1
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Gulyamov S, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application. Arch Microbiol 2025; 207:74. [PMID: 40025302 DOI: 10.1007/s00203-025-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV's seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Surat Gulyamov
- Department of Dentistry and Pediatric Dentistry, Tashkent Pediatric Medical Institute, Bogishamol Street 223, 100140, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Shirai T, Mizukoshi F, Kimura R, Matsuoka R, Sada M, Shirato K, Ishii H, Ryo A, Kimura H. Molecular Evolution of the Fusion ( F) Genes in Human Parainfluenza Virus Type 2. Microorganisms 2025; 13:399. [PMID: 40005765 PMCID: PMC11857903 DOI: 10.3390/microorganisms13020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Human parainfluenza virus type 2 (HPIV2) is a clinically significant respiratory pathogen, which highlights the necessity of studies on its molecular evolution. This study investigated the evolutionary dynamics, phylodynamics, and structural characteristics of the HPIV2 fusion (F) gene using a comprehensive dataset spanning multiple decades and geographic regions. Phylogenetic analyses revealed two distinct clusters of HPIV2 F gene sequences, which were estimated to have diverged from a common ancestor approximately a century ago. Cluster 1 demonstrated a higher evolutionary rate and genetic diversity compared to the more stable cluster 2. Bayesian Skyline Plot analyses indicated a significant increase in the effective population size of the F gene between 2005 and 2015; potentially linked to enhanced diagnostic and surveillance capabilities. Structural modeling identified conserved conformational epitopes predominantly in the apex and stalk regions of the F protein. These findings underscore the evolutionary constraints and antigenic landscape of the HPIV2 F protein.
Collapse
Affiliation(s)
- Tatsuya Shirai
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (T.S.); (F.M.); (K.S.)
- Department of Respiratory Medicine, Faculty of Medicine, Kyorin University, Mitaka-shi 181-8611, Tokyo, Japan; (M.S.); (H.I.)
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan
| | - Fuminori Mizukoshi
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (T.S.); (F.M.); (K.S.)
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan;
| | - Rina Matsuoka
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan;
| | - Mitsuru Sada
- Department of Respiratory Medicine, Faculty of Medicine, Kyorin University, Mitaka-shi 181-8611, Tokyo, Japan; (M.S.); (H.I.)
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (T.S.); (F.M.); (K.S.)
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Faculty of Medicine, Kyorin University, Mitaka-shi 181-8611, Tokyo, Japan; (M.S.); (H.I.)
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (T.S.); (F.M.); (K.S.)
| | - Hirokazu Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan;
| |
Collapse
|
3
|
Gamberi C, Leverette CL, Davis AC, Ismail M, Piccialli I, Borbone N, Oliviero G, Vicidomini C, Palumbo R, Roviello GN. Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health. Vaccines (Basel) 2024; 12:1263. [PMID: 39591167 PMCID: PMC11598900 DOI: 10.3390/vaccines12111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as Nannochloropsis spp. and Dunaliella salina are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in Dunaliella salina and Nannochloropsis spp. to induce immunoprotection. In humans, several antigens produced in microalgae have shown potential in combating diseases caused by the human papillomavirus, human immunodeficiency virus, hepatitis B virus, influenza virus, Zika virus, Zaire Ebola virus, Plasmodium falciparum, and Staphylococcus aureus. For animals, microalgae-derived vaccine prototypes have been developed to fight against the foot-and-mouth disease virus, classical swine fever virus, vibriosis, white spot syndrome virus, and Histophilus somni. Marine organisms offer unique advantages, including the ability to express complex antigens and sustainable production. Additionally, the oceans provide an array of bioactive compounds that serve as therapeutics, potent adjuvants, delivery systems, and immunomodulatory agents. These innovations from the sea not only enhance vaccine efficacy but also contribute to broader immunological and general health. This review explores the transformative role of marine-derived substances in modern medicine, emphasizing their importance in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Chad L. Leverette
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Alexis C. Davis
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Moayad Ismail
- Faculty of Medicine, European University, 76 Guramishvili Ave., 0141 Tbilisi, Georgia;
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| |
Collapse
|
4
|
Ogundiran AI, Chang TL, Ivanov A, Kumari N, Nekhai S, Chandran PL. Shear-reversible clusters of HIV-1 in solution: stabilized by antibodies, dispersed by mucin. J Virol 2023; 97:e0075223. [PMID: 37712704 PMCID: PMC10617397 DOI: 10.1128/jvi.00752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE The phenomenon of reversible clustering is expected to further nuance HIV immune stealth because virus surfaces can escape interaction with antibodies (Abs) by hiding temporarily within clusters. It is well known that mucin reduces HIV virulence, and the current perspective is that mucin aggregates HIV-1 to reduce infections. Our findings, however, suggest that mucin is dispersing HIV clusters. The study proposes a new paradigm for how HIV-1 may broadly evade Ab recognition with reversible clustering and why mucin effectively neutralizes HIV-1.
Collapse
Affiliation(s)
- Ayobami I. Ogundiran
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| | - Tzu-Lan Chang
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
- Department of Medicine, College of Medicine, Howard University, Washington, DC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
- Department of Medicine, College of Medicine, Howard University, Washington, DC, USA
| | - Preethi L. Chandran
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| |
Collapse
|
5
|
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023; 14:1043109. [PMID: 36911719 PMCID: PMC9998920 DOI: 10.3389/fimmu.2023.1043109] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/26/2023] Open
Abstract
In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.
Collapse
Affiliation(s)
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| | - Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
7
|
ud-din M, Albutti A, Ullah A, Ismail S, Ahmad S, Naz A, Khurram M, Haq MU, Afsheen Z, Bakri YE, Salman M, Shaker B, Tahir ul Qamar M. Vaccinomics to Design a Multi-Epitopes Vaccine for Acinetobacter baumannii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5568. [PMID: 35564967 PMCID: PMC9104312 DOI: 10.3390/ijerph19095568] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance (AR) is the result of microbes' natural evolution to withstand the action of antibiotics used against them. AR is rising to a high level across the globe, and novel resistant strains are emerging and spreading very fast. Acinetobacter baumannii is a multidrug resistant Gram-negative bacteria, responsible for causing severe nosocomial infections that are treated with several broad spectrum antibiotics: carbapenems, β-lactam, aminoglycosides, tetracycline, gentamicin, impanel, piperacillin, and amikacin. The A. baumannii genome is superplastic to acquire new resistant mechanisms and, as there is no vaccine in the development process for this pathogen, the situation is more worrisome. This study was conducted to identify protective antigens from the core genome of the pathogen. Genomic data of fully sequenced strains of A. baumannii were retrieved from the national center for biotechnological information (NCBI) database and subjected to various genomics, immunoinformatics, proteomics, and biophysical analyses to identify potential vaccine antigens against A. baumannii. By doing so, four outer membrane proteins were prioritized: TonB-dependent siderphore receptor, OmpA family protein, type IV pilus biogenesis stability protein, and OprD family outer membrane porin. Immuoinformatics predicted B-cell and T-cell epitopes from all four proteins. The antigenic epitopes were linked to design a multi-epitopes vaccine construct using GPGPG linkers and adjuvant cholera toxin B subunit to boost the immune responses. A 3D model of the vaccine construct was built, loop refined, and considered for extensive error examination. Disulfide engineering was performed for the stability of the vaccine construct. Blind docking of the vaccine was conducted with host MHC-I, MHC-II, and toll-like receptors 4 (TLR-4) molecules. Molecular dynamic simulation was carried out to understand the vaccine-receptors dynamics and binding stability, as well as to evaluate the presentation of epitopes to the host immune system. Binding energies estimation was achieved to understand intermolecular interaction energies and validate docking and simulation studies. The results suggested that the designed vaccine construct has high potential to induce protective host immune responses and can be a good vaccine candidate for experimental in vivo and in vitro studies.
Collapse
Affiliation(s)
- Miraj ud-din
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54590, Pakistan;
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan; (M.K.); (M.u.H.)
| | - Mahboob ul Haq
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan; (M.K.); (M.u.H.)
