1
|
Yoon BK, Jackman JA. Medium-chain fatty acids and monoglycerides: Nanoarchitectonics-based insights into molecular self-assembly, membrane interactions, and applications. Adv Colloid Interface Sci 2025; 340:103465. [PMID: 40056558 DOI: 10.1016/j.cis.2025.103465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Medium-chain fatty acids (FAs) and monoglycerides (MGs) with saturated 6- to 12‑carbon long tails are single-chain lipid amphiphiles that demonstrate significant application merits. Key examples include their antimicrobial activity against antibiotic-resistant bacteria and emerging viral threats as well as innovations in oral pharmaceutics and biorenewable chemical production. These diverse functionalities are enabled by FA and MG self-assembly and their interactions with biological membranes. However, an integrated viewpoint connecting interfacial science principles to the broader application scope remains lacking. The objective of this review is to cover the latest progress in medium-chain FA and MG research and to build connections between molecular self-assembly, membrane interactions, and applications. By taking a bottom-up nanoarchitectonics perspective, we first examine molecular self-assembly principles, including ionization properties and formation of colloidal nanostructures such as micelles and vesicles. We then discuss membrane interaction concepts and experimental findings that illustrate how medium-chain FAs and MGs distinctly interact with phospholipid membranes. Based on this foundation, we highlight cutting-edge applications in medicine, agriculture, drug delivery, and sustainability, linking these advances to interfacial science concepts. In addition, we emphasize the growing convergence of experimental, theoretical, and computational approaches and offer a forward-looking perspective on future research needs and application opportunities.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Jalil A, Pilot T, Bourgeois T, Laubriet A, Li X, Diedisheim M, Deckert V, Magnani C, Le Guern N, Pais de Barros JP, Nguyen M, Pallot G, Vouilloz A, Proukhnitzky L, Hermetet F, Aires V, Lesniewska E, Lagrost L, Auwerx J, Le Goff W, Venteclef N, Steinmetz E, Thomas C, Masson D. Plasmalogen remodeling modulates macrophage response to cytotoxic oxysterols and atherosclerotic plaque vulnerability. Cell Rep Med 2025; 6:102131. [PMID: 40345182 DOI: 10.1016/j.xcrm.2025.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/18/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Essential fatty acid metabolism in myeloid cells plays a critical but underexplored role in immune function. Here, we demonstrate that simultaneous inactivation of two key enzymes involved in macrophage polyunsaturated fatty acid (PUFA) metabolism-ELOVL5, which elongates long-chain PUFAs, and LPCAT3, which incorporates them into phospholipids-disrupts membrane organization by promoting the formation of cholesterol-enriched domains. This increases macrophage sensitivity to cytotoxic oxysterols and leads to more vulnerable atherosclerotic plaques with enlarged necrotic cores in a mouse model of atherosclerosis. In humans, analysis of 187 carotid plaques reveals a positive correlation between LPCAT3/ELOVL5-generated phospholipids-including arachidonate (C20:4 n-6)-containing ether lipids-and more stable plaque profiles. Additionally, Mendelian randomization analysis supports a causal relationship between LPCAT3 expression and reduced risk of ischemic stroke. Our findings uncover a regulatory circuit essential for PUFA-containing phospholipid generation in macrophages, positioning PUFA-containing ether lipids as promising biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Antoine Jalil
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thomas Pilot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thibaut Bourgeois
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Aline Laubriet
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marc Diedisheim
- Centre - Clinique Saint Gatien Alliance (NCT+), 37214 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Valérie Deckert
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Charlène Magnani
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Naig Le Guern
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; Lipidomic Analytic Platform, UBFC, 21000 Dijon, France
| | - Maxime Nguyen
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Department of Anesthesiology and Critical Care Medicine, Dijon University Medical Center, 21000 Dijon, France
| | - Gaëtan Pallot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Adrien Vouilloz
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Lil Proukhnitzky
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - François Hermetet
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Virginie Aires
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Eric Lesniewska
- Université Bourgogne, UMR1231, 21000 Dijon, France; Laboratory of Physics, National Center for Scientific Research, URA 5027, UFR Sciences et techniques, 21000 Dijon, France
| | - Laurent Lagrost
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, ICAN Institut, UMR_S1166, Hôpital de la Pitié, 75013 Paris, France
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Eric Steinmetz
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Charles Thomas
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, 21000 Dijon, France.
| |
Collapse
|
3
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
4
|
Wang HY, Rumin A, Doktorova M, Sputay D, Chan SH, Wehman AM, Levental KR, Levental I. Loss of lipid asymmetry facilitates plasma membrane blebbing by decreasing membrane lipid packing. Proc Natl Acad Sci U S A 2025; 122:e2417145122. [PMID: 40324083 DOI: 10.1073/pnas.2417145122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/21/2025] [Indexed: 05/07/2025] Open
Abstract
Membrane blebs have important roles in cell migration, apoptosis, and intercellular communication through extracellular vesicles (EVs). While plasma membranes (PM) typically maintain phosphatidylserine (PS) on their cytoplasmic leaflet, most blebs have PS exposed on their outer leaflet, revealing that loss of steady-state lipid asymmetry often accompanies PM blebbing. How these changes in PM lipid organization regulate membrane properties and affect bleb formation remains unknown. We confirmed that lipid scrambling through the scramblase TMEM16F is essential for chemically induced membrane blebbing across cell types, with the kinetics of PS exposure being tightly coupled to the kinetics of bleb formation. Measurement of lipid packing with environment-sensitive probes revealed that lipid scrambling changes the physical properties of the PM, reducing lipid packing and facilitating the bilayer bending required for bleb formation. Accordingly, reducing lipid packing of the PM through cholesterol extraction, elevated temperature, or treatment with biological amphiphiles promoted blebbing in the absence of TMEM16F. Consistent with these cellular observations, blebbing in Caenorhabditis elegans embryos measured via EV production was significantly reduced by depleting the TMEM16-homolog ANOH-2. Our findings suggest that changing membrane biophysical properties by lipid scrambling is an important contributor to the formation of blebs and EVs and potentially other cellular processes involving PM deformation.
Collapse
Affiliation(s)
- Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
| | - Alissa Rumin
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna 171 65, Sweden
| | - Daryna Sputay
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
| | - Sze Ham Chan
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
| | - Ann M Wehman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
5
|
Poojari CS, Bommer T, Hub JS. Viral fusion proteins of classes II and III recognize and reorganize complex biological membranes. Commun Biol 2025; 8:717. [PMID: 40341632 PMCID: PMC12062360 DOI: 10.1038/s42003-025-08040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/03/2025] [Indexed: 05/10/2025] Open
Abstract
Viral infection requires stable binding of viral fusion proteins to host membranes, which contain hundreds of lipid species. The mechanisms by which fusion proteins utilize specific host lipids to drive virus-host membrane fusion remains elusive. We conducted molecular simulations of classes I, II, and III fusion proteins interacting with membranes of diverse lipid compositions. Free energy calculations reveal that class I fusion proteins generally exhibit stronger membrane binding compared to classes II and III - a trend consistent across 74 fusion proteins from 13 viral families as suggested by sequence analysis. Class II fusion proteins utilize a lipid binding pocket formed by fusion protein monomers, stabilizing the initial binding of monomers to the host membrane prior to assembling into fusogenic trimers. In contrast, class III fusion proteins form a lipid binding pocket at the monomer-monomer interface through a unique fusion loop crossover. The distinct lipid binding modes correlate with the differing maturation pathways of classes II and III proteins. Binding affinity was predominantly controlled by cholesterol and gangliosides as well as via local enrichment of polyunsaturated lipids, thereby locally enhancing membrane disorder. Our study reveals energetics and atomic details underlying lipid recognition and reorganization by different viral fusion protein classes, offering insights into their specialized membrane fusion pathways.
