1
|
Henriksen K, Jørgensen A, Kaur S, Gerwig R, Brøgger Svane CA, Knop FK, Størling J. Exploring the functional, protective, and transcriptomic effects of GIP on cytokine-exposed human pancreatic islets and EndoC-βH5 cells. Mol Cell Endocrinol 2025; 602:112522. [PMID: 40122442 DOI: 10.1016/j.mce.2025.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Immune-mediated beta-cell destruction and lack of alpha-cell responsiveness to hypoglycaemia are hallmarks of type 1 diabetes pathology. The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) may hold therapeutic potential for type 1 diabetes due to its insulinotropic and glucagonotropic effects, as well as its cytoprotective effects shown in rodent beta cells. To further increase our understanding of GIP's effects on human beta cells, we here examined the functional, protective, and transcriptomic effects of GIP in human EndoC-βH5 beta cells and isolated human islets in the presence or absence of proinflammatory cytokines (interferon (IFN)-γ ± interleukin (IL)-1β) as a mimic of type 1 diabetes. GIP dose-dependently augmented glucose-stimulated insulin secretion from EndoC-βH5 cells and increased insulin and glucagon secretion from human islets at high and low glucose concentrations, respectively. The insulinotropic effect of GIP in EndoC-βH5 cells was abrogated by KN-93, an inhibitor of calcium/calmodulin-dependent protein kinase 2 (CaMK2). GIP did not prevent cytokine-induced apoptosis in EndoC-βH5 cells or human islets, and GIP did not protect against cytokine-induced functional impairment in EndoC-βH5 cells. GIP treatment of human islets for 24 h had no effects on the transcriptome and did not modulate cytokine-induced transcriptional changes. However, GIP augmented IL-1β + IFNγ-induced secretion of interleukin (IL)-10 and c-c motif chemokine ligand (CCL)-2 from human islets while decreasing the secretion of c-x-c motif chemokine ligand (CXCL)-8. In EndoC-βH5 cells, GIP reduced IFN-γ-induced secretion of tumor necrosis factor (TNF)-α, IL-2, IL-6, and IL-10 but increased the secretion of CXCL8, CCL2, CCL4, and CCL11. In conclusion, our results suggest that the insulinotropic effect of GIP is CaMK2-dependent. Furthermore, our findings indicate that GIP neither exerts cytoprotective effects against cytokines nor modulate the transcriptome of human islets. GIP may, however, exert selective modulatory effects on secreted inflammatory factors from cytokine-exposed beta cells and islets.
Collapse
Affiliation(s)
- Kristine Henriksen
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anne Jørgensen
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rebekka Gerwig
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Cecilie Amalie Brøgger Svane
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wang J, Man K, Ng KTP. Emerging Roles of C-C Motif Ligand 11 (CCL11) in Cancers and Liver Diseases: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:4662. [PMID: 40429807 PMCID: PMC12111778 DOI: 10.3390/ijms26104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
C-C motif ligand 11 (CCL11) is a multifunctional chemokine that regulates immunity, angiogenesis, and tissue remodeling. In addition to its allergic inflammation role, CCL11 exhibits context-dependent dual functions in relation to cancer progression. In liver diseases, it mediates injury, fibrosis, and inflammation while serving as a disease biomarker. This review systematically examines CCL11-receptor interactions and their immunomodulatory mechanisms in cancers and hepatic pathologies. We highlight CCL11's therapeutic potential as both a prognostic marker and immunotherapeutic target. By integrating molecular and clinical insights, this work advances the understanding of CCL11's pathophysiological roles and facilitates targeted therapy development.
Collapse
Affiliation(s)
| | - Kwan Man
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Kevin Tak-Pan Ng
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
3
|
Krammer S, Yang Z, Mitländer H, Grund JC, Geppert CI, Rieker RJ, Zirlik S, Finotto S. CCR3 deficiency shifts adaptive to innate-driven immunity in asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100430. [PMID: 40115969 PMCID: PMC11925527 DOI: 10.1016/j.jacig.2025.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 03/23/2025]
Abstract
Background Because of repeated contact with airborne allergens, patients suffering from allergic asthma experience acute asthma attacks, characterized by shortness of breath, chest tightness, and coughing. The underlying immune response is highly complex and involves various immune cells. Chemokines play a pivotal role in the appropriate relocation of these diverse immune cells, ensuring their directed migration to the site of inflammation, their survival, and their effector functions. In the context of allergic asthma, the chemokine receptor CCR3 is crucially involved in TH2-mediated airway inflammation by recruiting eosinophils and other immune cells to the site of inflammation. However, more recent studies demonstrate its presence also on mast cells, macrophages, T cells, and dendritic cells. Objective We sought to investigate the role of CCR3 in different immune cell types during asthma pathogenesis. Methods Human peripheral blood cells collected from healthy controls and asthmatic individuals were analyzed for CCR3 expression. A murine model of asthma was used to compare wild-type and CCR3-deficient mice in the context of airway inflammation. Results In a human cohort of asthmatic patients, CCR3 mRNA expression was found induced in PBMCs and positively correlated with decreased lung function and blood eosinophilia. In a murine model of disease, CCR3 was found to be important for the establishment of eosinophilic inflammation. Moreover, CCR3-deficient mice showed impaired cytokine release, resulting in an innate-like mast cell and neutrophil-mediated lung inflammation and reduced TH2-orchestrated eosinophil-driven asthma. In the absence of CCR3, CD8 T cells underwent phenotypic changes, inhibiting the development of migratory effector memory CD8 T-cell subsets. Conclusions Taken together, this work demonstrates the functional involvement of CCR3 in both innate and adaptive immune cells in the lung during asthma pathogenesis.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C Grund
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sabine Zirlik
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immunotherapie (DZI), Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum für Immunotherapie (DZI), Erlangen, Germany
| |
Collapse
|
4
|
Hou JH, Jiang DM, Chu M, Wu LY. Blood-brain barrier biomarkers modulate the associations of peripheral immunity with Alzheimer's disease. Transl Psychiatry 2025; 15:138. [PMID: 40210862 PMCID: PMC11986039 DOI: 10.1038/s41398-025-03347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
The association between peripheral immunity and Alzheimer's disease (AD) has been increasingly recognized, but the underlying mechanisms are still unclear. We used multiple linear regression models to explore the association between peripheral immune biomarkers / blood-brain barrier (BBB)-related biomarkers and AD biomarkers. And we used causal mediation analysis with 10,000 bootstrapped iterations to investigate the functions of BBB-related biomarkers in mediating the associations between peripheral immune biomarkers and AD pathology, cerebral atrophy degree, as well as cognitive function. A total of 543 participants (38.7% female, mean age of 74.8 years) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were involved. Neutrophils percent (NEU%), lymphocytes percent (LYM%), neutrophils / lymphocytes (NLR), and chemotactic factor-3 (CCL26) were significantly associated with cerebrospinal fluid (CSF) β-amyloid-42 (Aβ-42), phosphorylated-tau (P-tau), total tau (T-tau)/Aβ-42 and P-tau/Aβ-42, the associations of NEU% with AD pathology were mediated by CCL26 (proportion: 18-24%; p < 0.05). NEU%, LYM%, NLR, CCL26, CD40 and matrix metalloproteinase-10 (MMP10) were significantly associated with whole brain, hippocampal volume, middle temporal lobe (MTL) volume, and entorhinal cortex (EC) thickness, the associations of peripheral immune biomarkers with cerebral atrophy degree were mediated by BBB-related biomarkers (proportion: 7-17%; p < 0.05). NEU%, LYM%, NLR, CCL26, CD40 and MMP10 were significantly associated with global cognition, executive function, memory function, immediate recall, and delayed recall, the associations of peripheral immune biomarkers with cognitive function were mediated by BBB-related biomarkers (proportion: 9-24%; p < 0.05). This study suggests that peripheral immunity may influence AD through influencing BBB function, providing a more robust and comprehensive evidence chain for the potential role of inflammation in AD.
Collapse
Affiliation(s)
- Jia-Hui Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - De-Ming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li-Yong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Riaz B, Ryu HM, Choi B, Sohn S. Tartaric Acid Exacerbates DSS-Induced Colitis by Promoting Eosinophilic Inflammation via IL-13 and IL-5Rα Upregulation. Pathogens 2025; 14:366. [PMID: 40333150 PMCID: PMC12030069 DOI: 10.3390/pathogens14040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Eosinophils are granulocytes involved in the effector phase of type 2 T cell immune responses, which are elevated in inflammatory conditions like ulcerative colitis (UC) and other allergic diseases. UC is a chronic inflammatory colon disease, marked by excessive eosinophil infiltration and elevated Th2 cytokines, which contribute to mucosal inflammation and tissue damage. Dietary factors, including certain organic acids, can influence UC progression by modulating gut immune responses. This research is the first to explore the dose-dependent effects of tartaric acid (TA), a naturally occurring organic acid widely used in the food industry, on eosinophil activation and Th2 cytokine response in both normal mice and a dextran sulfate sodium (DSS)-induced colitis model. Normal mice were treated with TA at varying doses (5 µg, 25 µg, and 50 µg/mouse/day), while colitis mice received 50 µg TA. Eosinophil activation markers (CD11b+, SiglecF+, and CCR3+), Th2 cytokines (IL-4, IL-13, and IL-31), and IL-17 were assessed in peripheral blood leukocytes, lymph nodes, and splenocytes using flow cytometry. Additionally, mRNA expression levels of eosinophil-associated chemokines and cytokines in the splenocytes were quantified with real-time qPCR. Our results demonstrate a dose-dependent effect of TA, with the highest dose (50 µg) significantly increasing eosinophil activation markers, Th2 cytokines, IL-17, and mRNA expression of SiglecF, CCL11, and toll-like receptor 4 in normal mice. In colitis mice, treatment with 50 µg TA showed marked increases in IL-13 levels compared to those of untreated colitis mice, reflecting increased eosinophil recruitment to inflamed tissues. Moreover, mRNA expression of IL-5Rα was elevated in normal mice and colitis mice administered with TA. These results suggest that TA enhances eosinophil proliferation, the upregulation of their regulatory molecules, and Th2 immune profiles, potentially worsening the severity of colitis.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Bunsoon Choi
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| |
Collapse
|
6
|
Li JY, Ling YJ, Bao WH, Zhang WN, Han XM, Zheng XC, Zhao Q. Exploring the causal relationship between inflammatory cytokines and myasthenia gravis: A two-way Mendelian randomization study. Cytokine 2025; 186:156843. [PMID: 39740367 DOI: 10.1016/j.cyto.2024.156843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Based on previous research, it is well-established that myasthenia gravis (MG) is linked to chronic inflammation. However, the exact nature of the relationship between inflammatory factors and the development of MG remains unclear. Consequently, the objective of this study is to explore whether alterations in the levels of inflammatory factors, as influenced by genetic factors, are associated with the occurrence of MG. This will be achieved through a two-sample Mendelian randomization (MR) analysis. METHODS We conducted a bidirectional Mendelian randomization (MR) study utilizing genetic data from genome-wide association studies (GWAS), encompassing 1873 MG cases and 36,370 individuals of European ancestry as controls. Data on inflammatory cytokines were obtained from GWAS data of 8293, healthy participants. The inverse variance-weighted (IVW) method was primarily employed to investigate the causal relationship between exposure and outcome. Additionally, various sensitivity analysis methods such as MR-Egger, weighted median, simple mode, weighted mode, and MR-PRESSO were applied to strengthen the reliability of the results. Through these rigorous approaches, we extensively examined the relationship between inflammatory factors and MG; however, further research is required to establish the specific causal relationship. RESULTS After applying Bonferroni correction, the genetic predictions revealed a significant correlation between Monokine induced by gamma interferon (MIG) and MG (OR: 1.09, 95 % CI: 1.04-1.14; P = 0.0006). Furthermore, there were preliminary findings indicating a positive genetic association between Eotaxin and interleukin-2 receptor antagonist (IL-2ra) with MG (OR: 0.81, 95 % CI: 0.66-0.99, P = 0.044; OR: 0.80, 95 % CI: 0.68-0.94, P = 0.008). Reverse MR analysis provided initial evidence of associations between MIP1α, GROa, IL-13, TRAIL, IL-2ra, and IL-1ra with the development of MG. No indications of pleiotropy or heterogeneity among genetic variants were observed (P > 0.05). CONCLUSION This study uncovers a new connection between inflammatory cytokines and MG, shedding light on potential factors contributing to the development of the disease. Elevated levels of Eotaxin and IL-2ra are associated with a higher risk of MG, while indicating that MIG, MIP1α, GROa, IL-13, TRAIL, IL-2ra, and IL-1ra may be elevated as a result of MG, Especially MIG. These findings suggest that targeting and regulating specific inflammatory factors could offer promising avenues for the treatment and prevention of MG.
