1
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong'echa JM, Kurtis JD, Moormann AM. T-follicular helper cell profiles differ by malaria antigen and for children compared to adults. eLife 2025; 13:RP98462. [PMID: 40402846 PMCID: PMC12097790 DOI: 10.7554/elife.98462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025] Open
Abstract
Circulating T-follicular helper (cTFH) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum (Pf) as they are essential to promote B-cell production of long-lasting antibodies. Assessing the specificity of cTFH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Using spectral flow cytometry and unbiased clustering analysis, we assessed antigen-specific cTFH cell recall responses in vitro to malaria vaccine candidates Pf-schizont egress antigen-1 (PfSEA-1A) and Pf-glutamic acid-rich protein (PfGARP) within a cross-section of children and adults living in a malaria-holoendemic region of western Kenya. In children, a broad array of cTFH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, PfSEA-1A and PfGARP, while adults had a narrow profile centering on cTFH17- and cTFH1/17-like subsets following stimulation with PfGARP only. Because TFH17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that PfGARP might generate longer-lived antibody responses compared to PfSEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cTFH profiles when assessing interdependent correlates of protective immunity.
Collapse
Affiliation(s)
- Catherine Suzanne Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Christina Nixon
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Hannah W Wu
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Boaz Odwar
- Center for Global Health Research, Kenya Medical Research InstituteKisumuKenya
| | - Sunthorn Pond-Tor
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research InstituteKisumuKenya
| | - Jonathan D Kurtis
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
2
|
Qu Y, Wang D, Zhang Y, Shen F, Xia B, Xu Q, Wang Q, Kong H, Zhu Y, Wang L, Willner I, Yang X, Fan C, Sun L. DNA-Engineered Modular Nanovaccines Featuring Precise Topology for Enhanced Immunogenicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500577. [PMID: 40371439 DOI: 10.1002/adma.202500577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Multivalent display of antigens can boost subunit vaccine immunogenicity. However, owing to the inherent difficulty in programmatically controlling the topology of multivalent antigens, its impact on antigen immunogenicity remains elusive. In this study, DNA-mediated modular precision assembly is employed to organize SARS-CoV-2 receptor-binding domains (RBDs) with different topological connections while preserving their epitopes. It is found that branching-connected RBDs induced significantly higher IgG titers than linear-connected RBDs at higher antigen valency (≥4). This increase in IgG response is associated with stronger B cell proliferation, likely due to enhanced antigen-receptor synergistic interactions leading to enhanced B cell receptor signaling. Branching-connected RBDs also provided superior humoral immunity in mice and stronger protection in SARS-CoV-2-infected hamsters compared to adjuvanted RBD. This work highlights the role of antigen topology in vaccine design and offers a universal modular platform for producing more effective subunit vaccines.
Collapse
Affiliation(s)
- Yanfei Qu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Dawei Wang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yunlong Zhang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Fengyun Shen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Zhu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiurong Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Rao VN, Coelho CH. Public antibodies: convergent signatures in human humoral immunity against pathogens. mBio 2025; 16:e0224724. [PMID: 40237455 PMCID: PMC12077206 DOI: 10.1128/mbio.02247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The human humoral immune system has evolved to recognize a vast array of pathogenic threats. This ability is primarily driven by the immense diversity of antibodies generated by gene rearrangement during B cell development. However, different people often produce strikingly similar antibodies when exposed to the same antigen-known as public antibodies. Public antibodies not only reflect the immune system's ability to consistently select for optimal B cells but can also serve as signatures of the humoral responses triggered by infection and vaccination. In this Minireview, we examine and compare public antibody identification methods, including the identification criteria used based on V(D)J gene usage and similarity in the complementarity-determining region three sequences, and explore the molecular features of public antibodies elicited against common pathogens, including viruses, protozoa, and bacteria. Finally, we discuss the evolutionary significance and potential applications of public antibodies in informing the design of germline-targeting vaccines, predicting escape mutations in emerging viruses, and providing insights into the process of affinity maturation. The ongoing discovery of public antibodies in response to emerging pathogens holds the potential to improve pandemic preparedness, accelerate vaccine design efforts, and deepen our understanding of human B cell biology.
Collapse
Affiliation(s)
- Vishal N. Rao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Camila H. Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
4
|
Zhao T, Lei Y, Liu C, Zhang D, Li K, Shan S, Li C, Wei Z, Yang Y, Zhang T, Sun K, Sun H, Zhang L, Liu P. A Versatile High-Throughput Single-Cell Screening Platform for Profiling Antigen-Specific Long-Lived B Cells in Blood and Bone Marrow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414945. [PMID: 40202243 DOI: 10.1002/advs.202414945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Antigen-specific B cells play a crucial role in the long-term immune response following infection or vaccination, differentiating into antibody-secreting cells (ASCs) and memory B cells (MBCs). However, profiling ASCs is challenging primarily due to their lack of membrane-bound surface B cell receptors. In this study, the Modular Superhydrophobic Microwell Array Chip (MoSMAR-chip) is introduced as a versatile, cost-effective, and high-throughput platform for identifying and characterizing individual antigen-specific ASCs and MBCs at the single-cell level within seven days. Using this platform, comprehensive analyses of single ASCs could be performed from bone marrows of coronavirus disease 2019 (COVID-19) vaccine-immunized mice and a diverse set of antibodies capable of neutralizing the highly divergent JN1 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified. These results demonstrate that the MoSMAR-chip facilitates efficient single-cell multi-omics and functional analyses of antigen-specific ASCs, offering a powerful tool for investigating complex long-term B cell immunity in diverse clinical conditions, such as infectious diseases, autoimmunity, and beyond.
Collapse
Affiliation(s)
- Tian Zhao
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuqing Lei
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
| | - Chang Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dong Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kaiyi Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Sisi Shan
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
| | - Chenyu Li
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
| | - Zimeng Wei
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuhan Yang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
| | - Ting Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Sun
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoran Sun
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Peng Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- Changping Laboratory, Beijing, 102206, China
| |
Collapse
|
5
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong’echa JM, Kurtis J, Moormann AM. T follicular helper cell profiles differ by malaria antigen and for children compared to adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.13.589352. [PMID: 38659768 PMCID: PMC11042194 DOI: 10.1101/2024.04.13.589352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Circulating T-follicular helper (cTFH) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum (Pf) as they are essential to promote B-cell production of long-lasting antibodies. Assessing the specificity of cTFH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Methods Using spectral flow cytometry and unbiased clustering analysis, we assessed antigen-specific cTFH cell recall responses in vitro to malaria vaccine candidates Pf-schizont egress antigen-1 (PfSEA-1A) and Pf-glutamic acid-rich protein (PfGARP) within a cross-section of children and adults living in a malaria-holoendemic region of western Kenya. Findings In children, a broad array of cTFH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, PfSEA-1A and PfGARP, while adults had a narrow profile centering on cTFH17- and cTFH1/17-like subsets following stimulation with PfGARP only. Interpretation Because TFH17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that PfGARP might generate longer-lived antibody responses compared to PfSEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cTFH profiles when assessing interdependent correlates of protective immunity.
