1
|
Neumann G, Eisfeld AJ, Kawaoka Y. Viral factors underlying the pandemic potential of influenza viruses. Microbiol Mol Biol Rev 2025:e0006624. [PMID: 40340558 DOI: 10.1128/mmbr.00066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
SUMMARYOver the past 25 years, there has been an increasing number of mammalian (including human) infections caused by avian influenza A viruses that resulted in mild to severe illnesses. These viruses typically did not spread between mammals through aerosols in nature or in experimental settings. However, recently, this has changed, with several avian influenza A viruses exhibiting aerosol transmissibility among mammals, indicating that these viruses may pose a greater pandemic risk. In this review, we examine the current situation and discuss the mutations that may be necessary for avian influenza A viruses to efficiently replicate in mammals and transmit among them via aerosols.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amie J Eisfeld
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced research center (UTOPIA), University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
2
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Jin L, Li J, Zhu F. AS03-adjuvanted H5N1 vaccine enhances immune response by modulating NR4A1, SDC1, ID3 genes, and reducing cortisol. Hum Vaccin Immunother 2024; 20:2426319. [PMID: 39569615 PMCID: PMC11583616 DOI: 10.1080/21645515.2024.2426319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The AS03-adjuvanted H5N1 influenza vaccine induces significantly higher immune responses compared to the non-adjuvanted H5N1 vaccine. However, the immunological mechanisms underlying this enhancement remain unclear. We aimed to identify the key genes and pathways involved in the immune response to the AS03-adjuvanted H5N1 vaccine compared to the non-adjuvanted H5N1 vaccine. The expression profiles of GSE102012 and GSE112293 were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes between AS03-adjuvanted and non-adjuvanted H5N1 vaccine groups. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery online tool. The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes database. Through cluster analysis of the PPI network, three hub genes, namely NR4A1, SDC1, and ID3, were identified as pivotal players in the intricate network of interactions. The ID3 was up-regulated, and the other two hub genes were down-regulated. The results of the GO analysis highlighted enrichment in seven biological processes, three cellular components, and two molecular functions among the differentially expressed genes. The KEGG pathway analysis revealed the involvement of the Cushing syndrome pathway. The AS03-adjuvanted H5N1 vaccine may enhance immune responses through suppressing the NR4A1 gene and the SDC1 gene, upregulating the ID3 gene, and reducing cortisol production compared to the non-adjuvanted H5N1 vaccine.
Collapse
Affiliation(s)
- Lairun Jin
- School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
4
|
Perez-Acle T, Ravello C, Rosemblatt M. Are we cultivating the perfect storm for a human avian influenza pandemic? Biol Res 2024; 57:96. [PMID: 39695812 PMCID: PMC11658083 DOI: 10.1186/s40659-024-00570-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
The emergence of highly pathogenic avian influenza (HPAI) A H5N1 virus in dairy cattle marks a troubling new chapter in the ongoing battle against zoonotic diseases. Since its initial detection in 1955, the H5N1 virus has primarily been associated with poultry, posing significant threats to both animal and human health. However, recent outbreaks in U.S. dairy herds across nine states have revealed an alarming expansion of the virus, with over 190 herds affected as of September 2024. This unprecedented spread in cattle has sparked intense concern among scientists and health officials, especially with reports indicating that up to 20% of dairy products may contain traces of the virus. The implications of the H5N1 virus establishing itself in cattle populations are profound. This potential endemic presence could transform dairy farms into reservoirs of the virus, facilitating its evolution and increasing the risk of human transmission. Mutations enhancing viral replication in mammals have already been identified, including the notorious PB2 E627K mutation linked to increased virulence. Moreover, the detection of the virus in the central nervous system of infected animals, including cats, underscores the broad tissue tropism and severe pathogenic potential of the H5N1 virus. Current containment efforts include stringent biosecurity measures and financial incentives for enhanced testing and personal protective equipment (PPE) for farmers. Yet, gaps in testing infrastructure and the resurgence of raw milk consumption pose significant challenges. The U.S. Department of Agriculture (USDA) and the Centers for Disease Control and Prevention (CDC) emphasize the critical need for comprehensive testing and pasteurization to mitigate the risk of human infection. As the scientific community races to adapt existing antiviral treatments and develop effective vaccines, the concept of a One Health approach becomes increasingly vital. This holistic strategy calls for coordinated actions across human, animal, and environmental health sectors to preemptively tackle emerging zoonotic threats. Strengthening surveillance, fostering international cooperation, and investing in research are essential steps to prevent the H5N1 virus from igniting the next global health crisis. The current avian influenza outbreak serves as a stark reminder of the delicate balance between human activities and viral evolution. Our collective ability to respond effectively and proactively will determine whether we can avert the perfect storm brewing on the horizon.
Collapse
Affiliation(s)
- Tomas Perez-Acle
- Computational Biology Laboratory, Fundacion Ciencia & Vida, Universidad San Sebastian, Avda. del Valle Norte 725, Huechuraba, 8580702, Santiago, Region Metropolitana, Chile.
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastian, Bellavista 7, Recoleta, 8420524, Santiago, Region Metropolitana, Chile.
| | - Cesar Ravello
- Computational Biology Laboratory, Fundacion Ciencia & Vida, Universidad San Sebastian, Avda. del Valle Norte 725, Huechuraba, 8580702, Santiago, Region Metropolitana, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastian, Bellavista 7, Recoleta, 8420524, Santiago, Region Metropolitana, Chile
| | - Mario Rosemblatt
- Laboratory of Cellular and Molecular Inmunology, Fundacion Ciencia & Vida, Universidad San Sebastian, Avda. del Valle Norte 725, Huechuraba, 8580702, Santiago, Region Metropolitana, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Lota 2465, 7510157, Santiago, Region Metropolitana, Chile
| |
Collapse
|
5
|
Peñarrubia L, Reister S, Jiménez-Guzmán S, Porco R, Congost-Teixidor C, Pueyo G, Camprubí-Font C, Vara K, Cardenosa MDLC, Contreras M, Mayorgas A, van Deursen F, Lueerssen D, Juanola-Falgarona M, Schwemmle M, Ciminski K, Manissero D. Molecular diagnostics using the QIAstat-Dx syndromic device for covering avian influenza pandemic preparedness. Heliyon 2024; 10:e40645. [PMID: 39687184 PMCID: PMC11647833 DOI: 10.1016/j.heliyon.2024.e40645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction A key factor in influenza pandemic preparedness is the ability to detect zoonotic influenza virus strains as they emerge in humans through spillover events, ideally before human-to-human transmission occurs. Design In this study, the utility of the QIAstat-Dx syndromic device for influenza surveillance was evaluated. Bioinformatic analysis was performed on all WHO-recommended influenza Candidate Vaccine Viruses (CVVs), including the common strains recommended for the 2023-2024 influenza vaccine composition in the northern hemisphere, and 16 different H5 highly pathogenic avian influenza virus (HPAIV) and two H9N2 low pathogenic avian influenza virus (LPAIV) strains. For laboratory validation, engineered gene fragments and real HPAIV and LPAIV samples were tested using the QIAstat-Dx Respiratory SARS-CoV-2 Panel. Results During the bioinformatic screening, common influenza strains were positive including influenza A subtypes, and all H5 HPAIV and LPAIV H9N2 were detected as Influenza A positive without subtype discrimination. In all cases, laboratory validation confirmed all bioinformatic results. Conclusion QIAstat-Dx can detect all tested potentially zoonotic influenza A virus strains, and discriminate them from human sesonal influenza A viruses, ensuring a correct diagnosis. Any tool available for surveillance and pandemic preparedness is essential for a rapid response to reduce healthcare costs and severity of future influenza pandemics.
