLC2 attenuated MVaf-induced apoptosis. Thus, we suggest that, MVaf induces apoptosis by sequestering DLC2 and DLC1, thereby unleashing the pair of sensitizer and activator BH3-only proteins Bmf and Bim. Murine embryonic fibroblasts (MEFs) lacking Bim and Bmf or Bax and Bak were less sensitive to apoptosis caused by MVaf expression than wild-type MEFs, strengthening the putative role of the intrinsic apoptotic pathway in this response. Finally, MVaf expression attenuated B16-F10 solid tumor growth in mice, suggesting that this peptide may be useful as an apoptosis-inducing tool for basic and translational studies.
Collapse
|
10
|
Schelkle B, Faria PJ, Johnson MB, van Oosterhout C, Cable J. Mixed infections and hybridisation in monogenean parasites. PLoS One 2012; 7:e39506. [PMID: 22808040 PMCID: PMC3394765 DOI: 10.1371/journal.pone.0039506] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 05/25/2012] [Indexed: 11/23/2022] Open
Abstract
Theory predicts that sexual reproduction promotes disease invasion by increasing the evolutionary potential of the parasite, whereas asexual reproduction tends to enhance establishment success and population growth rate. Gyrodactylid monogeneans are ubiquitous ectoparasites of teleost fish, and the evolutionary success of the specious Gyrodactylus genus is thought to be partly due to their use of various modes of reproduction. Gyrodactylus turnbulli is a natural parasite of the guppy (Poecilia reticulata), a small, tropical fish used as a model for behavioural, ecological and evolutionary studies. Using experimental infections and a recently developed microsatellite marker, we conclusively show that monogenean parasites reproduce sexually. Conservatively, we estimate that sexual recombination occurs and that between 3.7–10.9% of the parasites in our experimental crosses are hybrid genotypes with ancestors from different laboratory strains of G. turnbulli. We also provide evidence of hybrid vigour and/or inter-strain competition, which appeared to lead to a higher maximum parasite load in mixed infections. Finally, we demonstrate inbreeding avoidance for the first time in platyhelminths which may influence the distribution of parasites within a host and their subsequent exposure to the host's localized immune response. Combined reproductive modes and inbreeding avoidance may explain the extreme evolutionary diversification success of parasites such as Gyrodactylus, where host-parasite coevolution is punctuated by relatively frequent host switching.
Collapse
Affiliation(s)
- Bettina Schelkle
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Chou DA, Kuo YH, Jan MS, Chang YY, Chen YC, Chiu HL, Chang WT, Hsu CL. Caffeate derivatives induce apoptosis in COLO 205 human colorectal carcinoma cells through Fas- and mitochondria-mediated pathways. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Cytotoxic effects of geranyl flavonoid derivatives from the fruit of Artocarpus communis in SK-Hep-1 human hepatocellular carcinoma cells. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.12.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells. Arch Pharm Res 2010; 32:1789-94. [DOI: 10.1007/s12272-009-2218-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/29/2009] [Accepted: 10/08/2009] [Indexed: 11/27/2022]
|
14
|
Sun RWY, Ng MFY, Wong ELM, Zhang J, Chui SSY, Shek L, Lau TC, Che CM. Dual anti-angiogenic and cytotoxic properties of ruthenium(III) complexes containing pyrazolato and/or pyrazole ligands. Dalton Trans 2009:10712-6. [PMID: 20023898 DOI: 10.1039/b912236b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An oxo-bridged diruthenium(III) complex containing pyrazolato and pyrazole ligands is stable against ascorbic-acid reduction, induces apoptosis (60%, 48 h) against HeLa cells at 10 microM level and exhibits promising anti-angiogenic activity at its sub-cytotoxic concentrations. Other mononuclear ruthenium(III) complexes containing pyrazole ligands [Ru(pz)(4)X(2)](+) exhibit dual anti-angiogenic and cytotoxic properties.
Collapse
Affiliation(s)
- Raymond Wai-Yin Sun
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Takahashi K, Okamoto H, Abe N, Kawakami M, Matsuda H, Mochida S, Sakugawa H, Suginoshita Y, Watanabe S, Yamamoto K, Miyakawa Y, Mishiro S. Virulent strain of hepatitis E virus genotype 3, Japan. Emerg Infect Dis 2009; 15:704-9. [PMID: 19402955 PMCID: PMC2687009 DOI: 10.3201/eid1505.081100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatitis E virus (HEV) genotype 3, which usually causes asymptomatic infection in Japan, induced severe hepatitis in 8 patients. To better understand genetic features of HEV associated with increased virulence, we determined the complete or near-complete nucleotide sequences of HEV from these 8 patients and from 5 swine infected with genotype 3 strain swJ19. Phylogenetic analysis showed that the isolates from the 8 patients and the 5 swine grouped separately from the other genotype 3 isolates to create a unique cluster, designated JIO. The human JIO-related viruses encoded 18 amino acids different from those of the other HEV genotype 3 strains. One substitution common to almost all human HEV strains in the JIO cluster was located in the helicase domain (V239A) and may be associated with increased virulence. A zoonotic origin of JIO-related viruses is suspected because the isolates from the 5 swine also possessed the signature V239A substitution in helicase.
Collapse
|
16
|
Haeubl M, Reith LM, Gruber B, Karner U, Müller N, Knör G, Schoefberger W. DNA interactions and photocatalytic strand cleavage by artificial nucleases based on water-soluble gold(III) porphyrins. J Biol Inorg Chem 2009; 14:1037-52. [PMID: 19471974 DOI: 10.1007/s00775-009-0547-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/04/2009] [Indexed: 11/28/2022]
Abstract
The novel gold porphyrin complex (5,10,15-tris(N-methylpyridinium-4-yl)-20-(1-pyrenyl)-porphyrinato)gold(III) chloride, [Au(III)(TMPy3Pyr1P)]Cl4, was prepared and characterized by optical spectroscopy, high-resolution nuclear magnetic resonance (NMR), and electrospray mass spectrometry. This cationic multichromophore compound exhibits excellent water solubility and does not form aggregates under physiological conditions. Binding interactions of this complex and related model compounds with nucleic acid substrates have been studied and characterized by NMR and circular dichroism spectroscopy. The photoreactivity of [Au(III)(TMPy3Pyr1P)]Cl4 was investigated under anaerobic and aerobic conditions in the presence of an excess of purine nucleoside, guanosine, and plasmid DNA. Photocatalytic oxidative degradation of guanosine and the change from supercoiled to circular plasmid DNA upon monochromatic irradiation and polychromatic blue-light exposure with a maximum at 420 nm was explored. The potential of the novel water-soluble cationic metallointercalator complex [Au(III)(TMPy3Pyr1P)]Cl4 to serve as a catalytic photonuclease for the cleavage of DNA has been demonstrated.
