1
|
Hagman A, Stenström O, Carlström G, Akke M, Grey C, Carlquist M. Biocatalytic reductive amination with CRISPR-Cas9 engineered yeast. Sci Rep 2025; 15:16972. [PMID: 40374732 DOI: 10.1038/s41598-025-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
Metabolically engineered baker's yeast can be used to produce chiral amines through whole-cell bioconversion of prochiral ketones. This study investigates the modulation of the alanine-pyruvate metabolic node to enhance reductive amination, using the stereoselective conversion of benzylacetone to (S)-1-methyl-3-phenylpropylamine (MPPA) as a model reaction. Chromosomal integration of multiple copies of the promiscuous omega transaminase from Chromobacterium violaceum (cv-ATA) resulted in an active yeast catalyst. Physiological characterization in bioreactors under aerobic batch cultivation revealed that amine production occurred only under post-diauxic growth on ethanol. To reduce native alanine utilization, the endogenous alanine aminotransferase (ALT1) was knocked out and replaced with cv-ATA. To rapidly employ this strategy in other strains, a simple CRISPR/cas9 method for universal gene replacement was developed. The replacement of ALT1 with cv-ATA improved the reaction by 2.6-fold compared to the control strain with intact ALT1. NMR measurements of metabolites originating from 15N L-alanine and 13C glucose indicated that pyruvate formation during growth on glucose inhibited amine production. Under optimal conditions, the biocatalytic bioconversion of benzylacetone to MPPA reached a yield of 58%.
Collapse
Affiliation(s)
- Arne Hagman
- Division of Biotechnology and Applied Microbiology, Lund University, Lund, Sweden.
| | - Olof Stenström
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Göran Carlström
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Carl Grey
- Division of Biotechnology and Applied Microbiology, Lund University, Lund, Sweden
| | - Magnus Carlquist
- Division of Biotechnology and Applied Microbiology, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Rosen PC, Glaser A, Martínez-François JR, Lim DC, Brooks DJ, Fu P, Kim E, Kern D, Yellen G. Mechanism and application of thiol-disulfide redox biosensors with a fluorescence-lifetime readout. Proc Natl Acad Sci U S A 2025; 122:e2503978122. [PMID: 40327692 DOI: 10.1073/pnas.2503978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Genetically encoded biosensors with changes in fluorescence lifetime (as opposed to fluorescence intensity) can quantify small molecules in complex contexts, even in vivo. However, lifetime-readout sensors are poorly understood at a molecular level, complicating their development. Although there are many sensors that have fluorescence-intensity changes, there are currently only a few with fluorescence-lifetime changes. Here, we optimized two biosensors for thiol-disulfide redox (RoTq-Off and RoTq-On) with opposite changes in fluorescence lifetime in response to oxidation. Using biophysical approaches, we showed that the high-lifetime states of these sensors lock the chromophore more firmly in place than their low-lifetime states do. Two-photon fluorescence lifetime imaging of RoTq-On fused to a glutaredoxin (Grx1) enabled robust, straightforward monitoring of cytosolic glutathione redox state in acute mouse brain slices. The motional mechanism described here is probably common and may inform the design of other lifetime-readout sensors; the Grx1-RoTq-On fusion sensor will be useful for studying glutathione redox in physiology.
Collapse
Affiliation(s)
- Paul C Rosen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andrew Glaser
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
- HHMI, Waltham, MA 02453
| | | | - Daniel C Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel J Brooks
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Panhui Fu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Erica Kim
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
- HHMI, Waltham, MA 02453
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
3
|
Le Q, Ngo JT. Protease-Containing Nanobodies for Detecting and Manipulating Intracellular Antigens Using Antiviral Drugs. ACS Chem Biol 2025. [PMID: 40353866 DOI: 10.1021/acschembio.5c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Tools to induce the formation of protein-protein interactions (PPIs) via small molecules are essential for investigating and engineering biological systems. Here we introduce a protease-based strategy for controlling the preservation of otherwise self-cleaving nanobodies. By inserting the hepatitis C virus NS3 cis-protease into the nanobody scaffold, we showed that the antigen-binding ability of these chimeric nanobodies can be controlled in a dose-dependent manner using NS3 inhibitors. We demonstrated the generalizability of this approach by designing and validating drug-controllable nanobodies targeting mCherry (LaM4), eGFP (LaG16), and the ALFA peptide tag. Additionally, we showed that an NS3-containing version of a nanobody targeting the β2-adrenergic receptor can control the endogenous G-protein-mediated signaling activity. Overall, we introduce new chemogenetic components for controlling intracellular PPIs using clinically approved antiviral drugs.
Collapse
Affiliation(s)
- Quan Le
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - John T Ngo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Gao Y, Pan BB, Leng Y, Wang XW, Li S, Deng P, Ma Y, Song Y, Su XC, Yang Y, Liu Y. SNAr-Based Labeling of Proteins with Trityl Radicals Enables High-Precision, High-Sensitivity, and Long-Range Distance Measurement. Anal Chem 2025; 97:9256-9264. [PMID: 40267251 DOI: 10.1021/acs.analchem.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Distance measurement using pulsed dipolar electron paramagnetic resonance spectroscopy (PD-EPR) coupled with site-directed spin labeling is a powerful approach to study the structure and dynamics of biomolecules in nearly native environments. However, the accuracy and sensitivity of the distance measurement in cellular systems is often limited by long, flexible, and/or reduction-sensitive linker of spin labels and their low biostability. Herein, we report the first class of aryl-linked trityl spin labels in which pyrimidine and pyridine methylsulfones (FPS1-2) act as protein tagging groups and are directly conjugated to the trityl moiety. FPS1 underwent a specific nucleophilic aromatic substitution (SNAr) reaction with cysteine (Cys) as its free form or in glutathione (GSH) and proteins to produce stable C-S conjugation. The resulting conjugates experienced negligible hydrolysis after a long-term measurement and exhibited high biostability to the commonly used reducing agents and also in cell lysates, which is in contrast to the conjugates of the maleimide spin label, CT02MA. PD-EPR studies on the FPS1-labeled immunoglobulin G-binding protein (GB1) and second-mitochondrion-derived activator of caspases (Smac) demonstrated that FPS1 enables highly sensitive and long-range distance measurement in the proteins. Importantly, due to its short and rigid aryl linker, the use of FPS1 provides significantly narrower distance distributions than those from the maleimide spin labels CT02MA and OXMA. Moreover, using FPS1, the longest distance measurement (∼6.01 nm) so far in all of the trityl-labeled protein samples has also been achieved in the FPS1-labeled Smac. Overall, this work demonstrates that the SNAr-based aryl groups can be ideally united into the skeleton of trityl radicals, and the resulting spin labels enable sensitive, precise, and ultralong distance measurements in proteins under diverse conditions.
Collapse
Affiliation(s)
- Yande Gao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yurui Leng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xi-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuai Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Peng Deng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Ying Ma
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yuguang Song
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
5
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Martins CS, Iv F, Suman SK, Panagiotou TC, Sidor C, Ruso-López M, Plancke CN, Omi S, Pagès R, Gomes M, Llewellyn A, Bandi SR, Ramond L, Arbizzani F, Rimoli CV, Schnorrer F, Robin F, Wilde A, LeGoff L, Pedelacq JD, Jégou A, Cabantous S, Rincon SA, Chandre C, Brasselet S, Mavrakis M. Genetically encoded reporters of actin filament organization in living cells and tissues. Cell 2025; 188:2540-2559.e27. [PMID: 40179884 DOI: 10.1016/j.cell.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The cytoskeletal protein actin is crucial for cell shape and integrity throughout eukaryotes. Actin filaments perform essential biological functions, including muscle contraction, cell division, and tissue morphogenesis. These diverse activities are achieved through the ability of actin filaments to be arranged into precise architectures. Much progress has been made in defining the proteome of the actin cytoskeleton, but a detailed appreciation of the dynamic organizational state of the actin filaments themselves has been hindered by available tools. Fluorescence polarization microscopy is uniquely placed for measuring actin filament organization by exploiting the sensitivity of polarized light excitation to the orientation of fluorophores attached to actin filaments. By engineering fusions of five widely used actin localization reporters to fluorescent proteins with constrained mobility, we have succeeded in developing genetically encoded, green- and red-fluorescent-protein-based reporters for non-invasive, quantitative measurements of actin filament organization in living cells and tissues by fluorescence polarization microscopy.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - François Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Clara Sidor
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - María Ruso-López
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | - Camille N Plancke
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Rebecca Pagès
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Sourish Reddy Bandi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Laurie Ramond
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | | | - Caio Vaz Rimoli
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Frank Schnorrer
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - François Robin
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Loïc LeGoff
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier - Toulouse III, CNRS, 31037 Toulouse, France
| | - Sergio A Rincon
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| |
Collapse
|
7
|
Fraikin N, Couturier A, Mercier R, Lesterlin C. A palette of bright and photostable monomeric fluorescent proteins for bacterial time-lapse imaging. SCIENCE ADVANCES 2025; 11:eads6201. [PMID: 40238862 PMCID: PMC12002091 DOI: 10.1126/sciadv.ads6201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Fluorescent proteins (FPs) are pivotal for examining protein production, localization, and dynamics in live bacterial cells. However, the use of FPs in time-lapse imaging is frequently constrained by issues such as oligomerization or limited photostability. Here, we report the engineering of novel cyan, green, yellow, and red FPs that exhibit improved photostability and aggregation properties while retaining high in vivo brightness. We first derived superfolder green fluorescent protein into mChartreuse, a brighter, more photostable, and monomeric fluorophore. mChartreuse was further derived into cyan and yellow variants with enhanced photostability and dispersibility. We also report a mutation that eliminates residual oligomerization in red FPs derived from Discosoma sp., such as mCherry or mApple. Incorporation of this mutation in mApple among other substitutions yielded mLychee, a bright and photostable monomeric red FP. These novel FPs advance fluorescence time-lapse analysis in bacteria, and their spectral properties match current imaging standards, ensuring seamless integration into existing research workflows.