Collapse
Affiliation(s)
- Jing-Yu Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Jun Ling
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Hui Bao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Affiliated Hospital of Tianjin Institute of Traditional Chinese Medicine, Tianjin, China
| | - Wen-Na Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin-Miao Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Chen Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
7
|
Negrin LL, Ristl R, Wollner G, Hajdu S. Differences in Eotaxin Serum Levels between Polytraumatized Patients with and without Concomitant Traumatic Brain Injury-A Matched Pair Analysis. J Clin Med 2024; 13:4218. [PMID: 39064258 PMCID: PMC11277900 DOI: 10.3390/jcm13144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Early detection of traumatic brain injury (TBI) is crucial for minimizing secondary neurological damage. Our study aimed to assess the potential of IL-4, IL-6, IL-7, IL-8, IL-10, TNF, and eotaxin serum levels-as a single clinical tool or combined into a panel-for diagnosing TBI in multiple injured patients. Methods: Out of 110 prospectively enrolled polytrauma victims (median age, 39 years; median ISS, 33; 70.9% male) admitted to our level I trauma center over four years, we matched 41 individuals with concomitant TBI (TBI cohort) to 41 individuals without TBI (non-TBI cohort) based on age, gender, Injury Severity Score (ISS), and mortality. Patients' protein levels were measured upon admission (day 0) and on days 1, 3, 5, 7, and 10 during routine blood withdrawal using one separation gel tube each time. Results: The median serum levels of IL-4, IL-6, IL-7, IL-8, IL-10, and TNF exhibited non-similar time courses in the two cohorts and showed no significant differences on days 0, 1, 3, 5, and 7. However, the median eotaxin levels had similar trend lines in both cohorts, with consistently higher levels in the TBI cohort, reaching significance on days 0, 3, and 5. In both cohorts, the median eotaxin level significantly decreased from day 0 to day 1, then significantly increased until day 10. We also found a significant positive association between day 0 eotaxin serum levels and the presence of TBI, indicating that for every 20 pg/mL increase in eotaxin level, the odds of a prevalent TBI rose by 10.5%. ROC analysis provided a cutoff value of 154 pg/mL for the diagnostic test (sensitivity, 0.707; specificity, 0.683; AUC = 0.718). Conclusions: Our findings identified the brain as a significant source, solely of eotaxin release in humans who have suffered a TBI. Nevertheless, the eotaxin serum level assessed upon admission has limited diagnostic value. IL-4, IL-6, IL-7, IL-8, IL-10, and TNF do not indicate TBI in polytraumatized patients.
Collapse
Affiliation(s)
- Lukas L. Negrin
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gregor Wollner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Stefan Hajdu
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| |
Collapse
|
8
|
Bu L, Wang M, Liu X, Zhang M, Zhang Y, Zhang X, Liang F, Huang B, Huang J, Wu S, Tang X, Wang X, Zhang L. Emu oil alleviates atopic dermatitis-like responses by inhibiting Cdc42 signaling of keratinocyte. Int Immunopharmacol 2024; 139:112706. [PMID: 39032473 DOI: 10.1016/j.intimp.2024.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Emu oil is the oil extracted from the body fat of the Australian bird emu. Although previous studies have reported that emu oil has anti-inflammatory effects, the effect and mechanism of emu oil on the treatment of atopic dermatitis have not been reported. Here, 2, 4-dinitrofluorobenzene was used to induce atopic dermatitis-like appearance on the back skin of C57BL/6 mice. And then, the effect of emu oil in the atopic dermatitis treatment was evaluated. We found that emu oil reduced the transdermal water loss in the atopic dermatitis model. Additionally, the epidermal thickness treated with emu oil was significantly thinner. The number of mast cells and inflammatory cells were significantly decreased. The thymic stromal lymphopoietin (TSLP), which is secreted by keratinocyte, was decreased significantly after treatment. Moreover, the serum levels of cytokines TSLP, interleukin-4, interleukin-13, and immunoglobulin (Ig) E were decreased after emu oil treatment. Surprisingly, we found that the high level of Cdc42 expression in the atopic dermatitis, which was decreased after emu oil treatment. To detect the role of Cdc42 in atopic dermatitis, we constructed atopic dermatitis model in mice with sustained activation of Cdc42 signaling. Furthermore, we have confirmed that emu oil demonstrates anti-inflammatory effects in atopic dermatitis by inhibiting the expression of Cdc42 signaling in keratinocytes. In conclusion, we discovered a new role of Cdc42 in the development of atopic dermatitis, which mediated the therapeutic effect of emu oil on atopic dermatitis.
Collapse
Affiliation(s)
- Lingwei Bu
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Mei Wang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Xiaoran Liu
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, China
| | - Min Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Yarui Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Xinyue Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Fengting Liang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Bingli Huang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianyuan Huang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Shenhua Wu
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Xueting Tang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Xueer Wang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China; Changji Branch Hospital of The First Affiliated Hospital of Xinjiang Medical University, Changji, China; Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Lin Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Cordero H. Chemokine receptors in primary and secondary lymphoid tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:1-19. [PMID: 39260934 DOI: 10.1016/bs.ircmb.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors are a complex superfamily of surface G protein-coupled receptors present mostly in leukocytes. In this chapter, we review the presence and functions of chemokine receptors in the immune cells of the primary and secondary lymphoid organs. Those include bone marrow, thymus, spleen, lymph nodes, and Peyer's patches as the main components of the gut-associated lymphoid tissue. There are general groups of chemokine receptors: conventional and atypical. We will mostly cover the role of conventional chemokine receptors, which are divided into four classes (CC, CXC, CX3C, and XC). Some relevant members are CXCR4, CXCR5, CCR4 and CCR7. For example, CXCR4 is a key chemokine receptor in the bone marrow controlling from the homing of progenitor cells into the bone marrow, the development of B cells, to the homing of long-lived plasma cells to this primary lymphoid organ. CCR7 and CCR4 are two of the main players in the thymus. CCR7 along with CCR9 control the traffic of thymic seed progenitors into the thymus, while CCR4 and CCR7 are critical for the entry of thymocytes into the medulla and as controllers of the central tolerance in the thymus. CXCR4 and CXCR5 have major roles in the spleen, guiding the maturation and class-switching of B cells in the different areas of the germinal center. In the T-cell zone, CCR7 guides the differentiation of naïve T cells. CCR7 also controls and directs the entry of T cells, B cells, and dendritic cells into secondary lymphoid tissues, including the spleen and lymph nodes. As new technologies emerge, techniques such as high dimensional spectral flow cytometry or single-cell sequencing allow a more comprehensive knowledge of the chemokine receptor network and their ligands, as well as the discovery of new interactions mediating unknown and overlooked mechanisms in health and disease.
Collapse
Affiliation(s)
- Hector Cordero
- Columbia Center for Translational Immunology, Columbia University, New York, NY, United States; Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
10
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
11
|
Karakioulaki M, Eyerich K, Patsatsi A. Advancements in Bullous Pemphigoid Treatment: A Comprehensive Pipeline Update. Am J Clin Dermatol 2024; 25:195-212. [PMID: 38157140 PMCID: PMC10866767 DOI: 10.1007/s40257-023-00832-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/03/2024]
Abstract
ABASTRACT Bullous pemphigoid (BP) is a common autoimmune bullous disease affecting mainly the elderly, with rising incidence due to increased life expectancy. This disease is characterized by tense bullous lesions on normal or erythematous skin, accompanied by pruritus. BP pathogenesis involves autoantibodies against hemidesmosomal proteins BP180 and BP230, leading to detachment at the dermo-epidermal junction as well as blister formation. BP is associated with coexisting comorbidities and drug exposure, and its management often requires high doses or chronic use of systemic glucocorticoids, posing risks of adverse effects. This review focuses on novel treatment options for BP, exploring therapies targeting different immune pathways. Rituximab, a CD20 monoclonal antibody, depletes B-lymphocytes and has shown efficacy in severe cases. Dupilumab, targeting interleukin (IL)-4 receptor α and thus blocking IL-4 and IL-13, downregulates type 2 helper (Th2) responses and has demonstrated promising results. Targeting eosinophil-related molecules using bertilimumab and AKST4290 has yielded positive results in clinical trials. Omalizumab, an immunoglobulin (Ig) E antibody, can reduce disease severity and allows corticosteroid tapering in a number of cases. Complement inhibitors such as nomacopan and avdoralimab are being investigated. IL-17 and IL-23 inhibitors such as secukinumab and tildrakizumab have shown potential in a limited number of case reports. Neonatal Fc receptor antagonists such as efgartigimod are under investigation. Additionally, topical therapies and Janus kinase inhibitors are being explored as potential treatments for BP. These novel therapies offer promising alternatives for managing BP, with potential to improve outcomes and reduce high cumulative doses of systemic corticosteroids and related toxicities. Further research, including controlled clinical trials, is needed to establish their efficacy, safety, and optimal dosing regimens for BP management.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Department of Dermatology and Venerology, Medical Center, University Hospital Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Department of Dermatology and Venerology, Medical Center, University Hospital Freiburg, Freiburg, Germany
| | - Aikaterini Patsatsi
- Second Department of Dermatology, School of Medicine, Papageorgiou Hospital, Aristotle University, Thessaloníki, Greece.