Collapse
Affiliation(s)
- Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, PharmaScienceHub (PSH), 66123, Saarbrücken, Germany.
| | - Tobias Bommer
- Theoretical Physics and Center for Biophysics, Saarland University, PharmaScienceHub (PSH), 66123, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, PharmaScienceHub (PSH), 66123, Saarbrücken, Germany.
| |
Collapse
|
6
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. J Cell Biol 2025; 224:e202407166. [PMID: 40214667 PMCID: PMC11987707 DOI: 10.1083/jcb.202407166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 02/18/2025] [Indexed: 04/14/2025] Open
Abstract
Intracellular transport among organellar compartments occurs in two general ways: by membrane-bound carriers and membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. By studying coat protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role shedding new insights into how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact and contributing to the general understanding of how intracellular transport carriers are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences, Arkansas Children’s Nutrition Research Center, and Central Arkansas VA Healthcare System, Little Rock, AR, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
7
|
Li Q, Zhou X, Zhang X, Zhang C, Zhang SO. Nuclear receptor signaling regulates compartmentalized phosphatidylcholine remodeling to facilitate thermosensitive lipid droplet fusion. Nat Commun 2025; 16:3955. [PMID: 40289189 PMCID: PMC12034805 DOI: 10.1038/s41467-025-59256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Lipid droplet (LD) fusion plays a key role in cellular fat storage. How the phospholipid monolayer membrane of LD functions in fusion, however, is poorly understood. In Caenorhabditis elegans, loss of cytochrome P450 protein CYP-37A1 causes de-repression of nuclear receptor DAF-12, promoting thermosensitive LD fusion. Here, we report that in cyp-37A1 mutants, DAF-12 up-regulates the transcription and LD localization of seven fatty acid desaturases (FAT-1 to FAT-7) and a lysophosphatidylcholine acyltransferase 3 (LPCAT3) homolog MBOA-6. LD-targeting of these enzymes increases phosphatidylcholine (PC) containing ω-3 C20 polyunsaturated fatty acids, which are essential for thermosensitive fusion. ω-3 C20-PC increase LD membrane fluidity, as does high ambient temperature. Lowering LD membrane fluidity by a chemical membrane rigidifier attenuates thermosensitive fusion; ectopic targeting of ω3 desaturase FAT-1 or MBOA-6 to LDs increases fusion kinetics and thermosensitivity. Furthermore, human LPCAT3 localizes to LDs, positively regulates LD size in human cells and facilitates thermosensitive fusion in C. elegans. These results demonstrate that DAF-12 signaling regulates compartmentalized membrane remodeling and fluidization to facilitate conserved thermosensitive LD fusion.
Collapse
Affiliation(s)
- Qi Li
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaofang Zhou
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaocong Zhang
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Chuqi Zhang
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Shaobing O Zhang
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
8
|
Peters F, Höfs W, Lee H, Brodesser S, Kruse K, Drexler HC, Hu J, Raker VK, Lukas D, von Stebut E, Krönke M, Niessen CM, Wickström SA. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J Cell Biol 2025; 224:e202403083. [PMID: 39879198 PMCID: PMC11778283 DOI: 10.1083/jcb.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically, HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis. This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.
Collapse
Affiliation(s)
- Franziska Peters
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Windie Höfs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hunki Lee
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Brodesser
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jiali Hu
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Verena K. Raker
- Department of Dermatology, University of Münster, Münster, Germany
| | - Dominika Lukas
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Coles NP, Elsheikh S, Quesnel A, Butler L, Achadu O, Islam M, Kalesh K, Occhipinti A, Angione C, Marles-Wright J, Koss DJ, Thomas AJ, Outeiro TF, Filippou PS, Khundakar AA. Alpha-synuclein aggregation induces prominent cellular lipid changes as revealed by Raman spectroscopy and machine learning analysis. Brain Commun 2025; 7:fcaf133. [PMID: 40226383 PMCID: PMC11992568 DOI: 10.1093/braincomms/fcaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/28/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
The aggregation of α-synuclein is a central neuropathological hallmark in neurodegenerative disorders known as Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. In the aggregation process, α-synuclein transitions from its native disordered/α-helical form to a β-sheet-rich structure, forming oligomers and protofibrils that accumulate into Lewy bodies, in a process that is thought to underlie neurodegeneration. Lipids are thought to play a critical role in this process by facilitating α-synuclein aggregation and contributing to cell toxicity, possibly through ceramide production. This study aimed to investigate biochemical changes associated with α-synuclein aggregation, focusing on lipid changes, using Raman spectroscopy coupled with machine learning. HEK293, Neuro2a and SH-SY5Y expressing increased levels of α-synuclein were treated with sonicated α-synuclein pre-formed fibrils, to model seeded aggregation. Raman spectroscopy, complemented by an in-house lipid spectral library, was used to monitor the aggregation process and its effects on cellular viability over 14 days. We detected α-synuclein aggregation by assessing β-sheet peaks at 1045 cm⁻1, in cells treated with α-synuclein pre-formed fibrils, using machine learning (principal component analysis and uniform manifold approximation and projection) analysis based on Raman spectral features. Changes in lipid profiles, and especially sphingolipids, including a decrease in sphingomyelin and increase in ceramides, were observed, consistent with oxidative stress and apoptosis. Altogether, our study informs on biochemical alterations that can be considered for the design of therapeutic strategies for Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Nathan P Coles
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Suzan Elsheikh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Lucy Butler
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Ojodomo Achadu
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Meez Islam
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Karunakaran Kalesh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Annalisa Occhipinti
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Claudio Angione
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Jon Marles-Wright
- Biosciences Institute, Cookson Building, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David J Koss
- Division of Neuroscience, School of Medicine, University of Dundee, Nethergate, Dundee DD1 4HN, Scotland
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3a, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Straße 3A, 37075 Göttingen, Germany
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ahmad A Khundakar
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Svistunov VO, Ehrmann KJ, Lencer WI, Schmieder SS. Sorting of complex sphingolipids within the cellular endomembrane systems. Front Cell Dev Biol 2025; 12:1490870. [PMID: 40078962 PMCID: PMC11897003 DOI: 10.3389/fcell.2024.1490870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Cells contain a plethora of structurally diverse lipid species, which are unevenly distributed across the different cellular membrane compartments. Some of these lipid species require vesicular trafficking to reach their subcellular destinations. Here, we review recent advances made in the field that contribute to understanding lipid sorting during endomembrane trafficking.
Collapse
Affiliation(s)
- Victor O. Svistunov
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Kigumbi J. Ehrmann
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Digestive Diseases Center, Boston, MA, United States
| | - S. S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Cohen BE. The Role of the Swollen State in Cell Proliferation. J Membr Biol 2025; 258:1-13. [PMID: 39482485 DOI: 10.1007/s00232-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
Cell swelling is known to be involved in various stages of the growth of plant cells and microorganisms but in mammalian cells how crucial a swollen state is for determining the fate of the cellular proliferation remains unclear. Recent evidence has increased our understanding of how the loss of the cell surface interactions with the extracellular matrix at early mitosis decreases the membrane tension triggering curvature changes in the plasma membrane and the activation of the sodium/hydrogen (Na +/H +) exchanger (NHE1) that drives osmotic swelling. Such a swollen state is temporary, but it is critical to alter essential membrane biophysical parameters that are required to activate Ca2 + channels and modulate the opening of K + channels involved in setting the membrane potential. A decreased membrane potential across the mitotic cell membrane enhances the clustering of Ras proteins involved in the Ca2 + and cytoskeleton-driven events that lead to cell rounding. Changes in the external mechanical and osmotic forces also have an impact on the lipid composition of the plasma membrane during mitosis.