Collapse
Affiliation(s)
- Luis Peñarrubia
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Sara Jiménez-Guzmán
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Roberto Porco
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Gemma Pueyo
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Carla Camprubí-Font
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Katariina Vara
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Maria Contreras
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Aida Mayorgas
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Dietrich Lueerssen
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Davide Manissero
- QIAGEN Manchester Ltd, Citylabs 2.0, Hathersage Road, Manchester, M13 0BH, UK
| |
Collapse
|
6
|
He J, Liu J, Yan Z, Chen G, Liu R, Yang Y, Yan Y, Yuan S, Guo J, Li Y, Yu H, Liang Z, Ren T, Huang S, Wen F. Genetic characterization and receptor binding analysis of a novel H5N1 HPAI virus with a H6Nx-derived PA gene in Guangdong, China. Emerg Microbes Infect 2024; 13:2417857. [PMID: 39435481 PMCID: PMC11539396 DOI: 10.1080/22221751.2024.2417857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Jieheng He
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Jing Liu
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Zhanfei Yan
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Gaojie Chen
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Runzhi Liu
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Yu Yang
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Yulin Yan
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Sheng Yuan
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Jinyue Guo
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People’s Republic of China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Shujian Huang
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| | - Feng Wen
- College of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, 528231, Foshan, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Hou Y, Deng G, Cui P, Zeng X, Li B, Wang D, He X, Yan C, Zhang Y, Li J, Ma J, Li Y, Wang X, Tian G, Kong H, Tang L, Suzuki Y, Shi J, Chen H. Evolution of H7N9 highly pathogenic avian influenza virus in the context of vaccination. Emerg Microbes Infect 2024; 13:2343912. [PMID: 38629574 PMCID: PMC11060016 DOI: 10.1080/22221751.2024.2343912] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.
Collapse
Affiliation(s)
- Yujie Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Pengfei Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Bin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Dongxue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xinwen He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Cheng Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Jiongjie Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Jinming Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People's Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| |
Collapse
|
8
|
Stearns K, Lampe G, Hanan R, Marcink T, Niewiesk S, Sternberg SH, Greninger AL, Porotto M, Moscona A. Human parainfluenza virus 3 field strains undergo extracellular fusion protein cleavage to activate entry. mBio 2024; 15:e0232724. [PMID: 39382296 PMCID: PMC11559058 DOI: 10.1128/mbio.02327-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Human parainfluenza virus 3 (HPIV3) infection is driven by the coordinated action of viral surface glycoproteins hemagglutinin-neuraminidase (HN) and fusion protein (F). Receptor-engaged HN activates F to insert into the target cell membrane and drive virion-cell membrane fusion. For F to mediate entry, its precursor (F0) must first be cleaved by host proteases. F0 cleavage has been thought to be executed during viral glycoprotein transit through the trans-Golgi network by the ubiquitously expressed furin because F0 proteins of laboratory-adapted viruses contain a furin recognition dibasic cleavage motif RXKR around residue 108. Here, we show that the F proteins of field strains have a different cleavage motif from laboratory-adapted strains and are cleaved by unidentified proteases expressed in only a narrow subset of cell types. We demonstrate that extracellular serine protease inhibitors block HPIV3 F0 cleavage for field strains, suggesting F0 cleavage occurs at the cell surface facilitated by transmembrane proteases. Candidate proteases that may process HPIV3 F in vivo were identified by a genome-wide CRISPRa screen in HEK293/dCas9-VP64 + MPH cells. The lung-expressed extracellular serine proteases TMPRSS2 and TMPRSS13 are both sufficient to cleave HPIV3 F and enable infectious virus release by otherwise non-permissive cells. Our findings support an alternative mechanism of F activation in vivo, reliant on extracellular membrane-bound serine proteases expressed in a narrow subset of cells. The proportion of HPIV3 F proteins cleaved and infectious virus release is determined by host cell expression of requisite proteases, allowing just-in-time activation of F and positioning F cleavage as another key regulator of HPIV3 spread. IMPORTANCE Enveloped viruses cause a wide range of diseases in humans. At the first step of infection, these viruses must fuse their envelope with a cell membrane to initiate infection. This fusion is mediated by viral proteins that require a critical activating cleavage event. It was previously thought that for parainfluenza virus 3, an important cause of respiratory disease and a representative of a group of important pathogens, this cleavage event was mediated by furin in the cell secretory pathways prior to formation of the virions. We show that this is only true for laboratory strain viruses, and that clinical viruses that infect humans utilize extracellular proteases that are only made by a small subset of cells. These results highlight the importance of studying authentic clinical viruses that infect human tissues for understanding natural infection.
Collapse
Affiliation(s)
- Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - George Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Rachel Hanan
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Tara Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
9
|
Webby RJ. The practical longevity of stockpiled A(H5N1) influenza vaccine. Nat Med 2024; 30:2729-2730. [PMID: 39327497 DOI: 10.1038/s41591-024-03256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
- Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
11
|
Webby RJ, Uyeki TM. An Update on Highly Pathogenic Avian Influenza A(H5N1) Virus, Clade 2.3.4.4b. J Infect Dis 2024; 230:533-542. [PMID: 39283944 DOI: 10.1093/infdis/jiae379] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Since the resurgence of highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b, during 2021, these viruses have spread widely among birds worldwide, causing poultry outbreaks and infections of a wide range of terrestrial and marine mammal species. During 2024, HPAI A(H5N1) virus, clade 2.3.4.4b, was detected in dairy cattle for the first time and caused an ongoing multistate outbreak, with high levels of virus documented in raw cow milk. Human infections with clade 2.3.4.4b viruses from exposures to infected poultry or dairy cattle have resulted in a wide spectrum of illness severity, from conjunctivitis or mild respiratory illness to severe and fatal pneumonia in different countries. Vigilance, and stronger global virologic surveillance among birds, poultry, terrestrial and marine mammals, and humans, with virus characterization and rapid data sharing, is needed to inform the threat of clade 2.3.4.4b viruses, as they continue to evolve, to public health.
Collapse
Affiliation(s)
- Richard J Webby
- World Health Organization Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
12
|
Medina-Armenteros Y, Cajado-Carvalho D, das Neves Oliveira R, Apetito Akamatsu M, Lee Ho P. Recent Occurrence, Diversity, and Candidate Vaccine Virus Selection for Pandemic H5N1: Alert Is in the Air. Vaccines (Basel) 2024; 12:1044. [PMID: 39340074 PMCID: PMC11435632 DOI: 10.3390/vaccines12091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The prevalence of the highly pathogenic avian influenza virus H5N1 in wild birds that migrate all over the world has resulted in the dissemination of this virus across Asia, Europe, Africa, North and South America, the Arctic continent, and Antarctica. So far, H5N1 clade 2.3.4.4.b has reached an almost global distribution, with the exception of Australia and New Zealand for autochthonous cases. H5N1 clade 2.3.4.4.b, derived from the broad-host-range A/Goose/Guangdong/1/96 (H5N1) lineage, has evolved, adapted, and spread to species other than birds, with potential mammal-to-mammal transmission. Many public health agencies consider H5N1 influenza a real pandemic threat. In this sense, we analyzed H5N1 hemagglutinin sequences from recent outbreaks in animals, clinical samples, antigenic prototypes of candidate vaccine viruses, and licensed human vaccines for H5N1 with the aim of shedding light on the development of an H5N1 vaccine suitable for a pandemic response, should one occur in the near future.