| |
Collapse
|
12
|
Hoyer A, Chakraborty S, Lilienthal I, Konradsen JR, Katayama S, Söderhäll C. The functional role of CST1 and CCL26 in asthma development. Immun Inflamm Dis 2024; 12:e1162. [PMID: 38270326 PMCID: PMC10797655 DOI: 10.1002/iid3.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Asthma is the most common chronic disease in children with an increasing prevalence. Its development is caused by genetic and environmental factors and allergic sensitization is a known trigger. Dog allergens affect up to 30% of all children and dog dander-sensitized children show increased expression of cystatin-1 (CST1) and eotaxin-3 (CCL26) in nasal epithelium. The aim of our study was to investigate the functional mechanism of CST1 and CCL26 in the alveolar basal epithelial cell line A549. METHODS A549 cells were transfected with individual overexpression vectors for CST1 and CCL26 and RNA sequencing was performed to examine the transcriptomics. edgeR was used to identify differentially expressed genes (= DEG, |log2 FC | ≥ 2, FDR < 0.01). The protein expression levels of A549 cells overexpressing CST1 and CCL26 were analyzed using the Target 96 inflammation panel from OLINK (antibody-mediated proximity extension-based assay; OLINK Proteomics). Differentially expressed proteins were considered with a |log2 FC| ≥ 1, p < .05. RESULTS The overexpression of CST1 resulted in a total of 27 DEG (1 upregulated and 26 downregulated) and the overexpression of CCL26 in a total of 137 DEG (0 upregulated and 137 downregulated). The gene ontology enrichment analysis showed a significant downregulation of type I and III interferon signaling pathway genes as well as interferon-stimulated genes. At the protein level, overexpression of CST1 induced a significantly increased expression of CCL3, whereas CCL26 overexpression led to increased expression of HGF, and a decrease of CXCL11, CCL20, CCL3 and CXCL10. CONCLUSION Our results indicate that an overexpression of CST1 and CCL26 cause a downregulation of interferon related genes and inflammatory proteins. It might cause a higher disease susceptibility, mainly for allergic asthma, as CCL26 is an agonist for CCR-3-carrying cells, such as eosinophils and Th2 lymphocytes, mostly active in allergic asthma.
Collapse
Affiliation(s)
- Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
13
|
Evangelous TD, Berry M, Venkatayogi S, LeMaster C, Geanes ES, De Naeyer N, DeMarco T, Shen X, Li H, Hora B, Solomonis N, Misamore J, Lewis MG, Denny TN, Montefiori D, Shaw GM, Wiehe K, Bradley T, Williams WB. Host immunity associated with spontaneous suppression of viremia in therapy-naïve young rhesus macaques following neonatal SHIV infection. J Virol 2023; 97:e0109423. [PMID: 37874153 PMCID: PMC10688376 DOI: 10.1128/jvi.01094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.
Collapse
Affiliation(s)
- Tyler D. Evangelous
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cas LeMaster
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Eric S. Geanes
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Nicole De Naeyer
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd Bradley
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, Missouri, USA
- Departments of Pediatrics and Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
14
|
Wang Z, Xu H, Chen M, Lu Y, Zheng L, Ma L. CCL24/CCR3 axis plays a central role in angiotensin II-induced heart failure by stimulating M2 macrophage polarization and fibroblast activation. Cell Biol Toxicol 2023; 39:1413-1431. [PMID: 36131165 PMCID: PMC10425496 DOI: 10.1007/s10565-022-09767-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
AIMS We aimed to investigate the effect and mechanism of pleiotropic chemokine CCL24 in heart failure. METHODS AND RESULTS Compared with normal donators, the expression of CCL24 and number of cardiac M2 macrophages in heart were higher in heart failure patients, the same as plasma CCL24. Treatment with CCL24 antibody hindered Ang II (1500 ng/kg/min)-induced cardiac adverse remodeling through preventing cardiac hypertrophy and fibrosis. RNA-seq showed that CCL24/CCR3 axis was involved in immune and inflammatory responses. Single-cell analysis of cytometry by time of flight (CyTOF) revealed that CCL24 antibody decreased the M2 macrophage and monocyte polarization during Ang II stimulation. Immunofluorescence co-localization analysis confirmed the expression of CCR3 in macrophage and fibroblasts. Then, in vitro experiments confirmed that CCL24/CCR3 axis was also involved in cardiac primary fibroblast activation through its G protein-coupled receptor function. CONCLUSION CCL24/CCR3 axis plays a crucial part in cardiac remodeling by stimulating M2 macrophage polarization and cardiac fibroblast activation. Cardiac M2 macrophages, CCL24 and circulation CCL24 increased in heart failure patients. Treatment with CCL24 Ab hindered Ang II induced cardiac structural dysfunction and electrical remodeling. In CCL24 Ab group RNA-seq found that it was related to immune responses and hypertrophic cardiomyopathy, CytoF revealed M2 macrophages and monocytes decreased obviously. In vitro,CCL24 promoted activation and migration of cardiac fibroblast.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Miao Chen
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yunlong Lu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Liangrong Zheng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Liang Ma
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
15
|
Hua C, Liang Q, Chen S, Zhu J, Tang Y, Chen X, Song Y, van der Veen S, Cheng H. Human umbilical cord mesenchymal stem cell treatment alleviates symptoms in an atopic dermatitis-like mouse model. Stem Cell Res Ther 2023; 14:147. [PMID: 37248497 DOI: 10.1186/s13287-023-03365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is one of the most common immune and inflammatory skin disorders, leading to insufferable itching and skin abnormalities that seriously affect life quality of patients. There are still huge unmet needs for long-term and effective disease control, despite currently available therapies. Evidenced by some preclinical and clinical studies of AD treatment with stem cells, stem cell treatment could significantly and effectively ameliorate AD symptoms. OBJECTIVES To elucidate underlying mechanisms of how stem cells therapy alleviates AD-like symptoms. METHODS An AD-like mouse model was constructed and treated with mesenchymal stem cells (MSCs) subcutaneously or subcutaneously combined with intravenously. The differentially expressed genes were sorted out from RNA sequencing results of dorsal skin and blood. RESULTS Two injection routes of MSCs could alleviate AD-like symptoms and pathologic changes of the skin and immune organs. RNA sequencing of dorsal skin sections and blood provided gene expression signatures for amelioration of skin defects, inflammatory and immune modulation by MSCs, as well as common AD molecular markers for the skin and blood, which may benefit for clinical diagnosis. IL-1β and its signaling pathway were specifically found to be associated with the development of AD-like dermatitis lesions. MSC treatment effectively inhibited the JAK-STAT pathway and receptors of IL-4, IL-13, IL-17, and IgE. CONCLUSIONS MSC therapy could regulate abnormal immune and inflammatory status in AD. Mechanistic exploration will contribute to the development of personalized AD treatment based on MSCs.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichang Liang
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Zhu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Tang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Wang J, Yang J, Xia W, Zhang M, Tang H, Wang K, Zhou C, Qian L, Fan Y. Escherichia coli enhances Th17/Treg imbalance via TLR4/NF-κB signaling pathway in oral lichen planus. Int Immunopharmacol 2023; 119:110175. [PMID: 37058754 DOI: 10.1016/j.intimp.2023.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Oral lichen planus (OLP) is a T-cell-mediated immunoinflammatory disease. Several studies have proposed that Escherichia coli (E. coli) may participate in the progress of OLP. In this study, we examined the functional role of E. coli and its supernatant via toll-like receptor 4 (TLR4)/nuclear factor-kappab (NF-κB) signaling pathway in regulating T helper (Th) 17/ regulatory T (Treg) balance and related cytokines and chemokines profile in OLP immune microenvironment. We discovered that E. coli and supernatant could activate the TLR4/NF-κB signaling pathway in human oral keratinocytes (HOKs) and OLP-derived T cells and increase the expression of interleukin (IL)-6, IL-17, C-C motif chemokine ligand (CCL) 17 and CCL20, thereby increasing the expression of retinoic acid-related orphan receptor (RoRγt) and the proportion of Th17 cells. Furthermore, the co-culture experiment revealed that HOKs treated with E. coli and supernatant increased T cell proliferation and migration, which promoted HOKs apoptosis. TLR4 inhibitor (TAK-242) successfully reversed the effect of E. coli and its supernatant. Consequently, E. coli and supernatant activated the TLR4/NF-κB signaling pathway in HOKs and OLP-derived T cells, leading to increased cytokines and chemokines expression and Th17/Treg imbalance in OLP.
Collapse
Affiliation(s)
- Jia Wang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Jingjing Yang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Wenhui Xia
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Mengna Zhang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Haonan Tang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Keyi Wang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Chenyu Zhou
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Ling Qian
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Yuan Fan
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
17
|
Onkanga IO, Sang H, Hamilton R, Ondigo BN, Jaoko W, Odiere MR, Ganley-Leal L. CD193
(
CCR3
) expression by B cells correlates with reduced
IgE
production in paediatric schistosomiasis. Parasite Immunol 2023; 45:e12979. [PMID: 36971331 DOI: 10.1111/pim.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
We demonstrate that CD193, the eotaxin receptor, is highly expressed on circulating B cells in paediatric schistosomiasis mansoni. CD193 plays a role in directing granulocytes into sites of allergic-like inflammation in the mucosa, but little is known about its functional significance on human B cells. We sought to characterize CD193 expression and its relationship with S. mansoni infection. We found that CD193+ B cells increased with the intensity of schistosome infection. In addition, a significant negative association was observed between CD193 expression by B cells and IgE production. Decreased IgE levels are generally associated with susceptibility to re-infection. B cell stimulation with eotaxin-1 increased CD193 levels whereas IL-4 led to a reduction. This was supported by plasma levels of eotaxin-1 correlating with CD193 levels on B cells and other cells. In contrast, CD193 expression was induced on naive B cells with a combination of IL-10 and schistosome antigens. Whereas T cells had a modest increase in CD193 expression, only B cell CD193 appeared functionally chemotactic to eotaxin-1. Thus, CD193+ B cells, which co-express CXCR5, may be enroute to sites with allergic-like inflammation, such as gastrointestinal follicles, or even to Th2 granulomas, which develop around parasite eggs. Overall, our results suggest that schistosome infection may promote CD193 expression and suppress IgE via IL-10 and other undefined mechanisms related to B cell trafficking. This study adds to our understanding of why young children may have poor immunity. Nonetheless, praziquantel treatment was shown to reduce percentages of circulating CD193+ B cells lending hope for future vaccine efforts.