Collapse
Affiliation(s)
- Martin Haeubl
- Institut für Organische Chemie, Johannes Kepler Universität Linz (JKU), Altenberger Str. 69, 4040 Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1959-71. [PMID: 19349361 DOI: 10.2353/ajpath.2009.080995] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Decidual artery remodeling is essential for a healthy pregnancy. This process involves loss of vascular smooth muscle cells and endothelium, which are replaced by endovascular trophoblasts (vEVTs) embedded in fibrinoid. Remodeling is impaired during pre-eclampsia, a disease of pregnancy that results in maternal and fetal mortality and morbidity. Early vascular changes occur in the absence of vEVTs, suggesting that another cell type is involved; evidence from animal models indicates that decidual leukocytes play a role. We hypothesized that leukocytes participate in remodeling through the triggering of apoptosis or extracellular matrix degradation. Decidua basalis samples (8 to 12 weeks gestation) were examined by immunohistochemistry to elucidate associations between leukocytes, vEVTs, and key remodeling events. Trophoblast-independent and -dependent phases of remodeling were identified. Based on a combination of morphological attributes, vessel profiles were classified into a putative temporal series of four stages. In early stages of remodeling, vascular smooth muscle cells showed dramatic disruption and disorganization before vEVT presence. Leukocytes (identified as uterine natural killer cells and macrophages) were apparent infiltrating vascular smooth muscle cells layers and were matrix metalloproteinase-7 and -9 immunopositive. A proportion of vascular smooth muscle cells and endothelial cells were terminal deoxynucleotidyl transferase dUTP nick-end labeling positive, suggesting remodeling involves apoptosis. We thus confirm that vascular remodeling occurs in distinct trophoblast-independent and -dependent stages and provide the first evidence of decidual leukocyte involvement in trophoblast-independent stages.
Collapse
Affiliation(s)
- Samantha D Smith
- Maternal and Fetal Health Research Group, Research Floor, St Mary's Hospital, Manchester, UK.
| | | | | | | | | |
Collapse
|
18
|
Brower-Sinning R, Carter DM, Crevar CJ, Ghedin E, Ross TM, Benos PV. The role of RNA folding free energy in the evolution of the polymerase genes of the influenza A virus. Genome Biol 2009; 10:R18. [PMID: 19216739 PMCID: PMC2688270 DOI: 10.1186/gb-2009-10-2-r18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/29/2009] [Accepted: 02/12/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The influenza A virus genome is composed of eight single-stranded RNA segments of negative polarity. Although the hemagglutinin and neuraminidase genes are known to play a key role in host adaptation, the polymerase genes (which encode the polymerase segments PB2, PB1, PA) and the nucleoprotein gene are also important for the efficient propagation of the virus in the host and for its adaptation to new hosts. Current efforts to understand the host-specificity of the virus have largely focused on the amino acid differences between avian and human isolates. RESULTS Here we show that the folding free energy of the RNA segments may play an equally important role in the evolution and host adaptation of the influenza virus. Folding free energy may affect the stability of the viral RNA and influence the rate of viral protein translation. We found that there is a clear distinction between the avian and human folding free energy distributions for the polymerase and the nucleoprotein genes, with human viruses having substantially higher folding free energy values. This difference is independent of the amino acid composition and the codon bias. Furthermore, the folding free energy values of the commonly circulating human viruses tend to shift towards higher values over the years, after they entered the human population. Finally, our results indicate that the temperature in which the cells grow affects infection efficiency. CONCLUSIONS Our data suggest for the first time that RNA structure stability may play an important role in the emergence and host shift of influenza A virus. The fact that cell temperature affects virus propagation in mammalian cells could help identify those avian strains that pose a higher threat to humans.
Collapse
Affiliation(s)
- Rachel Brower-Sinning
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Donald M Carter
- Center for Vaccine Research, University of Pittsburgh, Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Corey J Crevar
- Center for Vaccine Research, University of Pittsburgh, Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Elodie Ghedin
- Department of Medicine, School of Medicine, University of Pittsburgh, Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Ted M Ross
- Center for Vaccine Research, University of Pittsburgh, Fifth Avenue, Pittsburgh, PA 15260, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Lothrop Street, Pittsburgh, PA 15261, USA
| | - Panayiotis V Benos
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Fifth Avenue, Pittsburgh, PA 15260, USA
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Meyran Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
19
|
Hsu CL, Lo WH, Yen GC. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas- and mitochondrial-mediated pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7359-65. [PMID: 17685632 DOI: 10.1021/jf071223c] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gallic acid (3,4,5-trihydroxybenzoic acid) is a naturally abundant plant phenolic compound. Our previous studies have shown that some phenolic acids such as gallic acid inhibit cell growth and induce apoptosis in 3T3-L1 pre-adipocytes. However, the molecular mechanism of gallic acid in the induction of cell apoptosis is still unclear. In this study, we investigated the effect of gallic acid on the apoptotic pathway in 3T3-L1 pre-adipocytes. Western blot data revealed that gallic acid stimulated an increase in the protein expression of Fas, FasL, and p53. The ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members was changed by gallic acid treatment. Gallic acid released mitochondrial cytochrome c into the cytosol and subsequently induced the activation of caspase-9 and caspase-3, which were followed by the cleavage of poly(ADP-ribose) polymerase. Pretreatment with a general caspase-9 inhibitor (Z-LEHD-FMK) and caspase-3 inhibitor (Z-DEVD-FMK) prevented gallic acid from inhibiting cell viability in 3T3-L1 pre-adipocytes. The data also indicated that treatment with gallic acid inhibited histone deacetylase activity in 3T3-L1 pre-adipocytes. These results demonstrate that gallic acid induces apoptosis in 3T3-L1 pre-adipocytes through the Fas and mitochondrial pathway. The induction of cell apoptosis by gallic acid may prove to be a pivotal mechanism for decreased pre-adipocyte proliferation.
Collapse
Affiliation(s)
- Chin-Lin Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | | | | |
Collapse
|
20
|
Abstract
Traditionally, surveillance against cancer was thought of as mainly immunological. With the exception of tumors with a clear viral involvement, such as immunoblastomas (Epstein-Barr virus, EBV), cervical, anogenital, and skin carcinomas (HPV), and Kaposi's sarcoma (HHV-8) where the immune system is confronted with virally encoded, nonself targets, tumors with no viral involvement provide poor targets. Attempts to influence them by immunological means are akin to the breaking of tolerance. Robust nonimmunological surveillance mechanisms include DNA repair-based checkpoint functions, and the triggering of growth arrest and/or apoptosis pathways by DNA damage or by illegitimate oncogene activation (intracellular surveillance). There is emerging evidence for epigenetic surveillance, reflected in the stringency of imprinting. A fourth mechanism, intercellular surveillance, or microenvironmental control, is rapidly gaining momentum. It can be mediated by contactual controls or by differentiation-inducing signals. Somatic hybridization experiments have shown that tumorigenicity is usually suppressed in somatic hybrids between normal and malignant cells, as long as a fairly complete chromosome complement is maintained. Individual normal cell-derived chromosomes may have a similar suppressive effect. For example, genetic and molecular dissection of human 3p that shows frequent deletions in many human tumors has identified multiple tumor suppressor genes, which can inhibit both in vitro growth and in vivo tumorigenicity. In addition, five genes were found with an "asymmetric activity," capable of suppressing tumorigenicity, without affecting in vitro growth. These genes, LTF, L1MD1, HYAL1, HYAL2, and VHL, are of particular interest because they may be involved in microenvironmental control.