Collapse
|
12
|
Lee-Okada HC, Xue C, Yokomizo T. Recent advances on the physiological and pathophysiological roles of polyunsaturated fatty acids and their biosynthetic pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159564. [PMID: 39326727 DOI: 10.1016/j.bbalip.2024.159564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyunsaturated fatty acids (PUFAs)-fatty acids containing multiple double bonds within their carbon chain-are an indispensable component of the cell membrane. PUFAs, including the omega-6 PUFA arachidonic acid (ARA; C20:4n-6) and the omega-3 PUFAs eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), have been implicated in various (patho)physiological events. These PUFAs are either obtained from the diet or biosynthesized from the essential fatty acids linoleic acid (LA; C18:2n-6) and α-linolenic acid (ALA; C18:3n-3) via enzymatic reactions that are catalyzed by fatty acid elongases (ELOVL2 and ELOVL5) and fatty acid desaturases (FADS1 and FADS2). In this review, we summarize the recent literature studying the role of PUFAs, placing a special emphasis on the newly discovered functions of PUFAs and their biosynthetic pathway as revealed by studies using animal models targeting the PUFA biosynthetic pathway and genetic approaches including genome-wide association studies.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Chengxuan Xue
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Otsuka Y, Okada M, Hashidate-Yoshida T, Nagata K, Yamada M, Goto M, Sun M, Shindou H, Toyoda M. Improved ion detection sensitivity in mass spectrometry imaging using tapping-mode scanning probe electrospray ionization to visualize localized lipids in mouse testes. Anal Bioanal Chem 2025; 417:275-286. [PMID: 39572428 PMCID: PMC11698803 DOI: 10.1007/s00216-024-05641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025]
Abstract
Mass spectrometry imaging (MSI) is a promising analytical method to visualize the distribution of lipids in biological tissues. To clarify the relationship between cellular distribution and lipid types in a tissue, it is crucial to achieve both an improvement in ion detection sensitivity and a reduction in the ionization area. We report methods for improving the efficiency of ion transfer to a mass spectrometer and miniaturizing the extraction area of a sample for tapping-mode scanning probe electrospray ionization (t-SPESI), atmospheric pressure sampling, and ionization methods. To verify the efficacy of the new t-SPESI measurement system, MSI was performed on mouse testes with a pixel size of 5 µm. Lipid images of the testes from wild-type (WT) and lysophospholipid acyltransferase 3 (LPLAT3) knockout mice revealed the characteristic distribution of docosahexaenoic acid-containing phospholipids (DHA-PLs). A comparison of the ion images obtained by MSI and optical images of the same tissues stained with hematoxylin and eosin suggested that the distribution of DHA-PLs was significantly altered by spermatogenesis in the WT mouse testes.
Collapse
Affiliation(s)
- Yoichi Otsuka
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Maki Okada
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tomomi Hashidate-Yoshida
- Department of Life Science, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Katsuyuki Nagata
- Department of Life Science, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | | | - Motohito Goto
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Kanagawa, Japan
| | - Mengze Sun
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hideo Shindou
- Department of Life Science, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Michisato Toyoda
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
14
|
Pavlov RV, Akimov SA, Dashinimaev EB, Bashkirov PV. Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms. Int J Mol Sci 2024; 25:13540. [PMID: 39769303 PMCID: PMC11677079 DOI: 10.3390/ijms252413540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes. This review examines the critical role of membrane fusion in lipofection efficiency, with a particular focus on the molecular mechanisms that govern lipoplex-membrane interactions. This analysis will examine the key challenges inherent to the fusion process, from achieving initial membrane proximity to facilitating final content release through membrane remodeling. In contrast to viral vectors, which utilize specialized fusion proteins, lipid vectors necessitate a strategic formulation and environmental optimization to enhance their fusogenicity. This review discusses recent advances in vector design and fusion-promoting strategies, emphasizing their potential to improve gene delivery yield. It highlights the importance of understanding lipoplex-membrane fusion mechanisms for developing next-generation delivery systems and emphasizes the need for continued fundamental research to advance lipid-mediated transfection technology.
Collapse
Affiliation(s)
- Rais V. Pavlov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia;
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Pavel V. Bashkirov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| |
Collapse
|
15
|
Jiang L, Yeung O, Ho W, Shum T, Wong M, Lam CSY, Chiou J. Multi-omics analysis reveals alterations of breastmilk metabolites and proteins in Hong Kong lactating mothers. FASEB J 2024; 38:e70240. [PMID: 39655667 PMCID: PMC11776036 DOI: 10.1096/fj.202401771r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
The nutritional contents of breastmilk (BM) directly participate in neonatal metabolism via breastfeeding. Currently, there is limited research on BM metabolites and proteins compositions, and their alterations during the long lactation period in Hong Kong mothers. In this study, liquid chromatography-mass spectrometry-based metabolomics, lipidomics and proteomics studies were applied to compare the compositions in BM of Hong Kong lactating mothers at the 2nd, 6th, and 12th months after delivery. Distinct metabolomics and lipidomics signatures in 6th month versus 2nd month and 12th month versus 2nd month were observed, and a total of 19 differential metabolites and 105 lipids were identified. Metabolomics study showed the significant alterations in key pathways involved in biotin metabolism, amino acid, and fatty acid-associated metabolisms. Lipidomics analysis indicated the accumulation of triglyceride and ceramide during the lactation period. The remodeling of glycerophospholipids was also observed during 12-month period. Moreover, 28 differentially expressed proteins were identified and mainly associated with GO functions and KEGG pathways of ribosome and complement and coagulation cascades, which were validated by network analysis. Our research contributes to the understanding of the BM compositions and differences during the long lactation period in postpartum women of Hong Kong.
Collapse
Affiliation(s)
- Lilong Jiang
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Oi‐Yee Yeung
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Wing‐Wa Ho
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Tim‐Fat Shum
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Man‐Sau Wong
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Carly S. Y. Lam
- Centre for Myopia Research, School of OptometryThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Centre for Eye and Vision Research (CEVR)Sha TinHong Kong
| | - Jiachi Chiou
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| |
Collapse
|
16
|
Sankaran SV, Saiba R, Sikdar S, Vemparala S. Correlation Between Antimicrobial Structural Classes and Membrane Partitioning: Role of Emerging Lipid Packing Defects. J Membr Biol 2024; 257:307-321. [PMID: 39037449 PMCID: PMC11584508 DOI: 10.1007/s00232-024-00318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
In this study, a combination of bioinformatics and molecular dynamics simulations is employed to investigate the partitioning behavior of different classes of antimicrobial peptides (AMPs) into model membranes. The main objective is to identify any correlations between the structural characteristics of AMPs and their membrane identification and early-stage partitioning mechanisms. The simulation results reveal distinct membrane interactions among the various structural classes of AMPs, particularly in relation to the generation and subsequent interaction with lipid packing defects. Notably, AMPs with a structure-less coil conformation generate a higher number of deep and shallow defects, which are larger in size compared to other classes of AMPs. AMPs with helical component demonstrated the deepest insertion into the membrane. On the other hand, AMPs with a significant percentage of beta sheets tend to adsorb onto the membrane surface, suggesting a potentially distinct partitioning mechanism attributed to their structural rigidity. These findings highlight the diverse membrane interactions and partitioning mechanisms exhibited by different structural classes of AMPs.
Collapse
Affiliation(s)
- S V Sankaran
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Roni Saiba
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
17
|
Xu M, Liu J, Yu J, Wang J, Li H, Zhong T, Hao Y, Li Z, Wang J, Huang X, Wang H, Tian Y, Zhao H, Wei Q, Zhang X. Methyl-β-cyclodextrin Enhances Tumor Cellular Uptake and Accumulation of α-Linolenic Acid-Paclitaxel Conjugate Nanoparticles. Mol Pharm 2024. [PMID: 39495317 DOI: 10.1021/acs.molpharmaceut.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Improving nanomedicine uptake by tumor cells is key to achieving intracellular drug delivery. In this study, we found that methyl-β-cyclodextrin (MβCD) can significantly promote the intracellular accumulation of nanoparticulated α-linolenic acid-paclitaxel conjugates (ALA-PTX NPs) via enhanced clathrin-mediated endocytosis and limited degradation in lysosomes. Our in vitro results indicated that MβCD not only reduced the plasma membrane cholesterol content and increased plasma membrane fluidity, leading to ALA-PTX NPs being more easily incorporated into the plasma membrane, further enhancing membrane fluidity and making the plasma membrane more susceptible to tensile deformation, forming intracellular vesicles to enhance ALA-PTX NP cellular uptake, but also destroyed lysosomes and then limited ALA-PTX NPs' degradation in lysosomes. In HepG2 tumor-bearing mice, MβCD was also able to enhance the antitumor activity of ALA-PTX NPs in vivo. Moreover, we found that MβCD specifically promoted PUFA-paclitaxel conjugate NP cellular uptake. The cellular uptake of PTX liposome which shares an endocytosis pathway with ALA-PTX NPs could be enhanced by MβCD combined with ALA or ALA-PTX NPs. Therefore, we suggested that MβCD combined with polyunsaturated fatty acid-conjugation would be an effective strategy for improving intracellular delivery of nanoparticulated chemotherapeutic drugs used for combination administration to enhance antitumor efficiency.