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia;
| | - Muhammad Salman
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| |
Collapse
|
8
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
9
|
Ding C, Patel D, Ma Y, Mann JFS, Wu J, Gao Y. Employing Broadly Neutralizing Antibodies as a Human Immunodeficiency Virus Prophylactic & Therapeutic Application. Front Immunol 2021; 12:697683. [PMID: 34354709 PMCID: PMC8329590 DOI: 10.3389/fimmu.2021.697683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the discovery that the human immunodeficiency virus 1 (HIV-1) is the pathogen of acquired immunodeficiency syndrome (AIDS) in 1983, there is still no effective anti-HIV-1 vaccine. The major obstacle to the development of HIV-1 vaccine is the extreme diversity of viral genome sequences. Nonetheless, a number of broadly neutralizing antibodies (bNAbs) against HIV-1 have been made and identified in this area. Novel strategies based on using these bNAbs as an efficacious preventive and/or therapeutic intervention have been applied in clinical. In this review, we summarize the recent development of bNAbs and its application in HIV-1 acquisition prevention as well as discuss the innovative approaches being used to try to convey protection within individuals at risk and being treated for HIV-1 infection.
Collapse
Affiliation(s)
- Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Darshit Patel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Yunjing Ma
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jianjun Wu
- Department of AIDS Research, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Brouqui P, Colson P, Melenotte C, Houhamdi L, Bedotto M, Devaux C, Gautret P, Million M, Parola P, Stoupan D, La Scola B, Lagier JC, Raoult D. COVID-19 re-infection. Eur J Clin Invest 2021; 51:e13537. [PMID: 33675046 PMCID: PMC8250303 DOI: 10.1111/eci.13537] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Philippe Brouqui
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | - Philippe Colson
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | - Cléa Melenotte
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | - Linda Houhamdi
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | | | - Christian Devaux
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | - Philipe Gautret
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IRD, APHM, Aix-Marseille University, VITROME, Marseille, France
| | - Matthieu Million
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | - Philippe Parola
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IRD, APHM, Aix-Marseille University, VITROME, Marseille, France
| | | | - Bernard La Scola
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | - Jean-Christophe Lagier
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| | - Didier Raoult
- IRD, APHM, Aix-Marseille University, MEPHI, Marseille, France.,IHU-Méditerranée Infection, APHM, Marseille, France
| |
Collapse
|
11
|
Slow viral propagation during initial phase of infection leads to viral persistence in mice. Commun Biol 2021; 4:508. [PMID: 33927339 PMCID: PMC8084999 DOI: 10.1038/s42003-021-02028-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune evasion of pathogens can modify the course of infection and impact viral persistence and pathology. Here, using different strains of the lymphocytic choriomeningitis virus (LCMV) model system, we show that slower propagation results in limited type I interferon (IFN-I) production and viral persistence. Specifically, cells infected with LCMV-Docile exhibited reduced viral replication when compared to LCMV-WE and as a consequence, infection with LCMV-Docile resulted in reduced activation of bone marrow derived dendritic cells (BMDCs) and IFN-I production in vitro in comparison with LCMV-WE. In vivo, we observed a reduction of IFN-I, T cell exhaustion and viral persistence following infection of LCMV-Docile but not LCMV-WE. Mechanistically, block of intracellular protein transport uncovered reduced propagation of LCMV-Docile when compared to LCMV-WE. This reduced propagation was critical in blunting the activation of the innate and adaptive immune system. When mice were simultaneously infected with LCMV-Docile and LCMV-WE, immune function was restored and IFN-I production, T cell effector functions as well as viral loads were similar to that of mice infected with LCMV-WE alone. Taken together, this study suggests that reduced viral propagation can result in immune evasion and viral persistence. Using different strains of the lymphocytic choriomeningitis virus (LCMV), Xu, Wang et al. show that a slow viral propagation limits type I interferon (IFN-I) production and viral persistence in mice. This study suggests a reduced viral propagation as a mechanism for immune evasion and viral persistence.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The application of immunotherapies to HIV presents a new horizon of treatment options, but little is known about what impact they may have on the central nervous system (CNS). Here we review the most promising immunotherapeutic strategies that can be used to target HIV in the CNS and focus on identifying their potential benefits while exploring the challenges that remain in their application. RECENT FINDINGS We have identified five immunotherapeutic strategies that hold potential in managing CNS disease among HIV-infected patients. These include broadly neutralizing antibodies, multi-affinity antibodies, CAR-T cell therapy, checkpoint inhibitors, and therapeutic vaccines. Each class of immunotherapy presents unique mechanisms by which CNS viremia and latency may be addressed but are faced with several challenges. CAR-T cell therapy and multi-affinity antibodies seem to hold promise, but combination therapy is likely to be most effective. However, more human trials are needed before the clinical benefits of these therapies are realized.
Collapse
Affiliation(s)
- Andrew Kapoor
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C Sabrina Tan
- Division of Infectious Diseases, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue E/CLS 1011, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
He J, Liu Z, Jiang W, Zhu T, Wusiman A, Gu P, Liu J, Wang D. Immune-adjuvant activity of lentinan-modified calcium carbonate microparticles on a H 5N 1 vaccine. Int J Biol Macromol 2020; 163:1384-1392. [PMID: 32758599 DOI: 10.1016/j.ijbiomac.2020.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
In recent years, the high prevalence of avian influenza viruses especially H5N1 subtype isolated from poultry and human has become a major public health concern. Vaccination is still a major strategy for preventing H5N1 infections. Lentinan (LNT), a β-1,3-glucohexaose with β-1,6-branches, is extracted from Lentinus edodes and has been extensively studied for its immunoenhancement effects. In this study, we synthesized and characterized calcium carbonate (CaCO3) microparticles which modified with LNT as an adjuvant for H5N1 vaccine and investigated their ability to enhance immune responses. We prepared spherical and uniform CaCO3-LNT microparticles with a mean hydrodynamic size was around 2 μm. The H5N1 antigen-loaded CaCO3-LNT particles were injected into mice to evaluate their effectiveness as an adjuvant for H5N1 vaccines. The results demonstrated that CaCO3-LNT/H5N1 significantly enhanced the expression of MHC-II and CD86 in lymph node dendritic cells, and increased the ratio of CD4+ to CD8+ T cells in lymphocytes. Moreover, CaCO3-LNT/H5N1 surprisingly increased the HI titers and induced the secretion of IgG subtypes (IgG1 and IgG2b) and Th-associated cytokines (TNF-α, IFN-γ and IL-4) in immunized mice. Therefore, by combining with the immunostimulatory activity of LNT and the drug/antigen delivery capabilities of CaCO3, the CaCO3-LNT/H5N1 could induce a stronger cellular and humoral immune response and could be a potential adjuvant for the H5N1 vaccine.
Collapse
Affiliation(s)
- Jin He
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 21005, PR China
| | - Zhenguang Liu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 21005, PR China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, PR China
| | - Tianyu Zhu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 21005, PR China
| | - Adelijiang Wusiman
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 21005, PR China
| | - Pengfei Gu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 21005, PR China
| | - Jiaguo Liu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 21005, PR China
| | - Deyun Wang
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 21005, PR China.
| |
Collapse
|
14
|
González-Feliciano JA, Akamine P, Capó-Vélez CM, Delgado-Vélez M, Dussupt V, Krebs SJ, Wojna V, Polonis VR, Baerga-Ortiz A, Lasalde-Dominicci JA. A recombinant gp145 Env glycoprotein from HIV-1 expressed in two different cell lines: Effects on glycosylation and antigenicity. PLoS One 2020; 15:e0231679. [PMID: 32559193 PMCID: PMC7304579 DOI: 10.1371/journal.pone.0231679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein (Env) of the human immunodeficiency virus (HIV), has been the primary target for the development of a protective vaccine against infection. The extensive N-linked glycosylation on Env is an important consideration as it may affect efficacy, stability, and expression yields. The expression host has been shown to influence the extent and type of glycosylation that decorates the protein target. Here, we report the glycosylation profile of the candidate subtype C immunogen CO6980v0c22 gp145, which is currently in Phase I clinical trials, produced in two different host cells: CHO-K1 and Expi293F. The amino acid sequence for both glycoproteins was confirmed to be identical by peptide mass fingerprinting. However, the isoelectric point of the proteins differed; 4.5–5.5 and 6.0–7.0 for gp145 produced in CHO-K1 and Expi293F, respectively. These differences in pI were eliminated by enzymatic treatment with sialidase, indicating a large difference in the incorporation of sialic acid between hosts. This dramatic difference in the number of sialylated glycans between hosts was confirmed by analysis of PNGase F-released glycans using MALDI-ToF MS. These differences in glycosylation, however, did not greatly translate into differences in antibody recognition. Biosensor assays showed that gp145 produced in CHO-K1 had similar affinity toward the broadly neutralizing antibodies, 2G12 and PG16, as the gp145 produced in Expi293F. Additionally, both immunogens showed the same reactivity against plasma of HIV-infected patients. Taken together, these results support the notion that there are sizeable differences in the glycosylation of Env depending on the expression host. How these differences translate to vaccine efficacy remains unknown.