Collapse
Affiliation(s)
- Nathan Fraikin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | | | - Romain Mercier
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| |
Collapse
|
8
|
Jang J, Shin J, Ahn Y, Kim K, Cho J, Lee WJ, Nam C, Baek MC, Seo D, Yea K. Modular and Nondisturbing Chimeric Adaptor Protein for Surface Chemistry of Small Extracellular Vesicles. ACS NANO 2025; 19:12839-12852. [PMID: 40119814 DOI: 10.1021/acsnano.4c15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Current chemical strategies for modifying the surface of extracellular vesicles (sEVs) often struggle to balance efficient functionalization with preserving structural integrity. Here, we present a modular approach for the surface modification of sEVs using a chimeric adaptor protein (CAP). The CAP was designed with three key features: a SNAP-tag for stable and modular binding, long and rigid linker to enhance spatial accessibility and conjugation efficiency, and the N-terminal sorting domain derived from syntenin to improve CAP expression on the sEV. We established a postsynthetic method to introduce diverse functional molecules onto sEVs, creating a versatile system termed "sEV-X" (where X represents an organic molecule, protein, or nanoparticle). Quantitative analyses at the single-molecule level revealed a linear relationship between CAP expression and the number of conjugated functional molecules, underscoring the importance of steric hindrance mitigation in sEV surface engineering. Moreover, antibody-conjugated sEVs as drug carriers, demonstrated significant tumor-specific delivery and therapeutic efficacy in a tumor-bearing mouse model, underscoring the potential of CAP-expressing sEVs as a customizable therapeutic vesicle. Overall, the CAP technology may serve as a universal platform for advancing the development of sEV-based therapeutics.
Collapse
Affiliation(s)
- Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jiwon Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kiwook Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Juhyeong Cho
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Wonhee John Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Chaerin Nam
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
9
|
Colombo S, Michel C, Speroni S, Ruhnow F, Gili M, Brito C, Surrey T. NuMA is a mitotic adaptor protein that activates dynein and connects it to microtubule minus ends. J Cell Biol 2025; 224:e202408118. [PMID: 39932518 PMCID: PMC11812572 DOI: 10.1083/jcb.202408118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Nuclear mitotic apparatus protein (NuMA) is indispensable for the mitotic functions of the major microtubule minus-end directed motor cytoplasmic dynein 1. NuMA and dynein are both essential for correct spindle pole organization. How these proteins cooperate to gather microtubule minus ends at spindle poles remains unclear. Here, we use microscopy-based in vitro reconstitutions to demonstrate that NuMA is a dynein adaptor, activating processive dynein motility together with dynein's cofactors dynactin and Lissencephaly-1 (Lis1). Additionally, we find that NuMA binds and stabilizes microtubule minus ends, allowing dynein/dynactin/NuMA to transport microtubule minus ends as cargo to other minus ends. We further show that the microtubule-nucleating γ-tubulin ring complex (γTuRC) hinders NuMA binding and that NuMA only caps minus ends of γTuRC-nucleated microtubules after γTuRC release. These results provide new mechanistic insight into how dynein, dynactin, NuMA, and Lis1 together with γTuRC and uncapping proteins cooperate to organize spindle poles in cells.
Collapse
Affiliation(s)
- Sabina Colombo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Christel Michel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Speroni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Felix Ruhnow
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Gili
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
Wilson C, Giaquinto L, Santoro M, Di Tullio G, Morra V, Kukulski W, Venditti R, Navone F, Borgese N, De Matteis MA. A role for mitochondria-ER crosstalk in amyotrophic lateral sclerosis 8 pathogenesis. Life Sci Alliance 2025; 8:e202402907. [PMID: 39870504 PMCID: PMC11772500 DOI: 10.26508/lsa.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear. A yeast model, expressing human mutant and WT-VAPB under the control of the orthologous yeast promoter in haploid and diploid cells, was developed to mimic the disease situation. Inclusion formation was found to be a developmentally regulated process linked to mitochondrial damage that could be attenuated by reducing ER-mitochondrial contacts. The co-expression of the WT protein retarded P56S-VAPB inclusion formation. Importantly, we validated these results in mammalian motoneuron cells. Our findings indicate that (age-related) damage to mitochondria influences the propensity of the mutant VAPB to form aggregates via ER-mitochondrial contacts, initiating a series of events leading to disease progression.
Collapse
Affiliation(s)
- Cathal Wilson
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michele Santoro
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | | | - Valentina Morra
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Nica Borgese
- CNR Neuroscience Institute, Vedano al Lambro, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Burnett D, Hussein M, Barr ZK, Näther LN, Wright KM, Tilsner J. Live-cell RNA imaging with the inactivated endonuclease Csy4 enables new insights into plant virus transport through plasmodesmata. PLoS Pathog 2025; 21:e1013049. [PMID: 40203052 PMCID: PMC12052393 DOI: 10.1371/journal.ppat.1013049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 05/05/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Plant-infecting viruses spread through their hosts by transporting their infectious genomes through intercellular nano-channels called plasmodesmata. This process is mediated by virus-encoded movement proteins. Whilst the sub-cellular localisations of movement proteins have been intensively studied, live-cell RNA imaging systems have so far not been able to detect viral genomes inside the plasmodesmata. Here, we describe a highly sensitive RNA live-cell reporter based on an enzymatically inactive form of the small bacterial endonuclease Csy4, which binds to its cognate stem-loop with picomolar affinity. This system allows imaging of plant viral RNA genomes inside plasmodesmata and shows that potato virus X RNA remains accessible within the channels and is therefore not fully encapsidated during movement. We also combine Csy4-based RNA-imaging with interspecies movement complementation to show that an unrelated movement protein from tobacco mosaic virus can recruit potato virus X replication complexes adjacent to plasmodesmata. Therefore, recruitment of potato virus X replicase is mediated non-specifically, likely by indirect coupling of movement proteins and viral replicase via the viral RNA or co-compartmentalisation, potentially contributing to transport specificity. Lastly, we show that a 'self-tracking' virus can express the Csy4-based reporter during the progress of infection. However, expression of the RNA-binding protein in cis interferes with viral movement by an unidentified mechanism when cognate stem-loops are present in the viral RNA.
Collapse
Affiliation(s)
- David Burnett
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Mohamed Hussein
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cukurova University, Institute of Natural and Applied Sciences, Saricam, Adana, Turkey
| | - Zoe Kathleen Barr
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Laura Newsha Näther
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
| | - Kathryn M. Wright
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|
12
|
Fu Z, Xin X, Zhan Y, Fan X, Li X, Chen T, Wang X. GPER agonist G-1 activates YAP to induce apoptosis in breast cancer cells. J Steroid Biochem Mol Biol 2025; 248:106693. [PMID: 39914681 DOI: 10.1016/j.jsbmb.2025.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
G-1, a G protein-coupled estrogen receptor (GPER)-specific agonist, exhibits anticancer potential in breast cancer cells. This study aims to explore the molecular basis of apoptosis induced by G-1 in MCF-7 and MDA-MB-231 breast cancer cells. Here, we found that G-1 induced cytotoxicity and GPER-dependent apoptosis with PARP cleavage and mitochondrial membrane potential (MMP) loss, as well as nuclear condensation. Fluorescence resonance energy transfer (FRET) analysis in living cells indicated that G-1 effectively disrupted the interaction between large tumor suppressor 1/2 (LATS1/2) and Yes-associated protein (YAP). Furthermore, G-1 reduced YAP phosphorylation levels and promoted its nuclear accumulation. Notably, knockdown of YAP attenuated G-1-induced apoptosis, highlighting the crucial role of YAP in this process. Additionally, FRET analysis revealed that G-1 enhanced the binding of YAP to p73, leading to an increase in Bcl-2-associated X protein (Bax) expression and an induction of apoptosis. In summary, our findings demonstrate that G-1 induces apoptosis through the GPER/YAP/p73-mediated pathway.
Collapse
Affiliation(s)
- Ze Fu
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xin Xin
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yongtong Zhan
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xuhong Fan
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xin Li
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
13
|
Matsuda T, Taninaka Y, Chang M, Furukawa K, Ushida T, Uyeda TQP. Ras activation by hydrostatic pressure involves GDP release and is enhanced by GAP and GEF in vitro. Arch Biochem Biophys 2025; 766:110347. [PMID: 39956251 DOI: 10.1016/j.abb.2025.110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Hydrostatic pressure (HP) is a necessary stimulus for cell differentiation and growth in cultured chondrocytes. We hypothesized that Ras activation is involved in HP-induced cellular reactions and examined whether Ras, with or without its regulators, has HP sensitivity by using an in vitro system to measure Ras activity under HP. This in vitro system included mRaichu, a FRET-based Ras activity probe. We found that HP of 28 MPa activated Ras activity by 10.7 % in the absence of the GAP and GEF domains. HP also induced rapid dissociation of a fraction of mant-GDP from Ras. HP-induced dissociation of GDP from Ras in the presence of GTP would explain the HP-induced Ras activation. A low concentration of GAP domain derived from p120GAP enhanced the HP-induced Ras activation to 15.3 % by decreasing the Ras activity under atmospheric pressure (AP). In contrast, high concentrations of the GAP domain removed the HP activation by reducing the Ras activity to very low levels under both HP and AP conditions. Moreover, a broad concentration range (1-1000 nM) of GEF domain derived from hSOS-1 enhanced the HP-induced Ras activation. HP also increased Ras activity under conditions containing GEF and GAP domains to mimic cellular Ras activity. Based on these results, we propose that the HP-induced Ras activation revealed in this study is involved in the differentiation and growth stimulation of chondrocytes subjected to HP.