Collapse
Affiliation(s)
- Catherine S. Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina Nixon
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Hannah W. Wu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Boaz Odwar
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sunthorn Pond-Tor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - John M. Ong’echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jonathan Kurtis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
6
|
Pinto-Santini D, Jalil EM, Fernandes GT, Hilaire G, Kolevic L, Cabello R, Grinsztejn B, Pape W, Deschamps MM, House MG, Brofsky E, Sahasrabuddhe VV, Dasgupta S, Pasalar S, Madeleine MM, Carter J, Prabhu PR, Galloway D, Duerr A. ULACNet-301, OPTIMO protocol: optimizing HPV vaccination regimen for cancer prevention in children and adolescents living with HIV. BMC Cancer 2025; 25:151. [PMID: 39871186 PMCID: PMC11771066 DOI: 10.1186/s12885-025-13551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Persistent infection with human papillomavirus (HPV) is associated with most cervical and anal cancer cases and a large fraction of other anogenital and oropharyngeal cancers. The prophylactic HPV vaccines are known to prevent HPV infections and HPV-associated disease, although there is evidence of reduced response to the HPV vaccination among individuals living with HIV. Prior studies among individuals without HIV suggest that a single HPV vaccine dose induces humoral immune responses that, while lower than those induced by two or three doses, still confer protection against HPV infection. Current recommendations for HPV vaccine include a single-dose schedule for children 9-14-years-olds without HIV. Although two to three doses are recommended for children living with HIV (CLWH), there is very limited data comparing responses to one vs. 2-3 doses in CLWH. METHODS The OPTIMO study will compare immune responses to HPV vaccination in CLWH by measuring antibody and memory B cell (Bmem) responses after 1, 2, or 3 doses of the 9-valent HPV (9vHPV) vaccine, Gardasil-9. A comparison group of children without HIV will receive one dose of the vaccine. The durability of the response will be assessed at 24 months after the last dose of a given regimen. The OPTIMO trial will take place among CLWH from low and middle-income country (LMIC) settings in Peru, Brazil, and Haiti. DISCUSSION Previous studies of single-dose regimens in individuals without HIV raise questions about whether one dose would suffice for CLWH and, if not, whether two or three doses are needed to provide protection against HPV-related cancers. These questions have operational consequences in LMICs given the barriers to delivering multiple doses, uneven availability, and intermittent shortages of HPV vaccines. In addition, information on HIV status for children and adolescents is rarely available during vaccination campaigns based in schools or public health clinics, so CLWH may receive a single dose despite policy recommendations that they receive two or three. This study will provide evidence on the optimal number of doses needed for CLWH that can inform HPV vaccination campaigns in LMICs, especially those with a higher burden of HIV infection and higher incidence of HPV-related cancers. TRIAL REGISTRATION ClinicalTrials.gov NCT04265950.
Collapse
Affiliation(s)
| | - Emilia M Jalil
- Instituto Nacional de Infectología Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil
| | | | - Genevieve Hilaire
- Groupe Haitien d'Etudes de Sarcome de Kaposi et Infections Opportunistes (GHESKIO), Port au Prince, Haiti
| | | | | | - Beatriz Grinsztejn
- Instituto Nacional de Infectología Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil
| | - William Pape
- Groupe Haitien d'Etudes de Sarcome de Kaposi et Infections Opportunistes (GHESKIO), Port au Prince, Haiti
| | - Marie Marcelle Deschamps
- Groupe Haitien d'Etudes de Sarcome de Kaposi et Infections Opportunistes (GHESKIO), Port au Prince, Haiti
| | - Margaret G House
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Emma Brofsky
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vikrant V Sahasrabuddhe
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | | | - Ann Duerr
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Athavale A, Gaur A, Ahmed N, Subramaniam A, Dandotiya J, Raj S, Upadhyay SK, Samal S, Pandey AK, Rai RC, Awasthi A. Receptor Binding Domain-Specific B Cell Memory Responses Among Individuals Vaccinated Against SARS-CoV-2. Vaccines (Basel) 2024; 12:1396. [PMID: 39772064 PMCID: PMC11680197 DOI: 10.3390/vaccines12121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The COVID-19 pandemic prompted unprecedented vaccine development efforts against SARS-CoV-2. India, which was one of the countries most impacted by COVID-19, developed its indigenous vaccine in addition to utilizing the ones developed by other countries. While antibody levels and neutralizing antibody titres are considered initial correlates of immune protection, long-term protection from the pathogen relies on memory B and T cells and their recall responses. In this regard, global research has primarily focused on mRNA-based vaccines. The studies on immune memory response, particularly B cell memory response induced by the vaccines given to Indians, remain relatively obscure. Methods: We assessed Receptor Binding Domain-specific memory B cells in the peripheral circulation and their ability to secrete antigen-specific antibodies among Indians vaccinated with Covaxin (BBV152), Covishield (AZD1222), Corbevax (BECOV2D), and Sputnik Light, as well as unvaccinated individuals. Results: Corbevax and Sputnik Light conferred better antibody-secreting cell (ASC) responses over time compared to other groups. Conclusions: These findings contribute to our understanding of vaccine-induced immune memory in the Indian population; providing insights that could inform future vaccine strategies.
Collapse
Affiliation(s)
- Atharv Athavale
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Anmol Gaur
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Nafees Ahmed
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Adarsh Subramaniam
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Jyotsna Dandotiya
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Sneha Raj
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | | | - Sweety Samal
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | | | - Ramesh Chandra Rai
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Amit Awasthi
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| |
Collapse
|
8
|
Dvorscek AR, McKenzie CI, Stäheli VC, Ding Z, White J, Fabb SA, Lim L, O'Donnell K, Pitt C, Christ D, Hill DL, Pouton CW, Burnett DL, Brink R, Robinson MJ, Tarlinton DM, Quast I. Conversion of vaccines from low to high immunogenicity by antibodies with epitope complementarity. Immunity 2024; 57:2433-2452.e7. [PMID: 39305904 DOI: 10.1016/j.immuni.2024.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Existing antibodies (Abs) have varied effects on humoral immunity during subsequent infections. Here, we leveraged in vivo systems that allow precise control of antigen-specific Abs and B cells to examine the impact of Ab dose, affinity, and specificity in directing B cell activation and differentiation. Abs competing with the B cell receptor (BCR) epitope showed affinity-dependent suppression. By contrast, Abs targeting a complementary epitope, not overlapping with the BCR, shifted B cell differentiation toward Ab-secreting cells. Such Abs allowed for potent germinal center (GC) responses to otherwise poorly immunogenic sites by promoting antigen capture and presentation by low-affinity B cells. These mechanisms jointly diversified the B cell repertoire by facilitating the recruitment of high- and low-affinity B cells into Ab-secreting cell, GC, and memory B cell fates. Incorporation of small amounts of monoclonal Abs into protein- or mRNA-based vaccines enhanced immunogenicity and facilitated sustained immune responses, with implications for vaccine design and our understanding of protective immunity.
Collapse
Affiliation(s)
- Alexandra R Dvorscek
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Craig I McKenzie
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Vera C Stäheli
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Jacqueline White
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristy O'Donnell
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Danika L Hill
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcus J Robinson
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia.
| |
Collapse
|
9
|
Wang Y, Shao W, Liu X, Liang Q, Lei J, Shi W, Mei M, Li Y, Tan X, Yu G, Yu L, Zhang L, Qi H. High recallability of memory B cells requires ZFP318-dependent transcriptional regulation of mitochondrial function. Immunity 2024; 57:1848-1863.e7. [PMID: 38889716 DOI: 10.1016/j.immuni.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/24/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.
Collapse
Affiliation(s)
- Yifeng Wang
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China
| | - Wen Shao
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin Liu
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qingtai Liang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenjuan Shi
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Miao Mei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Tan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Guocan Yu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li Yu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Yuan C, Lin Y, Wang Y, Zhang Y, Zhao X, Yuan H, Li T, Song Q. Effects of porcine epidemic diarrhea virus infection on CD21 + B cells activation. Vet Microbiol 2024; 293:110087. [PMID: 38663176 DOI: 10.1016/j.vetmic.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/15/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a devastating pathogen of acute- gastrointestinal infectious diseases, which can cause vomiting, diarrhea, dehydration and high morbidity and mortality among neonatal piglets. Humoral immunity plays a vital role in the host anti-PEDV infection process, but the mechanism of PEDV-induced B-cell immune response remains unknown. In this study, the effects of PEDV infection on CD21+ B cell activation were systematically analyzed through animal experiments. Enzyme-linked immunosorbent assays (ELISA) revealed that low levels of serum-specific IgA, IgM, or IgG were detected in piglets after PEDV infection, respectively. Serum interleukin (IL)-6 levels increased significantly at 4 d after infection, and the levels of IL-4, B-cell activating factor (BAFF), interferon (IFN)-γ, transforming growth factor (TGF)-β and IL-10 decreased at 7 d after infection. Fluorescence-activated cell sorting (FACS) showed that expression levels of CD21, MHC Ⅱ, CD40, and CD38 on B cell surfaces were significantly higher. In contrast, the proportions of CD21+IgM+ B cells were decreased in peripheral blood mononuclear cells (PBMCs) from the infected piglets. No differences were found in the percentage of CD21+CD80+ and CD21+CD27+ B cells in PBMCs from the infected piglets. In addition, the number of CD21+B cells in PBMCs stimulated with PEDV in vitro was significantly lower. No significant change in the mRNA expression of BCR molecules was found while the expression levels of paired immunoglobulin-like receptor B (PIR-B), B cell adaptor molecule of 32 kDa (Bam32) and BAFF were decreased. In conclusion, our research demonstrates that virulent strains of PEDV profoundly impact B cell activation, leading to alterations in phenotypic expression and BCR signaling molecules. Furthermore, this dysregulation results in compromised specific antibody secretion and perturbed cytokine production, highlighting the intricate immunological dysfunctions induced by PEDV infection.