Collapse
Affiliation(s)
| | - Pearl Akamine
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Coral M. Capó-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Manuel Delgado-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Valerie Wojna
- Division of Neurology, Internal Medicine Department and NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Abel Baerga-Ortiz
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| | - José A. Lasalde-Dominicci
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| |
Collapse
|
15
|
Sahin K. Investigation of novel indole-based HIV-1 protease inhibitors using virtual screening and text mining. J Biomol Struct Dyn 2020; 39:3638-3648. [PMID: 32496942 DOI: 10.1080/07391102.2020.1775121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 protease (HIV-1 PR) inhibitors have been used as possible therapeutic agents for HIV-1 infection in clinical study. Most of the HIV therapy-related problems usually stem from long-term opioid usage. The rapid development of drug-resistant variants limits the long-term effectiveness of current inhibitors as therapeutic agents. In addition, different side effects were reported. Further drug development is required to design new compounds which have similar efficacy as the drugs currently used in HIV infection but without having undesirable side effects. Indole derivatives were considered as one of the effective HIV inhibitors. Indole is an important fragment used in many FDAapproved medicines and used in various diseases. For this purpose, in this study the molecules containing" indole" keywords in their fragments are taken from the Specs-SC database which includes 212520 small molecules. 5194 molecules that include indole keywords are selected. These selected molecules are then screened against HIV-1 PR target protein using molecular docking simulations. Then the molecules are ranked according to the their docking scores. Top docking poses of ten ligands and FDA approved drug Amprenavir are subjected to 100 ns Molecular Dynamics (MD) simulations. Thus, by using combination of text mining and integrated molecular modeling approaches, we identified novel indole-based hits against HIV-1 PR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kader Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
16
|
Ndlovu B, Gounder K, Muema D, Raju N, Hermanus T, Mthethwa Q, Robertson K, Walker BD, Georgiev IS, Morris L, Moore PL, Ndung'u T. Envelope characteristics in individuals who developed neutralizing antibodies targeting different epitopes in HIV-1 subtype C infection. Virology 2020; 546:1-12. [PMID: 32275203 DOI: 10.1016/j.virol.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) may constitute an essential component of a protective vaccine against HIV-1, yet no immunogen has been able to elicit them. To characterize the development of bNAbs in HIV-1 subtype C infected individuals, a panel of 18 Env-pseudotyped viruses was used to screen 18 study participants. The specificity of plasma neutralization was mapped against Env mutants and MPER chimeras. Envelope (env) gene sequence evolution was characterized by single genome amplification and sequencing. Three out of eighteen individuals developed broad plasma neutralizing activity (>60% breadth). Two of the three participants may target epitopes comprising glycans at position 276 of the D loop in the CD4 binding site and 332 glycan supersite, respectively. Deletion of these glycans was associated with neutralization resistance. Our study describes the kinetics of the development of plasma neutralizing activity and identified amino acid residue changes suggestive of immune pressure on putative epitopes. The study enhances our understanding of how neutralization breadth develops in the course of HIV-1 subtype C infection.
Collapse
Affiliation(s)
- Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Kamini Gounder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa.
| | - Daniel Muema
- Africa Health Research Institute, Durban, South Africa.
| | - Nagarajan Raju
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Tandile Hermanus
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| | - Qiniso Mthethwa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Kim Robertson
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Bruce D Walker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa.
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa.
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, UK.
| |
Collapse
|
17
|
Bamogo PKA, Brugidou C, Sérémé D, Tiendrébéogo F, Djigma FW, Simpore J, Lacombe S. Virus-based pharmaceutical production in plants: an opportunity to reduce health problems in Africa. Virol J 2019; 16:167. [PMID: 31888686 PMCID: PMC6937724 DOI: 10.1186/s12985-019-1263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Developing African countries face health problems that they struggle to solve. The major causes of this situation are high therapeutic and logistical costs. Plant-made therapeutics are easy to produce due to the lack of the safety considerations associated with traditional fermenter-based expression platforms, such as mammalian cells. Plant biosystems are easy to scale up and inexpensive, and they do not require refrigeration or a sophisticated medical infrastructure. These advantages provide an opportunity for plant-made pharmaceuticals to counteract diseases for which medicines were previously inaccessible to people in countries with few resources. MAIN BODY The techniques needed for plant-based therapeutic production are currently available. Viral expression vectors based on plant viruses have greatly enhanced plant-made therapeutic production and have been exploited to produce a variety of proteins of industrial, pharmaceutical and agribusiness interest. Some neglected tropical diseases occurring exclusively in the developing world have found solutions through plant bioreactor technology. Plant viral expression vectors have been reported in the production of therapeutics against these diseases occurring exclusively in the third world, and some virus-derived antigens produced in plants exhibit appropriate antigenicity and immunogenicity. However, all advances in the use of plants as bioreactors have been made by companies in Europe and America. The developing world is still far from acquiring this technology, although plant viral expression vectors may provide crucial help to overcome neglected diseases. CONCLUSION Today, interest in these tools is rising, and viral amplicons made in and for Africa are in progress. This review describes the biotechnological advances in the field of plant bioreactors, highlights factors restricting access to this technology by those who need it most and proposes a solution to overcome these limitations.
Collapse
Affiliation(s)
- Pingdwende Kader Aziz Bamogo
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Christophe Brugidou
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Drissa Sérémé
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Séverine Lacombe
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France.
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
18
|
Méndez AC, Rodríguez-Rojas C, Del Val M. Vaccine vectors: the bright side of cytomegalovirus. Med Microbiol Immunol 2019; 208:349-363. [PMID: 30900089 DOI: 10.1007/s00430-019-00597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Cytomegaloviruses (CMVs) present singular features that are particularly advantageous for human vaccine development, a current medical need. Vaccines that induce neutralizing antibodies are among the most successful and efficacious available. However, chronic and persistent human infections, pathogens with high variability of exposed proteins, as well as tumors, highlight the need for developing novel vaccines inducing strong and long-lasting cellular immune responses mediated by effector or effector memory CD8+ cytotoxic T lymphocytes. CMVs induce the most potent CD8+ T lymphocyte response to a pathogen known in each of their hosts, maintain and even increase it for life for selected antigens, in what is known as the ever growing inflationary memory, and maintain an effector memory status due to recent and repeated antigen stimulation that endows these inflationary T lymphocytes with superior and faster protective potency. In addition to these CMV singularities, this family of viruses has two more common favorable features: they can superinfect an already infected host, which is needed in face of the high CMV prevalence, and they can harbor very large segments of foreign DNA at many different genomic sites. All these properties endow CMVs with a singular potential to be used as human vaccine vectors. Current developments with most of the recombinant CMV-based vaccine candidates that have been tested in animal models against clinically relevant viral and bacterial infections and for their use in tumor immunotherapy are reviewed herein. Since CMV vectors should be designed to avoid the risk of disease in immunocompromised individuals, special attention is also paid to attenuated vectors. Taken together, the results support the future use of CMV-based vaccine vectors to induce protective CD8+ T lymphocyte responses in humans, mainly against viral infections and as anti-tumor vaccines.