Collapse
Affiliation(s)
- Teruhiko Matsuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| | - Yuki Taninaka
- Department of Bioengineering, Faculty of Engineering, University of Tokyo, Bunkyo, Tokyo, 113-8654, Japan
| | - Minki Chang
- Department of Bioengineering, Faculty of Engineering, University of Tokyo, Bunkyo, Tokyo, 113-8654, Japan; Science and Technology for Healthcare and Medicine, Life Engineering Course, Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, Tokyo, 152-8552, Japan
| | - Katsuko Furukawa
- Department of Bioengineering, Faculty of Engineering, University of Tokyo, Bunkyo, Tokyo, 113-8654, Japan; Science and Technology for Healthcare and Medicine, Life Engineering Course, Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, Tokyo, 152-8552, Japan; Department of Mechanical Engineering, Faculty of Engineering, University of Tokyo, Bunkyo, Tokyo, 113-8654, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, Faculty of Engineering, University of Tokyo, Bunkyo, Tokyo, 113-8654, Japan
| | - Taro Q P Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan.
| |
Collapse
|
14
|
Bai L, Wu T, Fukasawa M, Kashiwagi S, Tate H, Ozaki T, Sugano E, Tomita H, Ishii T, Akashi T, Fukuda T. Detection of the nuclear translocation of androgen receptor using quantitative and automatic cell imaging analysis. Tissue Cell 2025; 93:102631. [PMID: 39718068 DOI: 10.1016/j.tice.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Testosterone signaling mediates diseases such as androgenetic alopecia and prostate cancer and is controlled by the activation of the androgen receptor (AR) and nuclear translocation of the ligand-receptor complex. This study established an immortalized dermal papilla cell line that stably expresses the AR labeled with a monomeric green fluorescence marker. The cells expressed the histone H2B protein as visualized using a red fluorescence marker, enabling the Detection of nuclear translocation under live cell conditions using image analysis. The AR was observed to be translocated from the cytoplasm to the nucleus of cells after stimulation with dihydrotestosterone (DHT). The signal intensity of the nuclear/cytoplasm ratio was analyzed using automatic image analysis and a newly developed algorithm. The quantitation method to detect nuclear translocation revealed that the AR nuclear signal plateaued approximately 20 min after DHT exposure. Our developed method has the potential to save human labor by the automatic process of the image.
Collapse
Affiliation(s)
- Lanlan Bai
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tao Wu
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Mizuki Fukasawa
- Neuro-AI Integration Science Laboratory, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sayo Kashiwagi
- Rohto Pharmaceutical Co., Ltd., Basic Research Development Division, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Haruka Tate
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Taku Ozaki
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Eriko Sugano
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tsuyoshi Ishii
- Rohto Pharmaceutical Co., Ltd., Basic Research Development Division, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan.
| | - Takuya Akashi
- Neuro-AI Integration Science Laboratory, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| |
Collapse
|
15
|
Takaine M, Morita R, Yoshinari Y, Nishimura T. Phase separation of the PRPP amidotransferase into dynamic condensates promotes de novo purine synthesis in yeast. PLoS Biol 2025; 23:e3003111. [PMID: 40208903 PMCID: PMC12017579 DOI: 10.1371/journal.pbio.3003111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 04/23/2025] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
De novo purine synthesis (DPS) is up-regulated under conditions of high purine demand to ensure the production of genetic materials and chemical energy, thereby supporting cell proliferation. However, the regulatory mechanisms governing DPS remain unclear. We herein show that PRPP amidotransferase (PPAT), the rate-limiting enzyme in DPS, forms dynamic and motile condensates in Saccharomyces cerevisiae cells under a purine-depleted environment. The formation and maintenance of condensates requires phase separation, which is driven by target of rapamycin complex 1 (TORC1)-induced ribosome biosynthesis. The self-assembly of PPAT molecules facilitates condensate formation, with intracellular PRPP and purine nucleotides both regulating this self-assembly. Moreover, molecular dynamics simulations suggest that clustering-mediated PPAT activation occurs through intermolecular substrate channeling. Cells unable to form PPAT condensates exhibit growth defects, highlighting the physiological importance of condensation. These results indicate that PPAT condensation is an adaptive mechanism that regulates DPS in response to both TORC1 activity and cellular purine demands.
Collapse
Affiliation(s)
- Masak Takaine
- GIAR, Gunma University, Maebashi, Japan
- IMCR, Gunma University, Maebashi, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takashi Nishimura
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
16
|
Haufschild T, Hammer J, Rabold N, Plut V, Jogler C, Kallscheuer N. Novel tools for genomic modification and heterologous gene expression in the phylum Planctomycetota. Appl Microbiol Biotechnol 2025; 109:79. [PMID: 40164722 PMCID: PMC11958385 DOI: 10.1007/s00253-025-13462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Members of the phylum Planctomycetota possess a plethora of intriguing and hitherto underexplored features including an enlarged periplasmic space, asymmetric cell division ("budding"), and a mostly undiscovered small molecule portfolio. Due to the large phylogenetic distance to frequently used and easily genetically accessible model bacteria, most of the established genetic tools are not readily applicable for the here-investigated bacterial phylum. However, techniques for targeted gene inactivation and the introduction of heterologous genes are crucial to investigate the cell biology in the phylum in greater detail. In this study, the targeted genomic modification of model planctomycetes was achieved by enforcing two types of homologous recombination events: simultaneous double homologous recombination for the deletion of coding regions and insertion-duplication mutagenesis for the introduction of foreign DNA into the chromosome. Upon testing the expression of commonly used fluorescent protein-encoding genes, many of the tested native promoters could not be harnessed for variation of the expression strength. Since also four commonly used inducible gene expression systems did not work in the tested model strain Planctopirus limnophila, a native rhamnose-dependent transcriptional regulator/promoter pair was established as an inducible expression system. The expanded molecular toolbox will allow the future characterization of genome-encoded features in the understudied phylum. KEY POINTS: • Two recombination methods were used for the genetic modification of planctomycetes • Commonly used fluorescent proteins are functional in model planctomycetes • A rhamnose-dependent regulator was turned into an inducible expression system.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Nico Rabold
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Veronika Plut
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743, Jena, Germany.
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
17
|
Parashara P, Gao L, Riglos A, Sidhu SB, Lartey D, Marks T, Williams C, Siauw G, Ostrem AIL, Siebold C, Kinnebrew M, Riffle M, Gunn TM, Kong JH. The E3 ubiquitin ligase MGRN1 targets melanocortin receptors MC1R and MC4R via interactions with transmembrane adapters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645338. [PMID: 40196599 PMCID: PMC11974829 DOI: 10.1101/2025.03.25.645338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
E3 ubiquitin ligases play a crucial role in modulating receptor stability and signaling at the cell surface, yet the mechanisms governing their substrate specificity remain incompletely understood. Mahogunin Ring Finger 1 (MGRN1) is a membrane-tethered E3 ligase that fine-tunes signaling sensitivity by targeting surface receptors for ubiquitination and degradation. Unlike cytosolic E3 ligases, membrane-tethered E3s require transmembrane adapters to selectively recognize and regulate surface receptors, yet few such ligases have been studied in detail. While MGRN1 is known to regulate the receptor Smoothened (SMO) within the Hedgehog pathway through its interaction with the transmembrane adapter Multiple Epidermal Growth Factor-like 8 (MEGF8), the broader scope of its regulatory network has been speculative. Here, we identify Attractin (ATRN) and Attractin-like 1 (ATRNL1) as additional transmembrane adapters that recruit MGRN1 and regulate cell surface receptor turnover. Through co-immunoprecipitation, we show that ATRN and ATRNL1 likely interact with the RING domain of MGRN1. Functional assays reveal that MGRN1 requires these transmembrane adapters to ubiquitinate and degrade the melanocortin receptors MC1R and MC4R, in a process analogous to its regulation of SMO. Loss of MGRN1 leads to increased surface and ciliary localization of MC4R in fibroblasts and elevated MC1R levels in melanocytes, with the latter resulting in enhanced eumelanin production. These findings expand the repertoire of MGRN1-regulated receptors and provide new insight into a shared mechanism by which membrane-tethered E3 ligases utilize transmembrane adapters to dictate substrate receptor specificity. By elucidating how MGRN1 selectively engages with surface receptors, this work establishes a broader framework for understanding how this unique class of E3 ligases fine-tunes receptor homeostasis and signaling output.