Collapse
Affiliation(s)
- George Klein
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Qiao AM, Ikejima T, Tashiro SI, Onodera S, Zhang WG, Wu YL. Involvement of mitochondria and caspase pathways in N-demethyl-clarithromycin-induced apoptosis in human cervical cancer HeLa cell. Acta Pharmacol Sin 2006; 27:1622-9. [PMID: 17112418 DOI: 10.1111/j.1745-7254.2006.00444.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To study the mechanisms by which N-demethyl-clarithromycin (NDC) induces human cervical cancer HeLa cell apoptosis in vitro. METHODS The viability of N-demethyl-clarithromycin-induced HeLa cells was measured by MTT assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. Measurement of mitochondrial transmembrane potential was analyzed by a FACScan flowcytometer. Caspase-3, poly-(ADP-ribose) polymerase (PARP), caspase-activated DNase (ICAD), Bcl-2, Bax, p53, and SIRT1 protein expression and the release of cytochrome c were detected by Western blot analysis. RESULTS N-demethyl-clarithromycin, an anti-inflammatory substance, inhibited HeLa cell growth in a dose- and time-dependent manner. N-demethyl-clarithro-mycin induced HeLa cell death through the apoptotic pathways. The pan-caspase inhibitor (z-VAD-fmk), caspase-3 inhibitor (z-DEVD-fmk) and the caspase-9 inhibitor (z-LEHD-fmk) partially enhanced cell viability induced by N-demethyl-clarithromycin, but the caspase-8 inhibitor (z-IETD-fmk) had almost no effect. Caspase-3 was activated then followed by the degradation of caspase-3 substrates, the inhibitor of ICAD and PARP. Simultaneously, mitochondrial transmembrane potential was markedly reduced and the release of cytochrome c in the cytosol was increased. N-demethyl-clarithromycin upregulated the expression ratio of mitochondrial Bax/Bcl-2, and significantly increased the expression of the p53 protein. It also downregulated anti-apoptotic protein SIRT1 expression. CONCLUSION N-demethyl-clarithromycin induced apoptosis in HeLa cells via the mitochondrial pathway.
Collapse
Affiliation(s)
- Ai-min Qiao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|
22
|
Li B, Russell SJ, Compaan DM, Totpal K, Marsters SA, Ashkenazi A, Cochran AG, Hymowitz SG, Sidhu SS. Activation of the proapoptotic death receptor DR5 by oligomeric peptide and antibody agonists. J Mol Biol 2006; 361:522-36. [PMID: 16859704 DOI: 10.1016/j.jmb.2006.06.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 06/11/2006] [Accepted: 06/16/2006] [Indexed: 01/10/2023]
Abstract
The cell-extrinsic apoptotic pathway triggers programmed cell death in response to certain ligands that bind to cell-surface death receptors. Apoptosis is essential for normal development and homeostasis in metazoans, and furthermore, selective activation of the cell-extrinsic pathway in tumor cells holds considerable promise for cancer therapy. We used phage display to identify peptides and synthetic antibodies that specifically bind to the human proapoptotic death receptor DR5. Despite great differences in overall size and structure, the DR5-binding peptides and antibodies shared a tripeptide motif, which was conserved within a disulfide-constrained loop of the peptides and the third complementarity determining region of the antibody heavy chains. The X-ray crystal structure of an antibody in complex with DR5 revealed that the tripeptide motif is buried at the core of the interface, confirming its central role in antigen recognition. We found that certain peptides and antibodies exhibited potent proapoptotic activity against DR5-expressing SK-MES-1 lung carcinoma cells. These phage-derived ligands may be useful for elucidating DR5 activation at the molecular level and for creating synthetic agonists of proapoptotic death receptors.
Collapse
Affiliation(s)
- Bing Li
- Department of Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xia MY, Wang MW, Cui Z, Tashiro SI, Onodera S, Minami M, Ikejima T. Dracorhodin perchlorate induces apoptosis in HL-60 cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2006; 8:335-43. [PMID: 16864444 DOI: 10.1080/10286020500035300] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dracorhodin perchlorate, an anthocyanin red pigment, induces human premyelocytic leukemia HL-60 cell death through apoptotic pathway. Caspase -1, -3, -8, -9, and -10 inhibitors partially reversed the cell death induced by dracorhodin perchlorate. Caspase-3 and -8 were activated followed to the degradation of caspase-3 substrates, inhibitor of caspase-activated DNase (ICAD) and poly-(ADP-ribose) polymerase (PARP). Dracorhodin perchlorate up-regulated the expression ratio of mitochondrial proteins, Bax/Bcl-XL. The cell death was accompanied with phosphorylation of ERK, JNK and p38 MAPK and partially reduced by MEK inhibitor (PD98059), JNK MAPK inhibitor (SP600125) and p38 MAPK inhibitor (SB 203580). Taken together, dracorhodin perchlorate-induced apoptosis in HL-60 cells via up-regulation of Bax, activation of caspases and ERK/p38/JNK MAPKs.
Collapse
Affiliation(s)
- M-Y Xia
- Shenyang Pharmaceutical University, Department of Pharmacology, Shenyang, 110016, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Chen H, Smith GJD, Li KS, Wang J, Fan XH, Rayner JM, Vijaykrishna D, Zhang JX, Zhang LJ, Guo CT, Cheung CL, Xu KM, Duan L, Huang K, Qin K, Leung YHC, Wu WL, Lu HR, Chen Y, Xia NS, Naipospos TSP, Yuen KY, Hassan SS, Bahri S, Nguyen TD, Webster RG, Peiris JSM, Guan Y. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A 2006; 103:2845-50. [PMID: 16473931 PMCID: PMC1413830 DOI: 10.1073/pnas.0511120103] [Citation(s) in RCA: 469] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Preparedness for a possible influenza pandemic caused by highly pathogenic avian influenza A subtype H5N1 has become a global priority. The spread of the virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. It remains unknown from where the pandemic strain may emerge; current attention is directed at Vietnam, Thailand, and, more recently, Indonesia and China. Here, we report that genetically and antigenically distinct sublineages of H5N1 virus have become established in poultry in different geographical regions of Southeast Asia, indicating the long-term endemicity of the virus, and the isolation of H5N1 virus from apparently healthy migratory birds in southern China. Our data show that H5N1 influenza virus, has continued to spread from its established source in southern China to other regions through transport of poultry and bird migration. The identification of regionally distinct sublineages contributes to the understanding of the mechanism for the perpetuation and spread of H5N1, providing information that is directly relevant to control of the source of infection in poultry. It points to the necessity of surveillance that is geographically broader than previously supposed and that includes H5N1 viruses of greater genetic and antigenic diversity.