Collapse
Affiliation(s)
| | | | | | - Milena Apetito Akamatsu
- Centro BioIndustrial, Instituto Butantan and Fundação Butantan, São Paulo 05503-900, SP, Brazil; (Y.M.-A.); (D.C.-C.); (R.d.N.O.)
| | - Paulo Lee Ho
- Centro BioIndustrial, Instituto Butantan and Fundação Butantan, São Paulo 05503-900, SP, Brazil; (Y.M.-A.); (D.C.-C.); (R.d.N.O.)
| |
Collapse
|
13
|
Fan Q, Xie Z, Zhao J, Hua J, Wei Y, Li X, Li D, Luo S, Li M, Xie L, Zhang Y, Zhang M, Wang S, Ren H, Wan L. Simultaneous differential detection of H5, H7 and H9 subtypes of avian influenza viruses by a triplex fluorescence loop-mediated isothermal amplification assay. Front Vet Sci 2024; 11:1419312. [PMID: 39015104 PMCID: PMC11250583 DOI: 10.3389/fvets.2024.1419312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
H5, H7, and H9 are pivotal avian influenza virus (AIV) subtypes that cause substantial economic losses and pose potential threats to public health worldwide. In this study, a novel triplex fluorescence reverse transcription-loop-mediated isothermal amplification (TLAMP) assay was developed in which traditional LAMP techniques were combined with probes for detection. Through this innovative approach, H5, H7, and H9 subtypes of AIV can be simultaneously identified and differentiated, thereby offering crucial technical support for prevention and control efforts. Three primer sets and composite probes were designed based on conserved regions of the haemagglutinin gene for each subtype. The probes were labelled with distinct fluorophores at their 3' ends, which were detached to release the fluorescence signal during the amplification process. The detection results were interpreted based on the colour of the TLAMP products. Then, the reaction conditions were optimized, and three primer sets and probes were combined in the same reaction system, resulting in a TLAMP detection assay for the differential diagnosis of AIV subtypes. Sensitivity testing with in vitro-transcribed RNA revealed that the detection limit of the TLAMP assay was 205 copies per reaction for H5, 360 copies for H7, and 545 copies for H9. The TLAMP assay demonstrated excellent specificity, no cross-reactivity with related avian viruses, and 100% consistency with a previously published quantitative polymerase chain reaction (qPCR) assay. Therefore, due to its simplicity, rapidity, sensitivity, and specificity, this TLAMP assay is suitable for epidemiological investigations and is a valuable tool for detecting and distinguishing H5, H7, and H9 subtypes of AIV in clinical samples.
Collapse
Affiliation(s)
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ni Z, Wang J, Yu X, Wang Y, Wang J, He X, Li C, Deng G, Shi J, Kong H, Jiang Y, Chen P, Zeng X, Tian G, Chen H, Bu Z. Influenza virus uses mGluR2 as an endocytic receptor to enter cells. Nat Microbiol 2024; 9:1764-1777. [PMID: 38849624 PMCID: PMC11222159 DOI: 10.1038/s41564-024-01713-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.
Collapse
Affiliation(s)
- Zixin Ni
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaofei Yu
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yifan Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xijun He
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| |
Collapse
|
15
|
Rostad CA, Atmar RL, Walter EB, Frey S, Meier JL, Sherman AC, Lai L, Tsong R, Kao CM, Raabe V, El Sahly HM, Keitel WA, Whitaker JA, Smith MJ, Schmader KE, Swamy GK, Abate G, Winokur P, Buchanan W, Cross K, Wegel A, Xu Y, Yildirim I, Kamidani S, Rouphael N, Roberts PC, Mulligan MJ, Anderson EJ. A Phase 2 Clinical Trial to Evaluate the Safety, Reactogenicity, and Immunogenicity of Different Prime-Boost Vaccination Schedules of 2013 and 2017 A(H7N9) Inactivated Influenza Virus Vaccines Administered With and Without AS03 Adjuvant in Healthy US Adults. Clin Infect Dis 2024; 78:1757-1768. [PMID: 38537255 PMCID: PMC11175706 DOI: 10.1093/cid/ciae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION A surge of human influenza A(H7N9) cases began in 2016 in China from an antigenically distinct lineage. Data are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs. METHODS Healthy adults (n = 180), ages 19-50 years, were enrolled into this partially blinded, randomized, multicenter phase 2 clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime-boost strategies with 2 different boost intervals (21 vs 120 days) and 2 dosages (3.75 or 15 μg of hemagglutinin) administered with or without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition and neutralizing antibody titers were assessed. RESULTS Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a longer interval between prime and boost. The highest hemagglutination inhibition geometric mean titer (95% confidence interval) observed against the 2017 A(H7N9) strain was 133.4 (83.6-212.6) among participants who received homologous, adjuvanted 3.75 µg + AS03/2017 doses with delayed boost interval. CONCLUSIONS Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic preparedness. Clinical Trials Registration. NCT03589807.
Collapse
MESH Headings
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Adult
- Male
- Female
- Middle Aged
- Influenza A Virus, H7N9 Subtype/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Antibodies, Viral/blood
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Young Adult
- Immunization, Secondary
- Immunization Schedule
- Hemagglutination Inhibition Tests
- United States
- Immunogenicity, Vaccine
- Antibodies, Neutralizing/blood
- Polysorbates/administration & dosage
- Polysorbates/adverse effects
- alpha-Tocopherol/administration & dosage
- alpha-Tocopherol/adverse effects
- Squalene/administration & dosage
- Squalene/adverse effects
- Squalene/immunology
- Healthy Volunteers
- Drug Combinations
- Adjuvants, Vaccine/administration & dosage
- Vaccination/methods
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
Collapse
Affiliation(s)
- Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert L Atmar
- Departments of Medicine and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Emmanuel B Walter
- Department of Pediatrics and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Sharon Frey
- Center for Vaccine Development, Saint Louis University, St. Louis, Missouri, USA
| | - Jeffery L Meier
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Amy C Sherman
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lilin Lai
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Carol M Kao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vanessa Raabe
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- New York University Langone Vaccine Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Hana M El Sahly
- Departments of Medicine and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wendy A Keitel
- Departments of Medicine and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer A Whitaker
- Departments of Medicine and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Smith
- Department of Pediatrics and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Kenneth E Schmader
- Department of Medicine-Geriatrics, Duke University and GRECC, Durham VA Health Care System, Durham, North Carolina, USA
| | - Geeta K Swamy
- Department of Obstetrics and Gynecology and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Getahun Abate
- Center for Vaccine Development, Saint Louis University, St. Louis, Missouri, USA
| | - Patricia Winokur
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Wendy Buchanan
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | | - Yongxian Xu
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Inci Yildirim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Satoshi Kamidani
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Nadine Rouphael
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Mark J Mulligan
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- New York University Langone Vaccine Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Wang Q, Wu S, Shuai J, Li Y, Fu X, Zhang M, Yu X, Ye Z, Ma B. Dual Gene Detection of H5N1 Avian Influenza Virus Based on Dual RT-RPA. Molecules 2024; 29:2801. [PMID: 38930866 PMCID: PMC11206350 DOI: 10.3390/molecules29122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The H5N1 avian influenza virus seriously affects the health of poultry and humans. Once infected, the mortality rate is very high. Therefore, accurate and timely detection of the H5N1 avian influenza virus is beneficial for controlling its spread. This article establishes a dual gene detection method based on dual RPA for simultaneously detecting the HA and M2 genes of H5N1 avian influenza virus, for the detection of H5N1 avian influenza virus. Design specific primers for the conserved regions of the HA and M2 genes. The sensitivity of the dual RT-RPA detection method for HA and M2 genes is 1 × 10-7 ng/μL. The optimal primer ratio is 1:1, the optimal reaction temperature is 40 °C, and the optimal reaction time is 20 min. Dual RT-RPA was used to detect 72 samples, and compared with RT-qPCR detection, the Kappa value was 1 (p value < 0.05), and the clinical sample detection sensitivity and specificity were both 100%. The dual RT-RPA method is used for the first time to simultaneously detect two genes of the H5N1 avian influenza virus. As an accurate and convenient diagnostic tool, it can be used to diagnose the H5N1 avian influenza virus.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Shiwen Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Jiangbing Shuai
- Zhejiang Institute of Inspection and Quarantine Science and Technology, Hangzhou 311241, China;
| | - Ye Li
- Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Xianshu Fu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Mingzhou Zhang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Zihong Ye
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Biao Ma
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| |
Collapse
|
17
|
Restori KH, Septer KM, Field CJ, Patel DR, VanInsberghe D, Raghunathan V, Lowen AC, Sutton TC. Risk assessment of a highly pathogenic H5N1 influenza virus from mink. Nat Commun 2024; 15:4112. [PMID: 38750016 PMCID: PMC11096306 DOI: 10.1038/s41467-024-48475-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.