Collapse
|
18
|
Dey C, Sommerfeld IK, Bojarová P, Kodra N, Vrbata D, Zimolová Vlachová M, Křen V, Pich A, Elling L. Color-coded galectin fusion proteins as novel tools in biomaterial science. Biomater Sci 2025; 13:1482-1500. [PMID: 39907577 DOI: 10.1039/d4bm01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The inherent carbohydrate-binding specificities of human galectins can serve as recognition elements in both biotechnological and biomedical applications. The combination of the carbohydrate-recognition domain (CRD) of galectins fused to peptides or proteins for purification, immobilization, and imaging enables multifunctional utilization within a single protein. We present here a library of color-coded galectin fusion proteins that incorporate a His6-tag, a fluorescent protein, and a SpyCatcher or SpyTag unit to enable immobilization procedures. These galectin fusion proteins exhibit similar binding properties to the non-fused galectins with micromolar apparent binding affinities. N- and C-terminal fusion partners do not interfere with the SpyCatcher/SpyTag immobilization. By applying SpyCatcher/SpyTag-mediated SC-ST-Gal-3 conjugates, we show the stepwise formation of a three-layer ECM-like structure in vitro. Additionally, we demonstrate the SpyCatcher/SpyTag-mediated immobilization of galectins in microgels, which can serve as a transport platform for localized targeting applications. The proof of concept is provided by the galectin-mediated binding of microgels to colorectal cancer cells.
Collapse
Affiliation(s)
- Carina Dey
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Isabel K Sommerfeld
- DWI - Leibniz-Institute for Interactive Materials, e.V. Forckenbeckstr. 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 27201 Kladno, Czech Republic
| | - Nikol Kodra
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - David Vrbata
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Miluše Zimolová Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, e.V. Forckenbeckstr. 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
19
|
Zhan Y, Dai L, Fu Z, Fan X, Li X, Wu G, Ni Y, Wu G, Chen T, Wang X. Live-cell FRET assay on the stoichiometry and affinity of the YAP complexes in MCF-7 cells. Arch Biochem Biophys 2025; 765:110305. [PMID: 39818347 DOI: 10.1016/j.abb.2025.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Yes-associated protein (YAP), a focal point of current biological research, is involved in regulating various life processes. In this report, live-cell fluorescence resonance energy transfer (FRET) imaging was employed to unravel the YAP complexes in MCF-7 cells. Fluorescence imaging of living cells co-expressing CFP (cyan fluorescent protein)-YAP and YFP (yellow fluorescent protein)-LATS1 (large tumor suppressor 1) plasmids revealed that YAP promoted LATS1 oligomerization around mitochondria. Moreover, FRET two-hybrid assay showed that YAP directly interacted with LATS1 to form dimer. Similarly, we found that YAP directly interacted with large tumor suppressor 2 (LATS2) to form a heterotrimer with 1:2 in cytoplasm and around mitochondria. In addition, YAP directly interacted with angiomotin (AMOT) to form a heterodimer in cytoplasm. However, YAP did not interact with O-linked N-acetylglucosamine transferase (OGT). Furthermore, FRET assay also indicated that YAP exhibited a higher affinity with AMOT, followed by LATS1, and least with LATS2. In summary, YAP directly interacts with LATS1 and AMOT to form a heterodimer, with LATS2 to form a heterotrimer with 1:2, and shows a preference for binding to AMOT, followed by LATS1, and lastly LATS2, providing new insights into the Hippo-YAP signaling pathway.
Collapse
Affiliation(s)
- Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Lingao Dai
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ze Fu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xin Li
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yue Ni
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ge Wu
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
20
|
Valenti R, David Y, Edilbi D, Dubreuil B, Boshnakovska A, Asraf Y, Salame TM, Sass E, Rehling P, Schuldiner M. A proteome-wide yeast degron collection for the dynamic study of protein function. J Cell Biol 2025; 224:e202409050. [PMID: 39692734 DOI: 10.1083/jcb.202409050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Genome-wide collections of yeast strains, known as libraries, revolutionized the way systematic studies are carried out. Specifically, libraries that involve a cellular perturbation, such as the deletion collection, have facilitated key biological discoveries. However, short-term rewiring and long-term accumulation of suppressor mutations often obscure the functional consequences of such perturbations. We present the AID library which supplies "on demand" protein depletion to overcome these limitations. Here, each protein is tagged with a green fluorescent protein (GFP) and an auxin-inducible degron (AID), enabling rapid protein depletion that can be quantified systematically using the GFP element. We characterized the degradation response of all strains and demonstrated its utility by revisiting seminal yeast screens for genes involved in cell cycle progression as well as mitochondrial distribution and morphology. In addition to recapitulating known phenotypes, we also uncovered proteins with previously unrecognized roles in these central processes. Hence, our tool expands our knowledge of cellular biology and physiology by enabling access to phenotypes that are central to cellular physiology and therefore rapidly equilibrated.
Collapse
Affiliation(s)
- Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dunya Edilbi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Dubreuil
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Yeynit Asraf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer-Meir Salame
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sass
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation 11 and Automated Microscopy , Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" 13 (MBExC), University of Göttingen , Göttingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Sanial M, Miled R, Alves M, Claret S, Joly N, Proux‐Gillardeaux V, Plessis A, Léon S. Direct observation of fluorescent proteins in gels: A rapid, cost-efficient, and quantitative alternative to immunoblotting. Biol Cell 2025; 117:e2400161. [PMID: 39924827 PMCID: PMC11808229 DOI: 10.1111/boc.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND INFORMATION The discovery of green fluorescent protein (GFP) and its derivatives has revolutionized cell biology. These fluorescent proteins (FPs) have enabled the real-time observation of protein localization and dynamics within live cells. Applications of FP vary from monitoring gene/protein expression patterns, visualizing protein-protein interactions, measuring protein stability, assessing protein mobility, and creating biosensors. The utility of FPs also extends to biochemical approaches through immunoblotting and proteomic analyses, aided by anti-FP antibodies and nanobodies. FPs are notoriously robust proteins with a tightly folded domain that confers a strong stability and a relative resistance to degradation and denaturation. METHODS AND RESULTS In this study, we report that various green, orange, and red FPs can be maintained in a native, fluorescent state during the entire process of protein sample extraction, incubation with sample buffer, loading, and migration on SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with only minor adaptations of traditional protocols. This protocol results in the ability to detect and quantify in-gel fluorescence (IGF) of endogenously-expressed proteins tagged with FPs directly after migration, using standard fluorescence-imaging devices. This approach eliminates the need for antibodies and chemiluminescent reagents, as well as the time-consuming steps inherent in immunoblotting such as transfer onto a membrane and antibody incubations. CONCLUSIONS AND SIGNIFICANCE Overall, IGF detection provides clearer data with less background interference, a sensitivity comparable to or better than antibody-based detection, a better quantification, and a broader dynamic range. After fluorescence imaging, gels can still be used for other applications such as total protein staining or immunoblotting if needed. It also expands possibilities by allowing the detection of FPs for which antibodies are not available. Our study explores the feasibility, limitations, and applications of IGF for detecting endogenously expressed proteins in cell extracts, providing insights into sample preparation, imaging conditions, and sensitivity optimizations, and potential applications such as co-immunoprecipitation experiments.
Collapse
Affiliation(s)
| | - Ryan Miled
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Marine Alves
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sandra Claret
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Nicolas Joly
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | | | - Anne Plessis
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sébastien Léon
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| |
Collapse
|
22
|
Jiang L, Kang Y. Biomolecular condensates: A new lens on cancer biology. Biochim Biophys Acta Rev Cancer 2025; 1880:189245. [PMID: 39675392 DOI: 10.1016/j.bbcan.2024.189245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Cells are compartmentalized into different organelles to ensure precise spatial temporal control and efficient operation of cellular processes. Membraneless organelles, also known as biomolecular condensates, are emerging as previously underappreciated ways of organizing cellular functions. Condensates allow local concentration of protein, RNA, or DNA molecules with shared functions, thus facilitating spatiotemporal control of biochemical reactions spanning a range of cellular processes. Studies discussed herein have shown that aberrant formation of condensates is associated with various diseases such as cancers. Here, we summarize how condensates mechanistically contribute to malignancy-related cellular processes, including genomic instability, epigenetic rewiring, oncogenic transcriptional activation, and signaling. An improved understanding of condensate formation and dissolution will enable development of new cancer therapies. Finally, we address the remaining challenges in the field and suggest future efforts to better integrate condensates into cancer research.
Collapse
Affiliation(s)
- Lifei Jiang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
23
|
Atsavapranee B, Sunden F, Herschlag D, Fordyce P. Quantifying protein unfolding kinetics with a high-throughput microfluidic platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633299. [PMID: 39868203 PMCID: PMC11761748 DOI: 10.1101/2025.01.15.633299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Even after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration (e.g. via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement. To address this need, we developed SPARKfold (Simultaneous Proteolysis Assay Revealing Kinetics of Folding), a microfluidic platform to express, purify, and measure unfolding rate constants for >1000 protein variants in parallel via on-chip native proteolysis. To demonstrate the power and potential of SPARKfold, we determined unfolding rate constants for 1,104 protein samples in parallel. We built a library of 31 dihydrofolate reductase (DHFR) orthologs with up to 78 chamber replicates per variant to provide the statistical power required to evaluate the system's ability to resolve subtle effects. SPARKfold rate constants for 5 constructs agreed with those obtained using traditional techniques across a 150-fold range, validating the accuracy of the technique. Comparisons of mutant kinetic effects via SPARKfold with previously published measurements impacts on folding thermodynamics provided information about the folding transition state and pathways via φ analysis. Overall, SPARKfold enables rapid characterization of protein variants to dissect the nature of the unfolding transition state. In future work, SPARKfold can reveal mutations that drive misfolding and aggregation and enable rational design of kinetically hyperstable variants for industrial use in harsh environments.
Collapse
Affiliation(s)
- B. Atsavapranee
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - F. Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - D. Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - P.M. Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305
| |
Collapse
|
24
|
Hastings R, Aditham AK, DelRosso N, Suzuki PH, Fordyce PM. Mutations to transcription factor MAX allosterically increase DNA selectivity by altering folding and binding pathways. Nat Commun 2025; 16:636. [PMID: 39805837 PMCID: PMC11729911 DOI: 10.1038/s41467-024-55672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kds and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.