Collapse
Affiliation(s)
- H. Chen
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - G. J. D. Smith
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - K. S. Li
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
| | - J. Wang
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
| | - X. H. Fan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - J. M. Rayner
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - D. Vijaykrishna
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - J. X. Zhang
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - L. J. Zhang
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - C. T. Guo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - C. L. Cheung
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - K. M. Xu
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - L. Duan
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - K. Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - K. Qin
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Y. H. C. Leung
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - W. L. Wu
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - H. R. Lu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Y. Chen
- Research Center for Medical Molecular Virology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - N. S. Xia
- Research Center for Medical Molecular Virology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - T. S. P. Naipospos
- Ministry of Agriculture and Animal Health, Government of Indonesia, Pasar Minggu, Jakarta Selatan 12550, Indonesia
| | - K. Y. Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - S. S. Hassan
- Veterinary Research Institute, 31 400 Ipoh, Malaysia
| | - S. Bahri
- Ministry of Agriculture and Animal Health, Government of Indonesia, Pasar Minggu, Jakarta Selatan 12550, Indonesia
| | - T. D. Nguyen
- **National Institute of Veterinary Research, Dong Da, Hanoi, Vietnam; and
| | - R. G. Webster
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- **National Institute of Veterinary Research, Dong Da, Hanoi, Vietnam; and
| | - J. S. M. Peiris
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Y. Guan
- Joint Influenza Research Centre (Shantou University Medical College and Hong Kong University), Shantou University Medical College, Shantou, Guangdong 515031, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
25
|
Matibag GC, Igarashi M, La Porte RE, Tamashiro H. Advocacy, promotion and e-learning: Supercourse for zoonosis. Environ Health Prev Med 2005; 10:273-81. [PMID: 21432131 PMCID: PMC2723411 DOI: 10.1007/bf02897702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 05/30/2005] [Indexed: 11/16/2022] Open
Abstract
This paper discusses the history of emerging infectious diseases, risk communication and perception, and the Supercourse lectures as means to strengthen the concepts and definition of risk management and global governance of zoonosis. The paper begins by outlining some of the key themes and issues in infectious diseases, highlighting the way which historical analysis challenges ideas of the 'newness' of some of these developments. It then discusses the role of risk communication to public accountability. The bulk of the paper presents an overview of developments of the Internet-based learning system through the Supercourse lectures that may prove to be a strong arm for the promotion of the latest medical information particularly to developing countries.
Collapse
Affiliation(s)
- Gino C. Matibag
- Department of Health for Senior Citizens, Division of Preventive Medicine, Social Medicine Cluster, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ky, 060-8638 Sapporo, Japan
| | - Manabu Igarashi
- Department of Health for Senior Citizens, Division of Preventive Medicine, Social Medicine Cluster, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ky, 060-8638 Sapporo, Japan
| | - Ron E. La Porte
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Hiko Tamashiro
- Department of Health for Senior Citizens, Division of Preventive Medicine, Social Medicine Cluster, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ky, 060-8638 Sapporo, Japan
| |
Collapse
|
26
|
Yui S, Tomita K, Kudo T, Ando S, Yamazaki M. Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Sci 2005; 96:560-70. [PMID: 16128741 PMCID: PMC11158078 DOI: 10.1111/j.1349-7006.2005.00097.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In tumor metastasis, multicellular aggregates of tumor cells form and disseminate into the blood or lymph vessels from the tumor mass, following the formation of tumor cell emboli in distant vessels. However, the mechanism by which aggregates form in the tumor mass is unknown. Neutrophils often exist in tumors and are considered to affect tumor development. We observed that neutrophils had the capacity to induce the aggregation of MCF-7 human breast carcinoma cells adhering to culture substrates. When MCF-7 cells were cultured with rat inflammatory neutrophils, the soluble fraction of their lysate, and the conditioned medium of neutrophils stimulated with N-formyl-Met-Leu-Phe plus cytochalasin B, multicellular aggregates formed within 16 h, and tightly aggregated 3-D spheroids formed when the cultures were prolonged. The spheroid-inducing reaction was reversible and energy-dependent. The MCF-7 cells induced to aggregate by the neutrophil extract showed growth potential, although the growth rate of the cells was slightly reduced. The aggregation was dependent on E-cadherin, because the spheroids dispersed into isolated cells on incubation with EGTA or anti-E-cadherin antibody following pipetting. The aggregation-inducing activity in neutrophils was completely inhibited by soybean trypsin-chymotrypsin inhibitor. Moreover, the commercially available human neutrophil elastase and cathepsin G induced the aggregation of MCF-7 cells and formation of spheroids. The proteases secreted by infiltrated neutrophils in tumors are implicated in the dissemination of tumor aggregates from primary tumor sites.
Collapse
Affiliation(s)
- Satoru Yui
- Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan.
| | | | | | | | | |
Collapse
|
27
|
Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DAT, Halloran ME. Containing pandemic influenza at the source. Science 2005; 309:1083-7. [PMID: 16079251 DOI: 10.1126/science.1115717] [Citation(s) in RCA: 704] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Highly pathogenic avian influenza A (subtype H5N1) is threatening to cause a human pandemic of potentially devastating proportions. We used a stochastic influenza simulation model for rural Southeast Asia to investigate the effectiveness of targeted antiviral prophylaxis, quarantine, and pre-vaccination in containing an emerging influenza strain at the source. If the basic reproductive number (R0) was below 1.60, our simulations showed that a prepared response with targeted antivirals would have a high probability of containing the disease. In that case, an antiviral agent stockpile on the order of 100,000 to 1 million courses for treatment and prophylaxis would be sufficient. If pre-vaccination occurred, then targeted antiviral prophylaxis could be effective for containing strains with an R0 as high as 2.1. Combinations of targeted antiviral prophylaxis, pre-vaccination, and quarantine could contain strains with an R(0) as high as 2.4.
Collapse
Affiliation(s)
- Ira M Longini
- Department of Biostatistics, The Rollins School of Public Health, Emory University, 1518 Clifton Road, N.E., Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Olson DR, Simonsen L, Edelson PJ, Morse SS. Epidemiological evidence of an early wave of the 1918 influenza pandemic in New York City. Proc Natl Acad Sci U S A 2005; 102:11059-63. [PMID: 16046546 PMCID: PMC1182402 DOI: 10.1073/pnas.0408290102] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Indexed: 11/18/2022] Open
Abstract
The 1918 "Spanish flu" was the fastest spreading and most deadly influenza pandemic in recorded history. Hypotheses of its origin have been based on a limited collection of case and outbreak reports from before its recognized European emergence in the summer of 1918. These anecdotal accounts, however, remain insufficient for determining the early diffusion and impact of the pandemic virus. Using routinely collected monthly age-stratified mortality data, we show that an unmistakable shift in the age distribution of epidemic deaths occurred during the 1917/1918 influenza season in New York City. The timing, magnitude, and age distribution of this mortality shift provide strong evidence that an early wave of the pandemic virus was present in New York City during February-April 1918.
Collapse
Affiliation(s)
- Donald R Olson
- Department of Epidemiology and Center for Public Health Preparedness, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
29
|
Furuya D, Tsuji N, Yagihashi A, Watanabe N. Beclin 1 augmented cis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res 2005; 307:26-40. [PMID: 15922724 DOI: 10.1016/j.yexcr.2005.02.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 02/10/2005] [Accepted: 02/23/2005] [Indexed: 01/07/2023]
Abstract
Beclin 1, identified as a Bcl-2-interacting protein, is known to enhance autophagy. However, the effect of Beclin 1 on apoptotic signaling has remained unclear. Here, we show that overexpression of Beclin 1 in MKN28 human gastric cancer cells augmented cis-diamminedichloroplatinum (CDDP)-induced apoptosis. Conversely, "knockdown" of Beclin 1 by a small inhibitory RNA in MKN 1 cells attenuated this cytotoxicity. Furthermore, not only caspase-3/7 activities, but also caspase-9 activity was increased in Beclin 1 gene transfectants treated with CDDP, and caspase-9 inhibitor completely abolished augmentation of CDDP-induced apoptosis by Beclin 1 as did a caspase-3 inhibitor. Thus, Beclin 1 augments CDDP-induced apoptosis through enhancing caspase-9 activity and functions as a pro-apoptotic molecule.