Collapse
Affiliation(s)
- Katherine H Restori
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA
| | - Kayla M Septer
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Cassandra J Field
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Devanshi R Patel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Vedhika Raghunathan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Troy C Sutton
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA.
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
18
|
Bedair NM, Sakr MA, Mourad A, Eissa N, Mostafa A, Khamiss O. Molecular characterization of the whole genome of H9N2 avian influenza virus isolated from Egyptian poultry farms. Arch Virol 2024; 169:99. [PMID: 38625394 PMCID: PMC11021324 DOI: 10.1007/s00705-024-06018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.
Collapse
Affiliation(s)
- Nahed M Bedair
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Moustafa A Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt.
| | - Ahmed Mourad
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Nourhan Eissa
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Omaima Khamiss
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| |
Collapse
|
19
|
Wei Y, Gu Y, Zhou Z, Wu C, Liu Y, Sun H. TRIM21 Promotes Oxidative Stress and Ferroptosis through the SQSTM1-NRF2-KEAP1 Axis to Increase the Titers of H5N1 Highly Pathogenic Avian Influenza Virus. Int J Mol Sci 2024; 25:3315. [PMID: 38542289 PMCID: PMC10970474 DOI: 10.3390/ijms25063315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.
Collapse
Affiliation(s)
- Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Changrong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
20
|
Thompson AJ, Wu NC, Canales A, Kikuchi C, Zhu X, de Toro BF, Cañada FJ, Worth C, Wang S, McBride R, Peng W, Nycholat CM, Jiménez-Barbero J, Wilson IA, Paulson JC. Evolution of human H3N2 influenza virus receptor specificity has substantially expanded the receptor-binding domain site. Cell Host Microbe 2024; 32:261-275.e4. [PMID: 38307019 PMCID: PMC11057904 DOI: 10.1016/j.chom.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Hemagglutinins (HAs) from human influenza viruses descend from avian progenitors that bind α2-3-linked sialosides and must adapt to glycans with α2-6-linked sialic acids on human airway cells to transmit within the human population. Since their introduction during the 1968 pandemic, H3N2 viruses have evolved over the past five decades to preferentially recognize human α2-6-sialoside receptors that are elongated through addition of poly-LacNAc. We show that more recent H3N2 viruses now make increasingly complex interactions with elongated receptors while continuously selecting for strains maintaining this phenotype. This change in receptor engagement is accompanied by an extension of the traditional receptor-binding site to include residues in key antigenic sites on the surface of HA trimers. These results help explain the propensity for selection of antigenic variants, leading to vaccine mismatching, when H3N2 viruses are propagated in chicken eggs or cells that do not contain such receptors.
Collapse
Affiliation(s)
- Andrew J Thompson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Angeles Canales
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040 Madrid, Spain
| | - Chika Kikuchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beatriz Fernández de Toro
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco J Cañada
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, C/Ramiro de Maeztu 9, 28040 Madrid, Spain; CIBERES, ISCIII, 28029 Madrid, Spain
| | - Charli Worth
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shengyang Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenjie Peng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesús Jiménez-Barbero
- CIBERES, ISCIII, 28029 Madrid, Spain; CIC bioGUNE Bizkaia Science and Technology Park, 48160 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Fauziah I, Nugroho HA, Yanthi ND, Tiffarent R, Saputra S. Potential zoonotic spillover at the human-animal interface: A mini-review. Vet World 2024; 17:289-302. [PMID: 38595670 PMCID: PMC11000462 DOI: 10.14202/vetworld.2024.289-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 04/11/2024] Open
Abstract
Wildlife markets and wet wildlife markets, a type of human-animal interface, are commonly trading centers for wild-caught and captive-exotic animals as well as their products. These markets provide an ideal environment for spillovers of zoonotic and emerging infectious diseases (EIDs). These conditions may raise serious concerns, particularly in relation to wildlife species that frequently interact with humans and domestic animals. EIDs pose a significant risk to humans, ecosystems, and public health, as demonstrated by the current COVID-19 pandemic, and other previous outbreaks, including the highly pathogenic avian influenza H5N1. Even though it seems appears impossible to eliminate EIDs, we may still be able to minimalize the risks and take several measures to prevent new EIDs originated from animals. The aim of this study was to review several types of human-animal interfaces with a high risk of zoonotic spillover, infectious agents, and animal hosts or reservoirs. Identifying those factors will support the development of interventions and effective disease control in human-animal interface settings.
Collapse
Affiliation(s)
- Ima Fauziah
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Herjuno Ari Nugroho
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Nova Dilla Yanthi
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Rida Tiffarent
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Sugiyono Saputra
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| |
Collapse
|
22
|
Zhao Z, Han S, Zhang Q, Wang Y, Yue K, Abbas S, He H. Impaired influenza A virus replication by the host restriction factor SAMHD1 which inhibited by PA-mediated dephosphorylation of the host transcription factor IRF3. Virol J 2024; 21:33. [PMID: 38287375 PMCID: PMC10826253 DOI: 10.1186/s12985-024-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.