Collapse
Affiliation(s)
- I O Onkanga
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- KAVI-Institute of Clinical Research, and Department of Medical Microbiology & Immunology, University of Nairobi, Nairobi, Kenya
| | - H Sang
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - R Hamilton
- Elegance Biotechnologies, LLC, Wayne, Pennsylvania, USA
| | - B N Ondigo
- Department of Biochemistry and Molecular Biology, Faculty of Science, Egerton University, Egerton, Kenya
| | - W Jaoko
- KAVI-Institute of Clinical Research, and Department of Medical Microbiology & Immunology, University of Nairobi, Nairobi, Kenya
| | - M R Odiere
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - L Ganley-Leal
- Elegance Biotechnologies, LLC, Wayne, Pennsylvania, USA
| |
Collapse
|
18
|
Wang Y, Wei M, Wang Y, Liu Y, Wang X. The critical role of IFNγ in the epidermotropic migration of lymphocytes in oral lichen planus. J Oral Pathol Med 2023; 52:72-80. [PMID: 36349529 DOI: 10.1111/jop.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The chemokines play a crucial role in the recruitment of lymphocytes in oral lichen planus, and the activated epithelial cells are the main producers of the chemokines. However, the signals provoking chemokine secretion still remain to be elucidated. METHODS The global expression profile of chemokines in oral epithelial cell line induced by IFNγ was determined by microarray analysis. The gene and protein expression was validated in primary culture of oral epithelial cells, and the effects of IFNγ on regulating chemokine production were compared with that of TNFα and IL2. Moreover, the capability of primary culture of oral epithelial cells to attract peripheral lymphocytes in response to IFNγ was investigated in oral lichen planus patients, and the cell phenotype of the recruited lymphocytes was analyzed using flow cytometry. RESULTS IFNγ triggered the expression of multiple chemokines in the oral epithelial cells. The expression pattern of the chemokines closely resembled that in the epithelial cell layer of oral lichen planus lesions. Compared with IL2 and TNFα, IFNγ demonstrated a distinct maximal effect on the chemokines secretion in primary culture of oral epithelial cells. The migration of peripheral lymphocytes toward the culture supernatant of IFNγ-treated primary culture of oral epithelial cells was significantly enhanced in the oral lichen planus group compared to that in the healthy control group. CONCLUSION IFNγ plays an important role in the chemokine secretion and epidermotropic migration of lymphocytes in oral lichen planus.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University (FMMU), Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Xi'an, China
| | - Minghui Wei
- Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University (FMMU), Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Xi'an, China
| | - Yuanyuan Wang
- Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University (FMMU), Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Xi'an, China
| | - Yuan Liu
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Xi'an, China.,Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University (FMMU), Xi'an, China
| | - Xinwen Wang
- Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University (FMMU), Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Xi'an, China
| |
Collapse
|
19
|
Tateyama N, Asano T, Suzuki H, Li G, Yoshikawa T, Tanaka T, Kaneko MK, Kato Y. Epitope Mapping of Anti-Mouse CCR3 Monoclonal Antibodies Using Flow Cytometry. Antibodies (Basel) 2022; 11:antib11040075. [PMID: 36546900 PMCID: PMC9774254 DOI: 10.3390/antib11040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
The CC chemokine receptor 3 (CCR3) is a receptor for CC chemokines, including CCL5/RANTES, CCL7/MCP-3, and CCL11/eotaxin. CCR3 is expressed on the surface of eosinophils, basophils, a subset of Th2 lymphocytes, mast cells, and airway epithelial cells. CCR3 and its ligands are involved in airway hyperresponsiveness in allergic asthma, ocular allergies, and cancers. Therefore, CCR3 is an attractive target for those therapies. Previously, anti-mouse CCR3 (mCCR3) monoclonal antibodies (mAbs), C3Mab-3 (rat IgG2a, kappa), and C3Mab-4 (rat IgG2a, kappa) were developed using the Cell-Based Immunization and Screening (CBIS) method. In this study, the binding epitope of these mAbs was investigated using flow cytometry. A CCR3 extracellular domain-substituted mutant analysis showed that C3Mab-3, C3Mab-4, and a commercially available mAb (J073E5) recognized the N-terminal region (amino acids 1-38) of mCCR3. Next, alanine scanning was conducted in the N-terminal region. The results revealed that the Ala2, Phe3, Asn4, and Thr5 of mCCR3 are involved in C3Mab-3 binding, whereas Ala2, Phe3, and Thr5 are essential to C3Mab-4 binding, and Ala2 and Phe3 are crucial to J073E5 binding. These results reveal the involvement of the N-terminus of mCCR3 in the recognition of C3Mab-3, C3Mab-4, and J073E5.
Collapse
Affiliation(s)
- Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Correspondence: (H.S.); (Y.K.); Tel.: +81-22-717-8207 (H.S. & Y.K.)
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Correspondence: (H.S.); (Y.K.); Tel.: +81-22-717-8207 (H.S. & Y.K.)
| |
Collapse
|
20
|
Zeng FAP, Murrell DF. Bullous pemphigoid-What do we know about the most recent therapies? Front Med (Lausanne) 2022; 9:1057096. [PMID: 36405625 PMCID: PMC9669062 DOI: 10.3389/fmed.2022.1057096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/25/2023] Open
Abstract
Introduction Bullous pemphigoid (BP) is the most common subtype of autoimmune blistering diseases that primarily affects the elderly and is classically defined by the presence of IgG and/or complement C3 against the BP180 and BP230 hemidesmosome proteins. However, most recent studies have introduced the role of specific eosinophil receptors and chemokine mediators in the pathogenesis of BP which are helpful in identifying new targets for future treatments. Areas covered This review will focus on the involvement of eosinophils in BP, including the processes that lead to their recruitment, activation, and regulation. Subsequently, covering new therapeutic options in relation to the role of eosinophils. Eotaxin enhances the recruitment of eosinophils in BP, with CCR3 chemoreceptor that is expressed on eosinophils being identified as a key binding site for eotaxin-1. The pathogenic role of IgE and IL-4 in BP is corroborated by successful treatments with Omalizumab and Dupilumab, respectively. IL-5, IL-17 and IL-23 inhibitors may be effective given their roles in promoting eosinophilia. Expert opinion Further research into inhibitors of eotaxin, IL-4, IL-5, IL-17, IL-23, CCR3, and specific complement factors are warranted as preliminary studies have largely identified success in treating BP with these agents. Learning from novel treatments for other IgG-mediated autoimmune diseases may be beneficial.
Collapse
Affiliation(s)
- Faith A. P. Zeng
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Dedee F. Murrell
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Dermatology, St George Hospital, Sydney, NSW, Australia
- The George Institute for Global Health, Sydney, NSW, Australia
| |
Collapse
|
21
|
Patil K, Kuttikrishnan S, Khan AQ, Ahmad F, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
22
|
Fantou A, Lagrue E, Laurent T, Delbos L, Blandin S, Jarry A, Beriou G, Braudeau C, Salabert N, Marin E, Moreau A, Podevin J, Bourreille A, Josien R, Martin JC. IL-22BP production is heterogeneously distributed in Crohn’s disease. Front Immunol 2022; 13:1034570. [PMID: 36311796 PMCID: PMC9612839 DOI: 10.3389/fimmu.2022.1034570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn’s disease (CD), a form of inflammatory bowel disease (IBD), is characterized by impaired epithelial barrier functions and dysregulated mucosal immune responses. IL-22 binding protein (IL-22BP) is a soluble inhibitor regulating IL-22 bioactivity, a cytokine proposed to play protective roles during CD. We and others have shown that IL-22BP is produced in IBD inflamed tissues, hence suggesting a role in CD. In this work, we extended the characterization of IL-22BP production and distribution in CD tissues by applying enzyme-linked immunosorbent assays to supernatants obtained from the culture of endoscopic biopsies of patients, and reverse transcription-quantitative polymerase chain reaction on sorted immune cell subsets. We reveal that IL-22BP levels are higher in inflamed ileums than colons. We observe that in a cell-intrinsic fashion, populations of mononuclear phagocytes and eosinophils express IL-22BP at the highest levels in comparison to other sources of T cells. We suggest the enrichment of intestinal eosinophils could explain higher IL-22BP levels in the ileum. In inflamed colon, we reveal the presence of increased IL-22/IL22BP ratios compared to controls, and a strong correlation between IL-22BP and CCL24. We identify monocyte-derived dendritic cells (moDC) as a cellular subtype co-expressing both cytokines and validate our finding using in vitro culture systems. We also show that retinoic acid induces the secretion of both IL-22BP and CCL24 by moDC. Finally, we report on higher IL-22BP levels in active smokers. In conclusion, our work provides new information relevant to therapeutic strategies modulating IL-22 bioactivity in CD, especially in the context of disease location.
Collapse
Affiliation(s)
- Aurélie Fantou
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’Immunologie, CIMNA, Nantes, France
| | - Eric Lagrue
- CHU Nantes, Nantes Université, Service d’Anatomie et Cytologie Pathologiques, Nantes, France
| | - Thomas Laurent
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Stéphanie Blandin
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Anne Jarry
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Gaëlle Beriou
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Cécile Braudeau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’Immunologie, CIMNA, Nantes, France
| | - Nina Salabert
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’Immunologie, CIMNA, Nantes, France
| | - Eros Marin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Aurélie Moreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Juliette Podevin
- CHU Nantes, Institut des Maladies de l’Appareil Digestif, Nantes, France
| | - Arnaud Bourreille
- CHU Nantes, Institut des Maladies de l’Appareil Digestif, Nantes, France
| | - Régis Josien
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’Immunologie, CIMNA, Nantes, France
- *Correspondence: Jérôme C. Martin, ; Régis Josien,
| | - Jérôme C. Martin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’Immunologie, CIMNA, Nantes, France
- *Correspondence: Jérôme C. Martin, ; Régis Josien,
| |
Collapse
|
23
|
Immune Biomarkers in Blood from Sarcoma Patients: A Pilot Study. Curr Oncol 2022; 29:5585-5603. [PMID: 36005179 PMCID: PMC9406743 DOI: 10.3390/curroncol29080441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The main role of the host immune system is to identify and eliminate cancer cells, which is a complex process, but it is not a fail-safe mechanism. Many sarcoma patients succumb to this disease despite treatments rendered. The aim of this pilot study was to compare the levels of CD4+ T-cells, T-regulatory (Treg) cells, and cytokines such as tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-17A (IL-17A), and transforming growth factor-beta-1 (TGF-β1) in peripheral blood leukocytes of sarcoma patients and healthy controls. For gene expression studies, total ribonucleic acid (RNA) was extracted from peripheral blood leukocytes and genes that were differentially regulated in peripheral blood leukocytes of sarcoma patients compared with healthy controls were determined using a commercial T-helper cell differentiation quantitative polymerase chain reaction (qPCR) array. Flow cytometer analysis was performed on blood samples from 26 sarcoma patients and 10 healthy controls to identify the levels of CD4+ T-cells and T-reg cells. The level of cytokines in plasma and culture supernatant were quantified using commercial enzyme-linked immunosorbent assay (ELISA) kits. A marked reduction in the percentage of CD4+ T-cells (p = 0.037) and levels of TNF-α (p = 0.004) and IFN-γ (0.010) was observed in sarcoma patients. Gene expression analysis showed five genes (homeobox A10 (HOXA10), GATA binding protein 3 (GATA3), prostaglandin D2 receptor 2 (PTGDR2), thymocyte selection associated high mobility group box (TOX), and C-C motif chemokine receptor 3 (CCR3)) were dysregulated (p < 0.05) in sarcoma patients. This study suggests that T-helper-1 immune responses are reduced in sarcoma patients.