Collapse
Affiliation(s)
- Chen Yuan
- College of Veterinary Medicine, Hebei Agricultural University, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Yidan Lin
- College of Veterinary Medicine, Hebei Agricultural University, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Yawen Wang
- College of Veterinary Medicine, Hebei Agricultural University, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Yanan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Xue Zhao
- College of Veterinary Medicine, Hebei Agricultural University, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Hongxing Yuan
- Agriculture and Rural Bureau of Guantao County, Handan, Hebei Province 057750, China
| | - Tanqing Li
- College of Veterinary Medicine, Hebei Agricultural University, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China.
| |
Collapse
|
11
|
Noor AAM, Nor AKCM, Redzwan NM. The immunological understanding on germinal center B cells in psoriasis. J Cell Physiol 2024; 239:e31266. [PMID: 38578060 DOI: 10.1002/jcp.31266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The development of psoriasis is mainly driven by the dysregulation of T cells within the skin, marking a primary involvement of these cells in the pathogenesis. Although B cells are integral components of the immune system, their role in the initiation and progression of psoriasis is not as pivotal as that of T cells. The paradox of B cell suggests that, while it is crucial for adaptive immunity, B cells may contribute to the exacerbation of psoriasis. Numerous ideas proposed that there are potential relationships between psoriasis and B cells especially within germinal centers (GCs). Recent research projected that B cells might be triggered by autoantigens which then induced molecular mimicry to alter B cells activity within GC and generate autoantibodies and pro-inflammatory cytokines, form ectopic GC, and dysregulate the proliferation of keratinocytes. Hence, in this review, we gathered potential evidence indicating the participation of B cells in psoriasis within the context of GC, aiming to enhance our comprehension and advance treatment strategies for psoriasis thus inviting many new researchers to investigate this issue.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdah Karimah Che Md Nor
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
12
|
Zhu X, Hong S, Bu J, Liu Y, Liu C, Li R, Zhang T, Zhang Z, Li L, Zhou X, Hua Z, Zhu B, Hou B. Antiviral memory B cells exhibit enhanced innate immune response facilitated by epigenetic memory. SCIENCE ADVANCES 2024; 10:eadk0858. [PMID: 38552009 PMCID: PMC10980274 DOI: 10.1126/sciadv.adk0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The long-lasting humoral immunity induced by viral infections or vaccinations depends on memory B cells with greatly increased affinity to viral antigens, which are evolved from germinal center (GC) responses. However, it is unclear whether antiviral memory B cells represent a distinct subset among the highly heterogeneous memory B cell population. Here, we examined memory B cells induced by a virus-mimicking antigen at both transcriptome and epigenetic levels and found unexpectedly that antiviral memory B cells exhibit an enhanced innate immune response, which appeared to be facilitated by the epigenetic memory that is established through the memory B cell development. In addition, T-bet is associated with the altered chromatin architecture and is required for the formation of the antiviral memory B cells. Thus, antiviral memory B cells are distinct from other GC-derived memory B cells in both physiological functions and epigenetic landmarks.
Collapse
Affiliation(s)
- Xiping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Hong
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiachen Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingping Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Hua
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Kagan Ben Tikva S, Gurwitz N, Sivan E, Hirsch D, Hezroni-Barvyi H, Biram A, Moss L, Wigoda N, Egozi A, Monziani A, Golani O, Gross M, Tenenbaum A, Shulman Z. T cell help induces Myc transcriptional bursts in germinal center B cells during positive selection. Sci Immunol 2024; 9:eadj7124. [PMID: 38552029 DOI: 10.1126/sciimmunol.adj7124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Antibody affinity maturation occurs in secondary lymphoid organs within germinal centers (GCs). At these sites, B cells mutate their antibody-encoding genes in the dark zone, followed by preferential selection of the high-affinity variants in the light zone by T cells. The strength of the T cell-derived selection signals is proportional to the B cell receptor affinity and to the magnitude of subsequent Myc expression. However, because the lifetime of Myc mRNA and its corresponding protein is very short, it remains unclear how T cells induce sustained Myc levels in positively selected B cells. Here, by direct visualization of mRNA and active transcription sites in situ, we found that an increase in transcriptional bursts promotes Myc expression during B cell positive selection in GCs. Elevated T cell help signals predominantly enhance the percentage of cells expressing Myc in GCs as opposed to augmenting the quantity of Myc transcripts per individual cell. Visualization of transcription start sites in situ revealed that T cell help promotes an increase in the frequency of transcriptional bursts at the Myc locus in GC B cells located primarily in the LZ apical rim. Thus, the rise in Myc, which governs positive selection of B cells in GCs, reflects an integration of transcriptional activity over time rather than an accumulation of transcripts at a specific time point.
Collapse
Affiliation(s)
- Sharon Kagan Ben Tikva
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Gurwitz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadas Hezroni-Barvyi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Biram
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lihee Moss
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Wigoda
- Bioinformatics unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ariel Tenenbaum
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Pediatrics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
15
|
Cooper L, Szeto C, Jayasinghe D, Taylor JJ, Gras S, Good-Jacobson KL. Detection of Lymphocytic Choriomeningitis Virus-Specific Memory B Cells Using Antigen Tetramers. Methods Mol Biol 2024; 2826:117-129. [PMID: 39017889 DOI: 10.1007/978-1-0716-3950-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Memory B cells are central to the establishment of immunological memory, providing long-term protection against specific pathogens and playing a vital role in the efficacy of vaccines. Understanding how memory B cell formation is disrupted during persistent infection is essential for new therapeutics. Lymphocytic choriomeningitis virus (LCMV) is an ideal model for investigating memory B cells in acute versus chronic infection. This protocol details techniques to isolate, enrich, and examine LCMV-specific memory B cells in both acute and chronic LCMV infection. Using an antigen tetramer enrichment system and flow cytometry, this method assesses low-frequency, polyclonal antigen-specific memory B cells.
Collapse
Affiliation(s)
- Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Justin J Taylor
- Beirne B. Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
16
|
Quast I. B Cell Receptor Transgenic Mice as Tools to Study Memory B Cells. Methods Mol Biol 2024; 2826:131-139. [PMID: 39017890 DOI: 10.1007/978-1-0716-3950-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
B cell receptor (BCR) transgenic mice allow the control of the initial target (antigen) specificity of naïve B cells and to investigate their properties following activation. Here, I describe how BCR transgenic B cells can be used in combination with adoptive cell transfer and immunization models to study memory B cell formation and reactivation.
Collapse
Affiliation(s)
- Isaak Quast
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
18
|
Kervella D, Heidt S, Fairchild R, Todryk S, Bestard O. Tracking Circulating HLA-Specific IgG-Producing Memory B Cells with the B-Cell ImmunoSpot Assay. Methods Mol Biol 2024; 2768:201-209. [PMID: 38502395 DOI: 10.1007/978-1-0716-3690-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Donor-specific antibodies (DSA) against human leukocyte antigen (HLA) molecules are a major risk factor for rejection of transplanted organs (in antibody-mediated rejection [ABMR]), particularly in patients who have prior sensitization or receive insufficient immunosuppression through minimization or noncompliance. These DSA are measured routinely in the serum of patients prior to transplantation mainly using bead-based technologies or cell-based assays. However, the absence of detectable serum DSA does not always reflect the absence of sensitization or histologically defined ABMR, and so it has been proposed that the detection and measurement of memory B cells capable of secreting antibodies against donor HLA antigens could be carried out using B-cell ImmunoSpot, to better inform the degree of immune sensitization of transplant patients prior to as well as after transplantation. Such an assay is described here.