Collapse
Affiliation(s)
- Zhilei Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Ye Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kening Yue
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Salbia Abbas
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Luo S, Xie Z, Li M, Li D, Zhang M, Ruan Z, Xie L, Wang S, Fan Q, Zhang Y, Huang J, Zeng T. Simultaneous Differential Detection of H5, H7, H9 and Nine NA Subtypes of Avian Influenza Viruses via a GeXP Assay. Microorganisms 2024; 12:143. [PMID: 38257970 PMCID: PMC10819249 DOI: 10.3390/microorganisms12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
H5, H7 and H9 are the most important subtypes of avian influenza viruses (AIVs), and nine neuraminidase (NA) subtypes (N1-N9) of AIVs have been identified in poultry. A method that can simultaneously detect H5, H7, H9 and the nine NA subtypes of AIVs would save time and effort. In this study, 13 pairs of primers, including 12 pairs of subtype-specific primers for detecting particular subtypes (H5, H7, H9 and N1-N9) and one pair of universal primers for detecting all subtypes of AIVs, were designed and screened. The 13 pairs of primers were mixed in the same reaction, and the 13 target genes were simultaneously detected. A GeXP assay using all 13 pairs of primers to simultaneously detect H5, H7, H9 and the nine NA subtypes of AIVs was developed. The GeXP assay showed specific binding to the corresponding target genes for singlet and multiplex templates, and no cross-reactivity was observed between AIV subtypes and other related avian pathogens. Detection was observed even when only 102 copies of the 13 target genes were present. This study provides a high-throughput, rapid and labor-saving GeXP assay for the simultaneous rapid identification of three HA subtypes (H5, H7 and N9) and nine NA subtypes (N1-N9) of AIVs.
Collapse
Affiliation(s)
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEANCross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530001, China; (S.L.); (M.L.); (D.L.); (M.Z.); (Z.R.); (L.X.); (S.W.); (Q.F.); (Y.Z.); (J.H.); (T.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Maemura T, Kawaoka Y. [Pathogenicity and transmissibility of cow-derived H5N1 highly pathogenic avian influenza viruses]. Uirusu 2024; 74:117-130. [PMID: 40024794 DOI: 10.2222/jsv.74.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The H5N1 highly pathogenic avian influenza virus (HPAIV) of clade 2.3.4.4b emerged in Europe during 2020-2021 and rapidly spread worldwide via migratory birds, causing outbreaks in poultry, wild birds, and wildlife. Sporadic cases of human infection, likely resulting from close contact with infected animals, have been reported. In March 2024, clinical signs (e.g., reduced feed intake, altered milk quality, and decreased milk production) were observed in dairy cattle on a farm in Texas, USA, where H5N1 HPAIV was subsequently isolated. By December 2024, infections had been reported in dairy cattle across 15 states in the USA. Cases of infection have also been documented in cats near affected farms and in humans suspected of exposure through contact with infected cattle or chickens that acquired the virus from cattle. These developments have raised concerns about the potential for further transmission of H5N1 HPAIV to humans. In recent studies, H5N1 HPAIV strains isolated from cattle and humans exhibited high pathogenicity in mice and ferrets. Furthermore, ferret studies showed efficient transmission via respiratory droplets. This unprecedented spread of H5N1 HPAIV among mammals raises concerns about the emergence of a virus capable of efficient human-to-human transmission via respiratory droplets. Continued global surveillance of infection dynamics is essential to mitigate this potential public health threat.
Collapse
Affiliation(s)
- Tadashi Maemura
- Influenza Research Institute, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Influenza Research Institute, University of Wisconsin-Madison
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute
| |
Collapse
|
25
|
Chiu KHY, Sridhar S, Yuen KY. Preparation for the next pandemic: challenges in strengthening surveillance. Emerg Microbes Infect 2023; 12:2240441. [PMID: 37474466 PMCID: PMC10478602 DOI: 10.1080/22221751.2023.2240441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
The devastating Coronavirus Disease 2019 (COVID-19) pandemic indicates that early detection of candidates with pandemic potential is vital. However, comprehensive metagenomic sequencing of the total microbiome is not practical due to the astronomical and rapidly evolving numbers and species of micro-organisms. Analysis of previous pandemics suggests that an increase in human-animal interactions, changes in animal and arthropod distribution due to climate change and deforestation, continuous mutations and interspecies jumping of RNA viruses, and frequent travels are important factors driving pandemic emergence. Besides measures mitigating these factors, surveillance at human-animal interfaces targeting animals with unusual tolerance to viral infections, sick heathcare workers, and workers at high biosafety level laboratories is crucial. Surveillance of sick travellers is important when alerted by an early warning system of a suspected outbreak due to unknown agents. These samples should be screened by multiplex nucleic acid amplification and subsequent unbiased next-generation sequencing. Novel viruses should be isolated in routine cell cultures, complemented by organoid cultures, and then tested in animal models for interspecies transmission potential. Potential agents are candidates for designing rapid diagnostics, therapeutics, and vaccines. For early detection of outbreaks, there are advantages in using event-based surveillance and artificial intelligence (AI), but high background noise and censorship are possible drawbacks. These systems are likely useful if they channel reliable information from frontline healthcare or veterinary workers and large international gatherings. Furthermore, sufficient regulation of high biosafety level laboratories, and stockpiling of broad spectrum antiviral drugs, vaccines, and personal protective equipment are indicated for pandemic preparedness.
Collapse
Affiliation(s)
- Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China
| | - Siddharth Sridhar
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
26
|
Shi J, Zeng X, Cui P, Yan C, Chen H. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect 2023; 12:2155072. [PMID: 36458831 DOI: 10.1080/22221751.2022.2155072] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Avian influenza viruses continue to present challenges to animal and human health. Viruses bearing the hemagglutinin (HA) gene of the H5 subtype and H7 subtype have caused 2634 human cases around the world, including more than 1000 deaths. These viruses have caused numerous disease outbreaks in wild birds and domestic poultry, and are responsible for the loss of at least 422 million domestic birds since 2005. The H5 influenza viruses are spread by migratory wild birds and have caused three waves of influenza outbreaks across multiple continents, and the third wave that started in 2020 is ongoing. Many countries in Europe and North America control highly pathogenic avian influenza by culling alone, whereas some countries, including China, have adopted a "cull plus vaccination" strategy. As the largest poultry-producing country in the world, China lost relatively few poultry during the three waves of global H5 avian influenza outbreaks, and nearly eliminated the pervasive H7N9 viruses that emerged in 2013. In this review, we briefly summarize the damages the H5 and H7 influenza viruses have caused to the global poultry industry and public health, analyze the origin, evolution, and spread of the H5 viruses that caused the waves, and discuss how and why the vaccination strategy in China has been a success. Given that the H5N1 viruses are widely circulating in wild birds and causing problems in domestic poultry around the world, we recommend that any unnecessary obstacles to vaccination strategies should be removed immediately and forever.