Collapse
|
24
|
Wellemans V, Benhassou HA, Fuselier E, Bellesort F, Dury S, Lebargy F, Dormoy V, Fichel C, Naour RL, Gounni AS, Lamkhioued B. Role of CCR3 in respiratory syncytial virus infection of airway epithelial cells. iScience 2021; 24:103433. [PMID: 34917892 PMCID: PMC8646169 DOI: 10.1016/j.isci.2021.103433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the principal cause of severe lower respiratory tract disease and accounts for a significant risk for developing asthma later in life. Clinical studies have shown an increase in airway responsiveness and a concomitant Th2 response in the lungs of RSV-infected patients. These indications suggest that RSV may modulate aspects of the immune response to promote virus replication. Here, we show that CCR3 facilitates RSV infection of airway epithelial cells, an effect that was inhibited by eotaxin-1/CCL11 or upon CCR3 gene silencing. Mechanistically, cellular entry of RSV is mediated by binding of the viral G protein to CCR3 and selective chemotaxis of Th2 cells and eosinophils. In vivo, mice lacking CCR3 display a significant reduction in RSV infection, airway inflammation, and mucus production. Overall, RSV G protein-CCR3 interaction may participate in pulmonary infection and inflammation by enhancing eosinophils' recruitment and less potent antiviral Th2 cells. CCR3 mediates RSV infection of human airway epithelial cells Eotaxin-1 blocks RSV-G binding to CCR3 and significantly decreases RSV infection RSV-G secreted protein (sG) attracts human eosinophils and Th2 cells through CCR3 RSV infection of mice lacking CCR3 exhibited reduced inflammation and mucus secretion
Collapse
Affiliation(s)
| | - Hassan Ait Benhassou
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Eloise Fuselier
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Sandra Dury
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France.,Service des Maladies Respiratoires et Allergiques. Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - François Lebargy
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France.,Service des Maladies Respiratoires et Allergiques. Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S 1250, Pathologies Pulmonaires et Plasticité Cellulaire (P3Cell). Université de Reims Champagne-Ardenne, Reims, France
| | - Caroline Fichel
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Richard Le Naour
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Bouchaib Lamkhioued
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
25
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
26
|
Jacobs I, Ceulemans M, Wauters L, Breynaert C, Vermeire S, Verstockt B, Vanuytsel T. Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain? Front Immunol 2021; 12:754413. [PMID: 34737752 PMCID: PMC8560962 DOI: 10.3389/fimmu.2021.754413] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Eosinophils are leukocytes which reside in the gastrointestinal tract under homeostatic conditions, except for the esophagus which is normally devoid of eosinophils. Research on eosinophils has primarily focused on anti-helminth responses and type 2 immune disorders. In contrast, the search for a role of eosinophils in chronic intestinal inflammation and fibrosis has been limited. With a shift in research focus from adaptive to innate immunity and the fact that the eosinophilic granules are filled with inflammatory mediators, eosinophils are becoming a point of interest in inflammatory bowel diseases. In the current review we summarize eosinophil characteristics and recruitment as well as the current knowledge on presence, inflammatory and pro-fibrotic functions of eosinophils in inflammatory bowel disease and other chronic inflammatory conditions, and we identify research gaps which should be covered in the future.
Collapse
Affiliation(s)
- Inge Jacobs
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Ceulemans
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lucas Wauters
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of General Internal Medicine, Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Abstract
CD4+ T cells or helper T cells play various roles in the immune response to pathogens, tumors, as well as in asthma, allergy, and autoimmunity. Consequently, there is great interest in the comprehensive investigation of different T helper cell subsets. Here, we use mass cytometry (CyTOF), which is similar to flow cytometry but uses metal ion-tagged antibodies, which are detected using time-of-flight mass spectrometry. CyTOF allows the simultaneous detection of over 40 different antibodies, allowing us to collect high-dimensional single-cell proteomic data on T helper subsets. We use an extensive staining panel with a large number of lineage markers, cytokines, and other functional markers to identify and characterize CD4+ T cell subsets. In this method, human peripheral blood mononuclear cells are stimulated ex vivo with PMA and ionomycin, which activates T cells. The activated CD4+ T cells can then be identified as Th1, Th2, or Th17 cells based on their production of IFNγ, IL-4, and IL-17, respectively. Tregs are identified as CD4+CD25+CD127lo. Once Th1, Th2, Th17, and Tregs have been identified, they can be characterized in more detail using the large number of phenotypic and functional markers included in the CyTOF staining panel. Finally, automated and unbiased high-dimensional data analysis tools can be employed to comprehensively characterize T helper cells and discover novel features.
Collapse
|
28
|
Stamova S, Ott-Rötzer B, Smetak H, Schäffler K, Eder R, Fink I, Hoffmann P, Reichert TE, Beckhove P, Spanier G. Characterization and ex vivo expansion of rare in situ cytokine secreting T cell populations from tumor tissue and blood of oral squamous cell carcinoma patients. J Immunol Methods 2021; 496:113086. [PMID: 34146580 DOI: 10.1016/j.jim.2021.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Rare subpopulations of tumor antigen-reactive memory T cells, which actively secrete type-1 effector cytokines, particularly TNF-α in situ, possess anti-tumor activity and prognostic relevance. These cells are relevant for cancer immunotherapy; however, their low frequencies make them difficult to study and novel protocols for their culture and expansion ex vivo are needed. Here, we studied the presence of T cells secreting type-1 cytokines (Cy+T cells) in the blood and tumors of 24 patients with oral squamous cell carcinomas (OSCC) and explored possibilities for their isolation and expansion. More than 90% of OSCC patients contained enriched numbers Cy+T cells in the blood and tumors compared to healthy donors in which these were hardly detectable. The majority of TNF-α+T cells were CD4+ T helper cells while IFN-γ+TIL were predominantly CD8+. Cy+T helper cells in the blood were early-differentiated memory T cells while Cy+TIL and Cy+CD8+T cells showed advanced-differentiated memory T cell phenotypes. We explored different conditions for their in vitro culture and found that Cy+T cells can be efficiently expanded in vitro to similar levels as Cy-T cells and after expansion maintained their TNF-α secreting capacity. However, for optimal expansion they required specific culture conditions to support the maintenance of stem-like and central memory T cell phenotype. In conclusion, we show that Cy+T cells are enriched in OSCC patients and report a novel cell culture protocol optimized to specifically expand and functionally maintain these cells for further functional characterization or for their exploitation in immunotherapy of OSCC.
Collapse
Affiliation(s)
- Slava Stamova
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Birgitta Ott-Rötzer
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Heiko Smetak
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Katharina Schäffler
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Irina Fink
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Zysset D, Montani M, Spalinger J, Schibli S, Zlobec I, Mueller C, Sokollik C. Molecular and Histological Profiling Reveals an Innate-Shaped Immune Microenvironment in Solitary Juvenile Polyps. Clin Transl Gastroenterol 2021; 12:e00361. [PMID: 34060497 PMCID: PMC8162518 DOI: 10.14309/ctg.0000000000000361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Solitary juvenile polyps (JP) are characterized by a benign disease course with low recurrence rate but present with signs of intestinal inflammation. To better understand the underlying pathogenesis, we performed histological and molecular evaluation targeting distinct immune mechanisms. METHODS Pediatric patients with JP (n = 12), with treatment-naïve inflammatory bowel disease (IBD; [n = 41]) as inflammatory control, and non-IBD controls (n = 14) were investigated. For a comparative analysis of infiltrating immune cells, a next-generation tissue microarray of biopsies was assembled, immunostained, and scored. Targeted transcriptional profiling was performed using a customized immunology panel. RESULTS In JP, a predominant accumulation of neutrophils and eosinophils was observed. RNA expression profiles revealed increased levels of CXCL8, CXCL5, and CCL11 transcripts in JP, indicating an enhanced recruitment of neutrophils and eosinophils. Moreover, messenger RNA levels of the proinflammatory cytokine IL1b and the inflammation-amplifying receptor TREM1 were higher in JP, whereas we could not find signs of a functionally polarized Tcell response in JP when compared with IBD. DISCUSSION Patients with JP and patients with treatment-naïve IBD have distinct cell infiltrates during active disease. The ample presence of eosinophils in JP supports neutrophil accumulation, which is responsible for the elevated release of calprotectin. Intriguingly, however, we were not able to identify a functionally polarized T-cell response in JP, which indicates that during the acute onset of inflammation in JP, a potent adaptive immune memory is not established. This may explain the low reoccurrence rate of JP.
Collapse
Affiliation(s)
- Daniel Zysset
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Susanne Schibli
- Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital, Inselspital, University of Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Christiane Sokollik
- Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital, Inselspital, University of Bern, Switzerland
| |
Collapse
|
30
|
Hirmatsu-Ito M, Nakamura N, Miyabe M, Matsubara T, Naruse K. Case Report: Non-episodic Angioedema With Eosinophilia in a Young Lactating Woman. Front Immunol 2021; 12:627360. [PMID: 33981299 PMCID: PMC8107285 DOI: 10.3389/fimmu.2021.627360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Angioedema with eosinophilia is classified into two types: episodic angioedema with eosinophilia (EAE), known as Gleich’s syndrome, and non-episodic angioedema with eosinophilia (NEAE). We present the case of a young lactating woman with non-episodic angioedema. She had no history of parasitic or nonparasitic infections. Physical examination showed striking, non-pitting edema in both lower extremities. Her weight had not changed significantly throughout the course of the illness. She exhibited no other symptoms, and her vital signs were normal. There was no evidence of anemia, hypoalbuminemia, thyroid dysfunction, heart failure, renal failure, or postpartum cardiomyopathy. Based on these findings, we diagnosed her with angioedema with eosinophilia. Given the scarcity of information about this condition, we explored the dynamics between cytokines/chemokines and edema in this patient. We successfully quantified the edema by bioimpedance analysis. In addition, we revealed the involvement of interleukin-5 (IL-5), thymus- and activation-regulated chemokine/C-C motif chemokine ligand-17 (TARC/CCL-17), eotaxin-3/CCL-26, tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), monocyte chemotactic protein-4/CCL-13 (MCP-4/CCL-13), eotaxin-1/CCL-11, and regulated on activation, normal T expressed and secreted/CCL-5 (RANTES/CCL-5) in NEAE. Lastly, we elucidated the strong association between these parameters. To the best of our knowledge, this is the first such study of its kind.