Collapse
Affiliation(s)
- Meiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingwen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanli Hao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yubo Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingchao Wei
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Xie P, Chen J, Xia Y, Lin Z, He Y, Cai Z. Spatial metabolomics reveal metabolic alternations in the injured mice kidneys induced by triclocarban treatment. J Pharm Anal 2024; 14:101024. [PMID: 39717194 PMCID: PMC11664399 DOI: 10.1016/j.jpha.2024.101024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 12/25/2024] Open
Abstract
Triclocarban (TCC) is a common antimicrobial agent that has been widely used in medical care. Given the close association between TCC treatment and metabolic disorders, we assessed whether long-term treatment to TCC at a human-relevant concentration could induce nephrotoxicity by disrupting the metabolic levels in a mouse model. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was applied to investigate the alterations in the spatial distributions and abundances of TCC, endogenous and exogenous metabolites in the kidney after TCC treatment. The results showed that TCC treatment induced the changes in the organ weight, organ coefficient and histopathology of the mouse kidney. MSI data revealed that TCC accumulated in all regions of the kidney, while its five metabolites mainly distributed in the cortex regions. The abundances of 79 biomolecules associated with pathways of leukotriene E4 metabolism, biosynthesis and degradation of glycerophospholipids and glycerolipids, ceramide-to-sphingomyelin signaling were significantly altered in the kidney after TCC treatment. These biomolecules showed distinctive distributions in the kidney and displayed a favorable spatial correlation with the pathological damage. This work offers new insights into the related mechanisms of TCC-induced nephrotocicity and exhibits the potential of MALDI-MSI-based spatial metabolomics as a promising approach for the risk assessment of agents in medical care.
Collapse
Affiliation(s)
- Peisi Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yongjun Xia
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zongwei Cai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| |
Collapse
|
19
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
20
|
de Farias Fraga G, da Silva Rodrigues F, Jantsch J, Silva Dias V, Milczarski V, Wickert F, Pereira Medeiros C, Eller S, Gatto Barschak A, Giovenardi M, Padilha Guedes R. Omega-3 Attenuates Disrupted Neurotransmission and Partially Protects Metabolic Dysfunction Caused by Obesity in Wistar Rats. Neurochem Res 2024; 49:2763-2773. [PMID: 38960951 DOI: 10.1007/s11064-024-04201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Omega-3 (n3) is a polyunsaturated fatty acid well known for its anti-inflammatory and neuroprotective properties. Obesity is linked to chronic inflammation that disrupts metabolism, the intestine physiology and the central nervous system functioning. This study aims to determine if n3 supplementation can interfere with the effects of obesity on the mitochondrial activity, intestinal barrier, and neurotransmitter levels in the brain of Wistar rats that received cafeteria diet (CAF). We examined adipose tissue, skeletal muscle, plasma, intestine, and the cerebral cortex of four groups: CT (control diet), CTn3 (control diet with n3 supplementation), CAF, and CAFn3 (CAF and n3). Diets were offered for 13 weeks, with n3 supplementation in the final 5 weeks. Adipose tissue Electron Transport Chain complexes I, II, and III showed higher activity in CAF groups, as did complexes III and IV in skeletal muscle. Acetate levels in plasma were reduced in CAF groups, and Lipopolysaccharide (LPS) was higher in the CAF group but reduced in CAFn3 group. Claudin-5 in the intestine was lower in CAF groups, with no n3 supplementation effect. In the cerebral cortex, dopamine levels were decreased with CAF, which was reversed by n3. DOPAC, a dopamine metabolite, also showed a supplementation effect, and HVA, a diet effect. Serotonin levels increased in the CAF group that received supplementation. Therefore, we demonstrate disturbances in mitochondria, plasma, intestine and brain of rats submitted to CAF and the potential benefit of n3 supplementation in endotoxemia and neurotransmitter levels.
Collapse
Affiliation(s)
- Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victor Silva Dias
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Vitória Milczarski
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Fernanda Wickert
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Camila Pereira Medeiros
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alethéa Gatto Barschak
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
21
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
22
|
Reichert I, Lee JY, Weber L, Fuh MM, Schlaeger L, Rößler S, Kinast V, Schlienkamp S, Conradi J, Vondran FWR, Pfaender S, Scaturro P, Steinmann E, Bartenschlager R, Pietschmann T, Heeren J, Lauber C, Vieyres G. The triglyceride-synthesizing enzyme diacylglycerol acyltransferase 2 modulates the formation of the hepatitis C virus replication organelle. PLoS Pathog 2024; 20:e1012509. [PMID: 39241103 PMCID: PMC11410266 DOI: 10.1371/journal.ppat.1012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.
Collapse
Affiliation(s)
| | - Ji-Young Lee
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Laura Weber
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Janina Conradi
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | | | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabrielle Vieyres
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
23
|
Pfister S, Lesieur J, Bourdoncle P, Elhassan M, Didier P, Anton N, Anton H, Collot M. Red-Emitting Pyrrolyl Squaraine Molecular Rotor Reports Variations of Plasma Membrane and Vesicular Viscosity in Fluorescence Lifetime Imaging. Anal Chem 2024; 96:12784-12793. [PMID: 39066698 DOI: 10.1021/acs.analchem.4c02145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The viscosity that ensures the controlled diffusion of biomolecules in cells is a crucial biophysical parameter. Consequently, fluorescent probes capable of reporting viscosity variations are valuable tools in bioimaging. In this field, red-shifted probes are essential, as the widely used and gold standard probe remains green-emitting molecular rotors based on BODIPY. Here, we demonstrate that pyrrolyl squaraines, red-emissive fluorophores, exhibit high sensitivity over a wide viscosity range from 30 to 4890 mPa·s. Upon alkylation of the pyrrole moieties, the probes improve their sensitivity to viscosity through an enhanced twisted intramolecular charge transfer phenomenon. We utilized this scaffold to develop a plasma membrane probe, pSQ-PM, that efficiently stains the plasma membrane in a fluorogenic manner. Using fluorescence lifetime imaging, pSQ-PM enabled efficient sensing of viscosity variations in the plasma membrane under various conditions and in different cell lines (HeLa, U2OS, and NIH/3T3). Moreover, upon incubation, pSQ-PM stained the membrane of intracellular vesicles and suggested that the lysosomal membranes displayed enhanced fluidity.
Collapse
Affiliation(s)
- Sonia Pfister
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| | - Julie Lesieur
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Pierre Bourdoncle
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Mohamed Elhassan
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani 21111, Sudan
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, Graffenstaden, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Halina Anton
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, Graffenstaden, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
24
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596058. [PMID: 38853868 PMCID: PMC11160616 DOI: 10.1101/2024.05.27.596058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Intracellular transport among organellar compartments occurs in two general ways, by membrane-bound carriers or membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. Studying Coat Protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role advancing a new understanding of how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact, and contributing to a basic understanding of how transport carriers in a model intracellular pathway are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
25
|
Vigier M, Uriot M, Djelti-Delbarba F, Claudepierre T, El Hajj A, Yen FT, Oster T, Malaplate C. Increasing the Survival of a Neuronal Model of Alzheimer's Disease Using Docosahexaenoic Acid, Restoring Endolysosomal Functioning by Modifying the Interactions between the Membrane Proteins C99 and Rab5. Int J Mol Sci 2024; 25:6816. [PMID: 38999927 PMCID: PMC11240902 DOI: 10.3390/ijms25136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.