Collapse
Affiliation(s)
- Andrea C Méndez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | - Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
19
|
Xie Z, Zheng J, Wang Y, Li D, Maermaer T, Li Y, Tu J, Xu Q, Liang H, Cai W, Shen T. Deficient IL-2 Produced by Activated CD56 + T Cells Contributes to Impaired NK Cell-Mediated ADCC Function in Chronic HIV-1 Infection. Front Immunol 2019; 10:1647. [PMID: 31379845 PMCID: PMC6648879 DOI: 10.3389/fimmu.2019.01647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Antibody-dependent cellular cytotoxicity (ADCC), which mainly mediated by natural killer (NK) cells, may play a critical role in human immunodeficiency virus type-1 (HIV-1) disease progression. However, the potential mechanisms that affecting NK-mediated ADCC response are still not well-elucidated. Methods: Antigen-antibody complex model of Ab-opsonized P815 cells was adopted to induce a typical non-specific ADCC response. The capacities of HIV-1 specific NK-ADCC were measured by using the combination model of gp120 protein and plasma of HIV-1 elite controllers. The levels of plasma cytokine were measured by ELISA. Anti-IL-2 blocking antibody was used to analyze the impact of activated CD56+ T cells on NK-ADCC response. Results: IL-2, IL-15, IFN-α, and IFN-β could effectively enhance the non-specific and HIV-1-specific NK-ADCC responses. Compared with healthy controls, HIV-1-infected patients showed decreased plasma IL-2 levels, while no differences of plasma IFN-α, IL-15, and IFN-β were presented. IL-2 production was detected from CD56+ T cells activated through antibody-dependent manner. The capability of NK-ADCC could be weakened by blocking IL-2 secretion from activated CD56+ T cells. Although no difference of frequencies of CD56+ T cells was found between HIV-1-infected patients and healthy controls, deficient IL-2 secretion from activated CD56+ T were found in chronic HIV-1 infection. Conclusions: The impaired ability of activated CD56+ T cells to secreting IL-2 might contribute to the attenuated NK cell-mediated ADCC function in HIV-1 infection.
Collapse
Affiliation(s)
- Zhe Xie
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuya Wang
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, China CDC, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Tuohutaerbieke Maermaer
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuantao Li
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing Tu
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, China CDC, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Effective Suppression of HIV-1 Replication by Cytotoxic T Lymphocytes Specific for Pol Epitopes in Conserved Mosaic Vaccine Immunogens. J Virol 2019; 93:JVI.02142-18. [PMID: 30674626 PMCID: PMC6430542 DOI: 10.1128/jvi.02142-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure. Cytotoxic T lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize circulating HIV-1 could be key for both HIV-1 cure and prophylaxis. We recently designed conserved mosaic T-cell vaccine immunogens (tHIVconsvX) composed of 6 Gag and Pol regions. Since the tHIVconsvX vaccine targets conserved regions common to most global HIV-1 variants and employs a bivalent mosaic design, it is expected that it could be universal if the vaccine works. Although we recently demonstrated that CTLs specific for 5 Gag epitopes in the vaccine immunogens had strong ability to suppress HIV-1 replication in vitro and in vivo, it remains unknown whether the Pol region-specific CTLs are equally efficient. In this study, we investigated CTLs specific for Pol epitopes in the immunogens in treatment-naive Japanese patients infected with HIV-1 clade B. Overall, we mapped 20 reported and 5 novel Pol conserved epitopes in tHIVconsvX. Responses to 6 Pol epitopes were significantly associated with good clinical outcome, suggesting that CTLs specific for these 6 Pol epitopes had a strong ability to suppress HIV-1 replication in HIV-1-infected individuals. In vitro T-cell analyses further confirmed that the Pol-specific CTLs could effectively suppress HIV-1 replication. The present study thus demonstrated that the Pol regions of the vaccine contained protective epitopes. T-cell responses to the previous 5 Gag and present 6 Pol protective epitopes together also showed a strong correlation with better clinical outcome. These findings support the testing of the conserved mosaic vaccine in HIV-1 cure and prevention in humans. IMPORTANCE It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure.
Collapse
|
21
|
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell 2018; 9:596-615. [PMID: 29667004 PMCID: PMC6019655 DOI: 10.1007/s13238-018-0534-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/05/2018] [Indexed: 10/31/2022] Open
Abstract
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.
Collapse
|
22
|
HIV-vaccines: lessons learned and the way forward. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A safe and efficacious preventive HIV vaccine, as part of a comprehensive prevention program, remains among the highest public health priorities. It would be the best tool that could reduce the spread of HIV significantly in the long run. Current AIDS vaccine candidates are unable to induce neutralizing antibodies against primary HIV isolates or only to a very limited and narrow extent, representing a major obstacle in the development of an efficacious HIV vaccine. Clinical efforts have mainly focused on T-cell vaccines such as DNA and various recombinant vectors alone or in prime-boost regimens. The Merck Ad5 vaccine not only failed to show efficacy but also was associated with increased risk of HIV acquisition in vaccinees in a Phase IIb trial. While gp120 alone was not efficacious, the ALVAC prime and gp120 boost regimen showed 31% efficacy in a Phase III trial in Thailand. These contrasting results illustrate the limitations of available laboratory assays to assess the vaccine-induced immune responses and the lack of understanding of immune correlates of protection. Efforts should therefore focus on developing vaccine candidates inducing broadly neutralizing antibodies. Similarly, new vector strategies such as replicating vectors should be explored to induce strong and broad T-cell responses in the systemic and mucosal compartments. Innovation in immune assay development and testing algorithms is critically needed. The standardization of more relevant and predictive non-human primate models for immunogenicity and efficacy studies will contribute to better and faster vaccine assessment. HIV vaccine development requires innovative ideas and a sustained long-term commitment of the scientific community, civil society, politicians, and donors and participants for clinical research.
Collapse
|
23
|
Bissa M, Forlani G, Zanotto C, Tosi G, De Giuli Morghen C, Accolla RS, Radaelli A. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes. PLoS One 2018; 13:e0190869. [PMID: 29385169 PMCID: PMC5791965 DOI: 10.1371/journal.pone.0190869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/21/2017] [Indexed: 01/12/2023] Open
Abstract
A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can induce HLA-DR cell surface expression. However, in-vivo experiments did not show any significant increase in the humoral response. As CIITA already proved to elicit immunogenicity by improving antigen presentation, further in-vivo experiments should be performed to increase the immune responses. The use of prime/boost immunisation protocols and the oral administration route of the recombinants may enhance the immunogenicity of Env peptides presented by MHC-II and provide CD4+ T-cell stimulation.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
| | - Greta Forlani
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Giovanna Tosi
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
- Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, Tirana, Albania
| | - Roberto S. Accolla
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
- CNR Institute of Neurosciences, Cellular and Molecular Pharmacology Section, University of Milan, via Vanvitelli 32, Milan, Italy
- * E-mail:
| |
Collapse
|
24
|
Gill MS, Tung Ho LS, Baele G, Lemey P, Suchard MA. A Relaxed Directional Random Walk Model for Phylogenetic Trait Evolution. Syst Biol 2018; 66:299-319. [PMID: 27798403 DOI: 10.1093/sysbio/syw093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 10/10/2016] [Indexed: 12/26/2022] Open
Abstract
Understanding the processes that give rise to quantitative measurements associated with molecular sequence data remains an important issue in statistical phylogenetics. Examples of such measurements include geographic coordinates in the context of phylogeography and phenotypic traits in the context of comparative studies. A popular approach is to model the evolution of continuously varying traits as a Brownian diffusion process acting on a phylogenetic tree. However, standard Brownian diffusion is quite restrictive and may not accurately characterize certain trait evolutionary processes. Here, we relax one of the major restrictions of standard Brownian diffusion by incorporating a nontrivial estimable mean into the process. We introduce a relaxed directional random walk (RDRW) model for the evolution of multivariate continuously varying traits along a phylogenetic tree. Notably, the RDRW model accommodates branch-specific variation of directional trends while preserving model identifiability. Furthermore, our development of a computationally efficient dynamic programming approach to compute the data likelihood enables scaling of our method to large data sets frequently encountered in phylogenetic comparative studies and viral evolution. We implement the RDRW model in a Bayesian inference framework to simultaneously reconstruct the evolutionary histories of molecular sequence data and associated multivariate continuous trait data, and provide tools to visualize evolutionary reconstructions. We demonstrate the performance of our model on synthetic data, and we illustrate its utility in two viral examples. First, we examine the spatiotemporal spread of HIV-1 in central Africa and show that the RDRW model uncovers a clearer, more detailed picture of the dynamics of viral dispersal than standard Brownian diffusion. Second, we study antigenic evolution in the context of HIV-1 resistance to three broadly neutralizing antibodies. Our analysis reveals evidence of a continuous drift at the HIV-1 population level towards enhanced resistance to neutralization by the VRC01 monoclonal antibody over the course of the epidemic. [Brownian Motion; Diffusion Processes; Phylodynamics; Phylogenetics; Phylogeography; Trait Evolution.].