Collapse
Affiliation(s)
- Mizuho Hirmatsu-Ito
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
31
|
T helper 2-driven immune dysfunction in chronic arsenic-exposed individuals and its link to the features of allergic asthma. Toxicol Appl Pharmacol 2021; 420:115532. [PMID: 33845054 DOI: 10.1016/j.taap.2021.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Limited information is available regarding the effects of arsenic exposure on immune function. We have recently reported that chronic exposure to As was associated asthma, as determined by spirometry and respiratory symptoms. Because T helper 2 (Th2)-driven immune responses are implicated in the pathogenesis of allergic diseases, including asthma, we studied the associations of serum Th1 and Th2 mediators with the As exposure markers and the features of asthma among individuals exposed to As. A total of 553 blood samples were selected from the same study subjects recruited in our previous asthma study. Serum levels of Th1 and Th2 cytokines were analyzed by immunoassay. Subjects' arsenic exposure levels (drinking water, hair and nail arsenic concentrations) were determined by inductively coupled plasma mass spectroscopy. Arsenic exposure levels of the subjects showed significant positive associations with serum Th2-mediators- interleukin (IL)-4, IL-5, IL-13, and eotaxin without any significant changes in Th1 mediators- interferon-γ and tumor necrosis factor-α. The ratios of Th2 to Th1 mediators were significantly increased with increasing exposure to As. Notably, most of the Th2 mediators were positively associated with serum levels of total immunoglobulin E and eotaxin. The serum levels of Th2 mediators were significantly higher in the subjects with asthma than those without asthma. The results of our study suggest that the exacerbated Th2-driven immune responses are involved in the increased susceptibility to allergic asthma among individuals chronically exposed to As.
Collapse
|
32
|
Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 2021; 385:281-292. [PMID: 33598825 PMCID: PMC8523400 DOI: 10.1007/s00441-020-03403-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
33
|
Rosshirt N, Trauth R, Platzer H, Tripel E, Nees TA, Lorenz HM, Tretter T, Moradi B. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis. Arthritis Res Ther 2021; 23:37. [PMID: 33482899 PMCID: PMC7821658 DOI: 10.1186/s13075-020-02410-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023] Open
Abstract
Background Investigating the pathophysiological mechanisms of early osteoarthritis (OA) is of utmost interest since this stage holds the strongest promise for therapeutic interventions. The aims of this study were to analyze if synovial inflammation is already present in early OA and to characterize the involved cell populations, by investigating synovial fluid (SF) and synovial membrane (SM) of early OA patients for the presence and polarization status of CD4 T cells. Methods A quantitative analysis of CD4+ T cell infiltration in SF and SM compared to peripheral blood (PB) was performed in patients with early stages of OA. We further investigated intracellular staining (ICS), surface marker, and chemokine receptor expression profiles of CD4+ T cells in SF, SM, and PB, as well as cytokine expression in native SF and PB. Matched samples of SF, SM, and PB were harvested from 40 patients with early OA at the time of surgery. Early OA was confirmed by independent surgeons intraoperatively. Samples were analyzed by flow cytometry for surface markers and cytokines, which are preferentially expressed by distinct T cell subsets (Th1, Th2, Th17, regulatory T cells). Furthermore, we analyzed native SF and PB supernatants using MACSPlex for multiple cytokine expression profiles. Results SF and SM showed a distinct infiltration of CD4+ T lymphocytes, with significantly increased expression of chemokine receptors CXCR3/CCR5, cytokine IFN-γ (preferentially expressed by Th1 cells), and CD161 (preferentially expressed by IL-17 producing Th17 cells) compared to PB. Furthermore, the percentage of CD4+ T cells polarized to Treg was significantly increased in SM compared to SF and PB. No significant differences were observed for CCR3 and CCR4 (preferentially expressed by Th2 cells), although IL-4 values were significantly higher in SM and SF compared to PB. Cytokine analysis showed comparable results between PB and SF, with only IL-6 being significantly increased in SF. Conclusions Early OA joints show already significant inflammation through CD4+ T cell infiltration, with predominant Th1 cell polarization. Inflammation seems to be driven by direct proinflammatory cell interaction. Cytokine signaling seems to be negligible at the site of inflammation in early OA, with only IL-6 being significantly increased in SF compared to PB. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-020-02410-w.
Collapse
Affiliation(s)
- Nils Rosshirt
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany.
| | - Richard Trauth
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Hadrian Platzer
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Elena Tripel
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Timo A Nees
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Hanns-Martin Lorenz
- Department of Internal Medicine V, Division of Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Tretter
- Department of Internal Medicine V, Division of Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Babak Moradi
- Clinic of Orthopedic and Trauma Surgery, University of Kiel, Arnold-Heller-Straße 3, Kiel, 24105, Germany
| |
Collapse
|
34
|
From Allergy to Cancer-Clinical Usefulness of Eotaxins. Cancers (Basel) 2021; 13:cancers13010128. [PMID: 33401527 PMCID: PMC7795139 DOI: 10.3390/cancers13010128] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Eotaxins are small proteins included in the group of chemokines. They act mainly on blood cells called eosinophils which are involved in the pathogenesis of inflammatory processes. This connection leads to involvement of eotaxins in the pathogenesis of all inflammatory related diseases, such as allergic diseases and cancer. This paper summarizes the current knowledge about eotaxins, showing their usefulness as markers that can be used not only in the detection of these diseases, but also to determine the effectiveness of treatment. Abstract Eotaxins are proteins which belong to the group of cytokines. These small molecules are secreted by cells that are mainly involved in immune-mediated reactions in the course of allergic diseases. Eotaxins were discovered in 1994 and their main role was considered to be the selective recruitment of eosinophils. As those blood cells are involved in the course of all inflammatory diseases, including cancer, we decided to perform an extensive search of the literature pertaining to our investigation via the MEDLINE/PubMed database. On the basis of available literature, we can assume that eotaxins can be used as markers for the detection and determination of origin or type of allergic disease. Many publications also confirm that eotaxins can be used in the determination of allergic disease treatment. Moreover, there are also studies indicating a connection between eotaxins and cancer. Some researchers revealed that CCL11 (C-C motif chemokine ligand 11, eotaxin-1) concentrations differed between the control and tested groups indicating their possible usefulness in cancer detection. Furthermore, some papers showed usefulness of eotaxins in determining the treatment efficacy as markers of decreasing inflammation. Therefore, in this paper we present the current knowledge on eotaxins in the course of allergic and cancerous diseases.
Collapse
|
35
|
Ansari AW, Sharif-Askari FS, Jayakumar MN, Mohammed AK, Sharif-Askari NS, Venkatachalam T, Mahboub B, Schmidt RE, Hamoudi RA, Halwani R, Hamid Q. Azithromycin Differentially Alters TCR-Activated Helper T Cell Subset Phenotype and Effector Function. Front Immunol 2020; 11:556579. [PMID: 33117343 PMCID: PMC7575909 DOI: 10.3389/fimmu.2020.556579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
In addition to their antibiotic activities, azithromycin (AZM) exhibits anti-inflammatory effects in various respiratory diseases. One of the potent anti-inflammatory mechanisms is through inhibition of CD4+ helper T (Th) cell effector function. However, their impact on specific Th subset is obscure. Herein, we demonstrate the cellular basis of phenotypic and functional alterations associated with Th subsets following AZM treatment in vitro. Using well-characterized Th subset specific chemokine receptors, we report significant suppression of T cell receptor (TCR)-stimulated hyperactivated CCR4+CXCR3+ (Th0) expansion compared to CCR4-CXCR3+ (Th1-like) and CCR4+CXCR3- (Th2-like) cells. Interestingly, this effect was associated with diminished cell proliferation. Furthermore, AZM significantly inhibited the inflammatory cytokines IFN-γ and IL-4 production, CCR4 and CXCR3 receptor expression, and viability of Th0, Th1-like, and Th2-like subsets. Our findings suggest that AZM differentially affects TCR-activated Th subsets phenotype and function, and CCR4 and CXCR3 downregulation and suppressed Th0 subset expansion could potentially influence their trafficking and differentiation into cytokine-producing effector cells.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Department of Pulmonary Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Rifat Akram Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Chen X, Zhao MZ, Miao BP, Liu ZQ, Yang G, Liu JQ, Yang PC, Song JP. Inhibition of Bcl2L12 Attenuates Eosinophilia-Related Inflammation in the Heart. Front Immunol 2020; 11:1955. [PMID: 33013849 PMCID: PMC7516035 DOI: 10.3389/fimmu.2020.01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Background: The eosinophilic inflammation plays a critical role in myocarditis (Mcd); its underlying mechanism remains to be further elucidated. This study aims to investigate the role of Bcl2-like protein 12 (Bcl2L12) in inducing the defects of apoptosis in eosinophils (Eos) of the heart tissues. Methods: Human explant heart samples were collected. Eosinophilia and myocarditis (Mcd)-like inflammation were induced in the mouse heart by immunizing with murine cardiac α-myosin heavy chain (MyHCα) peptides. Results: Markedly more Eos were observed in heart tissues from patients with Mcd than those from patients with dilated cardiomyopathy. Eos isolated from Mcd hearts showed the signs of apoptosis defects. The Eo counts in the Mcd heart tissues were positively correlated with the Bcl2L12 expression in Eos isolated from the heart tissues. Exposure to interleukin 5 in the culture induced the expression of Bcl2L12 in Eos. Bcl2L12 bound c-Myc, the transcription factor of Fas ligand (FasL), to prevent c-Myc from binding to the FasL promoter, to restrict the FasL gene transcription in Eos. Inhibition of Bcl2L12 prevented the induction of eosinophilia and Mcd-like inflammation in the mouse heart. Conclusions: The Bcl2L12 expression contributes to apoptosis defects in Eos of the Mcd heart. Blocking Bcl2L12 prevents the eosinophilia induction and alleviates Mcd-like inflammation in mice.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Zhen Zhao
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Bei-Ping Miao
- Department of Otolaryngology, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhi-Qiang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Jiang-Qi Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Jiang-Ping Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090230. [PMID: 32887304 PMCID: PMC7558796 DOI: 10.3390/ph13090230] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: CCL-11 (eotaxin) is a chemokine with an important role in allergic conditions. Recent evidence indicates that CCL-11 plays a role in brain disorders as well. This paper reviews the associations between CCL-11 and aging, neurodegenerative, neuroinflammatory and neuropsychiatric disorders. Methods: Electronic databases were searched for original articles examining CCL-11 in neuropsychiatric disorders. Results: CCL-11 is rapidly transported from the blood to the brain through the blood-brain barrier. Age-related increases in CCL-11 are associated with cognitive impairments in executive functions and episodic and semantic memory, and therefore, this chemokine has been described as an “Endogenous Cognition Deteriorating Chemokine” (ECDC) or “Accelerated Brain-Aging Chemokine” (ABAC). In schizophrenia, increased CCL-11 is not only associated with impairments in cognitive functions, but also with key symptoms including formal thought disorders. Some patients with mood disorders and premenstrual syndrome show increased plasma CCL-11 levels. In diseases of old age, CCL-11 is associated with lowered neurogenesis and neurodegenerative processes, and as a consequence, increased CCL-11 increases risk towards Alzheimer’s disease. Polymorphisms in the CCL-11 gene are associated with stroke. Increased CCL-11 also plays a role in neuroinflammatory disease including multiple sclerosis. In animal models, neutralization of CCL-11 may protect against nigrostriatal neurodegeneration. Increased production of CCL-11 may be attenuated by glucocorticoids, minocycline, resveratrol and anti-CCL11 antibodies. Conclusions: Increased CCL-11 production during inflammatory conditions may play a role in human disease including age-related cognitive decline, schizophrenia, mood disorders and neurodegenerative disorders. Increased CCL-11 production is a new drug target in the treatment and prevention of those disorders.