Collapse
Affiliation(s)
- Maxime Vigier
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Magalie Uriot
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Fathia Djelti-Delbarba
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thomas Claudepierre
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Aseel El Hajj
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Frances T. Yen
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thierry Oster
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Catherine Malaplate
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
- Department of Biochemistry, Molecular Biology and Nutrition, Nancy University Hospital, 54000 Nancy, France
| |
Collapse
|
26
|
Santinho A, Carpentier M, Lopes Sampaio J, Omrane M, Thiam AR. Giant organelle vesicles to uncover intracellular membrane mechanics and plasticity. Nat Commun 2024; 15:3767. [PMID: 38704407 PMCID: PMC11069511 DOI: 10.1038/s41467-024-48086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.
Collapse
Affiliation(s)
- Alexandre Santinho
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Maxime Carpentier
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Julio Lopes Sampaio
- Institut Curie, PSL Research University, Plateforme de Métabolomique et Lipidomique, 26 rue d'Ulm, Paris, France
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
27
|
Johnson DH, Kou OH, Bouzos N, Zeno WF. Protein-membrane interactions: sensing and generating curvature. Trends Biochem Sci 2024; 49:401-416. [PMID: 38508884 PMCID: PMC11069444 DOI: 10.1016/j.tibs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Biological membranes are integral cellular structures that can be curved into various geometries. These curved structures are abundant in cells as they are essential for various physiological processes. However, curved membranes are inherently unstable, especially on nanometer length scales. To stabilize curved membranes, cells can utilize proteins that sense and generate membrane curvature. In this review, we summarize recent research that has advanced our understanding of interactions between proteins and curved membrane surfaces, as well as work that has expanded our ability to study curvature sensing and generation. Additionally, we look at specific examples of cellular processes that require membrane curvature, such as neurotransmission, clathrin-mediated endocytosis (CME), and organelle biogenesis.
Collapse
Affiliation(s)
- David H Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Orianna H Kou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicoletta Bouzos
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Wade F Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
28
|
Gopalan AB, van Uden L, Sprenger RR, Fernandez-Novel Marx N, Bogetofte H, Neveu PA, Meyer M, Noh KM, Diz-Muñoz A, Ejsing CS. Lipotype acquisition during neural development is not recapitulated in stem cell-derived neurons. Life Sci Alliance 2024; 7:e202402622. [PMID: 38418090 PMCID: PMC10902711 DOI: 10.26508/lsa.202402622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery during development, but when and how this occurs is unclear. To address this, we used high-resolution MSALL lipidomics to generate an extensive time-resolved resource of mouse brain development covering early embryonic and postnatal stages. This revealed a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero, whereas cholesterol attains its characteristic high levels after birth. Using the resource as a reference, we next examined to which extent this can be recapitulated by commonly used protocols for in vitro neuronal differentiation of stem cells. Here, we found that the programming of the lipid metabolic machinery is incomplete and that stem cell-derived cells can only partially acquire a neural lipotype when the cell culture media is supplemented with brain-specific lipid precursors. Altogether, our work provides an extensive lipidomic resource for early mouse brain development and highlights a potential caveat when using stem cell-derived neuronal progenitors for mechanistic studies of lipid biochemistry, membrane biology and biophysics, which nonetheless can be mitigated by further optimizing in vitro differentiation protocols.
Collapse
Affiliation(s)
- Anusha B Gopalan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Candidate for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Lisa van Uden
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Helle Bogetofte
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christer S Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Gunwant V, Gahtori P, Varanasi SR, Pandey R. Protein-Mediated Changes in Membrane Fluidity and Ordering: Insights into the Molecular Mechanism and Implications for Cellular Function. J Phys Chem Lett 2024; 15:4408-4415. [PMID: 38625684 DOI: 10.1021/acs.jpclett.3c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.
Collapse
Affiliation(s)
- Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Srinivasa Rao Varanasi
- Department of Physics, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
30
|
Gahlot P, Kravic B, Rota G, van den Boom J, Levantovsky S, Schulze N, Maspero E, Polo S, Behrends C, Meyer H. Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH. Mol Cell 2024; 84:1556-1569.e10. [PMID: 38503285 DOI: 10.1016/j.molcel.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.
Collapse
Affiliation(s)
- Pinki Gahlot
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bojana Kravic
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Giulia Rota
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Johannes van den Boom
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Nina Schulze
- Imaging Center Campus Essen, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
31
|
Bousquet D, Nader E, Connes P, Guillot N. Liver X receptor agonist upregulates LPCAT3 in human aortic endothelial cells. Front Physiol 2024; 15:1388404. [PMID: 38694208 PMCID: PMC11061552 DOI: 10.3389/fphys.2024.1388404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Endothelial cells (ECs) play an important role in tissue homeostasis. Recently, EC lipid metabolism has emerged as a regulator of EC function. The liver X receptors (LXRs) are involved in the transcriptional regulation of genes involved in lipid metabolism and have been identified as a potential target in cardiovascular disease. We aimed to decipher the role of LXRs in the regulation of lipid metabolism in human aortic endothelial cells. Approach and Results Lipid composition analysis of endothelial cells treated with the LXR agonist T0901317 revealed that LXR activation increased the proportion of polyunsaturated fatty acids (PUFAs) and decreased the proportion of saturated fatty acids. The LXR agonist decreased the uptake of fatty acids (FAs) by ECs. This effect was abolished by LXRα silencing. LXR activation increased the activity and the expression of lysophosphatidylcholine acyltransferase, LPCAT3, which is involved in the turnover of FAs at the sn-2 position of phospholipids. Transcriptomic analysis also revealed that LXRs increased the expression of key genes involved in the synthesis of PUFAs, including FA desaturase one and 2, FA elongase 5 and fatty acid synthase. Subsequently, the LXR agonist increased PUFA synthesis and enhanced arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid content in the EC phospholipids. Modification of the FA composition of ECs by LXRs led to a decrease of arachidonate and linoleate derived prostaglandins synthesis and release. No change on markers of inflammation induced by plasma from sickle cell patient were observed in presence of LXR agonist. Conclusion These results identify LXR as a key regulator of lipid metabolism in human aortic endothelial cells and a direct effect of LXR agonist on lysophosphatidylacyl transferase (LPCAT3).