Collapse
Affiliation(s)
- Mandev S Gill
- Department of Statistics, Columbia University, New York, NY 10027, USA
| | - Lam Si Tung Ho
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstaat 10, 3000, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstaat 10, 3000, Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA.,Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. Semin Immunol 2017; 34:78-102. [PMID: 29032891 PMCID: PMC5774666 DOI: 10.1016/j.smim.2017.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Ana Olivera
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
26
|
Ntumngia FB, Pires CV, Barnes SJ, George MT, Thomson-Luque R, Kano FS, Alves JRS, Urusova D, Pereira DB, Tolia NH, King CL, Carvalho LH, Adams JH. An engineered vaccine of the Plasmodium vivax Duffy binding protein enhances induction of broadly neutralizing antibodies. Sci Rep 2017; 7:13779. [PMID: 29062081 PMCID: PMC5653783 DOI: 10.1038/s41598-017-13891-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Plasmodium vivax invasion into human reticulocytes is a complex process. The Duffy binding protein (DBP) dimerization with its cognate receptor is vital for junction formation in the invasion process. Due to its functional importance, DBP is considered a prime vaccine candidate, but variation in B-cell epitopes at the dimer interface of DBP leads to induction of strain-limited immunity. We believe that the polymorphic residues tend to divert immune responses away from functionally conserved epitopes important for receptor binding or DBP dimerization. As a proof of concept, we engineered the vaccine DEKnull to ablate the dominant Bc epitope to partially overcome strain-specific immune antibody responses. Additional surface engineering on the next generation immunogen, DEKnull-2, provides an immunogenicity breakthrough to conserved protective epitopes. DEKnull-2 elicits a stronger broadly neutralizing response and reactivity with long-term persistent antibody responses of acquired natural immunity. By using novel engineered DBP immunogens, we validate that the prime targets of protective immunity are conformational epitopes at the dimer interface. These successful results indicate a potential approach that can be used generally to improve efficacy of other malaria vaccine candidates.
Collapse
Affiliation(s)
- Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Camilla V Pires
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Miriam T George
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Richard Thomson-Luque
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Flora S Kano
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - Jessica R S Alves
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - Darya Urusova
- Departments of Molecular Microbiology & Microbial Pathogenesis, and Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, 63130, USA
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondonia-CEPEM, Porto Velho, 76812-245, Brazil
| | - Niraj H Tolia
- Departments of Molecular Microbiology & Microbial Pathogenesis, and Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, 63130, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, 44106, USA
| | - Luzia H Carvalho
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA.
| |
Collapse
|
27
|
In vitro inhibition of HIV-1 replication in autologous CD4 + T cells indicates viral containment by multifactorial mechanisms. Virol Sin 2017; 32:485-494. [PMID: 28918477 DOI: 10.1007/s12250-017-3992-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022] Open
Abstract
HIV-1-specific cytotoxic T lymphocytes (CTLs) and neutralizing antibodies (NAbs) are present during chronic infection, but the relative contributions of these effector mechanisms to viral containment remain unclear. Here, using an in vitro model involving autologous CD4+ T cells, primary HIV-1 isolates, HIV-1-specific CTLs, and neutralizing monoclonal antibodies, we show that b12, a potent and broadly neutralizing monoclonal antibody to HIV-1, was able to block viral infection when preincubated with virus prior to infection, but was much less effective than CTLs at limiting virus replication when added to infected cell cultures. However, the same neutralizing antibody was able to contain viruses by antibody-dependent cell-mediated virus inhibition in vitro, which was mediated by natural killer cells (NKs) and dependent on an Fc-Fc receptor interaction. Meanwhile, bulk CTLs from HIV-1 controllers were more effective in suppression of virus replication than those from progressors. These findings indicate that control of HIV-1 replication in activated CD4+ T cells is ineffectively mediated by neutralizing antibodies alone, but that both CTLs and antibody-dependent NK-mediated immune mechanisms contribute to viral containment. Our study systemically compared three major players in controlling HIV-1 infection, CTLs, NAbs, and NKs, in an autologous system and highlighted the multifactorial mechanisms for viral containment and vaccine success.
Collapse
|
28
|
Inhibition of highly pathogenic avian influenza (HPAI) virus by a peptide derived from vFLIP through its direct destabilization of viruses. Sci Rep 2017; 7:4875. [PMID: 28687749 PMCID: PMC5501782 DOI: 10.1038/s41598-017-04777-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 05/22/2017] [Indexed: 01/12/2023] Open
Abstract
The antiviral activities of synthesized Kα2-helix peptide, which was derived from the viral FLICE-like inhibitor protein (vFLIP) of Kaposi's sarcoma-associated herpesvirus (KSHV), against influenza A virus (IAV) were investigated in vitro and in vivo, and mechanisms of action were suggested. In addition to the robust autophagy activity of the Kα2-helix peptide, the present study showed that treatment with the Kα2 peptide fused with the TAT peptide significantly inhibited IAV replication and transmission. Moreover, TAT-Kα2 peptide protected the mice, that were challenged with lethal doses of highly pathogenic influenza A H5N1 or H1N1 viruses. Mechanistically, we found that TAT-Kα2 peptide destabilized the viral membranes, depending on their lipid composition of the viral envelop. In addition to IAV, the Kα2 peptide inhibited infections with enveloped viruses, such as Vesicular Stomatitis Virus (VSV) and Respiratory Syncytial Virus (RSV), without cytotoxicity. These results suggest that TAT-Kα2 peptide is a potential antiviral agent for controlling emerging or re-emerging enveloped viruses, particularly diverse subtypes of IAVs.
Collapse
|
29
|
He W, Shu J, Zhang J, Liu Z, Xu J, Jin X, Wang X. Expression, purification, and renaturation of a recombinant peptide-based HIV vaccine in Escherichia coli. Can J Microbiol 2017; 63:493-501. [DOI: 10.1139/cjm-2016-0528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To design an epitope-based vaccine for Human immunodeficiency virus (HIV), we previously predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and Chinese human leukocyte antigen DR types. To test the immunogenicity of this vaccine in vivo, a corresponding antigen needs to be prepared. To this end, we constructed a recombinant plasmid containing DNA encoding the epitopes and GPGPG spacers and a 6-His tag for verification of protein expression and ease of purification, and then transformed Escherichia coli cells with the plasmid. After IPTG induction, the recombinant protein was expressed in the form of mainly inclusion bodies. To stabilize the structure of denatured inclusion bodies for efficient purification and renaturation in vitro, we transferred the dissolved inclusion bodies from 7 mol/L guanidine hydrochloride to 8 mol/L urea. Under denaturing conditions, the vaccine protein was purified by a 3-step process including ion-exchange chromatography and affinity column, and then renatured by stepwise dialysis. Together, the above described procedures generated 43 mg of vaccine protein per litre of fermentation medium, and the final product reached approximately 95% purity. The purified protein was capable of eliciting antigen-specific T-cell responses in immunized mice.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jiayi Shu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai 200030, People’s Republic of China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhihua Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai 200030, People’s Republic of China
| | - Xia Jin
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
30
|
Rostami H, Ebtekar M, Ardestani MS, Yazdi MH, Mahdavi M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol Lett 2017; 187:19-26. [PMID: 28479111 DOI: 10.1016/j.imlet.2017.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022]
Abstract
Vaccines currently available for AIDS show poor efficiency, demonstrating the need for new strategies to increase their immunogenicity. In this study, the HIV-1P24-Nef peptide was used as a model vaccine, followed by utilization of a novel strategy to increase its immunogenicity. There is a growing interest in using TLR agonists for vaccine formulations. Such molecules bind to their receptors on immune cells, especially the cell surface of antigen presenting cells, thereby activating these cells and inflammatory responses. In the present study, FLiC (flagellin molecule sequence from Pseudomonas aeruginosa) was used as a TLR5 agonist. In addition, PLGA nanoparticles were used as a transmitter system to enhance vaccine efficiency and its effective transfer to immune systems. In light of this, the P24-Nef peptide was conjugated to FLiC through chemical reactions. The HIV-1P24-Nef/FLiC conjugate was constructed as a nano-vaccine using PLGA particles. Subsequently, mice were immunized intradermally three times with three-week intervals with HIV-p24-Nef/FLiC/PLGA, HIV-p24-Nef/PLGA, FLiC/PLGA, PLGA, and PBS in two doses (20 and 5μg). Three weeks after the last booster injection, cell proliferation was assessed using the Brdu/ELISA assay, and cytotoxicity was evaluated by CFSE and splenocyte cytokine secretion (IL-4 and IFN-γ); in addition, IgG1 and IgG2a antibody isotype titers were determined using a commercial ELISA kit. Our results showed that Co-utilization of TLR5 and nano-particles not only improves vaccine immunogenicity but also decreases the immunogenic dose of vaccine candidate required. We showed that the immune system was effectively stimulated via the nano-vaccination strategy using the TLR5 agonists. The effect of this strategy showed variations in different parameters of the immune system; in this regard, cellular immune responses had a higher stimulation level, compared with humoral immune responses.