Collapse
Affiliation(s)
- Delphine Kervella
- Nephrology and Transplantation Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Nephrology and Kidney Transplantation Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen Todryk
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Cellular Technology Limited (CTL) Europe GmbH, Rutesheim, Germany.
| | - Oriol Bestard
- Nephrology and Transplantation Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Nephrology and Kidney Transplantation Department, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
19
|
Kervella D, Torija A, Zúñiga JM, Bestard O. How to measure human leukocyte antigen-specific B cells. Curr Opin Organ Transplant 2023; 28:345-354. [PMID: 37678170 DOI: 10.1097/mot.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW The implementation of highly sensitive immune assays measuring anti-human leukocyte antigen (HLA) antibodies has modified alloimmune risk stratification and diagnosis of rejection. Nonetheless, anti-HLA antibodies represent the downstream effector mechanism of the B-cell response. Better characterizing the cellular components of the humoral immune response (including memory B cells (mBCs) and long-lived plasma cells) could help to further stratify the alloimmune risk stratification and enable discovery of new therapeutic targets. Several tests that characterize HLA-specific mBCs, either functionally or phenotypically, have been developed in the last years, showing promising applications as well as some limitations. RECENT FINDINGS Functional assays involving ex vivo polyclonal activation of mBC have been refined to allow the detection of HLA-specific mBC capable of producing anti-HLA Abs, using different and complementary detection platforms such as multiplex Fluorospot and single antigen bead assay on culture supernatants. Detection of circulating HLA-specific B cells by flow cytometry remains hindered by the very low frequency of HLA-specific mBC. SUMMARY Technological refinements have allowed the development of tests detecting HLA-specific mBC. Further evaluation of these assays in clinical trials, both for immune risk stratification and to assess treatment efficacy (desensitization strategies, rescue therapies for ABMR) are now urgently needed.
Collapse
Affiliation(s)
- Delphine Kervella
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Alba Torija
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jose M Zúñiga
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Oriol Bestard
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
20
|
Yu SC, Chen KC, Huang RYJ. Nodal reactive proliferation of monocytoid B-cells may represent atypical memory B-cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:729-738. [PMID: 37080839 DOI: 10.1016/j.jmii.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Reactive lymphadenopathies such as toxoplasmosis and cytomegalovirus lymphadenitis are associated with monocytoid cell proliferation. Monocytoid cells are B-lymphocytes with an undetermined subset. METHODS Using digital spatial profiling whole transcriptome analyses, this study compared monocytoid and control B-cells. The B-cell subset of monocytoid cells was assigned according to gene expression profiles. RESULTS This study identified 466 differentially expressed genes between monocytoid and control B-cells. The cellular deconvolution algorithm identified monocytoid cells as memory B-cells instead of as naïve B-cells. A comparison of the upregulated genes revealed that atypical memory B-cells had the largest number of genes overlapping with monocytoid cells compared with other memory B-cell subsets. Atypical memory B-cell markers, namely TBX21 (T-bet), FCRL4 (IRTA1), and ITGAX (CD11c), were all upregulated in monocytoid cells. Similar to atypical memory B-cells, monocytoid cells exhibited (1) upregulated transcription factors (TBX21, TOX), (2) upregulated genes associated with B-cell inhibition (FCRL5, FCRL4) and downregulated genes associated with B-cell activation (PIK3CG, NFKB1A, CD40), (3) downregulated cell cycle-related genes (CDK6, MYC), and (4) downregulated cytokine receptors (IL4R). This study also analyzed the expression of monocytoid cell signature genes in various memory B-cell subsets. Atypical memory B-cells exhibited a gene expression pattern similar to that of monocytoid cells, but other memory B-cell subsets did not. Furthermore, monocytoid cells and marginal zone lymphomas differed in gene expression profiles. CONCLUSION Spatial transcriptomic analyses indicated that monocytoid cells may be atypical memory B-cells.
Collapse
Affiliation(s)
- Shan-Chi Yu
- Graduate Institute of Pathology and Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ko-Chen Chen
- School of Medicine & Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine & Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Chakma CR, Good-Jacobson KL. Requirements of IL-4 during the Generation of B Cell Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1853-1860. [PMID: 37276051 DOI: 10.4049/jimmunol.2200922] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 06/07/2023]
Abstract
IL-4 has long been established as a key regulator of Th cells and for promoting effective B cell survival and isotype class switching. Yet, despite having been extensively studied, the specific role of IL-4 in generating humoral memory in vivo is unclear. In this review, we explore the recent studies that unravel the cellular sources and spatiotemporal production of IL-4, the relationship between IL-4 and IL-21 during germinal center responses and the formation of Ab-secreting cells, and the current understanding of whether IL-4 promotes or suppresses memory B cell generation in vitro and in vivo.
Collapse
Affiliation(s)
- Clarissa R Chakma
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Aranburu A, Engström E, Gerasimcik N, Alsén S, Camponeschi A, Yrlid U, Grimsholm O, Mårtensson IL. Clonal relationships of memory B cell subsets in autoimmune mice. Front Immunol 2023; 14:1129234. [PMID: 36936947 PMCID: PMC10015592 DOI: 10.3389/fimmu.2023.1129234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Immunological memory protects our body from re-infection and it is composed of a cellular and a humoral arm. The B-cell branch with its memory B cells (MBCs), plasma cells and antibodies, formed either in a germinal centre (GC) -dependent or -independent manner, ensure that we can rapidly mount a recall immune response. Previous work in immunised wildtype (WT) mice have identified several subsets of MBCs whereas less is known under autoimmune conditions. Here, we have investigated the heterogeneity of the MBC compartment in autoimmune mouse models and examined the clonal relationships between MBC subsets and GC B cells in one of the models. We demonstrate the presence of at least four different MBC subsets based on their differential expression pattern of CD73, CD80 and PD-L2 in surrogate light chain-deficient (SLC-/-), MRL+/+ and MRLlpr/lpr mice, where most of the MBCs express IgM. Likewise, four MBC subsets could be identified in WT immunised mice. In SLC-/- mice, high-throughput sequencing of Ig heavy chains demonstrates that the two CD73-positive subsets are generally more mutated. Lineage tree analyses on expanded clones show overlaps between all MBC subsets and GC B cells primarily in the IgM sequences. Moreover, each of the three IgM MBC subsets could be found both as ancestor and progeny to GC B cells. This was also observed in the IgG sequences except for the CD73-negative subset. Thus, our findings demonstrate that several MBC subsets are present in autoimmune and WT mice. In SLC-/- mice, these MBC subsets are clonally related to each other and to GC B cells. Our results also indicate that different MBC subsets can seed the GC reaction.
Collapse
Affiliation(s)
- Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Engström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalija Gerasimcik
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Inga-Lill Mårtensson,
| |
Collapse
|
24
|
Abstract
Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and memory B cells are acknowledged as biomarkers of AMR. Nevertheless, it may be too late for the DSA routine examination production since DSAs may have binded to graft vascular endothelial cells through complement-dependent or complement-independent pathways. Therefore, methods to effectively monitor memory B cells and long-lived plasma cells and subsequently prevent DSA production are key to reducing the adverse effects of AMR. Therefore, this review mainly summarizes the production pathways of memory B cells and long-lived plasma cells and provides suggestions for the prevention of AMR after transplantation.
Collapse
Affiliation(s)
- Wenlong Yue
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Dietetics Teaching and Research Section, Henan Medical College, Xinzheng, People's Republic of China
| | - Xiaohu Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature 2022; 608:724-732. [PMID: 35948631 PMCID: PMC9402440 DOI: 10.1038/s41586-022-05072-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Collapse
Affiliation(s)
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, United Kingdom
| | | | - Alyssa Cull
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK
- Biofidelity, 330 Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Krishnaa Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Grenov A, Hezroni H, Lasman L, Hanna JH, Shulman Z. YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep 2022; 39:110778. [PMID: 35508130 PMCID: PMC9108551 DOI: 10.1016/j.celrep.2022.110778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibody-mediated immunity is initiated by B cell differentiation into multiple cell subsets, including plasmablast, memory, and germinal center (GC) cells. B cell differentiation trajectories are determined by transcription factors, yet very few mechanisms that specifically determine early B cell fates have been described. Here, we report a post-transcriptional mechanism that suppresses the plasmablast genetic program and promotes GC B cell fate commitment. Single-cell RNA-sequencing analysis reveals that antigen-specific B cell precursors at the pre-GC stage upregulate YTHDF2, which enhances the decay of methylated transcripts. Ythdf2-deficient B cells exhibit intact proliferation and activation, whereas differentiation into GC B cells is blocked. Mechanistically, B cells require YTHDF2 to attenuate the plasmablast genetic program during GC seeding, and transcripts of key plasmablast-regulating genes are methylated and bound by YTHDF2. Collectively, this study reveals how post-transcriptional suppression of gene expression directs appropriate B cell fate commitment during initiation of the adaptive immune response. scRNA-seq of antigen-specific B cells reveals differentiation trajectories YTHDF2 is expressed by early-responding B cells and facilitates germinal center seeding YTHDF2 binds mRNAs of plasma cell-associated genes and suppresses their expression Germinal center formation does not depend on YTHDF1 and YTHDF3
Collapse
Affiliation(s)
- Amalie Grenov
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Lasman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Zotos D, Quast I, Li-Wai-Suen CSN, McKenzie CI, Robinson MJ, Kan A, Smyth GK, Hodgkin PD, Tarlinton DM. The concerted change in the distribution of cell cycle phases and zone composition in germinal centers is regulated by IL-21. Nat Commun 2021; 12:7160. [PMID: 34887406 PMCID: PMC8660905 DOI: 10.1038/s41467-021-27477-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Humoral immune responses require germinal centres (GC) for antibody affinity maturation. Within GC, B cell proliferation and mutation are segregated from affinity-based positive selection in the dark zone (DZ) and light zone (LZ) substructures, respectively. While IL-21 is known to be important in affinity maturation and GC maintenance, here we show it is required for both establishing normal zone representation and preventing the accumulation of cells in the G1 cell cycle stage in the GC LZ. Cell cycle progression of DZ B cells is unaffected by IL-21 availability, as is the zone phenotype of the most highly proliferative GC B cells. Collectively, this study characterises the development of GC zones as a function of time and B cell proliferation and identifies IL-21 as an important regulator of these processes. These data help explain the requirement for IL-21 in normal antibody affinity maturation.