Collapse
Affiliation(s)
- Delphine Bousquet
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Elie Nader
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Philippe Connes
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Nicolas Guillot
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
- INSA Lyon, Villeurbanne, France
| |
Collapse
|
32
|
Levental KR, Henry WS. Lipidomes define immune cell identity. Nat Cell Biol 2024; 26:516-518. [PMID: 38589530 DOI: 10.1038/s41556-024-01398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
| |
Collapse
|
33
|
Henry WS, Müller S, Yang JS, Innes-Gold S, Das S, Reinhardt F, Sigmund K, Phadnis VV, Wan Z, Eaton E, Sampaio JL, Bell GW, Viravalli A, Hammond PT, Kamm RD, Cohen AE, Boehnke N, Hsu VW, Levental KR, Rodriguez R, Weinberg RA. Ether lipids influence cancer cell fate by modulating iron uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585922. [PMID: 38562716 PMCID: PMC10983928 DOI: 10.1101/2024.03.20.585922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cancer cell fate has been widely ascribed to mutational changes within protein-coding genes associated with tumor suppressors and oncogenes. In contrast, the mechanisms through which the biophysical properties of membrane lipids influence cancer cell survival, dedifferentiation and metastasis have received little scrutiny. Here, we report that cancer cells endowed with a high metastatic ability and cancer stem cell-like traits employ ether lipids to maintain low membrane tension and high membrane fluidity. Using genetic approaches and lipid reconstitution assays, we show that these ether lipid-regulated biophysical properties permit non-clathrin-mediated iron endocytosis via CD44, leading directly to significant increases in intracellular redox-active iron and enhanced ferroptosis susceptibility. Using a combination of in vitro three-dimensional microvascular network systems and in vivo animal models, we show that loss of ether lipids also strongly attenuates extravasation, metastatic burden and cancer stemness. These findings illuminate a mechanism whereby ether lipids in carcinoma cells serve as key regulators of malignant progression while conferring a unique vulnerability that can be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Whitney S Henry
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris 75005, France
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Dept. of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Innes-Gold
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunny Das
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kim Sigmund
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Vaishnavi V Phadnis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Dept. of Biology, MIT, Cambridge, MA 02139, USA
| | - Zhengpeng Wan
- Dept. of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Elinor Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Julio L Sampaio
- Institut Curie, INSERM, Mines ParisTech, Paris 75005, France
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Amartya Viravalli
- Dept. of Chemical Engineering and Materials Science, University of Minnesota Minneapolis, MN 55455, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Dept. of Chemical Engineering, MIT, Cambridge, MA 02139, USA
- Senior author
| | - Roger D Kamm
- Dept. of Biological Engineering, MIT, Cambridge, MA 02139, USA
- Dept. of Physics, Harvard University, Cambridge, MA 02138, USA
- Senior author
| | - Adam E Cohen
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Dept. of Physics, Harvard University, Cambridge, MA 02138, USA
- Senior author
| | - Natalie Boehnke
- Dept. of Chemical Engineering and Materials Science, University of Minnesota Minneapolis, MN 55455, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Senior author
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Dept. of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Senior author
| | - Kandice R Levental
- Dept. of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
- Senior author
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris 75005, France
- Senior author
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Dept. of Biology, MIT, Cambridge, MA 02139, USA
- Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA
- Senior author
| |
Collapse
|
34
|
Wang R, Rao C, Liu Q, Liu X. Optimization of Conditions of Zanthoxylum Alkylamides Liposomes by Response Surface Methodology and the Absorption Characteristics of Liposomes in the Caco-2 Cell Monolayer Model. ACS OMEGA 2024; 9:10992-11004. [PMID: 38463333 PMCID: PMC10918836 DOI: 10.1021/acsomega.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Zanthoxylum alkylamides, as a numbing substance in Zanthoxylum bungeanum has many physiological effects. However, the numbing taste and unstable properties limited its application. This study aimed to optimize the preparation process of Zanthoxylum alkylamides liposomes by response surface methodology (RSM) and to investigate the in vitro absorption characteristics of the liposomes through the Caco-2 cell monolayer model. The process parameters of liposomes were as follows: Zanthoxylum alkylamides was 15 mg, phospholipid-feedstock ratio was 6.14, phospholipid-cholesterol ratio was 8.51, sodium cholate was 33.80 mg, isopropyl myristate was 29.49 mg, and the theoretical encapsulation efficiency of the prepared liposomes could reach 90.23%. Further, the particle size of the liposomes was 155.47 ± 3.16 nm, and the ζ-potential was -34.11 ± 4.34 mV. Meanwhile, the liposomes could be preserved for 14 days under the condition that the content of Zanthoxylum alkylamides was less than 2 mg/mL and the preservation temperature was lower than 25 °C. Moreover, the uptake characteristics of the Zanthoxylum alkylamides liposomes in the Caco-2 cell monolayer model were also investigated. The results showed that the Zanthoxylum alkylamides liposomes could be taken up and absorbed by Caco-2 cells. Also, the Zanthoxylum alkylamides liposomes had a better uptake performance than the unembedded Zanthoxylum alkylamides and conformed to the passive uptake.
Collapse
Affiliation(s)
- Rui Wang
- College
of Food Science, Southwest University, Chongqing 400715, China
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
- Collaborative
Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, China
| | - Chaolong Rao
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuyan Liu
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiong Liu
- College
of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Samovich SN, Mikulska-Ruminska K, Dar HH, Tyurina YY, Tyurin VA, Souryavong AB, Kapralov AA, Amoscato AA, Beharier O, Karumanchi SA, St Croix CM, Yang X, Holman TR, VanDemark AP, Sadovsky Y, Mallampalli RK, Wenzel SE, Gu W, Bunimovich YL, Bahar I, Kagan VE, Bayir H. Strikingly High Activity of 15-Lipoxygenase Towards Di-Polyunsaturated Arachidonoyl/Adrenoyl-Phosphatidylethanolamines Generates Peroxidation Signals of Ferroptotic Cell Death. Angew Chem Int Ed Engl 2024; 63:e202314710. [PMID: 38230815 PMCID: PMC11068323 DOI: 10.1002/anie.202314710] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 01/18/2024]
Abstract
The vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic. Here we report that 15-lipoxygenase (15LOX) exhibits unexpectedly high pro-ferroptotic peroxidation activity towards di-PUFA-PEs. We revealed that peroxidation of several molecular species of di-PUFA-PEs occurred early in ferroptosis. Ferrostatin-1, a typical ferroptosis inhibitor, effectively prevented peroxidation of di-PUFA-PEs. Furthermore, co-incubation of cells with di-AA-PE and 15LOX produced PUFA-PE peroxidation and induced ferroptotic death. The decreased contents of di-PUFA-PEs in ACSL4 KO A375 cells was associated with lower levels of di-PUFA-PE peroxidation and enhanced resistance to ferroptosis. Thus, di-PUFA-PE species are newly identified phospholipid peroxidation substrates and regulators of ferroptosis, representing a promising therapeutic target for many diseases related to ferroptotic death.
Collapse
Affiliation(s)
- Svetlana N Samovich
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, PL87100, Poland
| | - Haider H Dar
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Austin B Souryavong
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ofer Beharier
- Obstetrics and Gynecology Division, Hadassah Medical Center, Faculty of Medicine of the Hebrew University of Jerusalem, 97654, Jerusalem, Israel
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Xin Yang
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Laufer Center, Z-5252, Stony Brook University, Stony Brook, NY 11794, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hülya Bayir
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
36
|
Gu C, Philipsen MH, Ewing AG. Omega-3 and -6 Fatty Acids Alter the Membrane Lipid Composition and Vesicle Size to Regulate Exocytosis and Storage of Catecholamines. ACS Chem Neurosci 2024; 15:816-826. [PMID: 38344810 PMCID: PMC10884999 DOI: 10.1021/acschemneuro.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
The two essential fatty acids, alpha-linolenic acid and linoleic acid, and the higher unsaturated fatty acids synthesized from them are critical for the development and maintenance of normal brain functions. Deficiencies of these fatty acids have been shown to cause damage to the neuronal development, cognition, and locomotor function. We combined electrochemistry and imaging techniques to examine the effects of the two essential fatty acids on catecholamine release dynamics and the vesicle content as well as on the cell membrane phospholipid composition to understand how they impact exocytosis and by extension neurotransmission at the single-cell level. Incubation of either of the two fatty acids reduces the size of secretory vesicles and enables the incorporation of more double bonds into the cell membrane structure, resulting in higher membrane flexibility. This subsequently affects proteins regulating the dynamics of the exocytotic fusion pore and thereby affects exocytosis. Our data suggest a possible pathway whereby the two essential fatty acids affect the membrane structure to impact exocytosis and provide a potential treatment for diseases and impairments related to catecholamine signaling.