Collapse
Affiliation(s)
- Renee Hastings
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
25
|
Blawitzki LC, Monzel C, Schmidt S, Hartmann L. Selective Glycan Presentation in Liquid-Ordered or -Disordered Membrane Phases and its Effect on Lectin Binding. Angew Chem Int Ed Engl 2025; 64:e202414847. [PMID: 39412184 DOI: 10.1002/anie.202414847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 11/14/2024]
Abstract
Glycan-protein interactions play a key role in various biological processes from fertilization to infections. Many of these interactions take place at the glycocalyx-a heavily glycosylated layer at the cell surface. Despite its significance, studying the glycocalyx remains challenging due to its complex, dynamic, and heterogeneous nature. This study introduces a glycocalyx model allowing for the first time to control spatial organization and heterogeneity of the glycan moieties. Glycan-mimetics with lipid-moieties that partition into either liquid-ordered (Lo, lipid rafts) or liquid-disordered (Ld) phases of giant unilamellar vesicles (GUVs), which serve as simplified cell membrane models mimicking lipid rafts, are developed. This phase-specific allocation allows controlled placement of glycan motifs in distinct membrane environments, creating heteromultivalent systems that replicate the natural glycocalyx's complexity. We show that phase localization of glycan mimetics significantly influences recruitment of protein receptors to the membrane. Glycan-conjugates in the ordered phase demonstrate enhanced lectin binding, supporting the idea that raft-like domains facilitate stronger receptor interactions. This study provides a platform for systematically investigating spatial and dynamic presentation of glycans in biological systems and presents the first experimental evidence that glycan accumulation in lipid rafts enhances receptor binding affinity, offering deeper insights into the glycocalyx's functional mechanisms.
Collapse
Affiliation(s)
- Luca-Cesare Blawitzki
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg i.Br., Germany
- Department for Organic and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cornelia Monzel
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Stephan Schmidt
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg i.Br., Germany
| | - Laura Hartmann
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg i.Br., Germany
| |
Collapse
|
26
|
Wendlandt CE, Basu S, Montoya AP, Roberts P, Stewart JD, Coffin AB, Crowder DW, Kiers ET, Porter SS. Managing Friends and Foes: Sanctioning Mutualists in Mixed-Infection Nodules Trades off With Defense Against Antagonists. Evol Appl 2025; 18:e70064. [PMID: 39742388 PMCID: PMC11683190 DOI: 10.1111/eva.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Successful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists. We studied interactions among wild and domesticated pea plants, pea aphids, an aphid-vectored virus (Pea Enation Mosaic Virus, PEMV), and mutualistic rhizobial bacteria that fix nitrogen in root nodules. Using isogenic rhizobial strains that differ in their ability to fix nitrogen and express contrasting fluorescent proteins, we found that peas demonstrated sanctions in both singly-infected nodules and mixed-infection nodules containing both strains. However, the plant's ability to manage mutualists in mixed-infection nodules traded off with its ability to defend against antagonists: when plants were attacked by aphids, they stopped sanctioning within mixed-infection nodules, and plants that exerted stricter sanctions within nodules during aphid attack accumulated higher levels of the aphid-vectored virus, PEMV. Our findings suggest that plants engaged in defense against antagonists suffer a reduced ability to select for the most beneficial symbionts in mixed-infection tissues. Mixed-infection tissues may be relatively common in this mutualism, and reduced plant sanctions in these tissues could provide a refuge for uncooperative mutualists and compromise the benefit that plants obtain from mutualistic symbionts during antagonist attack. Understanding the conflicting selective pressures plants face in complex biotic environments will be crucial for breeding crop varieties that can maximize benefits from mutualists even when they encounter antagonists.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of EntomologyWashington State UniversityPullmanWashingtonUSA
- Department of EntomologyUniversity of GeorgiaTiftonGeorgiaUSA
| | | | - Paige Roberts
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - Justin D. Stewart
- Amsterdam Institute for Life and Environment (A‐LIFE), Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Allison B. Coffin
- Department of Integrative Physiology and NeuroscienceWashington State UniversityVancouverWashingtonUSA
| | - David W. Crowder
- Department of EntomologyWashington State UniversityPullmanWashingtonUSA
| | - E. Toby Kiers
- Amsterdam Institute for Life and Environment (A‐LIFE), Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| |
Collapse
|
27
|
Engel-Pizcueta C, Hevia CF, Voltes A, Livet J, Pujades C. Her9 controls the stemness properties of hindbrain boundary cells. Development 2025; 152:dev203164. [PMID: 39628452 PMCID: PMC11829766 DOI: 10.1242/dev.203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The different spatiotemporal distribution of progenitor and neurogenic capacities permits that brain regions engage asynchronously in neurogenesis. In the hindbrain, rhombomere progenitor cells contribute to neurons during the first neurogenic phase, whereas boundary cells participate later. To analyze what maintains boundary cells as non-neurogenic progenitors, we addressed the role of Her9, a zebrafish Hes1-related protein. her9 expression is temporarily sustained in boundary cells independently of Notch at early embryonic stages, while they are non-neurogenic progenitors. Complementary functional approaches show that Her9 inhibits the onset of Notch signaling and the neurogenic program, keeping boundary cells as progenitors. Multicolor clonal analysis combined with genetic perturbations reveal that Her9 expands boundary progenitors by promoting symmetric proliferative and preventing neurogenic cell divisions. Her9 also regulates the proliferation of boundary cells by inhibiting the cell cycle arrest gene cdkn1ca and interplaying with Cyclin D1. Moreover, her9 is enriched in hindbrain radial glial cells at late embryonic stages independently of Notch. Together these data demonstrate that Her9 maintains the stemness properties of hindbrain boundary progenitors and late radial glial cells, ensuring the different temporal distribution of neurogenic capacities within the hindbrain.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Adrià Voltes
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Cristina Pujades
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
28
|
Mai D, Harro C, Sanyal A, Rommel PC, Sheppard NC, June CH. Stem Loop Mediated Transgene Modulation in Human T Cells. ACS Synth Biol 2024; 13:3897-3907. [PMID: 39642942 DOI: 10.1021/acssynbio.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Controlling gene expression is useful for many applications, but current methods often require external user inputs, such as the addition of a drug. We present an alternative approach using cell-autonomous triggers based on RNA stem loop structures in the 3' untranslated regions (UTRs) of mRNA. These stem loops are targeted by the RNA binding proteins Regnase-1 and Roquin-1, allowing us to program stimulation-induced transgene regulation in primary human T cells. By incorporating engineered stem loops into the 3' UTRs of transgenes, we achieved transgene repression through Regnase-1 and Roquin-1 activity, dynamic upregulation upon stimulation, and orthogonal tunability. To demonstrate the utility of this system, we employed it to modulate payloads in CAR-T cells. Our findings highlight the potential of leveraging endogenous regulatory machinery in T cells for transgene regulation and suggest RNA structure as a valuable layer for regulatory modulation.
Collapse
Affiliation(s)
- David Mai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Carly Harro
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aabir Sanyal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Xu Z, Schahl A, Jolivet MD, Legrand A, Grélard A, Berbon M, Morvan E, Lagardere L, Piquemal JP, Loquet A, Germain V, Chavent M, Mongrand S, Habenstein B. Dynamic pre-structuration of lipid nanodomain-segregating remorin proteins. Commun Biol 2024; 7:1620. [PMID: 39639105 PMCID: PMC11621693 DOI: 10.1038/s42003-024-07330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Remorins are multifunctional proteins, regulating immunity, development and symbiosis in plants. When associating to the membrane, remorins sequester specific lipids into functional membrane nanodomains. The multigenic protein family contains six groups, classified upon their protein-domain composition. Membrane targeting of remorins occurs independently from the secretory pathway. Instead, they are directed into different nanodomains depending on their phylogenetic group. All family members contain a C-terminal membrane anchor and a homo-oligomerization domain, flanked by an intrinsically disordered region of variable length at the N-terminal end. We here combined molecular imaging, NMR spectroscopy, protein structure calculations and advanced molecular dynamics simulation to unveil a stable pre-structuration of coiled-coil dimers as nanodomain-targeting units, containing a tunable fuzzy coat and a bar code-like positive surface charge before membrane association. Our data suggest that remorins fold in the cytosol with the N-terminal disordered region as a structural ensemble around a dimeric anti-parallel coiled-coil core containing a symmetric interface motif reminiscent of a hydrophobic Leucine zipper. The domain geometry, the charge distribution in the coiled-coil remorins and the differences in structures and dynamics between C-terminal lipid anchors of the remorin groups provide a selective platform for phospholipid binding when encountering the membrane surface.
Collapse
Affiliation(s)
- Zeren Xu
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Adrien Schahl
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Anthony Legrand
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Louis Lagardere
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Antoine Loquet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France.