Collapse
Affiliation(s)
- Jianzhong Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
27
|
Bauer L, Benavides FFW, Veldhuis Kroeze EJB, de Wit E, van Riel D. The neuropathogenesis of highly pathogenic avian influenza H5Nx viruses in mammalian species including humans. Trends Neurosci 2023; 46:953-970. [PMID: 37684136 PMCID: PMC10591965 DOI: 10.1016/j.tins.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
Circulation of highly pathogenic avian influenza (HPAI) H5Nx viruses of the A/Goose/Guangdong/1/96 lineage in birds regularly causes infections of mammals, including humans. In many mammalian species, infections are associated with severe neurological disease, a unique feature of HPAI H5Nx viruses compared with other influenza A viruses. Here, we provide an overview of the neuropathogenesis of HPAI H5Nx virus infection in mammals, centered on three aspects: neuroinvasion, neurotropism, and neurovirulence. We focus on in vitro studies, as well as studies on naturally or experimentally infected mammals. Additionally, we discuss the contribution of viral factors to the neuropathogenesis of HPAI H5Nx virus infections and the efficacy of intervention strategies to prevent neuroinvasion or the development of neurological disease.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
29
|
Li Z, Hasson A, Daggumati L, Zhang H, Thorek DLJ. Molecular Imaging of ACE2 Expression in Infectious Disease and Cancer. Viruses 2023; 15:1982. [PMID: 37896761 PMCID: PMC10610869 DOI: 10.3390/v15101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that plays a critical role in the pathogenesis of SARS-CoV-2 infection. Through the use of ligands engineered for the receptor, ACE2 imaging has emerged as a valuable tool for preclinical and clinical research. These can be used to visualize the expression and distribution of ACE2 in tissues and cells. A variety of techniques including optical, magnetic resonance, and nuclear medicine contrast agents have been developed and employed in the preclinical setting. Positron-emitting radiotracers for highly sensitive and quantitative tomography have also been translated in the context of SARS-CoV-2-infected and control patients. Together this information can be used to better understand the mechanisms of SARS-CoV-2 infection, the potential roles of ACE2 in homeostasis and disease, and to identify potential therapeutic modulators in infectious disease and cancer. This review summarizes the tools and techniques to detect and delineate ACE2 in this rapidly expanding field.
Collapse
Affiliation(s)
- Zhiyao Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| | - Abbie Hasson
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Lasya Daggumati
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- School of Medicine Missouri, University of Missouri-Kansas City, Kansas, MO 64108, USA
| | - Hanwen Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
30
|
Gilbertson B, Subbarao K. Mammalian infections with highly pathogenic avian influenza viruses renew concerns of pandemic potential. J Exp Med 2023; 220:e20230447. [PMID: 37326966 PMCID: PMC10276204 DOI: 10.1084/jem.20230447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
There is unprecedented spread of highly pathogenic avian influenza A H5N1 viruses in bird species on five continents, and many reports of infections in mammals most likely resulting from consumption of infected birds. As H5N1 viruses infect more species, their geographical range increases and more viral variants are produced that could have new biological properties including adaptation to mammals and potentially to humans. This highlights the need to continually monitor and assess mammalian-origin H5N1 clade 2.3.4.4b viruses for the presence of mutations that could potentially increase their pandemic risk for humans. Fortunately, to date there have been a limited number of human cases, but infection of mammals increases the opportunity for the virus to acquire mutations that enhance efficient infection, replication, and spread in mammals, properties that have not been seen in these viruses in the past.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
31
|
Hatibi N, Dumont-Lagacé M, Alouani Z, El Fatimy R, Abik M, Daouda T. Misclassified: identification of zoonotic transition biomarker candidates for influenza A viruses using deep neural network. Front Genet 2023; 14:1145166. [PMID: 37576548 PMCID: PMC10415530 DOI: 10.3389/fgene.2023.1145166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Zoonotic transition of Influenza A viruses is the cause of epidemics with high rates of morbidity and mortality. Predicting which viral strains are likely to transition from their genetic sequence could help in the prevention and response against these zoonotic strains. We hypothesized that features predictive of viral hosts could be leveraged to identify biomarkers of zoonotic viral transition. Methods: We trained deep learning models to predict viral hosts based on the virus mRNA or protein sequences. Our multi-host dataset contained 848,630 unique nucleotide sequences obtained from the NCBI Influenza Virus and Influenza Research Databases. Each sequence, representing one gene from one viral strain, was classified into one of the three host categories: Avian, Human, and Swine. Trained models were analyzed using various neural network interpretation methods to identify interesting candidates for zoonotic transition biomarkers. Results: Using mRNA sequences as input led to higher prediction accuracies than amino acids, suggesting that the codon sequence contains information relevant to viral hosts that is lost during protein translation. UMAP visualization of the latent space of our classifiers showed that viral sequences clustered according to their host of origin. Interestingly, sequences from pandemic zoonotic viral strains localized at the margins between hosts, while zoonotic sequences incapable of Human-to-Human transmission localized with non-zoonotic viruses from the same host. In addition, host prediction for pandemic zoonotic sequences had low prediction accuracy, which was not the case for the other zoonotic strains. This supports our hypothesis that ambiguously predicted viral sequences bear features associated with cross-species infectivity. Finally, we compared misclassified sequences to well-classified ones to extract interesting candidates for zoonotic transition biomarkers. While features varied significantly between pairs of species and viral genes, several codons were conserved in Swine-to-Human and Avian-to-Human misclassified sequences, and in particular in the NA, HA, and NP genes, suggesting their importance for zoonosis in Humans. Discussion: Analysis of viral sequences using neural network interpretation approaches revealed important genetic differences between zoonotic viruses with pandemic potential, compared to non-zoonotic viral strains or zoonotic viruses incapable of Human-to-Human transmission.
Collapse
Affiliation(s)
- Nissrine Hatibi
- Ecole Nationale Supérieure d'Informatique et d'Analyse des Systèmes, Mohammed V University in Rabat, Rabat, Morocco
- Institute of Biological Sciences (ISSB), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Zakaria Alouani
- Institute of Biological Sciences (ISSB), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mounia Abik
- Ecole Nationale Supérieure d'Informatique et d'Analyse des Systèmes, Mohammed V University in Rabat, Rabat, Morocco
| | - Tariq Daouda
- Institute of Biological Sciences (ISSB), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
32
|
Siegers JY, Ferreri L, Eggink D, Veldhuis Kroeze EJB, te Velthuis AJW, van de Bildt M, Leijten L, van Run P, de Meulder D, Bestebroer T, Richard M, Kuiken T, Lowen AC, Herfst S, van Riel D. Evolution of highly pathogenic H5N1 influenza A virus in the central nervous system of ferrets. PLoS Pathog 2023; 19:e1011214. [PMID: 36897923 PMCID: PMC10032531 DOI: 10.1371/journal.ppat.1011214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Central nervous system (CNS) disease is the most common extra-respiratory tract complication of influenza A virus infections in humans. Remarkably, zoonotic highly pathogenic avian influenza (HPAI) H5N1 virus infections are more often associated with CNS disease than infections with seasonal influenza viruses. Evolution of avian influenza viruses has been extensively studied in the context of respiratory infections, but evolutionary processes in CNS infections remain poorly understood. We have previously observed that the ability of HPAI A/Indonesia/5/2005 (H5N1) virus to replicate in and spread throughout the CNS varies widely between individual ferrets. Based on these observations, we sought to understand the impact of entrance into and replication within the CNS on the evolutionary dynamics of virus populations. First, we identified and characterized three substitutions-PB1 E177G and A652T and NP I119M - detected in the CNS of a ferret infected with influenza A/Indonesia/5/2005 (H5N1) virus that developed a severe meningo-encephalitis. We found that some of these substitutions, individually or collectively, resulted in increased polymerase activity in vitro. Nevertheless, in vivo, the virus bearing the CNS-associated mutations retained its capacity to infect the CNS but showed reduced dispersion to other anatomical sites. Analyses of viral diversity in the nasal turbinate and olfactory bulb revealed the lack of a genetic bottleneck acting on virus populations accessing the CNS via this route. Furthermore, virus populations bearing the CNS-associated mutations showed signs of positive selection in the brainstem. These features of dispersion to the CNS are consistent with the action of selective processes, underlining the potential for H5N1 viruses to adapt to the CNS.