Collapse
|
38
|
T Helper Cell Infiltration in Osteoarthritis-Related Knee Pain and Disability. J Clin Med 2020; 9:jcm9082423. [PMID: 32751139 PMCID: PMC7464429 DOI: 10.3390/jcm9082423] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the growing body of literature demonstrating a crucial role of T helper cell (Th) responses in the pathogenesis of osteoarthritis (OA), only few clinical studies have assessed interactions between Th cells and OA—related symptoms. Yet, the inclusion of clinical data in the interpretation of cellular analyses of Th cell infiltration is essential to reveal the mechanisms underlying the complex pathophysiology of OA pain and disability. Thus, the aim of the study was to analyze the infiltration pattern of Th cells in systemic (peripheral blood) and joint-derived (synovial membrane and fluid) samples from patients with knee OA in relation to OA-induced pain and disability. Therefore, radiographic OA severity, knee pain and function of 47 OA patients undergoing knee arthroplasty were evaluated prior to surgery. In parallel, samples of peripheral blood (PB), synovial membrane (SM) and synovial fluid (SF) were harvested and analyzed for different Th subsets using flow cytometry. According to surface marker expression Th cells (CD3+ CD4+ CD8−) were assigned to the Th subsets Th1 (CXCR3+, CCR5+), Th2 (CCR3+, CCR4+) and Th17 (CD161+, CCR6+). Interestingly, infiltration of the SM with all Th subtypes (Th1, Th2, Th17) significantly correlated with OA-induced disability. Most importantly, synovial CCR5+ and CCR3+ Th cell infiltration was associated with OA-related knee pain and disability. Furthermore, higher percentage rates of CXCR3+ Th cells in all tissue samples (PB, SM, SF) showed significant associations with OA severity. In contrast, increasing percentage rates of CD161+ Th cells in SM samples corresponded to a better functional outcome. In conclusion, the current study provides an extensive profile of the Th cell infiltration pattern in PB, SF and SM from patients with clinically relevant knee OA. Th cell infiltration of the SM might play a crucial role not only in the pathogenesis of OA but also in the development of OA-related knee pain and disability.
Collapse
|
39
|
Araújo LS, Torquato BGS, da Silva CA, Dos Reis Monteiro MLG, Dos Santos Martins ALM, da Silva MV, Dos Reis MA, Machado JR. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol 2020; 21:308. [PMID: 32723296 PMCID: PMC7389446 DOI: 10.1186/s12882-020-01960-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Inflammatory mediators have been implicated in the pathogenesis of DN, thus considered an inflammatory disease. However, further studies are required to assess the renal damage caused by the action of these molecules. Therefore, the objective of this study was to analyze the expression of cytokines and chemokines in renal biopsies from patients with DN and to correlate it with interstitial inflammation and decreased renal function. METHODS Forty-four native renal biopsies from patients with DN and 23 control cases were selected. In situ expression of eotaxin, MIP-1α (macrophage inflammatory protein-1α), IL-8 (interleukin-8), IL-4, IL-10, TNF-α (tumor necrosis factor-α), TNFR1 (tumor necrosis factor receptor-1), IL-1β, and IL-6 were evaluated by immunohistochemistry. RESULTS The DN group showed a significant increase in IL-6 (p < 0.0001), IL-1β (p < 0.0001), IL-4 (p < 0.0001) and eotaxin (p = 0.0012) expression, and a decrease in TNFR1 (p = 0.0107) and IL-8 (p = 0.0262) expression compared to the control group. However, there were no significant differences in IL-10 (p = 0.4951), TNF-α (p = 0.7534), and MIP-1α (p = 0.3816) expression among groups. Regarding interstitial inflammation, there was a significant increase in IL-6 in scores 0 and 1 compared to score 2 (p = 0.0035), in IL-10 in score 2 compared to score 0 (p = 0.0479), and in eotaxin in score 2 compared to scores 0 and 1 (p < 0.0001), whereas IL-8 (p = 0.0513) and MIP-1α (p = 0.1801) showed no significant differences. There was a tendency for negative correlation between eotaxin and estimated glomerular filtration rate (eGFR) (p = 0.0566). CONCLUSIONS Our results indicated an increased in situ production of cytokines and chemokines in DN, including IL-6, IL-1β, IL-4, and eotaxin. It was observed that, possibly, eotaxin may have an important role in the progression of interstitial inflammation in DN and in eGFR decrease of these patients.
Collapse
Affiliation(s)
- Liliane Silvano Araújo
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Bianca Gonçalves Silva Torquato
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Crislaine Aparecida da Silva
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Maria Luíza Gonçalves Dos Reis Monteiro
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Ana Luisa Monteiro Dos Santos Martins
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Av. Getúlio Guaritá, n° 130, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marlene Antônia Dos Reis
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Juliana Reis Machado
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil.
| |
Collapse
|
40
|
Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol 2020; 8:402. [PMID: 32582698 PMCID: PMC7283917 DOI: 10.3389/fcell.2020.00402] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-based immunotherapy is a promising field in the cancer treatment, since cytokines, as proteins of the immune system, are able to modulate the host immune response toward cancer cell, as well as directly induce tumor cell death. Since a low dose monotherapy with some cytokines has no significant therapeutic results and a high dose treatment leads to a number of side effects caused by the pleiotropic effect of cytokines, the problem of understanding the influence of cytokines on the immune cells involved in the pro- and anti-tumor immune response remains a pressing one. Immune system cells carry CD makers on their surface which can be used to identify various populations of cells of the immune system that play different roles in pro- and anti-tumor immune responses. This review discusses the functions and specific CD markers of various immune cell populations which are reported to participate in the regulation of the immune response against the tumor. The results of research studies and clinical trials investigating the effect of cytokine therapy on the regulation of immune cell populations and their surface markers are also discussed. Current trends in the development of cancer immunotherapy, as well as the role of cytokines in combination with other therapeutic agents, are also discussed.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
41
|
Li X, Wang B, Huang M, Wang X. miR-30a-3p participates in the development of asthma by targeting CCR3. Open Med (Wars) 2020; 15:483-491. [PMID: 33313407 PMCID: PMC7706126 DOI: 10.1515/med-2020-0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
This study aimed to investigate the role and relevant mechanism of miR-30a-3p action in asthma. The results of this study revealed that the expression levels of miR-30a-3p were significantly decreased in the peripheral blood of asthmatic patients. In addition, we found that the CC chemokine receptor (CCR3) was a target of miR-30a-3p. Subsequently, an asthma mouse model was established using ovalbumin (OVA). The results showed that the expression of miR-30a-3p and CCR3 was downregulated and upregulated, respectively, in the peripheral blood of asthmatic mice. Enzyme-linked immunosorbent assay (ELISA) in asthmatic mouse serum demonstrated that miR-30a-3p mimic treatment significantly decreased the secretion of OVA-specific IgE, eotaxin-1, interleukin (IL)-5, and IL-4. These results suggested that miR-30a-3p inhibited CCR3 signaling pathway and relieved the inflammatory response against asthma in vivo. Eosinophils have also been implicated in the asthmatic inflammatory response. Therefore, the in vitro effects of miR-30a-3p on eosinophil activity were determined. Findings suggested that miR-30a-3p mimic significantly reduced eosinophil viability and migration and induced apoptosis. In addition, CCR3 and eotaxin-1 downregulation were observed. The aforementioned results were significantly reversed following CCR3 overexpression. This study suggested that miR-30a-3p was involved in asthma by regulating eosinophil activity and targeting CCR3.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| | - Binliang Wang
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| | - Xiaomi Wang
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| |
Collapse
|
42
|
Morieri ML, Shah HS, Sjaarda J, Lenzini PA, Campbell H, Motsinger-Reif AA, Gao H, Lovato L, Prudente S, Pandolfi A, Pezzolesi MG, Sigal RJ, Paré G, Marcovina SM, Rotroff DM, Patorno E, Mercuri L, Trischitta V, Chew EY, Kraft P, Buse JB, Wagner MJ, Cresci S, Gerstein HC, Ginsberg HN, Mychaleckyj JC, Doria A. PPARA Polymorphism Influences the Cardiovascular Benefit of Fenofibrate in Type 2 Diabetes: Findings From ACCORD-Lipid. Diabetes 2020; 69:771-783. [PMID: 31974142 PMCID: PMC7085251 DOI: 10.2337/db19-0973] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
The cardiovascular benefits of fibrates have been shown to be heterogeneous and to depend on the presence of atherogenic dyslipidemia. We investigated whether genetic variability in the PPARA gene, coding for the pharmacological target of fibrates (PPAR-α), could be used to improve the selection of patients with type 2 diabetes who may derive cardiovascular benefit from addition of this treatment to statins. We identified a common variant at the PPARA locus (rs6008845, C/T) displaying a study-wide significant influence on the effect of fenofibrate on major cardiovascular events (MACE) among 3,065 self-reported white subjects treated with simvastatin and randomized to fenofibrate or placebo in the ACCORD-Lipid trial. T/T homozygotes (36% of participants) experienced a 51% MACE reduction in response to fenofibrate (hazard ratio 0.49; 95% CI 0.34-0.72), whereas no benefit was observed for other genotypes (P interaction = 3.7 × 10-4). The rs6008845-by-fenofibrate interaction on MACE was replicated in African Americans from ACCORD (N = 585, P = 0.02) and in external cohorts (ACCORD-BP, ORIGIN, and TRIUMPH, total N = 3059, P = 0.005). Remarkably, rs6008845 T/T homozygotes experienced a cardiovascular benefit from fibrate even in the absence of atherogenic dyslipidemia. Among these individuals, but not among carriers of other genotypes, fenofibrate treatment was associated with lower circulating levels of CCL11-a proinflammatory and atherogenic chemokine also known as eotaxin (P for rs6008845-by-fenofibrate interaction = 0.003). The GTEx data set revealed regulatory functions of rs6008845 on PPARA expression in many tissues. In summary, we have found a common PPARA regulatory variant that influences the cardiovascular effects of fenofibrate and that could be used to identify patients with type 2 diabetes who would derive benefit from fenofibrate treatment, in addition to those with atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Mario Luca Morieri
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medicine, University of Padova, Padova, Italy
| | - Hetal S Shah
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jennifer Sjaarda
- McMaster University and Population Health Research Institute, Hamilton, Ontario, Canada
| | - Petra A Lenzini
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Hannah Campbell
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC
| | - He Gao
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Laura Lovato
- Wake Forest School of Medicine, Winston Salem, NC
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti, Italy
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension and Diabetes and Metabolism Center, University of Utah, Salt Lake City, UT
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Guillaume Paré
- McMaster University and Population Health Research Institute, Hamilton, Ontario, Canada
| | - Santica M Marcovina
- Department of Medicine, University of Washington, and Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Luana Mercuri
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Trischitta
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Peter Kraft
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Michael J Wagner
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sharon Cresci
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Hertzel C Gerstein
- McMaster University and Population Health Research Institute, Hamilton, Ontario, Canada
| | - Henry N Ginsberg
- Irving Institute for Clinical and Translational Research, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Haflidadottir S, Matthews IL, Almaas R. Cytokine profile in children with food allergy following liver transplantation. Pediatr Transplant 2020; 24:e13657. [PMID: 32067305 DOI: 10.1111/petr.13657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND LTX in children is associated with increased risk of food allergy, and the mechanisms underlying this are unknown. We wanted to study whether plasma cytokine profile differed in liver transplanted children, with and without food allergy, and whether it differed from untransplanted children with CLD. METHODS Plasma cytokines, total and specific IgE in nine patients with food allergy were compared with 13 patients without food allergy following LTX, and also with seven untransplanted patients with CLD. RESULTS No difference was found in the cytokine profile between liver transplanted patients with and without food allergy. Transplanted patients with food allergy having received a prescription of epinephrine had a significantly higher total IgE (2033 [234-2831] vs 10 [5-41] IU/L, P = .002) and MIP-1b (52 [37-96] vs 36 [32-39], P = .035) compared with transplanted patients without food allergy. Two patients with severe food allergy responded favorably to conversion from tacrolimus-based immunosuppression to MMF and corticosteroids with reduction in clinical symptoms, total IgE, specific IgE, IL-1ra, IL-4, RANTES, PDGF, MIP-1a, and TNFα. The transplantation group had higher levels of IL-1b, IL-5, IL-7, IL-13, GCSF, IFNγ, and MIP-1a compared with the CLD group. CONCLUSIONS No overall difference was found in plasma cytokine profile between patients with and without food allergy. Patients with severe food allergy had significant elevation of MIP-1b. Discontinuation of tacrolimus reduced total and specific IgE and changed plasma cytokine profile. The plasma cytokine profile in liver transplanted children was different compared with children with CLD.