Collapse
Affiliation(s)
- Hajar Rostami
- Department of Immunology, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Evidence Based Medicine Group, Pharmaceutical Biotechnology Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
31
|
Tohumeken S, Gunduz N, Demircan MB, Gunay G, Topal AE, Khalily MA, Tekinay T, Dana A, Guler MO, Tekinay AB. A Modular Antigen Presenting Peptide/Oligonucleotide Nanostructure Platform for Inducing Potent Immune Response. ACTA ACUST UNITED AC 2017; 1:e1700015. [DOI: 10.1002/adbi.201700015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sehmus Tohumeken
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Nuray Gunduz
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - M. Burak Demircan
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| | - Gokhan Gunay
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| | - Ahmet E. Topal
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - M. Aref Khalily
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center; Gazi University; Ankara 06830 Turkey
| | - Aykutlu Dana
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| |
Collapse
|
32
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
33
|
Luo Z, Wu Q, Yang C, Wang H, He T, Wang Y, Wang Z, Chen H, Li X, Gong C, Yang Z. A Powerful CD8 + T-Cell Stimulating D-Tetra-Peptide Hydrogel as a Very Promising Vaccine Adjuvant. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 27859662 DOI: 10.1002/adma.201601776] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/21/2016] [Indexed: 02/05/2023]
Abstract
A novel vaccine adjuvant based on a supramolecular hydrogel of a D-tetra-peptide is reported. Antigens can be easily incorporated into the hydrogel by a vortex or by gently shaking before injection. The vaccines can stimulate strong CD8+ T-cell responses, which significantly inhibits tumor growth. This novel adjuvant is expected to enable a wide range of sub-unit vaccines and help the production of antibodies.
Collapse
Affiliation(s)
- Zichao Luo
- Institute of Biomaterials and Engineering; Wenzhou Medical University; Wenzhou Institute of Biomaterials and Engineering; CNITECH; CAS; Wenzhou 325035 P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center for Biotherapy; Chengdu 610041 P. R. China
| | - Chengbiao Yang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education; Nankai University and Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Huaimin Wang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education; Nankai University and Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center for Biotherapy; Chengdu 610041 P. R. China
| | - Youzhi Wang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education; Nankai University and Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Zhongyan Wang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education; Nankai University and Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Hao Chen
- School of Ophthalmology & Optometry and Eye hospital; Wenzhou Medical University; Wenzhou Institute of Biomaterials and Engineering; CNITECH; CAS; Wenzhou 325035 P. R. China
| | - Xingyi Li
- School of Ophthalmology & Optometry and Eye hospital; Wenzhou Medical University; Wenzhou Institute of Biomaterials and Engineering; CNITECH; CAS; Wenzhou 325035 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center for Biotherapy; Chengdu 610041 P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Key Laboratory of Bioactive Materials; Ministry of Education; Nankai University and Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| |
Collapse
|
34
|
Jia J, Liu Q, Yang T, Wang L, Ma G. Facile fabrication of varisized calcium carbonate microspheres as vaccine adjuvants. J Mater Chem B 2017; 5:1611-1623. [DOI: 10.1039/c6tb02845d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HBsAg loaded CaCO3 microspheres with various diameters were fabricated via different mixing strategies and 1 μm particles has the strongest immune responses as vaccine adjuvant.
Collapse
Affiliation(s)
- Jilei Jia
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
| | - Qi Liu
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
35
|
Mutua G, Farah B, Langat R, Indangasi J, Ogola S, Onsembe B, Kopycinski JT, Hayes P, Borthwick NJ, Ashraf A, Dally L, Barin B, Tillander A, Gilmour J, De Bont J, Crook A, Hannaman D, Cox JH, Anzala O, Fast PE, Reilly M, Chinyenze K, Jaoko W, Hanke T, HIV-CORE 004 study group T. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8(+) T cells in African adults. Mol Ther Methods Clin Dev 2016; 3:16061. [PMID: 27617268 PMCID: PMC5006719 DOI: 10.1038/mtm.2016.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy.
Collapse
Affiliation(s)
- Gaudensia Mutua
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Bashir Farah
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Robert Langat
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | | | - Simon Ogola
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Brian Onsembe
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Jakub T Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | | | - Ambreen Ashraf
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Len Dally
- Emmes Corporation, Rockville, Maryland, USA
| | - Burc Barin
- Emmes Corporation, Rockville, Maryland, USA
| | | | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Jan De Bont
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Alison Crook
- Jenner Institute, University of Oxford, Oxford, UK
| | - Drew Hannaman
- ICHOR Medical Systems, Inc., San Diego, California, USA
| | - Josephine H Cox
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Omu Anzala
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Patricia E Fast
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | | | - Kundai Chinyenze
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Tomáš Hanke
- Jenner Institute, University of Oxford, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Japan
| | | |
Collapse
|
36
|
An immunogen containing four tandem 10E8 epitope repeats with exposed key residues induces antibodies that neutralize HIV-1 and activates an ADCC reporter gene. Emerg Microbes Infect 2016; 5:e65. [PMID: 27329850 PMCID: PMC4932654 DOI: 10.1038/emi.2016.86] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023]
Abstract
After three decades of intensive research efforts, an effective vaccine against HIV-1 remains to be developed. Several broadly neutralizing antibodies to HIV-1, such as 10E8, recognize the membrane proximal external region (MPER) of the HIV-1 gp41 protein. Thus, the MPER is considered to be a very important target for vaccine design. However, the MPER segment has very weak immunogenicity and tends to insert its epitope residues into the cell membrane, thereby avoiding antibody binding. To address this complication in vaccine development, we herein designed a peptide, designated 10E8-4P, containing four copies of the 10E8 epitope as an immunogen. As predicted by structural simulation, 10E8-4P exhibits a well-arranged tandem helical conformation, with the key residues in the 10E8 epitope oriented at different angles, thus suggesting that some of these key residues may be exposed outside of the lipid membrane. Compared with a peptide containing a single 10E8 epitope (10E8-1P), 10E8-4P not only exhibited better antigenicity but also elicited neutralizing antibody response against HIV-1 pseudoviruses, whereas 10E8-1P could not induce detectable neutralizing antibody response. Importantly, antibodies elicited by 10E8-4P also possessed a strong ability to activate an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter gene, thus suggesting that they may have ADCC activity. Therefore, this strategy shows promise for further optimization and application in future HIV-1 vaccine design.