Collapse
Affiliation(s)
- Jurre Y. Siegers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lucas Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Aartjan J. W. te Velthuis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Theo Bestebroer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Liu Y, Wei Y, Zhou Z, Gu Y, Pang Z, Liao M, Sun H. Overexpression of TRIM16 Reduces the Titer of H5N1 Highly Pathogenic Avian Influenza Virus and Promotes the Expression of Antioxidant Genes through Regulating the SQSTM1-NRF2-KEAP1 Axis. Viruses 2023; 15:v15020391. [PMID: 36851605 PMCID: PMC9960857 DOI: 10.3390/v15020391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress plays a vital role in viral replication. Tripartite motif containing 16 (TRIM16) is involved in diverse cellular processes. However, the role of TRIM16 in oxidative stress induced by infection of the highly pathogenic H5N1 avian influenza virus (HPAIV) is unclear. We found that under conditions of H5N1 HPAIV infection, reactive oxygen species (ROS) levels in A549 cells peaked at 24 h post infection (hpi), and antioxidant genes' expression levels were down-regulated. Overexpression of TRIM16 in A549 cells resulted in a decrease in the titter of H5N1 HPAIV and led to significant up-regulation of the antioxidant genes' expression levels, which indicates that TRIM16 positively regulates the sequestosome 1/Kelch-like associated enoyl-CoA hydratase 1 protein/nuclear factor erythrocyte 2-derived 2-like 2 (SQSTM1/NRF2/KEAP1) pathway. Under basal conditions, TRIM16 led to a modification of NRF2 through an increase in K63-linked poly-ubiquitination of NRF2. Collectively, our findings provide new insight into understanding TRIM16's role in anti-oxidative stress in H5N1 HPAIV infected A549 cells.
Collapse
Affiliation(s)
- Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Zifeng Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (M.L.); (H.S.); Tel.: +86-18675861636 (H.S.)
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (M.L.); (H.S.); Tel.: +86-18675861636 (H.S.)
| |
Collapse
|
34
|
Myxovirus resistance ( Mx) Gene Diversity in Avian Influenza Virus Infections. Biomedicines 2022; 10:biomedicines10112717. [PMID: 36359237 PMCID: PMC9687888 DOI: 10.3390/biomedicines10112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses (AIVs) pose threats to animal and human health. Outbreaks from the highly pathogenic avian influenza virus (HPAIV) in indigenous chickens in Bangladesh are infrequent. This could be attributed to the Myxovirus resistance (Mx) gene. To determine the impact of Mx gene diversity on AIV infections in chicken, we assessed the Mx genes, AIVs, and anti-AIV antibodies. DNA from blood cells, serum, and cloacal swab samples was isolated from non-vaccinated indigenous chickens and vaccinated commercial chickens. Possible relationships were assessed using the general linear model (GLM) procedure. Three genotypes of the Mx gene were detected (the resistant AA type, the sensitive GG type, and the heterozygous AG type). The AA genotype (0.48) was more prevalent than the GG (0.19) and the AG (0.33) genotypes. The AA genotype was more prevalent in indigenous than in commercial chickens. A total of 17 hemagglutinating viruses were isolated from the 512 swab samples. AIVs were detected in two samples (2/512; 0.39%) and subtyped as H1N1, whereas Newcastle disease virus (NDV) was detected in the remaining samples. The viral infections did not lead to apparent symptoms. Anti-AIV antibodies were detected in 44.92% of the samples with levels ranging from 27.37% to 67.65% in indigenous chickens and from 26% to 87.5% in commercial chickens. The anti-AIV antibody was detected in 40.16%, 65.98%, and 39.77% of chickens with resistant, sensitive, and heterozygous genotypes, respectively. The genotypes showed significant association (p < 0.001) with the anti-AIV antibodies. The low AIV isolation rates and high antibody prevalence rates could indicate seroconversion resulting from exposure to the virus as it circulates. Results indicate that the resistant genotype of the Mx gene might not offer anti-AIV protection for chickens.
Collapse
|
35
|
Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia. Int J Mol Sci 2022; 23:ijms231810829. [PMID: 36142740 PMCID: PMC9502348 DOI: 10.3390/ijms231810829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses (AIV) of wild ducks are known to be able to sporadically infect domestic birds and spread along poultry. Regular surveillance of AIV in the wild is needed to prepare for potential outbreaks. During long-year monitoring, 46 strains of AIV were isolated from gulls and mallards in Moscow ponds and completely sequenced. Amino acid positions that affect the pathogenicity of influenza viruses in different hosts were tested. The binding affinity of the virus for receptors analogs typical for different hosts and the pathogenicity of viruses for mice and chickens were investigated. Moscow isolates did not contain well-known markers of pathogenicity and/or adaptation to mammals, so as a polybasic cleavage site in HA, substitutions of 226Q and 228G amino acids in the receptor-binding region of HA, and substitutions of 627E and 701D amino acids in the PB2. The PDZ-domain ligand in the NS protein of all studied viruses contains the ESEV or ESEI sequence. Although several viruses had the N66S substitution in the PB1-F2 protein, all Moscow isolates were apathogenic for both mice and chickens. This demonstrates that the phenotypic manifestation of pathogenicity factors is not absolute but depends on the genome context.
Collapse
|
36
|
Abstract
The M1 of influenza A virus (IAV) is important for the virus life cycle, especially for the assembly and budding of viruses, which is a multistep process that requires host factors. Identifying novel host proteins that interact with M1 and understanding their functions in IAV replication are of great interest in antiviral drug development. In this study, we identified 19 host proteins in DF1 cells suspected to interact with the M1 protein of an H5N6 virus through immunoprecipitation (IP)/mass spectrometry. Among them, PSMD12, a 26S proteasome regulatory subunit, was shown to interact with influenza M1, acting as a positive host factor in IAV replication in avian and human cells. The data showed that PSMD12 promoted K63-linked ubiquitination of M1 at the K102 site. H5N6 and PR8 with an M1-K102 site mutant displayed a significantly weaker replication ability than the wild-type viruses. Mechanistically, PSMD12 promoted M1-M2 virus-like particle (VLP) release, and an M1-K102 mutation disrupted the formation of supernatant M1-M2 VLPs. An H5N6 M1-K102 site mutation or knockdown PSMD12 disrupted the budding release of the virus in chicken embryo fibroblast (CEF) cells, which was confirmed by transmission electron microscopy. Further study confirmed that M1-K102 site mutation significantly affected the virulence of H5N6 and PR8 viruses in mice. In conclusion, we report the novel host factor PSMD12 which affects the replication of influenza virus by mediating K63-linked ubiquitination of M1 at K102. These findings provide novel insight into the interactions between IAV and host cells, while suggesting an important target for anti-influenza virus drug research. IMPORTANCE M1 is proposed to play multiple biologically important roles in the life cycle of IAV, which relies largely on host factors. This study is the first one to identify that PSMD12 interacts with M1, mediates K63-linked ubiquitination of M1 at the K102 site, and thus positively regulates influenza virus proliferation. PSMD12 promoted M1-M2 VLP egress, and an M1-K102 mutation affected the M1-M2 VLP formation. Furthermore, we demonstrate the importance of this site to the morphology and budding of influenza viruses by obtaining mutant viruses, and the M1 ubiquitination regulator PSMD12 has a similar function to the M1 K102 mutation in regulating virus release and virus morphology. Additionally, we confirm the reduced virulence of H5N6 and PR8 (H1N1) viruses carrying the M1-K102 site mutation in mice. These findings provide novel insights into IAV interactions with host cells and suggest a valid and highly conserved candidate target for antiviral drug development.