Collapse
Affiliation(s)
- Svanhildur Haflidadottir
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Iren Lindbak Matthews
- Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Watanabe S, Yamada Y, Murakami H. Expression of Th1/Th2 cell-related chemokine receptors on CD4 + lymphocytes under physiological conditions. Int J Lab Hematol 2020; 42:68-76. [PMID: 31825162 DOI: 10.1111/ijlh.13141] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Chemokine receptors (CRs) and the prostaglandin D2 receptor, CRTH2, have been used as surrogate markers for cytoplasmic Th1 and Th2 cytokines. The presence of regulatory T (Treg) and Th17 cells may affect the analysis of such surrogate markers, as they share several CRs with Th1 and Th2 cells. This study aimed to determine the optimal surrogate markers of Th1 and Th2 cells under physiological conditions. METHODS Surface and cytoplasmic markers of CD4+ peripheral lymphocytes were analyzed in healthy volunteers by flow cytometry. Th1, Th2, Th17, and Treg cells were identified as IFN-γ+ , IL-4+ IL-13+ , IL-17+ , and CD25+ FoxP3+ CD4+ lymphocytes, respectively. RESULTS The percentages of CXCR3+ and CCR5+ CD4+ lymphocytes clearly correlated with those of Th1 cells. The percentage of CRTH2+ CD4+ lymphocytes showed the closest correlation with that of Th2 cells. The percentages of Th2 cells correlated with those of CCR3+ or CCR8+ CD4+ lymphocytes, with the majority of CCR3+ and CCR8+ cells unlikely to be Th2 cells, themselves. The proportions of CCR4+ or CCR7+ CD4+ lymphocytes did not correlate with those of Th2 cells, possibly due to their expression on the surface of Treg and Th17 cells. Th2-related receptors were classified into three different groups for better understanding. CONCLUSION CXCR3 and CCR5 are useful markers of Th1 cells. With the exception of CCR4 and CCR7 expressed at measurable levels on Treg and Th17 cells, CRTH2 and CRs, CCR3, and CCR8 may be employed as surrogate markers of Th2 cells. The proposed surrogate markers may help physicians in interpreting the disease state.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- Division of Allergy and Immunology, Gunma Children's Medical Center, Shibukawa, Japan
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshiyuki Yamada
- Division of Allergy and Immunology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| |
Collapse
|
45
|
Abstract
Eosinophils are important immune cells that have been implicated in resistance to gastrointestinal nematode (GIN) infections in both naturally and experimentally infected sheep. Proteins of particular importance appear to be IgA-Fc alpha receptor (FcαRI), C-C chemokine receptor type 3 (CCR3), proteoglycan 3 (PRG3, major basic protein 2) and EPX (eosinophil peroxidase). We used known human nucleotide sequences to search the ruminant genomes, followed by translation to protein and sequence alignments to visualize differences between sequences and species. Where a sequence was retrieved for cow, but not for sheep and goat, this was used additionally as a reference sequence. In this review, we show that eosinophil function varies among host species. Consequently, investigations into the mechanisms of ruminant immune responses to GIN should be conducted using the natural host. Specifically, we address differences in protein sequence and structure for eosinophil proteins.
Collapse
|
46
|
Wu Y, Chang YM, Stell AJ, Priestnall SL, Sharma E, Goulart MR, Gribben J, Xia D, Garden OA. Phenotypic characterisation of regulatory T cells in dogs reveals signature transcripts conserved in humans and mice. Sci Rep 2019; 9:13478. [PMID: 31530890 PMCID: PMC6748983 DOI: 10.1038/s41598-019-50065-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We therefore set out to characterise CD4+CD25high T cells isolated ex vivo from healthy dogs and showed that they possess a regulatory phenotype, function, and transcriptomic signature that resembles those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved transcriptomic signature of Tregs and identified that transcript hip1 may have implications in Treg function.
Collapse
Affiliation(s)
- Ying Wu
- Royal Veterinary College, London, UK
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michelle R Goulart
- Royal Veterinary College, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dong Xia
- Royal Veterinary College, London, UK
| | - Oliver A Garden
- Royal Veterinary College, London, UK.
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Matthias J, Zielinski CE. Shaping the diversity of Th2 cell responses in epithelial tissues and its potential for allergy treatment. Eur J Immunol 2019; 49:1321-1333. [PMID: 31274191 DOI: 10.1002/eji.201848011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Th2 cells have evolved to protect from large helminth infections and to exert tissue protective functions in response to nonmicrobial noxious stimuli. The initiation, maintenance, and execution of these functions depend on the integration of diverse polarizing cues by cellular sensors and molecular programs as well as the collaboration with cells that are coopted for signal exchange. The complexity of input signals and cellular collaboration generates tissue specific Th2 cell heterogeneity and specialization. In this review, we aim to discuss the advances and recent breakthroughs in our understanding of Th2 cell responses and highlight developmental and functional differences among T cells within the diversifying field of type 2 immunity. We will focus on factors provided by the tissue microenvironment and highlight factors with potential implications for the pathogenesis of allergic skin and lung diseases. Especially new insights into the role of immunometabolism, the microbiota and ionic signals enhance the complexity of Th2 cell regulation and warrant a critical evaluation. Finally, we will discuss how this ensemble of established knowledge and recent breakthroughs about Th2 immunobiology advance our understanding of the pathogenesis of allergic diseases and how this could be exploited for future immunotherapies.
Collapse
Affiliation(s)
- Julia Matthias
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christina E Zielinski
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany.,TranslaTUM, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
48
|
Kerscher B, Barlow JL, Rana BM, Jolin HE, Gogoi M, Bartholomew MA, Jhamb D, Pandey A, Tough DF, van Oosterhout AJM, McKenzie ANJ. BET Bromodomain Inhibitor iBET151 Impedes Human ILC2 Activation and Prevents Experimental Allergic Lung Inflammation. Front Immunol 2019; 10:678. [PMID: 31024538 PMCID: PMC6465521 DOI: 10.3389/fimmu.2019.00678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) increase in frequency in eczema and allergic asthma patients, and thus represent a new therapeutic target cell for type-2 immune-mediated disease. The bromodomain and extra-terminal (BET) protein family of epigenetic regulators are known to support the expression of cell cycle and pro-inflammatory genes during type-1 inflammation, but have not been evaluated in type-2 immune responses. We isolated human ILC2 and examined the capacity of the BET protein inhibitor, iBET151, to modulate human ILC2 activation following IL-33 stimulation. iBET151 profoundly blocked expression of genes critical for type-2 immunity, including type-2 cytokines, cell surface receptors and transcriptional regulators of ILC2 differentiation and activation. Furthermore, in vivo administration of iBET151 during experimental mouse models of allergic lung inflammation potently inhibited lung inflammation and airways resistance in response to cytokine or allergen exposure. Thus, iBET151 effectively prevents human ILC2 activation and dampens type-2 immune responses.
Collapse
Affiliation(s)
- Bernhard Kerscher
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Batika M Rana
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Helen E Jolin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michelle A Bartholomew
- Allergic Inflammation DPU, Respiratory Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Deepali Jhamb
- Computational Biology, GSK R&D, Collegeville, PA, United States
| | - Ashutosh Pandey
- Computational Biology, GSK R&D, Collegeville, PA, United States
| | - David F Tough
- Epigenetics DPU, Immunoinflammation Therapy Area Unit, Glaxo Smith Kline, Medicines Research Centre, Stevenage, United Kingdom
| | - Antoon J M van Oosterhout
- Allergic Inflammation DPU, Respiratory Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
49
|
Metry AA. Acute severe asthma complicated with tension pneumothorax and hemopneumothorax. Int J Crit Illn Inj Sci 2019; 9:91-95. [PMID: 31334052 PMCID: PMC6625329 DOI: 10.4103/ijciis.ijciis_83_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 47-year-old patient presented to the emergency room with an attack of acute severe asthma. In spite of all primary measures, the patient was deteriorating. Arterial blood gases showed hypercarbia and acidemia. The patient was shifted to the intensive care unit connected to noninvasive ventilation for 3 h, without any obvious improvement. Decision was taken to intubate, ventilate, and keep her deeply sedated. On the 4th day of ventilation, the patient developed sudden tension pneumothorax and she was near to arrest. Management for tension pneumothorax was immediate and successful. After that, chest X-ray and computerized tomography scan showed hemopneumothorax, for which a chest tube was inserted in both chest sides and blood transfusion was initiated immediately. After this incidence, the patient's parameters improved dramatically. Four days later, the patient was extubated and kept in intensive care unit till the chest tubes were removed and then shifted to the ward and discharged on day 15 from admission.
Collapse
Affiliation(s)
- Ayman Anis Metry
- Assistant Professor of Anesthesia, ICU and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Anesthesia and ICU Consultant, Kalba Hospital, MOHAP, Sharjah, UAE
| |
Collapse
|
50
|
Naidoo K, Jagot F, van den Elsen L, Pellefigues C, Jones A, Luo H, Johnston K, Painter G, Roediger B, Lee J, Weninger W, Le Gros G, Forbes-Blom E. Eosinophils Determine Dermal Thickening and Water Loss in an MC903 Model of Atopic Dermatitis. J Invest Dermatol 2018; 138:2606-2616. [DOI: 10.1016/j.jid.2018.06.168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
|