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
| |
Collapse
|
30
|
Zhang Y, Lillo JV, Mohamed Abdelrasoul MS, Wang Y, Arrasate P, Frolov VA, Noy A. Nanoscale dynamics of Dynamin 1 helices reveals squeeze-twist deformation mode critical for membrane fission. Proc Natl Acad Sci U S A 2024; 121:e2321514121. [PMID: 39602273 PMCID: PMC11626203 DOI: 10.1073/pnas.2321514121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Dynamin 1 (Dyn1) GTPase, a principal driver of membrane fission during synaptic endocytosis, self-assembles into short mechanoactive helices cleaving the necks of endocytic vesicles. While structural information about Dyn1 helix is abundant, little is known about the nanoscale dynamics of the helical scaffolding at the moment of fission, complicating mechanistic understanding of Dyn1 action. To address the role of the helix dynamics in fission, we used High-Speed Atomic Force Microscopy (HS-AFM) and fluorescence microscopy to track and compare the spatiotemporal characteristics of the helices formed by wild-type Dyn1 and its K44A mutant impaired in GTP hydrolysis on minimal lipid membrane templates. In the absence of nucleotide, membrane-bound WTDyn1 and K44ADyn1 self-assembled into tubular protein scaffolding of similar diameter encaging the lipid bilayer. In both cases, the GTP addition caused scaffold constriction coupled with formation of 20 to 30 nm nanogaps in the protein coverage. While both proteins reached scaffold diameters characteristic for membrane superconstriction causing fission, the fission was detected only with WTDyn1. We associated the fission activity with the dynamic evolution of the nanogaps: K44ADyn1 gaps were static, while WTDyn1 gaps actively evolved via repetitive nonaxisymmetric constriction-bending deformations caused by localized GTP hydrolysis. Modeling of the deformations implicated filament twist as an additional deformation mode which combines with superconstriction to facilitate membrane fission. Our results thus show that the dynamics of the Dyn1 helical scaffold goes beyond radial constriction and involves nonaxisymmetric deformations, where filament twist emerges as a critical driver of membrane fission.
Collapse
Affiliation(s)
- Yuliang Zhang
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Javier Vera Lillo
- Biofisika Institute Consejo Superior de Investigaciones Científicas, Universidad del País Vasco, Euskal Herriko Unibersitatea (CSIC, UPV/EHU), University of the Basque Country, Leioa, 48940, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, 48940, Spain
| | | | - Yaqing Wang
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Pedro Arrasate
- Biofisika Institute Consejo Superior de Investigaciones Científicas, Universidad del País Vasco, Euskal Herriko Unibersitatea (CSIC, UPV/EHU), University of the Basque Country, Leioa, 48940, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Vadim A. Frolov
- Biofisika Institute Consejo Superior de Investigaciones Científicas, Universidad del País Vasco, Euskal Herriko Unibersitatea (CSIC, UPV/EHU), University of the Basque Country, Leioa, 48940, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
- School of Natural Sciences, University of California Merced, Merced, CA93434
| |
Collapse
|
31
|
Zenke K, Sugimoto R, Watanabe S, Muroi M. NF-κB p105-mediated nuclear translocation of ERK is required for full activation of IFNγ-induced iNOS expression. Cell Signal 2024; 124:111424. [PMID: 39304100 DOI: 10.1016/j.cellsig.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Inducible nitric oxidase (iNOS) encoded by Nos2 is a representative IFNγ-inducible effector molecule that plays an important role in both innate and adaptive immunity. In the present study, we demonstrated that full-length NF-κB p105 (p105), which is a precursor of NF-κB p50 (p50), is required for full activation of IFNγ-induced iNOS expression in the RAW264.7 mouse macrophage cell line. In comparison to wild-type (WT) RAW264.7 cells, p105 KO RAW264.7 (p105 KO) cells completely lost IFNγ-induced iNOS expression. Despite the limited effect of exogenous expression of p50 in p105 KO cells on IFNγ-induced Nos2 promoter activity, p105 expression fully restored IFNγ-induced Nos2 promoter activity to a level comparable to that of WT cells, suggesting an important role for full-length p105 in IFNγ-induced iNOS expression. While the expression and phosphorylation of JAK1 and STAT1 were rather enhanced in p105 KO cells, the phosphorylation of c-Jun downstream of MAPK signaling was decreased. IFNγ-induced phosphorylation of ERK, a kinase for IFNγ-induced c-Jun phosphorylation, was not significantly reduced in p105 KO cells, although the nuclear activity of ERK was significantly decreased due to its reduced translocation to the nucleus. Expression of iNOS, nuclear translocation of ERK, and phosphorylation of c-Jun were restored by stable supplementation of p105 in p105 KO cells. These results suggest that p105 is required for the nuclear translocation of ERK and the subsequent phosphorylation of c-Jun, which are necessary for full activation of IFNγ-induced iNOS expression. Reduced nuclear translocation of ERK in p105 KO cells was also observed in the activation of ERK following serum starvation, further suggesting that the involvement of p105 in ERK nuclear translocation is not limited to IFNγ-stimulated cells but is a more general function of p105.
Collapse
Affiliation(s)
- Kosuke Zenke
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Rino Sugimoto
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Sachiko Watanabe
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
32
|
Park JH, Wandless TJ. p53 engagement is a hallmark of an unfolded protein response in the nucleus of mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622663. [PMID: 39574672 PMCID: PMC11581032 DOI: 10.1101/2024.11.08.622663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Exposure to exogenous and endogenous stress is associated with the intracellular accumulation of aberrant unfolded and misfolded proteins. In eukaryotic cells, protein homeostasis within membrane-bound organelles is regulated by specialized signaling pathways, with the unfolded protein response in the endoplasmic reticulum serving as a foundational example. Yet, it is unclear if a similar surveillance mechanism exists in the nucleus. Here we leveraged engineered proteins called destabilizing domains to acutely expose mammalian cells to nuclear- or cytosolic- localized unfolded protein. We show that the appearance of unfolded protein in either compartment engages a common transcriptional response associated with the transcription factors Nrf1 and Nrf2. Uniquely, only in the nucleus does unfolded protein activate a robust p53-driven transcriptional response and a transient p53-independent cell cycle delay. These studies highlight the distinct effects of localized protein folding stress and the unique protein quality control environment of the nucleus.
Collapse
|
33
|
Tomoi T, Yoshida Y, Ohe S, Kabeya Y, Hasebe M, Morohoshi T, Murata T, Sakamoto J, Tamada Y, Kamei Y. Infrared laser-induced gene expression in single cells characterized by quantitative imaging in Physcomitrium patens. Commun Biol 2024; 7:1448. [PMID: 39506095 PMCID: PMC11541703 DOI: 10.1038/s42003-024-07141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A spatiotemporal understanding of gene function requires the precise control of gene expression in each cell. Here, we use an infrared laser-evoked gene operator (IR-LEGO) system to induce gene expression at the single-cell level in the moss Physcomitrium patens by heating a living cell with an IR laser and thereby activating the heat shock response. We identify the laser irradiation conditions that provide higher inducibility with lower invasiveness by changing the laser power and irradiation duration. Furthermore, we quantitatively characterize the induction profile of the heat shock response using a heat-induced fluorescence reporter system after the IR laser irradiation of single cells under different conditions. Our data indicate that IR laser irradiation with long duration leads to higher inducibility according to increase in the laser power but not vice versa, and that the higher laser power even without conferring apparent damage to the cells decelerates and/or delayed gene induction. We define the temporal shift in expression as a function of onset and duration according to laser power and irradiation duration. This study contributes to the versatile application of IR-LEGO in plants and improves our understanding of heat shock-induced gene expression.
Collapse
Affiliation(s)
- Takumi Tomoi
- Innovation Department, Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan.
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
| | - Yuka Yoshida
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Suguru Ohe
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tomohiro Morohoshi
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan.
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan.
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
34
|
Da Silva AJ, Hästbacka HSE, Luoto JC, Gough RE, Coelho-Rato LS, Laitala LM, Goult BT, Imanishi SY, Sistonen L, Henriksson E. Proteomic profiling identifies a direct interaction between heat shock transcription factor 2 and the focal adhesion adapter talin-1. FEBS J 2024; 291:4830-4848. [PMID: 39285620 DOI: 10.1111/febs.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024]
Abstract
Heat shock factor 2 (HSF2) is a versatile transcription factor that regulates gene expression under stress conditions, during development, and in disease. Despite recent advances in characterizing HSF2-dependent target genes, little is known about the protein networks associated with this transcription factor. In this study, we performed co-immunoprecipitation coupled with mass spectrometry analysis to identify the HSF2 interactome in mouse testes, where HSF2 is required for normal sperm development. Endogenous HSF2 was discovered to form a complex with several adhesion-associated proteins, a finding substantiated by mass spectrometry analysis conducted in human prostate carcinoma PC-3 cells. Notably, this group of proteins included the focal adhesion adapter protein talin-1 (TLN1). Through co-immunoprecipitation and proximity ligation assays, we demonstrate the conservation of the HSF2-TLN1 interaction from mouse to human. Additionally, employing sequence alignment analyses, we uncovered a TLN1-binding motif in the HSF2 C terminus that binds directly to multiple regions of TLN1 in vitro. We provide evidence that the 25 C-terminal amino acids of HSF2, fused to EGFP, are sufficient to establish a protein complex with TLN1 and modify cell-cell adhesion in human cells. Importantly, this TLN1-binding motif is absent in the C-terminus of a closely related HSF family member, HSF1, which does not form a complex with TLN1. These results highlight the unique molecular characteristics of HSF2 in comparison to HSF1. Taken together, our data unveil the protein partners associated with HSF2 in a physiologically relevant context and identifies TLN1 as the first adhesion-related HSF2-interacting partner.