Collapse
|
37
|
Improved safety of a replication-competent poxvirus-based HIV vaccine with the introduction of the HSV-TK/GCV suicide gene system. Vaccine 2016; 34:3447-53. [PMID: 27195760 DOI: 10.1016/j.vaccine.2016.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Replication-competent vaccinia viruses (VACVs) show prolonged antigen expression time and greater stimulation of immune responses than their replication-incompetent counterparts. However, there is the potential risk of serious post-vaccination complications, especially for children and immunocompromised individuals, leading to safety concerns about the reintroduction of VACV as a vaccine vector. In this study, we improved the safety of the vaccinia virus TianTan (VACV-TT) based HIV vaccine by introducing the HSV-TK/GCV suicide gene system, which is composed of the herpes simplex virus type 1 thymidine kinase gene (HSV-tk) and the antiviral drug ganciclovir (GCV). MATERIALS AND METHODS By inserting the HSV-tk gene into the replication-competent VACV-TT genome, a new vector, TT-TK (VACV-TT expressing the HSV-tk gene), and a candidate vaccine, TT-EnvTK (TT-TK expressing the HIV-1 env gene), were constructed. RESULTS The new vector TT-TK exhibited reduced replication capacity both in vitro and in vivo in the presence of GCV. GCV inhibited the replication of TT-TK in the brains of mice and skin of rabbits, and provided 100% protection in mice against lethal challenge with TT-TK at a dose of 80mg/kg/day. Furthermore, the candidate vaccine TT-EnvTK induced cellular and humoral immunity against HIV-1 antigen that was comparable to the immunity induced by VTKgpe (VACV-TT expressing HIV-1 env, gag, and pol genes). DISCUSSION These promising results suggest a new strategy to mitigate the potential risk of post-vaccination complications from replication-competent VACV-based HIV vaccines.
Collapse
|
38
|
HIV-Specific CD8+ T Cell-Mediated Viral Suppression Correlates With the Expression of CD57. J Acquir Immune Defic Syndr 2016; 71:8-16. [PMID: 26761268 DOI: 10.1097/qai.0000000000000837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Virus-specific CD8(+) T-cell responses are believed to play an important role in the control of HIV-1 infection; however, what constitutes an effective HIV-1 CD8(+) T-cell response remains a topic of debate. The ex vivo viral suppressive capacity was measured of CD8(+) T cells from 44 HIV-1-positive individuals. The phenotypic and cytokine profiles, and also the specificity of the CD8(+) T cells, were correlated with the suppression of HIV-1 replication. We also aimed to determine whether antiretroviral therapy (ART) had any positive effect on the HIV-1 suppressive CD8(+) T cells. METHOD Ex vivo suppression assay was used to evaluate the ability of CD8(+) T cells to suppress HIV-1 replication in autologous CD4(+) T cells. The CD107a, interferon-γ, interleukin-2, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1β (MIP-1β) responses to HIV-1 were evaluated by intracellular staining. The phenotypic profile of CD8(+) T cells was determined by whole blood staining. RESULTS The expression of CD57 on effector CD8(+) T cells correlated with the suppression of HIV-1 replication and to the duration of ART. CD107a and tumor necrosis factor-α expression levels were significantly higher in individuals with ex vivo suppressive activity compared with individuals without suppressive activity. CONCLUSIONS Standard in vitro assays measuring one or several cytokines do not correlate with the functional viral suppressive capacity of CD8(+) T cells from HIV-1-positive individuals. The best correlation of viral suppression was found to be CD57 expression. CD57 expression correlated with the duration of ART, suggesting that ART restores the cytotoxic capacity of CD8(+) T lymphocytes.
Collapse
|
39
|
Liu Q, Jia J, Yang T, Fan Q, Wang L, Ma G. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1744-1757. [PMID: 26849717 DOI: 10.1002/smll.201503662] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Aiming to enhance the immunogenicity of subunit vaccines, a novel antigen delivery and adjuvant system based on dopamine polymerization on the surface of poly(D,L-lactic-glycolic-acid) nanoparticles (NPs) with multiple mechanisms of immunity enhancement is developed. The mussel-inspired biomimetic polydopamine (pD) not only serves as a coating to NPs but also functionalizes NP surfaces. The method is facile and mild including simple incubation of the preformed NPs in the weak alkaline dopamine solution, and incorporation of hepatitis B surface antigen and TLR9 agonist unmethylated cytosine-guanine (CpG) motif with the pD surface. The as-constructed NPs possess pathogen-mimicking manners owing to their size, shape, and surface molecular immune-activating properties given by CpG. The biocompatibility and biosafety of these pathogen-mimicking NPs are confirmed using bone marrow-derived dendritic cells. Pathogen-mimicking NPs hold great potential as vaccine delivery and adjuvant system due to their ability to: 1) enhance cytokine secretion and immune cell recruitment at the injection site; 2) significantly activate and maturate dendritic cells; 3) induce stronger humoral and cellular immune responses in vivo. Furthermore, this simple and versatile dopamine polymerization method can be applicable to endow NPs with characteristics to mimic pathogen structure and function, and manipulate NPs for the generation of efficacious vaccine adjuvants.
Collapse
Affiliation(s)
- Qi Liu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jilei Jia
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingyuan Yang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qingze Fan
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lianyan Wang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
40
|
Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest 2016; 126:799-808. [PMID: 26928033 DOI: 10.1172/jci81083] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The need to optimize vaccine potency while minimizing toxicity in healthy recipients has motivated studies of the formulation of vaccines to control how, when, and where antigens and adjuvants encounter immune cells and other cells/tissues following administration. An effective subunit vaccine must traffic to lymph nodes (LNs), activate both the innate and adaptive arms of the immune system, and persist for a sufficient time to promote a mature immune response. Here, we review approaches to tailor these three aspects of vaccine function through optimized formulations. Traditional vaccine adjuvants activate innate immune cells, promote cell-mediated transport of antigen to lymphoid tissues, and promote antigen retention in LNs. Recent studies using nanoparticles and other lymphatic-targeting strategies suggest that direct targeting of antigens and adjuvant compounds to LNs can also enhance vaccine potency without sacrificing safety. The use of formulations to regulate biodistribution and promote antigen and inflammatory cue co-uptake in immune cells may be important for next-generation molecular adjuvants. Finally, strategies to program vaccine kinetics through novel formulation and delivery strategies provide another means to enhance immune responses independent of the choice of adjuvant. These technologies offer the prospect of enhanced efficacy while maintaining high safety profiles necessary for successful vaccines.
Collapse
|
41
|
Abstract
This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis.
Collapse
|
42
|
|
43
|
Kingori P. When the science fails and the ethics works: 'Fail-safe' ethics in the FEM-PrEP study. Anthropol Med 2015; 22:309-25. [PMID: 26484946 DOI: 10.1080/13648470.2015.1081378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This paper will explore the concept of 'fail safe' ethics in the FEM PrEP trial, and the practice of research and ethics on the ground. FEM-PrEP examined the efficacy of PrEP in African women after promising outcomes in research conducted with MSM. This was a hugely optimistic time and FEM-PrEP was mobilised using rights-based ethical arguments that women should have access to PrEP. This paper will present data collected during an ethnographic study of frontline research workers involved in FEM-PrEP. During our discussions, 'fail-safe' ethics emerged as concept that encapsulated their confidence that their ethics could not fail. However, in 2011, FEM-PrEP was halted and deemed a failure. The women involved in the study were held responsible because contrary to researcher's expectations they were not taking the oral PrEP being researched. This examination of FEM-PrEP will show that ethical arguments are increasingly deployed to mobilise, maintain and in some cases stop trials in ways which, at times, are superseded or co-opted by other interests. While promoting the interests of women, rights-based approaches are argued to indirectly justify the continuation of individualised, biomedical interventions which have been problematic in other women-centred trials. In this examination of FEM-PrEP, the rights-based approach obscured: ethical concerns beyond access to PrEP; the complexities of power relationships between donor and host countries; the operations of the HIV industry in research-saturated areas and the cumulative effect of unfilled expectations in HIV research and how this has shaped ideas of research and ethics.