Collapse
Affiliation(s)
- Daisuke Furuya
- Department of Clinical Laboratory Medicine, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | |
Collapse
|
30
|
Fernández-Tornero C, Lozano RM, Rivas G, Jiménez MA, Ständker L, Díaz-Gonzalez D, Forssmann WG, Cuevas P, Romero A, Giménez-Gallego G. Synthesis of the blood circulating C-terminal fragment of insulin-like growth factor (IGF)-binding protein-4 in its native conformation. Crystallization, heparin and IGF binding, and osteogenic activity. J Biol Chem 2005; 280:18899-907. [PMID: 15735305 DOI: 10.1074/jbc.m500587200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-binding proteins play a critical role in a wide variety of important physiological processes. It has been demonstrated that both an N-terminal and a C-terminal fragment of insulin-like growth factor-binding protein-4 exist and accumulate in the circulatory system, these fragments accounting for virtually the whole amino acid sequence of the protein. The circulating C-terminal fragment establishes three disulfide bridges, and the binding pattern of these has recently been defined. Here we show that the monodimensional 1H NMR spectrum of the C-terminal fragment is typical of a protein with a relatively close packed tertiary structure. This fragment can be produced in its native conformation in Escherichia coli, without the requirement of further refolding procedures, when synthesis is coupled to its secretion from the cell. The recombinant protein crystallizes with the unit cell parameters of a hexagonal system. Furthermore, it binds strongly to heparin, acquiring a well defined oligomeric structure that interacts with insulin-like growth factors, and promotes bone formation in cultures of murine calvariae.
Collapse
Affiliation(s)
- Carlos Fernández-Tornero
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xia M, Wang D, Wang M, Tashiro SI, Onodera S, Minami M, Ikejima T. Dracorhodin perchlorate induces apoptosis via activation of caspases and generation of reactive oxygen species. J Pharmacol Sci 2005; 95:273-83. [PMID: 15215653 DOI: 10.1254/jphs.fpj03102x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Dracorhodin perchlorate inhibited proliferation of several tumor cell lines. The drug induced oligonucleosomal fragmentation of DNA in HeLa cells and increased caspase-3, -8, -9 activities followed by the degradation of caspase-3 substrates, inhibitor of caspase-dependent DNase, and poly-(ADP-ribose) polymerase. It also increased caspase-1 activity and a caspase-1 inhibitor, Ac-YVAD-cmk, and a caspase-10 inhibitor z-AEVD-fmk, also reduced dracorhodin-perchlorate-induced HeLa cell death. Dracorhodin perchlorate decreased the expression of anti-apoptotic mitochondrial protein, Bcl-X(L), but not Bcl-2; and it increased the expression of pro-apoptotic protein, Bax. Dracorhodin perchlorate induced a sustained generation of reactive oxygen species (ROS) in HeLa cells; caspase-1 inhibitor, Ac-YVAD-cmk, and caspase-3 inhibitor, z-DEVD-fmk, attenuated the generation of ROS. Taken together, our results indicate that dracorhodin perchlorate alters the intracellular redox status, changed the balance of Bcl-X(L) and Bax protein expression, and induces apoptosis through caspase pathways in HeLa cells.
Collapse
Affiliation(s)
- Mingyu Xia
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Xia M, Wang M, Tashiro SI, Onodera S, Minami M, Ikejima T. Dracorhodin Perchlorate Induces A375-S2 Cell Apoptosis via Accumulation of p53 and Activation of Caspases. Biol Pharm Bull 2005; 28:226-32. [PMID: 15684474 DOI: 10.1248/bpb.28.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dracorhodin perchlorate, an anthocyanin red pigment, induces human melanoma A375-S2 cell death through the apoptotic pathway. Caspase-3, -8, -9, and -10 inhibitors partially reversed the cell death induced by dracorhodin perchlorate. Caspase-3 and -8 were activated, followed by the degradation of caspase-3 substrates, the inhibitor of caspase-activated DNase, and poly-(ADP-ribose) polymerase. Dracorhodin perchlorate upregulated the expression ratio of Bax/Bcl-2 and significantly increased the expression of p53 and p21(WAF1) proteins. The cell death was partially reduced by the mitogen-activated protein kinase c-JUN NH2-terminal protein kinase (JNK MAPK) inhibitor (SP600125) and p38 MAPK inhibitor (SB 203580), while the MEK inhibitor (PD98059) augmented cell death; the drug induced sustained phosphorylation of JNK and p38 MAPK. Moreover, the Fas agonistic antibody CH-11 has a synergistic effect with dracorhodin perchlorate. The phoshatidylinositol 3-kinase (PI3-K) family inhibitor wortmanin and tyrosine kinase inhibitor genistein rescued the viability loss induced by dracohodin perchlorate. Taken together, dracorhodin perchlorate induces apoptosis in A375-S2 cells via accumulation of p53, alters the Bax/Bcl-2 ratio, and activates caspases and p38/JNK MAPKs.
Collapse
Affiliation(s)
- Mingyu Xia
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|
33
|
Sandra F, Hendarmin L, Nakao Y, Nakamura N, Nakamura S. TRAIL Cleaves Caspase-8, -9 and -3 of AM-1 Cells: A Possible Pathway for TRAIL to Induce Apoptosis in Ameloblastoma. Tumour Biol 2005; 26:258-64. [PMID: 16110259 DOI: 10.1159/000087564] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Accepted: 04/26/2005] [Indexed: 11/19/2022] Open
Abstract
Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL/Apo-2L), a potent ligand in inducing apoptosis, has recently emerged as a novel anticancer agent based on its ability to induce apoptosis in tumor cells, while exhibiting no toxicity in most normal cells. Since no potent apoptosis-inducing factor has been found yet in ameloblastoma, the present study was conducted. In the present study, expressions of TRAIL receptors, death receptor 4 (DR4) and DR5, were detected in all ameloblastoma tissues by immunohistochemistry as well as in AM-1 cells by immunofluorescence. By applying TRAIL in AM-1 cells, ameloblastoma cell line, for 24 h, we found that TRAIL cleaved caspase-8, -9 and -3, and lowered mitochondrial membrane potential (Deltapsim), and markedly induced apoptosis in AM-1 cells (46%). These results suggested that TRAIL is a potent apoptosis-inducing ligand in ameloblastoma.
Collapse
Affiliation(s)
- Ferry Sandra
- Laboratory of Oral Cellular and Molecular Biology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Infectious diseases have for centuries ranked with wars and famine as major challenges to human progress and survival. They remain among the leading causes of death and disability worldwide. Against a constant background of established infections, epidemics of new and old infectious diseases periodically emerge, greatly magnifying the global burden of infections. Studies of these emerging infections reveal the evolutionary properties of pathogenic microorganisms and the dynamic relationships between microorganisms, their hosts and the environment.