Collapse
Affiliation(s)
- Alejandro J Da Silva
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hendrik S E Hästbacka
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jens C Luoto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Leila S Coelho-Rato
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Leena M Laitala
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eva Henriksson
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
35
|
Colussi A, Almeida-Souza L, McMahon HT. A single-particle analysis method for detecting membrane remodelling and curvature sensing. J Cell Sci 2024; 137:jcs263533. [PMID: 39324332 PMCID: PMC11574359 DOI: 10.1242/jcs.263533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
In biology, shape and function are related. Therefore, it is important to understand how membrane shape is generated, stabilised and sensed by proteins and how this relates to organelle function. Here, we present an assay that can detect curvature preference and membrane remodelling with free-floating liposomes using protein concentrations in physiologically relevant ranges. The assay reproduced known curvature preferences of BAR domains and allowed the discovery of high-curvature preference for the PH domain of AKT and the FYVE domain of HRS (also known as HGS). In addition, our method reproduced the membrane vesiculation activity of the ENTH domain of epsin-1 (EPN1) and showed similar activity for the ANTH domains of PiCALM and Hip1R. Finally, we found that the curvature sensitivity of the N-BAR domain of endophilin inversely correlates to membrane charge and that deletion of its N-terminal amphipathic helix increased its curvature specificity. Thus, our method is a generally applicable qualitative method for assessing membrane curvature sensing and remodelling by proteins.
Collapse
Affiliation(s)
- Adeline Colussi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Leonardo Almeida-Souza
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
36
|
Oxley EP, Kershaw NJ, Louis C, Goodall KJ, Garwood MM, Jee Ho SM, Voo VTF, Park HY, Iaria J, Wong LLL, Lebenbaum AG, Wiranata S, Pang ES, Edwards ESJ, D'Silva DB, Hansen J, van Zelm MC, O'Keeffe M, Hogarth PM, Haynes NM, Huntington ND, Wicks IP, Dickins RA. Context-restricted PD-(L)1 checkpoint agonism by CTLA4-Ig therapies inhibits T cell activity. Cell Rep 2024; 43:114834. [PMID: 39383033 DOI: 10.1016/j.celrep.2024.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
T cell surface CTLA4 sequesters the costimulatory ligands CD80 and CD86 on antigen-presenting cells (APCs) to prevent autoimmunity. Therapeutic immunosuppression by recombinant CTLA4-immunoglobulin (Ig) fusion proteins, including abatacept, is also attributed to CD80/CD86 blockade. Recent studies show that CTLA4-Ig binding to APC surface cis-CD80:PD-L1 complexes can release the inhibitory ligand PD-L1, but whether this contributes to T cell inhibition remains unclear. Here, we show that PD-L1 liberation by CTLA4-Ig is strictly limited, both in extent and context, relative to PD-L1-competing anti-CD80 antibodies. At APC surface CD80:PD-L1 ratios exceeding 2:1, CTLA4-Ig therapies fail to release PD-L1 regardless of their CD80 affinity. Additionally, introducing flexibility into CTLA4-Ig by modifying its rigid homodimer interface produces biologics that retain bivalent CD80 binding without dissociating cis-bound PD-L1. These findings demonstrate that CTLA4-Ig therapies liberate PD-L1 through a CD80 reorientation mechanism that imposes a strict context dependence to their PD-1 checkpoint agonism and resultant T cell inhibition.
Collapse
Affiliation(s)
- Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| | - Cynthia Louis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| | - Katharine J Goodall
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Maximilian M Garwood
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Skye Min Jee Ho
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Veronica T F Voo
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Hae-Young Park
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Josephine Iaria
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Lilian L L Wong
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Ariel G Lebenbaum
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Stephanie Wiranata
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Ee Shan Pang
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Emily S J Edwards
- Department of Immunology and Pathology, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Damian B D'Silva
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Jacinta Hansen
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Allergy, Immunology & Respiratory Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Meredith O'Keeffe
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - P Mark Hogarth
- Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| | - Nicole M Haynes
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville VIC 3052, Australia
| | - Nicholas D Huntington
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
37
|
Yu H, Wang W. Modulation of heteromeric glycine receptor function through high concentration clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618879. [PMID: 39464082 PMCID: PMC11507885 DOI: 10.1101/2024.10.17.618879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ion channels are targeted by many drugs for treating neurological, musculoskeletal, renal and other diseases. These drugs bind to and alter the function of individual channels to achieve desired therapeutic effects. However, many ion channels function in high concentration clusters in their native environment. It is unclear if and how clustering modulates ion channel function. Human heteromeric glycine receptors (GlyRs) are the major inhibitory neurotransmitter receptors in the spinal cord and are active targets for developing chronic pain medications. We show that the α2β heteromeric GlyR assembles with the master postsynaptic scaffolding gephyrin (GPHN) into micron-sized clustered at the plasma membrane after heterologous expression. The inhibitory trans- synaptic adhesion protein neuroligin-2 (NL2) further increases both the cluster sizes and GlyR concentration. The apparent glycine affinity increases monotonically as a function of GlyR concentration but not with cluster size. We also show that ligand re-binding to adjacent GlyRs alters kinetics but not chemical equilibrium. A positively charged N- terminus sequence of the GlyR β subunit was further identified essential for glycine affinity modulation through clustering. Taken together, we propose a mechanism where clustering enhances local electrostatic potential, which in turn concentrates ions and ligands, modulating the function of GlyR. This mechanism is likely universal across ion channel clusters found ubiquitously in biology and provides new perspectives in possible pharmaceutical development.
Collapse
|
38
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. Mol Biol Cell 2024; 35:ar127. [PMID: 39110529 PMCID: PMC11481705 DOI: 10.1091/mbc.e24-05-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states - an active dimer and an inactive monomer - gates the output of the Inversin complex.
Collapse
Affiliation(s)
- Erika Beyrent
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Derek T. Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Gwendolyn M. Beacham
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jian Zheng
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Matthew J. Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
39
|
Valbuena FM, Krahn AH, Tokamov SA, Greene AC, Fehon RG, Glick BS. Yellow and oxidation-resistant derivatives of a monomeric superfolder GFP. Mol Biol Cell 2024; 35:mr8. [PMID: 39141403 PMCID: PMC11481703 DOI: 10.1091/mbc.e24-01-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Fluorescent proteins (FPs) are essential tools in biology. The utility of FPs depends on their brightness, photostability, efficient folding, monomeric state, and compatibility with different cellular environments. Despite the proliferation of available FPs, derivatives of the originally identified Aequorea victoria green fluorescent protein often show superior behavior as fusion tags. We recently generated msGFP2, an optimized monomeric superfolder variant of A. victoria GFP. Here, we describe two derivatives of msGFP2. The monomeric variant msYFP2 is a yellow superfolder FP with high photostability. The monomeric variant moxGFP2 lacks cysteines but retains significant folding stability, so it works well in the lumen of the secretory pathway. These new FPs are useful for common imaging applications.
Collapse
Affiliation(s)
- Fernando M. Valbuena
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Adam H. Krahn
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Sherzod A. Tokamov
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Annie C. Greene
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
40
|
Pham U, Chundi A, Stępniewski TM, Darbha S, Eiger DS, Gazula S, Gardner J, Hicks C, Selent J, Rajagopal S. Location-biased β-arrestin conformations direct GPCR signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614742. [PMID: 39386521 PMCID: PMC11463559 DOI: 10.1101/2024.09.24.614742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners1,2. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias"3,4. Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the β-arrestin-biased agonist TRV023, β-arrestin 1 and β-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated β-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of β-arrestins beyond traditional G protein pathways.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | | | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Sonia Gazula
- Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Gardner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chloe Hicks
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
41
|
Yoda T, Sako Y, Inoue A, Yanagawa M. Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide. Biophys Physicobiol 2024; 21:e210020. [PMID: 39802745 PMCID: PMC11718171 DOI: 10.2142/biophysico.bppb-v21.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques. Here we developed a method for labeling cell-surface GPCRs inspired by the HiBiT system, which utilizes the high affinity complementation between LgBiT and HiBiT fragments of the NanoLuc luciferase. We synthesized four fluorescence-labeled HiBiT peptides (F-FiBiTs) with a different color dye (Setau-488, TMR, SaraFluor 650 and SaraFluor 720). We constructed a multicolor total internal reflection fluorescence microscopy system that allows us to track four color dyes simultaneously. As a proof-of-concept experiment, we labeled an N-terminally LgBiT-fused GPCR (Lg-GPCR) with a mixture of the four F-FiBiTs and successfully tracked each dye within a cell at the single-molecule level. The F-FiBiT-labeled Lg-GPCRs showed agonist-dependent changes in the diffusion dynamics and accumulation into the clathrin-coated pits as observed with a conventional method using a C-terminally HaloTag-fused GPCR. Taking advantage of luciferase complementation by the F-FiBiT and Lg-GPCRs, the F-FiBiT was also applicable to bioluminescence plate-reader-based assays. By combining existing labeling methods such as HaloTag, SNAP-tag, and fluorescent proteins, the F-FiBiT method will be useful for multicolor single-molecule imaging and will enhance our understanding of GPCR signaling at the single-molecule level.