Collapse
Affiliation(s)
- Dimitra Zotos
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Connie S N Li-Wai-Suen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melboure, Parkville, VIC, 3010, Australia
| | - Craig I McKenzie
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Andrey Kan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- School of Computer Science, University of Adelaide, Frome Rd, Adelaide, SA, 5005, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- School of Mathematics and Statistics, University of Melboure, Parkville, VIC, 3010, Australia
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
28
|
Fribourg M, Cioni M, Ghiggeri G, Cantarelli C, Leventhal JS, Budge K, Bin S, Riella LV, Colucci M, Vivarelli M, Angeletti A, Perin L, Cravedi P. CyTOF-Enabled Analysis Identifies Class-Switched B Cells as the Main Lymphocyte Subset Associated With Disease Relapse in Children With Idiopathic Nephrotic Syndrome. Front Immunol 2021; 12:726428. [PMID: 34621271 PMCID: PMC8490633 DOI: 10.3389/fimmu.2021.726428] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
B cell depleting therapies permit immunosuppressive drug withdrawal and maintain remission in patients with frequently relapsing nephrotic syndrome (FRNS) or steroid–dependent nephrotic syndrome (SDNS), but lack of biomarkers for treatment failure. Post-depletion immune cell reconstitution may identify relapsing patients, but previous characterizations suffered from methodological limitations of flow cytometry. Time-of-flight mass cytometry (CyTOF) is a comprehensive analytic modality that simultaneously quantifies over 40 cellular markers. Herein, we report CyTOF-enabled immune cell comparisons over a 12-month period from 30 children with SDNS receiving B cell depleting therapy who either relapsed (n = 17) or remained stable (n = 13). Anti-CD20 treatment depleted all B cells subsets and CD20 depleting agent choice (rituximab vs ofatumumab) did not affect B cell subset recovery. Despite equal total numbers of B cells, 5 subsets of B cells were significantly higher in relapsing individuals; all identified subsets of B cells were class-switched. T cell subsets (including T follicular helper cells and regulatory T cells) and other major immune compartments were largely unaffected by B cell depletion, and similar between relapsing and stable children. In conclusion, CyTOF analysis of immune cells from anti-CD20 antibody treated patients identifies class-switched B cells as the main subset whose expansion associates with disease relapse. Our findings set the basis for future studies exploring how identified subsets can be used to monitor treatment response and improve our understanding of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Miguel Fribourg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michela Cioni
- Nephrology, Dialysis and Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - GianMarco Ghiggeri
- Nephrology, Dialysis and Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Dipartimento di Medicina e Chirurgia Università di Parma, Unitá Operativa (UO) Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Jeremy S Leventhal
- Division of Nephrology, White Plains Hospital, White Plains, NY, United States
| | - Kelly Budge
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sofia Bin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo V Riella
- Center for Transplantation Sciences, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marina Vivarelli
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Laura Perin
- Gabriel Organization for All Renal Research (GOFARR) Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA, United States
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
29
|
Verstegen NJM, Ubels V, Westerhoff HV, van Ham SM, Barberis M. System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation. Front Immunol 2021; 12:734282. [PMID: 34616402 PMCID: PMC8488341 DOI: 10.3389/fimmu.2021.734282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Germinal center (GC) reactions are vital to the correct functioning of the adaptive immune system, through formation of high affinity, class switched antibodies. GCs are transient anatomical structures in secondary lymphoid organs where specific B cells, after recognition of antigen and with T cell help, undergo class switching. Subsequently, B cells cycle between zones of proliferation and somatic hypermutation and zones where renewed antigen acquisition and T cell help allows for selection of high affinity B cells (affinity maturation). Eventually GC B cells first differentiate into long-lived memory B cells (MBC) and finally into plasma cells (PC) that partially migrate to the bone marrow to encapsulate into long-lived survival niches. The regulation of GC reactions is a highly dynamically coordinated process that occurs between various cells and molecules that change in their signals. Here, we present a system-level perspective of T cell-mediated GC B cell differentiation, presenting and discussing the experimental and computational efforts on the regulation of the GCs. We aim to integrate Systems Biology with B cell biology, to advance elucidation of the regulation of high-affinity, class switched antibody formation, thus to shed light on the delicate functioning of the adaptive immune system. Specifically, we: i) review experimental findings of internal and external factors driving various GC dynamics, such as GC initiation, maturation and GCBC fate determination; ii) draw comparisons between experimental observations and mathematical modeling investigations; and iii) discuss and reflect on current strategies of modeling efforts, to elucidate B cell behavior during the GC tract. Finally, perspectives are specifically given on to the areas where a Systems Biology approach may be useful to predict novel GCBC-T cell interaction dynamics.
Collapse
Affiliation(s)
- Niels J M Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Victor Ubels
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
30
|
Grenov AC, Moss L, Edelheit S, Cordiner R, Schmiedel D, Biram A, Hanna JH, Jensen TH, Schwartz S, Shulman Z. The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers. J Exp Med 2021; 218:e20210360. [PMID: 34402854 PMCID: PMC8374864 DOI: 10.1084/jem.20210360] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/02/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022] Open
Abstract
Long-lasting immunity depends on the generation of protective antibodies through the germinal center (GC) reaction. N6-methyladenosine (m6A) modification of mRNAs by METTL3 activity modulates transcript lifetime primarily through the function of m6A readers; however, the physiological role of this molecular machinery in the GC remains unknown. Here, we show that m6A modifications by METTL3 are required for GC maintenance through the differential functions of m6A readers. Mettl3-deficient GC B cells exhibited reduced cell-cycle progression and decreased expression of proliferation- and oxidative phosphorylation-related genes. The m6A binder, IGF2BP3, was required for stabilization of Myc mRNA and expression of its target genes, whereas the m6A reader, YTHDF2, indirectly regulated the expression of the oxidative phosphorylation gene program. Our findings demonstrate how two independent gene networks that support critical GC functions are modulated by m6A through distinct mRNA binders.
Collapse
Affiliation(s)
- Amalie C. Grenov
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihee Moss
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarit Edelheit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ross Cordiner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dominik Schmiedel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H. Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
31
|
Nucleotide Pool Imbalance and Antibody Gene Diversification. Vaccines (Basel) 2021; 9:vaccines9101050. [PMID: 34696158 PMCID: PMC8538681 DOI: 10.3390/vaccines9101050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
The availability and adequate balance of deoxyribonucleoside triphosphate (dNTP) is an important determinant of both the fidelity and the processivity of DNA polymerases. Therefore, maintaining an optimal balance of the dNTP pool is critical for genomic stability in replicating and quiescent cells. Since DNA synthesis is required not only in genomic replication but also in DNA damage repair and recombination, the abnormalities in the dNTP pool affect a wide range of chromosomal activities. The generation of antibody diversity relies on antigen-independent V(D)J recombination, as well as antigen-dependent somatic hypermutation and class switch recombination. These processes involve diverse sets of DNA polymerases, which are affected by the dNTP pool imbalances. This review discusses the role of the optimal dNTP pool balance in the diversification of antibody encoding genes.