Collapse
Affiliation(s)
- Chaoyi Gu
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Mai H. Philipsen
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
37
|
Chu SL, Huang JR, Chang YT, Yao SY, Yang JS, Hsu VW, Hsu JW. Phosphoglycerate kinase 1 acts as a cargo adaptor to promote EGFR transport to the lysosome. Nat Commun 2024; 15:1021. [PMID: 38310114 PMCID: PMC10838266 DOI: 10.1038/s41467-024-45443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) plays important roles in multiple cellular events, including growth, differentiation, and motility. A major mechanism of downregulating EGFR function involves its endocytic transport to the lysosome. Sorting of proteins into intracellular pathways involves cargo adaptors recognizing sorting signals on cargo proteins. A dileucine-based sorting signal has been identified previously for the sorting of endosomal EGFR to the lysosome, but a cargo adaptor that recognizes this signal remains unknown. Here, we find that phosphoglycerate kinase 1 (PGK1) is recruited to endosomal membrane upon its phosphorylation, where it binds to the dileucine sorting signal in EGFR to promote the lysosomal transport of this receptor. We also elucidate two mechanisms that act in concert to promote PGK1 recruitment to endosomal membrane, a lipid-based mechanism that involves phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and a protein-based mechanism that involves hepatocyte growth factor receptor substrate (Hrs). These findings reveal an unexpected function for a metabolic enzyme and advance the mechanistic understanding of how EGFR is transported to the lysosome.
Collapse
Affiliation(s)
- Shao-Ling Chu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Jia-Rong Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Tzu Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Shu-Yun Yao
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jia-Wei Hsu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
38
|
Shi P, Meng R, Xu J, Zhang Q, Ye G, Yan X, Liao K. Fatty acid translocase (FAT/CD36) in silver pomfret (Pampus argenteus): Molecular cloning and functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110926. [PMID: 38036286 DOI: 10.1016/j.cbpb.2023.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Understanding the mechanisms of lipid transport and metabolism in fish is crucial to enhance dietary lipid utilization. Here, fatty acid translocase (CD36) gene was characterized in silver pomfret (Pampus argenteus). The open reading frame of silver pomfret cd36 gene was 1395 bp, encoding 464 amino acids. The silver pomfret CD36 protein contained typical transmembrane regions and N-glycosylation modification sites, and was localized to the cytomembrane. The cd36 gene was ubiquitously expressed in all tested tissues, with the highest expression observed in brain tissue. In vivo, both fasting and short-term high-fat feeding could increase cd36 expression in intestinal tissue. In vitro, cd36 expression was induced by palmitic acid, oleic acid, linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid treatment in intestinal tissue. Furthermore, dual-luciferase reporter assay results indicated that peroxisome proliferator-activated receptor gamma (PPARγ) could enhance cd36 promoter activity, and the co-expression of cd36 and pparγ was observed in EPA-incubated intestine, suggesting that EPA may regulate the expression of cd36 via PPARγ to maintain the homeostasis of intestinal lipid metabolism in silver pomfret. These results highlighted the crucial role of CD36 in silver pomfret, and suggested that the cd36 expression may be regulated by PPARγ. This study could contribute to a greater understanding of lipid metabolism and the development of effective strategies for nutrient requirements in fish.
Collapse
Affiliation(s)
- Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ran Meng
- Ningbo Academy of Oceanology and Fishery, Ningbo 315012, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qian Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guochao Ye
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
39
|
Lee MJ, Puri V, Fried SK. Metabolic and structural remodeling during browning of primary human adipocytes derived from omental and subcutaneous depots. Obesity (Silver Spring) 2024; 32:70-79. [PMID: 37929774 DOI: 10.1002/oby.23912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This study investigated remodeling of cellular metabolism and structures during browning of primary human adipocytes derived from both visceral and subcutaneous adipose tissues. Effects of glucocorticoids on the browning were also assessed. METHODS Differentiated omental and subcutaneous human adipocytes were treated with rosiglitazone, with or without dexamethasone, and expression levels of brite adipocyte markers, lipolysis, and lipid droplet and mitochondrial structures were examined. RESULTS Both omental and subcutaneous adipocytes acquired brite phenotypes upon peroxisome proliferator-activated receptor-γ agonist treatment, and dexamethasone tended to enhance the remodeling. Although rosiglitazone increased lipolysis during treatment, brite adipocytes exhibited lower basal lipolytic rates and enhanced responses to β-adrenergic agonists or atrial natriuretic peptide. Transcriptome analysis identified induction of both breakdown and biosynthesis of lipids in brite adipocytes. After 60+ days in culture, lipid droplet size increased to ~50 microns, becoming almost unilocular in control adipocytes, and after browning, they acquired paucilocular morphology, clusters of small lipid droplets (1-2 micron) surrounded by mitochondria appearing on the periphery of the central large one. CONCLUSIONS Metabolic and structural remodeling during browning of primary human adipocytes is similar to previous findings in human adipocytes in vivo, supporting their uses for mechanical studies investigating browning with translational relevance.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vishwajeet Puri
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Susan K Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
40
|
Krok E, Franquelim HG, Chattopadhyay M, Orlikowska-Rzeznik H, Schwille P, Piatkowski L. Nanoscale structural response of biomimetic cell membranes to controlled dehydration. NANOSCALE 2023; 16:72-84. [PMID: 38062887 DOI: 10.1039/d3nr03078d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Although cell membranes exist in excess of water under physiological conditions, there are a number of biochemical processes, such as adsorption of biomacromolecules or membrane fusion events, that require partial or even complete transient dehydration of lipid membranes. Even though the dehydration process is crucial for understanding all fusion events, still little is known about the structural adaptation of lipid membranes when their interfacial hydration layer is perturbed. Here, we present the study of the nanoscale structural reorganization of phase-separated, supported lipid bilayers (SLBs) under a wide range of hydration conditions. Model lipid membranes were characterised using a combination of fluorescence microscopy and atomic force microscopy and, crucially, without applying any chemical or physical modifications that have previously been considered essential for maintaining the membrane integrity upon dehydration. We revealed that decreasing the hydration state of the membrane leads to an enhanced mixing of lipids characteristic of the liquid-disordered (Ld) phase with those forming the liquid-ordered (Lo) phase. This is associated with a 2-fold decrease in the hydrophobic mismatch between the Ld and Lo lipid phases and a 3-fold decrease in the line tension for the fully desiccated membrane. Importantly, the observed changes in the hydrophobic mismatch, line tension, and lipid miscibility are fully reversible upon subsequent rehydration of the membrane. These findings provide a deeper insight into the fundamental processes, such as cell-cell fusion, that require partial dehydration at the interface of two membranes.
Collapse
Affiliation(s)
- Emilia Krok
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Leipzig University, Research and Transfer Center for Bioactive Matter, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Madhurima Chattopadhyay
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| | - Hanna Orlikowska-Rzeznik
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lukasz Piatkowski
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| |
Collapse
|
41
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
42
|
Saini R, Debnath A. Thylakoid Composition Facilitates Chlorophyll a Dimerization through Stronger Interlipid Interactions. J Phys Chem B 2023; 127:9082-9094. [PMID: 37819861 DOI: 10.1021/acs.jpcb.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plant thylakoid membrane serves as a crucial matrix for the aggregation of chlororophyll a (CLA) pigments, essential for light harvesting. To understand the role of lipid compositions in the stability of CLA aggregates, dimerization of chlorophyll a molecules (CLA) is studied in the presence of the thylakoid and the bilayers comprising either the least or the highest unsaturated lipids by using coarse-grained molecular dynamics simulations. The thylakoid membrane enhances the stability of the CLA dimer compared with other membranes due to very strong lipid-lipid interactions. The thylakoid exhibits a distinct distribution of lipids around the CLA dimer. Less unsaturated lipids reside in close proximity to the dimer, promoting increased order and efficient packing. Conversely, higher unsaturated lipids are depleted from the dimer, imparting flexibility to the membrane. The combination of tight packing near the dimer and membrane flexibility away from the dimer enhances the stability of the dimer in the thylakoid membrane. Our results suggest that lipid mixing, rather than lipid unsaturation, plays a critical role in facilitating CLA dimerization by modulating the membrane microenvironment through stronger lipid-lipid interactions. These insights will be useful in understanding how lipid compositions affect efficient light absorption and energy transfer during photosynthesis in the future.