Collapse
Affiliation(s)
- David M. Morens
- Department of Health and Human Services, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892-2520 Maryland USA
| | - Gregory K. Folkers
- Department of Health and Human Services, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892-2520 Maryland USA
| | - Anthony S. Fauci
- Department of Health and Human Services, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892-2520 Maryland USA
| |
Collapse
|
35
|
Guan Y, Poon LLM, Cheung CY, Ellis TM, Lim W, Lipatov AS, Chan KH, Sturm-Ramirez KM, Cheung CL, Leung YHC, Yuen KY, Webster RG, Peiris JSM. H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 2004; 101:8156-61. [PMID: 15148370 PMCID: PMC419573 DOI: 10.1073/pnas.0402443101] [Citation(s) in RCA: 305] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection with avian influenza A virus of the H5N1 subtype (isolates A/HK/212/03 and A/HK/213/03) was fatal to one of two members of a family in southern China in 2003. This incident was preceded by lethal outbreaks of H5N1 influenza in waterfowl, which are the natural hosts of these viruses and, therefore, normally have asymptomatic infection. The hemagglutinin genes of the A/HK/212/03-like viruses isolated from humans and waterfowl share the lineage of the H5N1 viruses that caused the first known cases of human disease in Hong Kong in 1997, but their internal protein genes originated elsewhere. The hemagglutinin of the recent human isolates has undergone significant antigenic drift. Like the 1997 human H5N1 isolates, the 2003 human H5N1 isolates induced the overproduction of proinflammatory cytokines by primary human macrophages in vitro, whereas the precursor H5N1 viruses and other H5N1 reassortants isolated in 2001 did not. The acquisition by the viruses of characteristics that enhance virulence in humans and waterfowl and their potential for wider distribution by infected migrating birds are causes for renewed pandemic concern.
Collapse
Affiliation(s)
- Y Guan
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lesnikov VA, Lesnikova MP, Shulman HM, Wilson HM, Hockenbery DM, Kocher M, Pierpaoli W, Deeg HJ. Prevention of Fas-mediated hepatic failure by transferrin. J Transl Med 2004; 84:342-52. [PMID: 14704719 DOI: 10.1038/labinvest.3700035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies in lymphohemopoietic cells show that transferrin (Tf), a pivotal component of iron transport and metabolism, also exerts cytoprotective functions. We show here in a murine model that Tf interferes with Fas-mediated hepatocyte death and liver failure. The mechanism involves the downregulation of apoptosis via BID, cytochrome c, caspase-3 and caspase-9, and upregulation of antiapoptotic signals via Bcl-xL. The results obtained with iron-saturated Tf, Apo-Tf and the iron-chelator salicylaldehyde isonicotinoyl hydrazone indicate that the observed antiapoptotic effect of Tf was not mediated by iron alone. In conclusion, the data suggest that Tf has broader functions than previously recognized and may serve as a cytoprotective agent.
Collapse
Affiliation(s)
- Vladimir A Lesnikov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abdollahi T. Potential for TRAIL as a Therapeutic Agent in Ovarian Cancer. TRAIL (TNF-RELATED APOPTOSIS-INDUCING LIGAND) 2004; 67:347-64. [PMID: 15110185 DOI: 10.1016/s0083-6729(04)67018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis, otherwise known as programmed cell death, in many malignant cells without any known detrimental effects to normal cells. These aspects of TRAIL indicate the potential of TRAIL as a therapeutic agent in cancer. Ovarian cancer remains the deadliest gynecologic malignancy and is the fourth leading cause of death due to cancer in women. However, it has been shown in studies that ovarian cancer cells are sensitive to TRAIL-induced cell death when treated with TRAIL alone or in combination with chemotherapeutic agents. TRAIL signals through two death receptors, TRAIL-R1 and TRAIL-R2, to induce apoptosis. TRAIL also binds to two other cell surface receptors, TRAIL-R3 and TRAIL-R4, which do not have intracellular death domains and therefore do not transmit the apoptotic signal upon ligation with TRAIL. It has been shown that a chemokine, interleukin-8 (IL-8), may play a role in ovarian tumor progression due to its elevated presence in the fluid surrounding ovarian cancer tissues. Possible roles for IL-8 in ovarian tumorigenesis include angiogenesis and metastasis. Because the mechanism of regulation for TRAIL-induced apoptosis needs to be clarified, the role of IL-8 in TRAIL-induced apoptosis of ovarian cancer cells was studied. Results showed that the presence of IL-8 regulates cell-surface expression of TRAIL receptors in ovarian cancer cell lines in vitro. There may be a role for the p38 mitogen-activated protein kinase (MAPK) pathway in TRAIL-induced apoptosis of ovarian cancer cell.
Collapse
Affiliation(s)
- Touraj Abdollahi
- Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
38
|
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand or Apo 2 ligand (TRAIL/Apo2L) is a member of the tumor necrosis factor (TNF) family of ligands capable of initiating apoptosis through engagement of its death receptors. TRAIL selectively induces apoptosis of a variety of tumor cells and transformed cells, but not most normal cells, and therefore has garnered intense interest as a promising agent for cancer therapy. TRAIL is expressed on different cells of the immune system and plays a role in both T-cell- and natural killer cell-mediated tumor surveillance and suppression of suppressing tumor metastasis. Some mismatch-repair-deficient tumors evade TRAIL-induced apoptosis and acquire TRAIL resistance through different mechanisms. Death receptors, members of the TNF receptor family, signal apoptosis independently of the p53 tumor-suppressor gene. TRAIL treatment in combination with chemo- or radiotherapy enhances TRAIL sensitivity or reverses TRAIL resistance by regulating the downstream effectors. Efforts to identify agents that activate death receptors or block specific effectors may improve therapeutic design. In this review, we summarize recent insights into the apoptosis-signaling pathways stimulated by TRAIL, present our current understanding of the physiological role of this ligand and the potential of its application for cancer therapy and prevention.
Collapse
Affiliation(s)
- Shulin Wang
- Department of Medicine, and the Abramson Cancer Center, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
39
|
Subramanian T, Chinnadurai G. Pro-apoptotic activity of transiently expressed BCL-2 occurs independent of BAX and BAK. J Cell Biochem 2003; 89:1102-14. [PMID: 12898509 DOI: 10.1002/jcb.10573] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BCL-2 suppresses apoptosis induced by a wide variety of stimuli in multiple cell types. Most of the in vitro studies that have examined the activity of BCL-2 have employed stable cell lines that ectopically express BCL-2. We have reported that BCL-2 is expressed at high levels in the absence of the 5'- and 3'-UTRs of the Bcl-2 gene and transient high level of expression results in potent cell death (Uhlmann et al., [1998]: JBC 278:17926-17932). Expression of BCL-2 under the transcriptional control of the cognate 5'- and 3'-UTRs express lower levels of BCL-2 and does not cause cell death. Our present results suggest that in contrast to BCL-2, transient expression of BCL-xL does not induce cell death and coexpression of BCL-xL with the pro-apoptotic BCL-2 does not suppress cell death. The pro-apoptotic activity of BCL-2 appears to involve activation of the cytochrome c/caspase 9/caspase 3 pathway. Elevated levels of BCL-2 expression results in N-terminal cleavage of BCL-2 at a novel site different from a previously identified caspase cleavage site at Asp 34 by a non-caspase protease. Transient expression of a BCL-2 mutant lacking aa 51-85 within the loop region induces efficient cell death and N-terminal cleavage of BCL-2 while a different deletion mutant lacking aa 30-91 induces reduced levels of cell death in the absence of BCL-2 cleavage suggesting that N-terminal processing of BCL-2 may be an amplification event in BCL-2-mediated cell death. Overexpression of BCL-2 in a Bax-null human colon cancer cell line (HCT116Bax-/-) induces efficient cell death. The pro-apoptotic activity of BCL-2 is also observed in a Bax-null cells in which BAK expression is inhibited by stable RNAi expression. Our results suggest that BCL-2 contains an intrinsic pro-apoptotic activity and can induce apoptosis independent of BAX and BAK under specific conditions.