Collapse
Affiliation(s)
- Toshiki Yoda
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masataka Yanagawa
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
42
|
Bellec M, Chen R, Dhayni J, Trullo A, Avinens D, Karaki H, Mazzarda F, Lenden-Hasse H, Favard C, Lehmann R, Bertrand E, Lagha M, Dufourt J. Boosting the toolbox for live imaging of translation. RNA (NEW YORK, N.Y.) 2024; 30:1374-1394. [PMID: 39060168 PMCID: PMC11404453 DOI: 10.1261/rna.080140.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living Drosophila embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ruoyu Chen
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York 10016, USA
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jana Dhayni
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Antonello Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Damien Avinens
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Hussein Karaki
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Flavia Mazzarda
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Helene Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| |
Collapse
|
43
|
Ishii H, Yamagishi M, Yajima J. Two Tetrahymena kinesin-9 family members exhibit slow plus-end-directed motility in vitro. Sci Rep 2024; 14:20993. [PMID: 39251704 PMCID: PMC11385561 DOI: 10.1038/s41598-024-71280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
The kinesin-9 family comprises two subfamilies specific to ciliated eukaryotic cells, and has recently attracted considerable attention because of its importance in ciliary bending and formation. However, only scattered data are available on the motor properties of kinesin-9 family members; these properties have not been compared under identical experimental conditions using kinesin-9 motors from the same species. Here, we report the comprehensive motor properties of two kinesin-9 molecules of Tetrahymena thermophila, TtK9A (Kif9/Klp1 ortholog) and TtK9B1 (Kif6 ortholog), using microtubule-based in vitro assays, including single-motor and multi-motor assays and microtubule-stimulated ATPase assays. Both subfamilies exhibit microtubule plus-end-directed, extremely slow motor activity, both in single and multiple molecules. TtK9A shows lower processivity than TtK9B1. Our findings indicate that the considerable slow movement of kinesin-9 that corresponds to low ATP hydrolysis rates is a common feature of the ciliary kinesin-9 family.
Collapse
Affiliation(s)
- Hiroto Ishii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
44
|
Ivorra-Molla E, Akhuli D, McAndrew MBL, Scott W, Kumar L, Palani S, Mishima M, Crow A, Balasubramanian MK. A monomeric StayGold fluorescent protein. Nat Biotechnol 2024; 42:1368-1371. [PMID: 38081970 PMCID: PMC11392804 DOI: 10.1038/s41587-023-02018-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/05/2023] [Indexed: 09/14/2024]
Abstract
StayGold is an exceptionally bright and stable fluorescent protein that is highly resistant to photobleaching. Despite favorable fluorescence properties, use of StayGold as a fluorescent tag is limited because it forms a natural dimer. Here we report the 1.6 Å structure of StayGold and generate a derivative, mStayGold, that retains the brightness and photostability of the original protein while being fully monomeric.
Collapse
Affiliation(s)
- Esther Ivorra-Molla
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Dipayan Akhuli
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Martin B L McAndrew
- School of Life Sciences, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - William Scott
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Lokesh Kumar
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Allister Crow
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
45
|
Azuma Y, Gaweł S, Pasternak M, Woźnicka O, Pyza E, Heddle JG. Reengineering of an Artificial Protein Cage for Efficient Packaging of Active Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312286. [PMID: 38738740 DOI: 10.1002/smll.202312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Protein cages that readily encapsulate active enzymes of interest present useful nanotools for delivery and catalysis, wherein those with programmable disassembly characteristics serve as particularly attractive platforms. Here, a general guest packaging system based on an artificial protein cage, TRAP-cage, the disassembly of which can be induced by the addition of reducing agents, is established. In this system, TRAP-cage with SpyCatcher moieties in the lumen is prepared using genetic modification of the protein building block and assembled into a cage structure with either monovalent gold ions or molecular crosslinkers. The resulting protein cage can efficiently capture guest proteins equipped with a SpyTag by simply mixing them in an aqueous solution. This post-assembly loading system, which circumvents the exposure of guests to thiol-reactive crosslinkers, enables the packaging of enzymes possessing a catalytic cysteine or a metal cofactor while retaining their catalytic activity.
Collapse
Affiliation(s)
- Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| |
Collapse
|
46
|
Prislusky MI, Lam JGT, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The septin cytoskeleton is required for plasma membrane repair. EMBO Rep 2024; 25:3870-3895. [PMID: 38969946 PMCID: PMC11387490 DOI: 10.1038/s44319-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
Collapse
Affiliation(s)
- M Isabella Prislusky
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jonathan G T Lam
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Viviana Ruiz Contreras
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Marilynn Ng
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madeline Chamberlain
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sarika Pathak-Sharma
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madalyn Fields
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
47
|
Siddika T, Shao R, Heinemann IU, O'Donoghue P. Delivery of AKT1 phospho-forms to human cells reveals differential substrate selectivity. IUBMB Life 2024; 76:632-646. [PMID: 38738523 DOI: 10.1002/iub.2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3β levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.
Collapse
Affiliation(s)
- Tarana Siddika
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Richard Shao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
48
|
Schneider F, Cespedes PF, Karedla N, Dustin ML, Fritzsche M. Quantifying biomolecular organisation in membranes with brightness-transit statistics. Nat Commun 2024; 15:7082. [PMID: 39152104 PMCID: PMC11329664 DOI: 10.1038/s41467-024-51435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Cells crucially rely on the interactions of biomolecules at their plasma membrane to maintain homeostasis. Yet, a methodology to systematically quantify biomolecular organisation, measuring diffusion dynamics and oligomerisation, represents an unmet need. Here, we introduce the brightness-transit statistics (BTS) method based on fluorescence fluctuation spectroscopy and combine information from brightness and transit times to elucidate biomolecular diffusion and oligomerisation in both cell-free in vitro and in vitro systems incorporating living cells. We validate our approach in silico with computer simulations and experimentally using oligomerisation of EGFP tethered to supported lipid bilayers. We apply our pipeline to study the oligomerisation of CD40 ectodomain in vitro and endogenous CD40 on primary B cells. While we find a potential for CD40 to oligomerize in a concentration or ligand depended manner, we do not observe mobile oligomers on B cells. The BTS method combines sensitive analysis, quantification, and intuitive visualisation of dynamic biomolecular organisation.
Collapse
Affiliation(s)
- Falk Schneider
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Translational Imaging Center, University of Southern California, Los Angeles, California, 90089, United States of America.
| | - Pablo F Cespedes
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Narain Karedla
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom
| | - Michael L Dustin
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
49
|
Foust DJ, Piston DW. Measuring G protein activation by spectrally resolved imaging fluorescence fluctuation spectroscopy. Biophys J 2024:S0006-3495(24)00552-6. [PMID: 39148292 DOI: 10.1016/j.bpj.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The activation of heterotrimeric G proteins through G-protein-coupled receptors (GPCRs) is a ubiquitous signaling mechanism in eukaryotic biology. The three principal molecular components of this cascade are the GPCR, Gα subunit, and Gβγ subunit. Measurement of interactions between these components and their downstream effectors in live cells is paramount to understanding how cells fine-tune their physiology in response to many external stimuli. Multicolor fluorescence fluctuation spectroscopy (FFS) approaches allow the sensitive detection of heteromeric interactions by using spectrally distinct fluorophores to label biomolecules of interest. We considered three imaging FFS approaches to measuring molecular interactions from the signals produced by a spectrally resolved confocal microscopy: raster spectral image correlation spectroscopy (RSICS), spectral spatial cumulant analysis, and native resolution spatial cumulant analysis. We characterized these approaches using simulation and experiments on heteromers with known stoichiometries. We found that RSICS had the best sensitivity for measuring heteromeric interactions and employed it to measure G protein complexes. As measured by RSICS, interactions between the G protein subunits Gαi1 and Gβ1γ2 were sensitive to the stimulation of two GPCRs, the D2 dopamine receptor and the α-2A adrenergic receptor. Interactions between GPCRs and G proteins were not detectable above background, supporting a collisional model of GPCR/G protein interactions in contrast to a preassembly model where strong interactions would be present. These data are uniquely available by this FFS framework, which is appropriate for not only multiplexed measurements of G protein biology but any dynamic protein complexes in the cell.
Collapse
Affiliation(s)
- Daniel J Foust
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
50
|
Reis MC, Mandler L, Kang J, Oliver D, Halaszovich C, Nolte D. A novel KCND3 variant in the N-terminus impairs the ionic current of Kv4.3 and is associated with SCA19/22. J Cell Mol Med 2024; 28:e70039. [PMID: 39180521 PMCID: PMC11344468 DOI: 10.1111/jcmm.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 08/26/2024] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominant movement disorders. Among the SCAs associated with impaired ion channel function, SCA19/22 is caused by pathogenic variants in KCND3, which encodes the voltage-gated potassium channel Kv4.3. SCA19/22 is clinically characterized by ataxia, dysarthria and oculomotor dysfunction in combination with other signs and symptoms, including mild cognitive impairment, peripheral neuropathy and pyramidal signs. The known KCND3 pathogenic variants are localized either in the transmembrane segments, the connecting loops, or the C-terminal region of Kv4.3. We have identified a novel pathogenic variant, c.455A>G (p.D152G), localized in the N-terminus of Kv4.3. It is located in the immediate neighbourhood of the T1 domain, which is responsible for multimerization with the β-subunit KChIP2b and thus for the formation of functional heterooctamers. Electrophysiological studies showed that p.D152G does not affect channel gating, but reduces the ionic current in Kv4.3, even though the variant is not located in the transmembrane domains. Impaired channel trafficking to the plasma membrane may contribute to this effect. In a patient with a clinical picture corresponding to SCA19/22, p.D152G is the first pathogenic variant in the N-terminus of Kv4.3 to be described to date with an effect on ion channel activity.
Collapse
Affiliation(s)
| | - Laura Mandler
- Institute of Human GeneticsJustus‐Liebig‐University GiessenGiessenGermany
- Present address:
Department of NeurologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jun‐Suk Kang
- Department of NeurologyGoethe‐University FrankfurtFrankfurtGermany
- Present address:
NeuropraxisFrankfurtGermany
| | - Dominik Oliver
- Institute of PhysiologyPhilipps‐University MarburgMarburgGermany
| | | | - Dagmar Nolte
- Institute of Human GeneticsJustus‐Liebig‐University GiessenGiessenGermany
| |
Collapse
|