Collapse
Affiliation(s)
- Patricia Kingori
- a University of Oxford , The Ethox Centre , Nuffield Department of Population Health, Old Road Campus , Headington , Oxford OX3 7LF , UK
| |
Collapse
|
44
|
Burgener A, McGowan I, Klatt NR. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr Opin Immunol 2015; 36:22-30. [DOI: 10.1016/j.coi.2015.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
|
45
|
Nakatani-Webster E, Hu SL, Atkins WM, Catalano CE. Assembly and characterization of gp160-nanodiscs: A new platform for biochemical characterization of HIV envelope spikes. J Virol Methods 2015; 226:15-24. [PMID: 26424619 DOI: 10.1016/j.jviromet.2015.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 01/12/2023]
Abstract
The human immunodeficiency virus (HIV) is the causative agent of acquired immune deficiency syndrome (AIDS) and is thus responsible for significant morbidity and mortality worldwide. Despite considerable effort, preparation of an effective vaccine for AIDS has been elusive and it has become clear that a fundamental understanding of the relevant antigenic targets on HIV is essential. The Env trimer spike is the only viral antigen present on the surface of the viral particle and it is the target of all broadly neutralizing antibodies isolated to date. Thus, a soluble, homogeneous, and well-defined preparation of Env trimers is an important first step toward biochemical and structural characterization of the antigenic spike. Phospholipid bilayer nanodiscs represent a relatively new technology that can serve as a platform for the assembly of membrane proteins into a native membrane-like environment. Here we describe the preparation and characterization of unprocessed full-length, natively glycoslyated gp160 Env proteins incorporated into nanodiscs (gp160-ND). The particles are soluble and well defined in the absence of detergent, and possess a morphology anticipated of Env incorporated into a lipid ND. Importantly, the gp160-NDs retain CD4 and Env antibody binding characteristics expected of a functional trimer spike and their incorporation into a lipid membrane allows interrogation of epitopes associated with the membrane-proximal ectodomain region of gp41. These studies provide the groundwork for the use of gp160-ND in more detailed biochemical and structural studies that may set the stage for their use in vaccine development.
Collapse
Affiliation(s)
- Eri Nakatani-Webster
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - Shiu-Lok Hu
- Department of Pharmaceutics, School of Pharmacy, University of Washington, H272 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - William M Atkins
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - Carlos Enrique Catalano
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States.
| |
Collapse
|
46
|
Liu S, Jackson A, Beloor J, Kumar P, Sutton RE. Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice. Hum Gene Ther 2015; 26:622-34. [PMID: 25953321 PMCID: PMC4575530 DOI: 10.1089/hum.2014.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
Despite nearly three decades of research, a safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) has yet to be achieved. More recently, the discovery of highly potent anti-gp160 broadly neutralizing antibodies (bNAbs) has garnered renewed interest in using antibody-based prophylactic and therapeutic approaches. Here, we encoded bNAbs in first-generation adenoviral (ADV) vectors, which have the distinctive features of a large coding capacity and ease of propagation. A single intramuscular injection of ADV-vectorized bNAbs in humanized mice generated high serum levels of bNAbs that provided protection against multiple repeated challenges with a high dose of HIV-1, prevented depletion of peripheral CD4(+) T cells, and reduced plasma viral loads to below detection limits. Our results suggest that ADV vectors may be a viable option for the prophylactic and perhaps therapeutic use of bNAbs in humans.
Collapse
Affiliation(s)
| | | | | | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Richard E. Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
47
|
Guttman M, Váradi C, Lee KK, Guttman A. Comparative glycoprofiling of HIV gp120 immunogens by capillary electrophoresis and MALDI mass spectrometry. Electrophoresis 2015; 36:1305-13. [PMID: 25809283 PMCID: PMC4544863 DOI: 10.1002/elps.201500054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/14/2023]
Abstract
The human immunodeficiency virus (HIV) envelope glycoprotein (Env) is the primary antigenic feature on the surface of the virus and is of key importance in HIV vaccinology. Vaccine trials with the gp120 subunit of Env are ongoing, with the recent RV144 trial showing moderate efficacy. gp120 is densely covered with N-linked glycans that are thought to help evade the host's humoral immune response. To assess how the global glycosylation patterns vary between gp120 constructs, the glycan profiles of several gp120s were examined by CE with LIF detection and MALDI-MS. The glycosylation profiles were found to be similar for chronic versus transmitter/founder isolates and only varied moderately between gp120s from different clades. This study revealed that the addition of specific tags, such as the herpes simplex virus glycoprotein D tag used in the RV144 trial, had significant effects on the overall glycosylation patterns. Such effects are likely to influence the immunogenicity of various Env immunogens and should be considered for future vaccine strategies, emphasizing the importance of the glycosylation analysis approach described in this paper.
Collapse
Affiliation(s)
- Miklós Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Csaba Váradi
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - András Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary
- MTA-PE Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary
| |
Collapse
|
48
|
Chen W, Crawford RB, Kaplan BLF, Kaminski NE. Modulation of HIVGP120 Antigen-Specific Immune Responses In Vivo by Δ9-Tetrahydrocannabinol. J Neuroimmune Pharmacol 2015; 10:344-55. [PMID: 25900076 DOI: 10.1007/s11481-015-9597-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Approximately 25 % of HIV patients use marijuana for its putative therapeutic benefit; however, it is unknown how cannabinoids affect the immune status of HIV patients. Previously, a surrogate in vitro mouse model was established, which induced CD8(+) T cell proliferation and gp120-specific IFNγ production. ∆(9)-Tetrahydrocannabinol (THC), the predominant psychoactive compound in marijuana, suppressed or enhanced the responses depending on the magnitude of cellular activation. The purpose of the current study was to investigate whether THC produced similar effects in vivo and therefore a mouse model to induce HIVgp120-specific immune responses was established. A gp120-expressing plasmid, pVRCgp120, or a vector plasmid, pVRC2000, was injected intramuscularly into mice, which were also dosed with THC orally. The gp120-specific IFNγ and IL-2 responses were detected when splenocytes were restimulated with gp120-derived peptide 81 (IIGDIRQAHCNISRA), which was identified as being immunodominant. Various cellular populations were activated in response to pVRCgp120 stimulation followed by peptide restimulation, as evidenced by increased expression levels of activation markers (e.g., CD69, CD80, and major histocompatibility complex II [MHC II]). The IFNγ response and cellular activation were enhanced by THC in C57Bl/6 wild type (WT) mice but suppressed or not affected by THC in cannabinoid receptor 1 (CB1) and 2 (CB2) knockout (CB1 (-/-)CB2 (-/-)) mice. Furthermore, CB1 (-/-)CB2 (-/-) mice exhibited augmented IFNγ production when compared to WT mice in the absence of THC. Collectively, our findings demonstrate that under certain conditions, THC enhances HIV antigen-specific immune responses, which occurs through CB1/CB2-dependent and -independent mechanisms.
Collapse
MESH Headings
- Animals
- Dronabinol/pharmacology
- Female
- HIV Envelope Protein gp120/pharmacology
- HIV Envelope Protein gp120/physiology
- Histocompatibility Antigens Class II/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/immunology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/immunology
Collapse
Affiliation(s)
- Weimin Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | | | | |
Collapse
|
49
|
Early Kinetics of the HLA Class I-Associated Peptidome of MVA.HIVconsv-Infected Cells. J Virol 2015; 89:5760-71. [PMID: 25810538 PMCID: PMC4442425 DOI: 10.1128/jvi.03627-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Cytotoxic T cells substantially contribute to the control of intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). Here, we evaluated the immunopeptidome of Jurkat cells infected with the vaccine candidate MVA.HIVconsv, which delivers HIV-1 conserved antigenic regions by using modified vaccinia virus Ankara (MVA). We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify 6,358 unique peptides associated with the class I human leukocyte antigen (HLA), of which 98 peptides were derived from the MVA vector and 7 were derived from the HIVconsv immunogen. Human vaccine recipients responded to the peptide sequences identified by LC-MS/MS. Peptides derived from the conserved HIV-1 regions were readily detected as early as 1.5 h after MVA.HIVconsv infection. Four of the seven conserved peptides were monitored between 0 and 3.5 h of infection by using quantitative mass spectrometry (Q-MS), and their abundance in HLA class I associations reflected levels of the whole HIVconsv protein in the cell. While immunopeptides delivered by the incoming MVA vector proteins could be detected, all early HIVconsv-derived immunopeptides were likely synthesized de novo. MVA.HIVconsv infection generally altered the composition of HLA class I-associated human (self) peptides, but these changes corresponded only partially to changes in the whole cell host protein abundance. IMPORTANCE The vast changes in cellular antigen presentation after infection of cells with a vectored vaccine, as shown here for MVA.HIVconsv, highlight the complexity of factors that need to be considered for efficient antigen delivery and presentation. Identification and quantitation of HLA class I-associated peptides by Q-MS will not only find broad application in T-cell epitope discovery but also inform vaccine design and allow evaluation of efficient epitope presentation using different delivery strategies.
Collapse
|
50
|
Hart GR, Ferguson AL. Error catastrophe and phase transition in the empirical fitness landscape of HIV. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032705. [PMID: 25871142 DOI: 10.1103/physreve.91.032705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 06/04/2023]
Abstract
We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|