Collapse
Affiliation(s)
- T Subramanian
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Ave., St. Louis, Missouri 63110, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- Mohammad Madjid
- School of Medicine, Texas Heart Institute, Houston, Texas, USA, School of Medicine, President Bush Center for Cardiovascular Health, Memorial Hermann Hospital, Houston, Texas, USA
| | - Scott Lillibridge
- School of Medicine, Center for Biosecurity and Public Health, University of Texas–Houston Health Center, Houston, Texas, USA
| | - Parsa Mirhaji
- School of Medicine, Office of Biotechnology, University of Texas–Houston Health Center, Houston, Texas, USA
| | - Ward Casscells
- School of Medicine, Office of Biotechnology, University of Texas–Houston Health Center, Houston, Texas, USA, School of Medicine, Texas Heart Institute, Houston, Texas, USA, School of Medicine, President Bush Center for Cardiovascular Health, Memorial Hermann Hospital, Houston, Texas, USA
| |
Collapse
|
41
|
Moreau C, Cartron PF, Hunt A, Meflah K, Green DR, Evan G, Vallette FM, Juin P. Minimal BH3 peptides promote cell death by antagonizing anti-apoptotic proteins. J Biol Chem 2003; 278:19426-35. [PMID: 12642586 DOI: 10.1074/jbc.m209472200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pro-apoptotic "BH3 domain-only" proteins of the Bcl-2 family (e.g. Bid and Bad) transduce multiple death signals to the mitochondrion. They interact with the anti-apoptotic Bcl-2 family members and induce apoptosis by a mechanism that requires the presence of at least one of the multidomain pro-apoptotic proteins Bax or Bak. Although the BH3 domain of Bid can promote the pro-apoptotic assembly and function of Bax/Bak by itself, other BH3 domains do not function as such. The latter point raises the question of whether, and how, these BH3 domains induce apoptosis. We show here that a peptide comprising the minimal BH3 domain from Bax induces apoptosis but is unable to stimulate the apoptotic activity of microinjected recombinant Bax. This relies on the inability of the peptide to directly induce Bax translocation to mitochondria or a change in its conformation. This peptide nevertheless interferes with Bax/Bcl-xL interactions in vitro and stimulates the apoptotic activity of Bax when combined with Bcl-xL. Similarly, a peptide derived from the BH3 domain of Bad stimulates Bax activity only in the presence of Bcl-xL. Thus, BH3 domains do not necessarily activate multidomain pro-apoptotic proteins directly but promote apoptosis by releasing active multidomain pro-apoptotic proteins from their anti-apoptotic counterparts.
Collapse
|
42
|
Scott SL, Higdon R, Beckett L, Shi XB, deVere White RW, Earle JD, Gumerlock PH. BCL2 antisense reduces prostate cancer cell survival following irradiation. Cancer Biother Radiopharm 2002; 17:647-56. [PMID: 12537668 DOI: 10.1089/108497802320970253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Irradiation of the prostate, delivered as external beam radiation therapy (EBRT), is currently one of the few treatment options for localized prostate cancer. While it is relatively effective, the failure rate still remains unacceptably high with a 5-year biochemical failure rate of 10-40%. Utilizing genetically engineered LNCaP prostate cancer sublines that either overexpress Bcl2 (LNCaP/S22-d) or have down-regulated Bcl2 (LNCaP/AS17-f) we investigated the influence of this antiapoptotic protein on clonogenic survival following radiation. The radiation dose response curves (2-8 Gy) for the sublines differed significantly from the parental LNCaP (LNCaP/S22d: p < 0.001 and LNCaP/AS17-f: p = 0.008). The relative survival of the sublines revealed increased survival in the Bcl2 overexpressing cells, and decreased survival in the Bcl2 down-regulated cells. These data suggest a potentially important therapeutic approach for enhancing radiosensitivity in prostate tumors via antisense oligonucleotide or other drug therapies that down-regulate Bcl2. Strategies such as these likely hold the promise of enhancing the efficacy of EBRT by decreasing tumor cell survival, reducing the incidence of tumor recurrence and improving patient outcome.
Collapse
Affiliation(s)
- Susan L Scott
- Division of Hematology/Oncology, Department of Internal Medicine, University of California, Davis Cancer Center, Sacramento, CA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Juin P, Hunt A, Littlewood T, Griffiths B, Swigart LB, Korsmeyer S, Evan G. c-Myc functionally cooperates with Bax to induce apoptosis. Mol Cell Biol 2002; 22:6158-69. [PMID: 12167710 PMCID: PMC133996 DOI: 10.1128/mcb.22.17.6158-6169.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Myc promotes apoptosis by destabilizing mitochondrial integrity, leading to the release of proapoptotic effectors including holocytochrome c. Candidate mediators of c-Myc in this process are the proapoptotic members of the Bcl-2 family. We show here that fibroblasts lacking Bak remain susceptible to c-Myc-induced apoptosis whereas bax-deficient fibroblasts are resistant. However, despite this requirement for Bax, c-Myc activation exerts no detectable effects on Bax expression, localization, or conformation. Moreover, susceptibility to c-Myc-induced apoptosis can be restored in bax-deficient cells by ectopic expression of Bax or by microinjection of a peptide comprising a minimal BH3 domain. Microinjection of BH3 peptide also restores sensitivity to c-Myc-induced apoptosis in p53-deficient primary fibroblasts that are otherwise resistant. By contrast, there is no synergy between BH3 peptide and c-Myc in fibroblasts deficient in both Bax and Bak. We conclude that c-Myc triggers a proapoptotic mitochondrial destabilizing activity that cooperates with proapoptotic members of the Bcl-2 family.
Collapse
Affiliation(s)
- Philippe Juin
- University of California at San Francisco Cancer Center, San Francisco, California 94143-0128, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Reina J. [Factors affecting the virulence and pathogenicity of avian and human viral strains (influenza virus type A)]. Enferm Infecc Microbiol Clin 2002; 20:346-53. [PMID: 12237002 DOI: 10.1016/s0213-005x(02)72814-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most studies performed in avian viral strains seem to indicate that virulence is a polygenic phenomenon. However, hemagglutinin and neuraminidase and the genes codifying these substances (genes 4 and 6) play an essential role in viral pathogenesis. Avian strains can be classified as avirulent or virulent according to the ability of hemagglutinin to be activated by endoproteases of the respiratory tract only or by proteases from other tissues. This ability is based on the progressive development of mutations that lead to the substitution of the normal amino acids at the point of hemagglutinin hydrolysis by the other basic amino acids that determine the amplification of the spectrum of hydrolysis and activation. Neuraminidase participates in the acquisition of virulence through its capacity to bind to plasminogen and by increasing the concentration of activating proteases. Adaptation to the host, through recognition of the cell receptor, is another factor determining the virulence and interspecies transmission of avian strains. From an epidemiological point of view, viral strains should be subtyped and the activating capacity of hemagglutinin should be determined to identify their degree of virulence.