Collapse
|
32
|
Kealy L, Good-Jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab018. [PMID: 36845573 PMCID: PMC8499879 DOI: 10.1093/oxfimm/iqab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,Correspondence address. Department of Biochemistry and Molecular Biology, Monash University, Ground floor reception, 23 Innovation Walk (Bldg 77), Clayton, Victoria 3800 Australia. Tel: (+613) 990-29510; E-mail: ; Twitter: @KimLJacobson
| |
Collapse
|
33
|
Lau AWY, Turner VM, Bourne K, Hermes JR, Chan TD, Brink R. BAFFR controls early memory B cell responses but is dispensable for germinal center function. J Exp Med 2021; 218:211511. [PMID: 33119033 PMCID: PMC7604765 DOI: 10.1084/jem.20191167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 11/04/2022] Open
Abstract
The TNF superfamily ligand BAFF maintains the survival of naive B cells by signaling through its surface receptor, BAFFR. Activated B cells maintain expression of BAFFR after they differentiate into germinal center (GC) or memory B cells (MBCs). However, the functions of BAFFR in these antigen-experienced B cell populations remain unclear. Here, we show that B cell-intrinsic BAFFR does not play a significant role in the survival or function of GC B cells or in the generation of the somatically mutated MBCs derived from them. Instead, BAFF/BAFFR signaling was required to generate the unmutated, GC-independent MBCs that differentiate directly from activated B cell blasts early in the response. Furthermore, amplification of BAFFR signaling in responding B cells did not affect GCs or the generation of GC-derived MBCs but greatly expanded the GC-independent MBC response. Although BAFF/BAFFR signaling specifically controlled the formation of the GC-independent MBC response, both types of MBCs required input from this pathway for optimal long-term survival.
Collapse
Affiliation(s)
- Angelica W Y Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Vivian M Turner
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Katherine Bourne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Tyani D Chan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| |
Collapse
|
34
|
Son YM, Sun J. Co-Ordination of Mucosal B Cell and CD8 T Cell Memory by Tissue-Resident CD4 Helper T Cells. Cells 2021; 10:cells10092355. [PMID: 34572004 PMCID: PMC8471972 DOI: 10.3390/cells10092355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Adaptive cellular immunity plays a major role in clearing microbial invasion of mucosal tissues in mammals. Following the clearance of primary pathogens, memory lymphocytes are established both systemically and locally at pathogen entry sites. Recently, resident memory CD8 T and B cells (TRM and BRM respectively), which are parked mainly in non-lymphoid mucosal tissues, were characterized and demonstrated to be essential for protection against secondary microbial invasion. Here we reviewed the current understanding of the cellular and molecular cues regulating CD8 TRM and BRM development, maintenance and function. We focused particularly on elucidating the role of a novel tissue-resident helper T (TRH) cell population in assisting TRM and BRM responses in the respiratory mucosa following viral infection. Finally, we argue that the promotion of TRH responses by future mucosal vaccines would be key to the development of successful universal influenza or coronavirus vaccines, providing long-lasting immunity against a broad spectrum of viral strains.
Collapse
Affiliation(s)
- Young Min Son
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: or
| |
Collapse
|
35
|
Verdecia M, Kokai-Kun JF, Kibbey M, Acharya S, Venema J, Atouf F. COVID-19 vaccine platforms: Delivering on a promise? Hum Vaccin Immunother 2021; 17:2873-2893. [PMID: 34033528 PMCID: PMC8381795 DOI: 10.1080/21645515.2021.1911204] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 and COVID-19 has brought into sharp focus the need for a vaccine to prevent this disease. Vaccines have saved millions of lives since their introduction to the public over 200 years ago. The potential for vaccination reached new heights in the mid-20th century with the development of technologies that expanded the ability to create novel vaccines. Since then, there has been continued technological advancement in vaccine development. The resulting platforms provide the promise for solutions for many infectious diseases, including those that have been with us for decades as well as those just now emerging. Each vaccine platform represents a different technology with a unique set of advantages and challenges, especially when considering manufacturing. Therefore, it is essential to understand each platform as a separate product and process with its specific quality considerations. This review outlines the relevant platforms for developing a vaccine for SARS-CoV-2 and discusses the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Mark Verdecia
- United States Pharmacopeial Convention, Rockville, MD, USA
| | | | - Maura Kibbey
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Sarita Acharya
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Jaap Venema
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Fouad Atouf
- United States Pharmacopeial Convention, Rockville, MD, USA
| |
Collapse
|
36
|
Shen C, Xue X, Zhang X, Wu L, Duan X, Su C. Dexamethasone reduces autoantibody levels in MRL/lpr mice by inhibiting Tfh cell responses. J Cell Mol Med 2021; 25:8329-8337. [PMID: 34318604 PMCID: PMC8419171 DOI: 10.1111/jcmm.16785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that dexamethasone (Dex) reduces the levels of anti‐nuclear (ANA) and anti‐dsDNA antibodies in MRL/lpr mice (a mouse model of SLE). However, the effect of Dex on T follicular helper (Tfh) cells is less documented. Here, using the MRL/lpr mouse model, we investigated the influence of Dex on Tfh cells and potential underlying mechanisms. The data showed that the proportion of Tfh cells, identified as CD4+CXCR5+ICOS+, CD4+CXCR5+PD‐1+ or CD4+BCL‐6+ cells, markedly decreased after treatment with the Dex, in both Balb/c mice and MRL/lpr mice. Dex significantly inhibited IL‐21 expression at both the mRNA and the protein levels. Dex also significantly reduced the proportion of germinal centre B cells and decreased serum IgG, IgG2a/b and IgA levels. Moreover, a positive correlation between the proportion of Tfh cells (CD4+CXCR5+ICOS+, CD4+CXCR5+PD‐1+ or CD4+BCL‐6+) and autoantibodies was observed. Dex significantly increased the Prdm1 and Stat5b mRNA expression and decreased the Bcl‐6 and c‐Maf mRNA expression of CD4+T cells. In brief, Dex inhibited the Tfh development, which relies on many other transcription factors in addition to Bcl‐6. Our data indicate that Dex can be used as a Tfh cell inhibitor in SLE.
Collapse
Affiliation(s)
- Chunxiu Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaonan Xue
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lihua Wu
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.,College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Chunxia Su
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
37
|
Liu J, Fei Y, Zhou T, Ji H, Wu J, Gu X, Luo Y, Zhu J, Feng M, Wan P, Qiu B, Lu Y, Yang T, Deng P, Zhou C, Gong D, Deng J, Xue F, Xia Q. Bile Acids Impair Vaccine Response in Children With Biliary Atresia. Front Immunol 2021; 12:642546. [PMID: 33936059 PMCID: PMC8085329 DOI: 10.3389/fimmu.2021.642546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Vaccination is the best way to protect children under 5 years from death or disability. Children with biliary atresia (BA), which is the most common pediatric cholestatic end-stage liver disease (PELD), are more vulnerable to infectious diseases. However, the vaccination coverage and factors modulating vaccine responses in children with BA are largely unknown. Methods In this study, 288 children (median age: 7 months) diagnosed with BA before liver transplantation were enrolled for the evaluation of vaccination status and the factors affecting the immune response to the hepatitis B (HBV) vaccine. Moreover, 49 BA children (median age: 4 months) were enrolled for flow cytometric analysis of CD4+ T cells and CD19+ B cell subsets and correlations with serum bile acid levels. Results Generally, these children had very low routine vaccination rates for the meningococcal serogroup AC (Men AC) (41.2%), measles-mumps-rubella (MMR) (31.3%), poliomyelitis (Polio) (25.3%), hepatitis A (HAV) (25.0%), Japanese encephalitis (JE) (15.0%), diphtheria-tetanus-pertussis (DTP) (14.2%), meningococcal serogroup A (Men A) (13.5%) and varicella (VAR) (10.8%) vaccines, but not for the HBV (96.2%) and bacillus Calmette-Guérin (BCG) (84.7%) vaccines. Remarkably, 19.8% (57/288) of the patients had HBV infection. Out of 220 patients vaccinated for HBV, 113 (51.4%), 85 (38.6%) and 22 (10%) had one, two or three doses of the HBV vaccine, respectively. Furthermore, logistic regression analysis revealed that the bile acid level was an independent factor associated with poor HBV vaccine response (p = 0.03; OR = 0.394; 95% CI = 0.170-0.969). Immunophenotyping showed that bile acids were only negatively correlated with the CD19+CD27+IgG+ post-class-switched memory B cell ratio (p = 0.01). Conclusion This study reveals the overall vaccination rates of routine vaccines in Chinese BA children are very low and the poor HBV vaccine responses are associated with bile acids, possibly via the inhibition of CD19+CD27+IgG+ post-class-switched memory B cell response. Clinical Trial Registration http://www.chictr.org.cn, identifier ChiCTR1800019165.