Collapse
Affiliation(s)
- Renu Saini
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
43
|
Hoffmann C, Rentsch J, Tsunoyama TA, Chhabra A, Aguilar Perez G, Chowdhury R, Trnka F, Korobeinikov AA, Shaib AH, Ganzella M, Giannone G, Rizzoli SO, Kusumi A, Ewers H, Milovanovic D. Synapsin condensation controls synaptic vesicle sequestering and dynamics. Nat Commun 2023; 14:6730. [PMID: 37872159 PMCID: PMC10593750 DOI: 10.1038/s41467-023-42372-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Jakob Rentsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Akshita Chhabra
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Gerard Aguilar Perez
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Rajdeep Chowdhury
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Franziska Trnka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Aleksandr A Korobeinikov
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Ali H Shaib
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Gregory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany.
| |
Collapse
|
44
|
Daly C, Plouffe B. Gα q signalling from endosomes: A new conundrum. Br J Pharmacol 2023. [PMID: 37740273 DOI: 10.1111/bph.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors, and are involved in the transmission of a variety of extracellular stimuli such as hormones, neurotransmitters, light and odorants into intracellular responses. They regulate every aspect of physiology and, for this reason, about one third of all marketed drugs target these receptors. Classically, upon binding to their agonist, GPCRs are thought to activate G-proteins from the plasma membrane and to stop signalling by subsequent desensitisation and endocytosis. However, accumulating evidence indicates that, upon internalisation, some GPCRs can continue to activate G-proteins in endosomes. Importantly, this signalling from endomembranes mediates alternative cellular responses other than signalling at the plasma membrane. Endosomal G-protein signalling and its physiological relevance have been abundantly documented for Gαs - and Gαi -coupled receptors. Recently, some Gαq -coupled receptors have been reported to activate Gαq on endosomes and mediate important cellular processes. However, several questions relative to the series of cellular events required to translate endosomal Gαq activation into cellular responses remain unanswered and constitute a new conundrum. How are these responses in endosomes mediated in the quasi absence of the substrate for the canonical Gαq -activated effector? Is there another effector? Is there another substrate? If so, how does this alternative endosomal effector or substrate produce a downstream signal? This review aims to unravel and discuss these important questions, and proposes possible routes of investigation.
Collapse
Affiliation(s)
- Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
45
|
Álvarez D, Sapia J, Vanni S. Computational modeling of membrane trafficking processes: From large molecular assemblies to chemical specificity. Curr Opin Cell Biol 2023; 83:102205. [PMID: 37451175 DOI: 10.1016/j.ceb.2023.102205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
In the last decade, molecular dynamics (MD) simulations have become an essential tool to investigate the molecular properties of membrane trafficking processes, often in conjunction with experimental approaches. The combination of MD simulations with recent developments in structural biology, such as cryo-electron microscopy and artificial intelligence-based structure determination, opens new, exciting possibilities for future investigations. However, the full potential of MD simulations to provide a molecular view of the complex and dynamic processes involving membrane trafficking can only be realized if certain limitations are addressed, and especially those concerning the quality of coarse-grain models, which, despite recent successes in describing large-scale systems, still suffer from far-from-ideal chemical accuracy. In this review, we will highlight recent success stories of MD simulations in the investigation of membrane trafficking processes, their implications for future research, and the challenges that lie ahead in this specific research domain.
Collapse
Affiliation(s)
- Daniel Álvarez
- Department of Biology, University of Fribourg, Switzerland; Departamento de Química Física y Analítica, Universidad de Oviedo, Spain
| | - Jennifer Sapia
- Department of Biology, University of Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland; Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| |
Collapse
|
46
|
Barrachina MN, Pernes G, Becker IC, Allaeys I, Hirsch TI, Groeneveld DJ, Khan AO, Freire D, Guo K, Carminita E, Morgan PK, Collins TJC, Mellett NA, Wei Z, Almazni I, Italiano JE, Luyendyk J, Meikle PJ, Puder M, Morgan NV, Boilard E, Murphy AJ, Machlus KR. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. NATURE CARDIOVASCULAR RESEARCH 2023; 2:746-763. [PMID: 39195958 PMCID: PMC11909960 DOI: 10.1038/s44161-023-00305-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2024]
Abstract
Lipids contribute to hematopoiesis and membrane properties and dynamics; however, little is known about the role of lipids in megakaryopoiesis. Here we show that megakaryocyte progenitors, megakaryocytes and platelets present a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake as well as de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in low platelets. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production and that changes in dietary fatty acids may be a viable target to modulate platelet counts.
Collapse
Affiliation(s)
- Maria N Barrachina
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Gerard Pernes
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Isabelle Allaeys
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, Canada
| | - Thomas I Hirsch
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Karen Guo
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Pooranee K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Thomas J C Collins
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - James Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Peter J Meikle
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eric Boilard
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
47
|
Prasad M, Hazra B, Mandal R, Das S, Tarafdar PK. ATP-Assisted Protocellular Membrane Formation with Ethanolamine-Based Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37421360 DOI: 10.1021/acs.langmuir.3c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Prebiotic membranes are one of the essential elements of the origin of life because they build compartments to keep genetic materials and metabolic machinery safe. Since modern cell membranes are made up of ethanolamine-based phospholipids, prebiotic membrane formation with ethanolamine-based amphiphiles and phosphates might act as a bridge between the prebiotic and contemporary eras. Here, we report the prebiotic synthesis of O-lauroyl ethanolamine (OLEA), O-lauroyl methyl ethanolamine (OLMEA), and O-lauroyl dimethylethanolamine (OLDMEA) under wet-dry cycles. Turbidimetric, NMR, DLS, fluorescence, microscopy, and glucose encapsulation studies highlighted that OLEA-ATP and OLMEA-ATP form protocellular membranes in a 3:1 ratio, where ATP acts as a template. OLDMEA with a dimethyl group did not form any membrane in the presence of ATP. ADP can also template OLEA to form vesicles in a 2:1 ratio, but the ADP-templated vesicles were smaller. This suggests the critical role of the phosphate backbone in controlling the curvature of supramolecular assembly. The mechanisms of hierarchical assembly and transient dissipative assembly are discussed based on templated-complex formation via electrostatic, hydrophobic, and H-bonding interactions. Our results suggest that N-methylethanolamine-based amphiphiles could be used to form prebiotic vesicles, but the superior H-bonding ability of the ethanolamine moiety likely provides an evolutionary advantage for stable protocell formation during the fluctuating environments of early earth.
Collapse
Affiliation(s)
- Mahesh Prasad
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Bibhas Hazra
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subrata Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
48
|
Kim SJ, Puranik N, Yadav D, Jin JO, Lee PCW. Lipid Nanocarrier-Based Drug Delivery Systems: Therapeutic Advances in the Treatment of Lung Cancer. Int J Nanomedicine 2023; 18:2659-2676. [PMID: 37223276 PMCID: PMC10202211 DOI: 10.2147/ijn.s406415] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Although various treatments are currently being developed, lung cancer still has a very high mortality rate. Moreover, while various strategies for the diagnosis and treatment of lung cancer are being used in clinical settings, in many cases, lung cancer does not respond to treatment and presents reducing survival rates. Cancer nanotechnology, also known as nanotechnology in cancer, is a relatively new topic of study that brings together scientists from a variety of fields, including chemistry, biology, engineering, and medicine. The use of lipid-based nanocarriers to aid drug distribution has already had a significant impact in several scientific fields. Lipid-based nanocarriers have been demonstrated to help stabilize therapeutic compounds, overcome barriers to cellular and tissue absorption, and improve in vivo drug delivery to specific target areas. For this reason, lipid-based nanocarriers are being actively researched and used for lung cancer treatment and vaccine development. This review discusses the improvements in drug delivery achieved with lipid-based nanocarriers, the obstacles that still exist with in vivo applications, and the current clinical and experimental applications of lipid-based nanocarriers in lung cancer treatment and management.
Collapse
Affiliation(s)
- So-Jung Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| |
Collapse
|
49
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
50
|
Sansevrino R, Hoffmann C, Milovanovic D. Condensate biology of synaptic vesicle clusters. Trends Neurosci 2023; 46:293-306. [PMID: 36725404 DOI: 10.1016/j.tins.2023.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.
Collapse
Affiliation(s)
- Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|