Collapse
Affiliation(s)
- Jordi Reina
- Unidad de Virología, Servicio de Microbiología Clínica, Hospital Universitario Son Dureta, Palma de Mallorca, España.
| |
Collapse
|
45
|
Wu RC, Blumenthal M, Li X, Schönthal AH. Loss of cellular adhesion to matrix induces p53-independent expression of PTEN tumor suppressor. BMC Mol Biol 2002; 3:11. [PMID: 12113656 PMCID: PMC117602 DOI: 10.1186/1471-2199-3-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 07/12/2002] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The tumor suppressor gene PTEN has been found mutated in many types of advanced tumors. When introduced into tumor cells that lack the wild-type allele of the gene, exogenous PTEN was able to suppress their ability to grow anchorage-independently, and thus reverted one of the typical characteristics of tumor cells. As these findings indicated that PTEN might be involved in the regulation of anchorage-dependent cell growth, we analyzed this aspect of PTEN function in non-tumor cells with an anchorage-dependent phenotype. RESULTS We found that in response to the disruption of cell-matrix interactions, expression of endogenous PTEN was transcriptionally activated, and elevated levels of PTEN protein and activity were present in the cells. These events correlated with decreased phosphorylation of focal adhesion kinase, and occurred even in the absence of p53, a tumor suppressor protein and recently established stimulator of PTEN transcription. CONCLUSIONS In view of PTEN's potent growth-inhibitory capacity, we conclude that its induction after cell-matrix disruptions contributes to the maintenance of the anchorage-dependent phenotype of normal cells.
Collapse
Affiliation(s)
- Ray-Chang Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Martina Blumenthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
| | - Xinwei Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
- K. Norris Jr. Comprehensive Cancer Center, University of Southern California, 2011 Zonal Ave, HMR-405, Los Angeles, CA 90089, USA
| |
Collapse
|
46
|
Hamilton MS, Abel DM, Ballam YJ, Otto MK, Nickell AF, Pence LM, Appleman JR, Shimasaki CD, Achyuthan KE. Clinical evaluation of the ZstatFlu-II test: a chemiluminescent rapid diagnostic test for influenza virus. J Clin Microbiol 2002; 40:2331-4. [PMID: 12089243 PMCID: PMC120541 DOI: 10.1128/jcm.40.7.2331-2334.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploiting the high sensitivity of the chemiluminescence phenomenon, an accurate and sensitive point-of-care test, called the ZstatFlu-II test (ZymeTx, Inc., Oklahoma City, Okla.), was developed to detect influenza virus infections. The ZstatFlu-II test takes 20 min and requires approximately 2 min of "hands-on" time for operational steps. The ZstatFlu-II test does not distinguish between infections with influenza virus types A and B. ZstatFlu-II test results are printed on Polaroid High-Speed Detector Film, allowing test results to be archived. A prototype version of the ZstatFlu-II test was evaluated during the 2000-to-2001 flu season with 300 nasal aspirate specimens from children at a pediatric hospital. Compared to culture, the ZstatFlu-II test had 88% sensitivity and 92% specificity. The Directigen test had a sensitivity of 75% and a specificity of 93%. The sensitivity of the ZstatFlu-II test was significantly higher than that of the Directigen test (P < 0.0574).
Collapse
Affiliation(s)
- Marilyn S Hamilton
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guan Y, Peiris JSM, Lipatov AS, Ellis TM, Dyrting KC, Krauss S, Zhang LJ, Webster RG, Shortridge KF. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 2002; 99:8950-5. [PMID: 12077307 PMCID: PMC124404 DOI: 10.1073/pnas.132268999] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although A/Hong Kong/156/97 (H5N1/97)-like viruses associated with the "bird flu" incident in Hong Kong SAR have not been detected since the slaughter of poultry in 1997, its putative precursors continue to persist in the region. One of these, Goose/Guangdong/1/96 (H5N1 Gs/Gd)-like viruses, reassorted with other avian viruses to generate multiple genotypes of H5N1 viruses that crossed to chickens and other terrestrial poultry from its reservoir in geese. Whereas none of these recent reassortants had acquired the gene constellation of H5N1/97, these events provide insight into how such a virus may have been generated. The recent H5N1 reassortants readily infect and kill chicken and quail after experimental infection, and some were associated with significant mortality of chickens within the poultry retail markets in Hong Kong. Some genotypes are lethal for mice after intra-nasal inoculation and spread to the brain. On this occasion, the early detection of H5N1 viruses in the retail, live poultry markets led to preemptive intervention before the occurrence of human disease, but these newly emerging, highly pathogenic H5N1 viruses provide cause for pandemic concern.
Collapse
Affiliation(s)
- Y Guan
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Avi Ashkenazi
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| |
Collapse
|
49
|
da Silva Bizario JC, da Cunha Nascimento AA, Casaletti L, Patussi EV, Chociay MF, Larson RE, Espreafico EM. Expression of constructs of the neuronal isoform of myosin-Va interferes with the distribution of melanosomes and other vesicles in melanoma cells. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:57-75. [PMID: 11921164 DOI: 10.1002/cm.10010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myosin-Va has been implicated in melanosome translocation, but the exact molecular mechanisms underlying this function are not known. In the dilute, S91 melanoma cells, melanosomes move to the cell periphery but do not accumulate in the tips of dendrites as occurs in wild-type B16 melanocytes; rather, they return and accumulate primarily at the pericentrosomal region in a microtubule-dependent manner. Expression of the full-length neuronal isoform of myosin-Va in S91 cells causes melanosomes to disperse, occupying a cellular area approximately twice that observed in non-transfected cells, suggesting a partial rescue of the dilute phenotype. Overexpression of the full tail domain in S91 cells is not sufficient to induce melanosome dispersion, rather it causes melanosomal clumping. Overexpression of the head and head-neck domains of myosin-Va in B16 cells does not alter the melanosome distribution. However, overexpression of the full tail domain in these cells induces melanosome aggregation and the appearance of tail-associated, aggregated particles or vesicular structures that exhibit variable degrees of staining for melanosomal and Golgi beta-COP markers, as well as colocalization with the endogenous myosin-Va. Altogether, the present data suggest that myosin-Va plays a role in regulating the direction of microtubule-dependent melanosome translocation, in addition to promoting the capture of melanosomes at the cell periphery as suggested by previous studies. These studies also reinforce the notion that myosin-V has a broader function in melanocytes by acting on vesicular targeting or intracellular protein trafficking.
Collapse
Affiliation(s)
- João Carlos da Silva Bizario
- Department of Molecular and Cellular Biology and Pathogenic Bioagents, Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Hatta M, Neumann G, Kawaoka Y. Reverse genetics approach towards understanding pathogenesis of H5N1 Hong Kong influenza A virus infection. Philos Trans R Soc Lond B Biol Sci 2001; 356:1841-3. [PMID: 11779382 PMCID: PMC1088559 DOI: 10.1098/rstb.2001.1000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In 1990, Palese and colleagues established a method (reverse genetics) that allowed one to generate influenza virus containing a gene segment derived from cloned cDNA. Although this method contributed tremendously to our understanding of influenza pathogenesis, the requirement of helper viruses limited its use in many experimental settings. Recently, we and others established systems for the generation of influenza viruses entirely from cloned cDNAs. These systems require only DNA cloning and transfection techniques, and can therefore be easily implemented by laboratories working in the fields of molecular biology and virology. Thus, for the first time, a system is now available that allows highly efficient generation of influenza virus without technical limitations. Using this technology, we generated the same strain of H5N1 influenza viruses that caused an outbreak in Hong Kong in 1997, killing six people.
Collapse
Affiliation(s)
- M Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| | | | | |
Collapse
|