Collapse
Affiliation(s)
- Jinchuan Liu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Fei
- Department of Immunology, Shanghai Pudong District Center for Disease Control and Prevention, Shanghai, China
| | - Tao Zhou
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangqian Gu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wan
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bijun Qiu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yefeng Lu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Yang
- Department of Immunology, Shanghai Pudong District Center for Disease Control and Prevention, Shanghai, China
| | - Pengfei Deng
- Department of Immunology, Shanghai Pudong District Center for Disease Control and Prevention, Shanghai, China
| | - Cuiping Zhou
- Department of Immunology, Shanghai Pudong District Center for Disease Control and Prevention, Shanghai, China
| | - Dongcheng Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, and China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Deng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, and China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xue
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Robinson MJ, Ding Z, Pitt C, Brodie EJ, Quast I, Tarlinton DM, Zotos D. The Amount of BCL6 in B Cells Shortly after Antigen Engagement Determines Their Representation in Subsequent Germinal Centers. Cell Rep 2021; 30:1530-1541.e4. [PMID: 32023467 DOI: 10.1016/j.celrep.2020.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
It is unknown whether the incremental increases in BCL6 amounts in antigen-activated B cells influence the unfolding differentiation before germinal center (GC) formation. By comparing shortly after immunization the distribution of conventional B cells to those enforced to express BCL6 at the upper quartile of normal and those lacking BCL6 altogether, we determined that B cell representation in the stages before the GC compartment was related to BCL6 amounts. This was not by increased proliferation or suppression of early plasmablast differentiation, but rather by preferential recruitment and progression through these early stages of B cell activation, culminating in preferential transition into GC. Once established, this bias was stable in GC over several weeks; other BCL6-regulated GC B cell behaviors were unaffected. We propose that setting BCL6 amounts very early in activated B cells will be central in determining clonal representation in the GC and thus memory populations.
Collapse
Affiliation(s)
- Marcus James Robinson
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
| | - Catherine Pitt
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Erica Janet Brodie
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - David Mathew Tarlinton
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Dimitra Zotos
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
39
|
Zhang S, Wang B, Ma F, Tong F, Yan B, Liu T, Xie H, Song L, Yu S, Wei L. Characteristics of B lymphocyte infiltration in HPV + head and neck squamous cell carcinoma. Cancer Sci 2021; 112:1402-1416. [PMID: 33529452 PMCID: PMC8019230 DOI: 10.1111/cas.14834] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus (HPV) is an important etiological factor of head and neck squamous cell carcinoma (HNSCC). HPV+ HNSCC patients usually have a better prognosis, which probably results from the higher infiltration of B lymphocytes. This study was purposed to detect the infiltration of B lymphocyte subsets and the correlation between B lymphocyte subsets and the prognosis in HPV‐related HNSCC. In this study, 124 HPV+ and 513 HPV− HNSCC samples were obtained from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database for transcriptomic analysis. Infiltration of B lymphocytes subsets was detected with 7 HPV+ HNSCC and 13 HPV− HNSCC tissues through immunohistochemistry and immunofluorescence. One HPV− HNSCC sample was detected with single‐cell sequencing for chemokine analysis. In the results, the infiltration of plasma cells (CD19+CD38+) and memory B cells (MS4A1+CD27+) was higher in HPV+ HNSCC samples. High infiltration of plasma cells and memory B cells was related to a better prognosis. High density of B lymphocytes was positively correlated with high CXCL13 production mainly from CD4+ T lymphocytes in HNSCC. These results indicated that a high density of plasma cells and memory B cells could predict excellent prognosis. CD4+ T lymphocytes might affect B lymphocytes and their subsets through the CXCL13/CXCR5 axis in HNSCC.
Collapse
Affiliation(s)
- Siwei Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Bozhi Wang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Fen Ma
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Fangjia Tong
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Bingqing Yan
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Tianyang Liu
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Huanhuan Xie
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Lianhao Song
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Siyang Yu
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Lanlan Wei
- Department of Microbiology, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Wiggins KJ, Scharer CD. Roadmap to a plasma cell: Epigenetic and transcriptional cues that guide B cell differentiation. Immunol Rev 2020; 300:54-64. [PMID: 33278036 DOI: 10.1111/imr.12934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) or plasma cells secrete antibodies and form a cornerstone of humoral immunity. B cells that receive activation signals in the presence or absence of T cells initiate a differentiation program that requires epigenetic and transcriptional reprogramming in order to ultimately form ASC. Reprogramming is accomplished through the interplay of transcription factors that initiate gene expression programs and epigenetic mechanisms that maintain these programs and cell fates. An important consideration is that all of these factors are operating in the context of cell division. Recent technical advances now allow mechanistic studies to move beyond genetic studies to identify the promoters and enhancer repertoires that are regulated by epigenetic mechanisms and transcription factors in rare cell types and differentiation stages in vivo. This review will detail efforts to integrate transcriptional and epigenetic changes during B cell differentiation with cell division in vivo. What has emerged is a multiphased differentiation model that requires distinct transcription factors and epigenetic programs at each step. The identification of markers that define each phase will help facilitate the manipulation of B cell differentiation for vaccine development or to treat diseases where antibodies are a component.
Collapse
Affiliation(s)
- Keenan J Wiggins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
41
|
Jones K, Savulescu AF, Brombacher F, Hadebe S. Immunoglobulin M in Health and Diseases: How Far Have We Come and What Next? Front Immunol 2020; 11:595535. [PMID: 33193450 PMCID: PMC7662119 DOI: 10.3389/fimmu.2020.595535] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
B lymphocytes are important in secreting antibodies that protect against invading pathogens such as viruses, bacteria, parasites, and also in mediating pathogenesis of allergic diseases and autoimmunity. B lymphocytes develop in the bone marrow and contain heavy and light chains, which upon ligation form an immunoglobulin M (IgM) B cell receptor (BCR) expressed on the surface of naïve immature B cells. Naïve B cells expressing either IgM or IgD isotypes are thought to play interchangeable functions in antibody responses to T cell-dependent and T cell-independent antigens. IgM short-lived plasma cells (SLPCs) and antigen-specific IgM memory B cells (MBCs-M) are critical in the first few days of infection, as well as long-term memory induced by vaccination, respectively. At mucosal surfaces, IgM is thought to play a critical part in promoting mucosal tolerance and shaping microbiota together with IgA. In this review, we explore how IgM structure and BCR signaling shapes B cell development, self and non-self-antigen-specific antibody responses, responses to infectious (such as viruses, parasites, and fungal) and non-communicable diseases (such as autoimmunity and allergic asthma). We also explore how metabolism could influence other B cell functions such as mucosal tolerance and class switching. Finally, we discuss some of the outstanding critical research questions in both experimental and clinical settings targeting IgM.
Collapse
Affiliation(s)
- Katelyn Jones
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Ottens K, Schneider J, Kane LP, Satterthwaite AB. PIK3IP1 Promotes Extrafollicular Class Switching in T-Dependent Immune Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:2100-2108. [PMID: 32887751 DOI: 10.4049/jimmunol.2000584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
PI3K plays multiple roles throughout the life of a B cell. As such, its signaling is tightly regulated. The importance of this is illustrated by the fact that both loss- and gain-of-function mutations in PI3K can cause immunodeficiency in humans. PIK3IP1, also known as TrIP, is a transmembrane protein that has been shown to inhibit PI3K in T cells. Results from the ImmGen Consortium indicate that PIK3IP1 expression fluctuates throughout B cell development in a manner inversely correlated with PI3K activity; however, its role in B cells is poorly understood. In this study, we define the consequences of B cell-specific deletion of PIK3IP1. B cell development, basal Ig levels, and T-independent responses were unaffected by loss of PIK3IP1. However, there was a significant delay in the production of IgG during T-dependent responses, and secondary responses were impaired. This is likely due to a role for PIK3IP1 in the extrafollicular response because germinal center formation and affinity maturation were normal, and PIK3IP1 is not appreciably expressed in germinal center B cells. Consistent with a role early in the response, PIK3IP1 was downregulated at late time points after B cell activation, in a manner dependent on PI3K. Increased activation of the PI3K pathway was observed in PIK3IP1-deficient B cells in response to engagement of both the BCR and CD40 or strong cross-linking of CD40 alone. Taken together, these observations suggest that PIK3IP1 promotes extrafollicular responses by limiting PI3K signaling during initial interactions between B and T cells.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jalyn Schneider
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
43
|
Merante D. SARS-CoV-2, from its current highly contagious spreading toward the global development of an effective and safe vaccine: challenges and uncertainties. Expert Opin Drug Saf 2020; 19:771-774. [PMID: 32442040 PMCID: PMC7441761 DOI: 10.1080/14740338.2020.1773789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/21/2020] [Indexed: 11/14/2022]
|
44
|
Husain A, Xu J, Fujii H, Nakata M, Kobayashi M, Wang JY, Rehwinkel J, Honjo T, Begum NA. SAMHD1-mediated dNTP degradation is required for efficient DNA repair during antibody class switch recombination. EMBO J 2020; 39:e102931. [PMID: 32511795 DOI: 10.15252/embj.2019102931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.
Collapse
Affiliation(s)
- Afzal Husain
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jianliang Xu
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Cooper L, Good-Jacobson KL. Dysregulation of humoral immunity in chronic infection. Immunol Cell Biol 2020; 98:456-466. [PMID: 32275789 DOI: 10.1111/imcb.12338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic viral infections disrupt the ability of the humoral immune response to produce neutralizing antibody or form effective immune memory, preventing viral clearance and making vaccine design difficult. Multiple components of the B-cell response are affected by pathogens that are not cleared from the host. Changes in the microenvironment shift production of B cells to short-lived plasma cells early in the response. Polyclonal B cells are recruited into both the plasma cell and germinal center compartments, inhibiting the formation of a targeted, high-affinity response. Finally, memory B cells shift toward an "atypical" phenotype, which may in turn result in changes to the functional properties of this population. While similar properties of B-cell dysregulation have been described across different types of persistent infections, key questions about the underlying mechanisms remain. This review will discuss the recent advances in this field, as well as highlight the critical questions about the interplay between viral load, microenvironment, the polyclonal response and atypical memory B cells that are yet to be answered. Design of new preventative treatments will rely on identifying the extrinsic and intrinsic modulators that push B cells toward an ineffective response, and thus identify new ways to guide them back onto the best path for clearance of virus and formation of effective immune memory.
Collapse
Affiliation(s)
- Lucy Cooper
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
46
|
Heeringa JJ, McKenzie CI, Varese N, Hew M, Bakx ATCM, Aui PM, Rolland JM, O’Hehir RE, Zelm MC. Induction of IgG 2 and IgG 4 B-cell memory following sublingual immunotherapy for ryegrass pollen allergy. Allergy 2020; 75:1121-1132. [PMID: 31587307 PMCID: PMC7317934 DOI: 10.1111/all.14073] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND While treatment for atopic rhinitis is aimed mostly to relieve symptoms, only allergen-specific immunotherapy (AIT) is targeted to modify the natural history of allergic diseases. This results in sustained clinical tolerance, even when treatment has stopped. The immunomodulatory effects of AIT are attributed mainly to increased regulatory T-cell function and increased allergen-specific IgG4 , yet little is known about the effect on the memory B-cell compartment. OBJECTIVE We aimed to examine the effects of AIT on the IgE- and IgG subclass-expressing memory B cells. METHODS We recruited 29 patients with atopic seasonal rhinoconjunctivitis and performed a longitudinal analysis of the peripheral immune compartment before, during, and after sublingual immunotherapy (SLIT) for allergy to temperate grass pollen, predominantly to ryegrass pollen (RGP; Lolium perenne). Using flow cytometry on peripheral blood mononuclear cells and serum immunoassays, we analyzed the effects of a 4 months preseasonal treatment regimen comprising two or three courses in consecutive years on circulating IgE+ and IgG+ memory B cells and allergen-specific Ig levels. RESULTS SLIT increased RGP-specific serum IgG2 and IgG4 , as well as the frequencies of IgG2 + and IgG4 + memory B cells, whereas no effect was observed on the IgE+ memory B-cell compartment. Furthermore, SLIT enhanced proportions of regulatory T cells specific to RGP. These changes were associated with clinical improvement. CONCLUSION Our data provide evidence for immunological effects of SLIT on B-cell memory. Skewing responses toward IgG2 and IgG4 subclasses might be a mechanism to suppress IgE-mediated allergic responses.
Collapse
Affiliation(s)
- Jorn J. Heeringa
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
- Department of Immunology Erasmus MC University Medical Center Rotterdam the Netherlands
- Department of Pediatrics Erasmus MC University Medical Center Rotterdam the Netherlands
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne Vic. Australia
| | - Mark Hew
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne Vic. Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Vic. Australia
| | - Amy T. C. M. Bakx
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
| | - Pei M. Aui
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne Vic. Australia
| | - Robyn E. O’Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne Vic. Australia
| | - Menno C. Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne Vic. Australia
| |
Collapse
|
47
|
Gao W, Sun X, Li D, Sun L, He Y, Wei H, Jin F, Cao Y. Toll-like receptor 7 and Toll-like receptor 9 agonists effectively enhance immunological memory in Plasmodium chabaudi infected BALB/c mice. Int Immunopharmacol 2020; 81:106248. [PMID: 32007799 DOI: 10.1016/j.intimp.2020.106248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyan Gao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China; Department of Obstetrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaodan Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Danni Li
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Lin Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Yang He
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Huanping Wei
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yaming Cao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
48
|
Biram A, Davidzohn N, Shulman Z. T cell interactions with B cells during germinal center formation, a three-step model. Immunol Rev 2019; 288:37-48. [PMID: 30874355 DOI: 10.1111/imr.12737] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long-lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity-based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B-cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B-cell and T-cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long-lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T-cell receptor: peptide-loaded major histocompatibility class II (pMHCII), and LFA-1:ICAMs. These essential components support a three-step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long-lasting antibody-mediated immunity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
49
|
Zhang Y, Good-Jacobson KL. Epigenetic regulation of B cell fate and function during an immune response. Immunol Rev 2019; 288:75-84. [PMID: 30874352 DOI: 10.1111/imr.12733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
The humoral immune response requires coordination of molecular programs to mediate differentiation into unique B cell subsets that help clear the infection and form immune memory. Epigenetic modifications are crucial for ensuring that the appropriate genes are transcribed or repressed during B cell differentiation. Recent studies have illuminated the changes in DNA methylation and histone post-translational modifications that accompany the formation of germinal center and antibody-secreting cells during an immune response. In particular, the B cell subset-specific expression and function of DNA methyltransferases and histone-modifying complexes that mediate epigenome changes have begun to be unravelled. This review will discuss the recent advances in this field, as well as highlight critical questions about the relationship between epigenetic regulation and B cell fate and function that are yet to be answered.
Collapse
Affiliation(s)
- Yan Zhang
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
Mesin L, Schiepers A, Ersching J, Barbulescu A, Cavazzoni CB, Angelini A, Okada T, Kurosaki T, Victora GD. Restricted Clonality and Limited Germinal Center Reentry Characterize Memory B Cell Reactivation by Boosting. Cell 2019; 180:92-106.e11. [PMID: 31866068 PMCID: PMC6958527 DOI: 10.1016/j.cell.2019.11.032] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/28/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
Repeated exposure to pathogens or their antigens triggers anamnestic antibody responses that are higher in magnitude and affinity than the primary response. These involve reengagement of memory B cell (MBC) clones, the diversity and specificity of which determine the breadth and effectiveness of the ensuing antibody response. Using prime-boost models in mice, we find that secondary responses are characterized by a clonality bottleneck that restricts the engagement of the large diversity of MBC clones generated by priming. Rediversification of mutated MBCs is infrequent within secondary germinal centers (GCs), which instead consist predominantly of B cells without prior GC experience or detectable clonal expansion. Few MBC clones, generally derived from higher-affinity germline precursors, account for the majority of secondary antibody responses, while most primary-derived clonal diversity is not reengaged detectably by boosting. Understanding how to counter this bottleneck may improve our ability to elicit antibodies to non-immunodominant epitopes by vaccination. Memory B cell reentry into germinal centers is rare under typical boost regimens Most (>90%) B cells in secondary GCs have no prior GC experience A clonality bottleneck restricts the diversity of recall antibody-producing cells Most primary diversity is found in an MBC compartment not accessed by boosting
Collapse
Affiliation(s)
- Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Alexandru Barbulescu
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Cecília B Cavazzoni
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy; European Centre for Living Technology (ECLT), Venice, Italy
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|