Collapse
|
37
|
Zhu MM, Niu BW, Liu LL, Yang H, Qin BY, Peng XH, Chen LX, Liu Y, Wang C, Ren XN, Xu CH, Zhou XH, Li F. Development of a humanized HLA-A30 transgenic mouse model. Animal Model Exp Med 2022; 5:350-361. [PMID: 35791899 PMCID: PMC9434587 DOI: 10.1002/ame2.12225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background There are remarkable genetic differences between animal major histocompatibility complex (MHC) systems and the human leukocyte antigen (HLA) system. HLA transgenic humanized mouse model systems offer a much better method to study the HLA‐A‐related principal mechanisms for vaccine development and HLA‐A‐restricted responses against infection in human. Methods A recombinant gene encoding the chimeric HLA‐A30 monochain was constructed. This HHD molecule contains the following: α1‐α2 domains of HLA‐A30, α3 and cytoplasmic domains of H‐2Db, linked at its N‐terminus to the C‐terminus of human β2m by a 15‐amino‐acid peptide linker. The recombinant gene encoding the chimeric HLA‐A30 monochain cassette was introduced into bacterial artificial chromosome (BAC) CH502‐67J3 containing the HLA‐A01 gene locus by Red‐mediated homologous recombination. Modified BAC CH502‐67J3 was microinjected into the pronuclei of wild‐type mouse oocytes. This humanized mouse model was further used to assess the immune responses against influenza A virus (H1N1) pdm09 clinically isolated from human patients. Immune cell population, cytokine production, and histopathology in the lung were analyzed. Results We describe a novel human β2m‐HLA‐A30 (α1α2)‐H‐2Db (α3 transmembrane cytoplasmic) (HHD) monochain transgenic mouse strain, which contains the intact HLA‐A01 gene locus including 49 kb 5′‐UTR and 74 kb 3′‐UTR of HLA‐A01*01. Five transgenic lines integrated into the large genomic region of HLA‐A gene locus were obtained, and the robust expression of exogenous transgene was detected in various tissues from A30‐18# and A30‐19# lines encompassing the intact flanking sequences. Flow cytometry revealed that the introduction of a large genomic region in HLA‐A gene locus can influence the immune cell constitution in humanized mice. Pdm09 infection caused a similar immune response among HLA‐A30 Tg humanized mice and wild‐type mice, and induced the rapid increase of cytokines, including IFN‐γ, TNF‐α, and IL‐6, in both HLA‐A30 humanized Tg mice and wild‐type mice. The expression of HLA‐A30 transgene was dramatically promoted in tissues from A30‐9# line at 3 days post‐infection (dpi). Conclusions We established a promising preclinical research animal model of HLA‐A30 Tg humanized mouse, which could accelerate the identification of novel HLA‐A30‐restricted epitopes and vaccine development, and support the study of HLA‐A‐restricted responses against infection in humans.
Collapse
Affiliation(s)
- Meng-Min Zhu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Wen Niu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Ling-Ling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hua Yang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Yin Qin
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiu-Hua Peng
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Li-Xiang Chen
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yang Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chao Wang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Nan Ren
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chun-Hua Xu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Hui Zhou
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
38
|
Muralidharan A, Gravel C, Harris G, Hashem AM, Zhang W, Safronetz D, Van Domselaar G, Krammer F, Sauve S, Rosu-Myles M, Wang L, Chen W, Li X. Universal antibody targeting the highly conserved fusion peptide provides cross-protection in mice. Hum Vaccin Immunother 2022; 18:2083428. [PMID: 35724343 PMCID: PMC9621047 DOI: 10.1080/21645515.2022.2083428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Influenza is a major public health concern causing millions of hospitalizations every year. The current vaccines need annual updating based on prediction of likely strains in the upcoming season. However, mismatches between vaccines and the actual circulating viruses can occur, reducing vaccine effectiveness significantly because of the remarkably high rate of mutation in the viral glycoprotein, hemagglutinin (HA). Clearly, it would be of great interest to determine the potential role of universally conserved epitopes in inducing protective immunity. Here, an antibody against the 14-aa fusion peptide sequence at the N-terminus of the HA2 subunit (Uni-1) was investigated for its ability to elicit antibody-dependent cellular cytotoxicity (ADCC) in vitro and cross-protection against lethal infection in animals. Uni-1, known to neutralize influenza type A (IAV) in vitro, was found to induce strong ADCC against diverse influenza viruses, including human and avian IAVs and both lineages of type B (IBV). The ADCC effects against human IAVs by Uni-1 was comparable to ADCC induced by well-characterized antibodies, F10 and FI6V3. Importantly, mice treated with Uni-1 were protected against lethal challenge of IAV and IBV. These results revealed the versatile effector functions of this universal antibody against markedly diverse strains of both IAV and IBV. The fusion peptide is the only universally conserved epitope in both IAV and IBV Mono-specific universal antibody induces strong ADCC against human and avian IAV Mono-specific universal antibody induces strong ADCC against IBV from both genetic lineages of IBV The antibody has bi-functional effector functions against several influenza viruses
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Greg Harris
- Human Health Therapeutics (HHT) Research Center, National Research Council of Canada, Ottawa, Canada
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wanyue Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Wangxue Chen
- Human Health Therapeutics (HHT) Research Center, National Research Council of Canada, Ottawa, Canada
| | - Xuguang Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| |
Collapse
|
39
|
Zhang H, Yao Y, Li Y, Chen J, Chen Z. Evidence for Water-Borne Transmission of Highly Pathogenic Avian Influenza H5N1 Viruses. Front Microbiol 2022; 13:896469. [PMID: 35694294 PMCID: PMC9183062 DOI: 10.3389/fmicb.2022.896469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we isolated 10 H5N1 strains from water samples in Dongting Lake and 4 H5N1 strains from lakeside backyard poultry. These isolates belonged to three distinct clades (clade 2.3.2, 2.3.4, and 7). Phylogenetic analysis showed a diversified genome constellation. The genetic characteristics of some viruses isolated from water samples were extremely similar to those from lakeside poultry. Pathogenic experiments showed that selected represented isolates in this study were highly pathogenic for SPF chickens but had a diversified virulence in mice. The results of our study suggested the potential transmission of avian influenza (H5N1) between the poultry and wild waterfowls and water body around the habitat may play an important role.
Collapse
Affiliation(s)
- Hongbo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Jianjun Chen,
| | - Ze Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Ze Chen,
| |
Collapse
|
40
|
Cheung CSF, Gorman J, Andrews SF, Rawi R, Reveiz M, Shen CH, Wang Y, Harris DR, Nazzari AF, Olia AS, Raab J, Teng IT, Verardi R, Wang S, Yang Y, Chuang GY, McDermott AB, Zhou T, Kwong PD. Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure 2022; 30:993-1003.e6. [PMID: 35489332 DOI: 10.1016/j.str.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Several influenza antibodies with broad group 2 neutralization have recently been isolated. Here, we analyze the structure, class, and binding of one of these antibodies from an H7N9 vaccine trial, 315-19-1D12. The cryo-EM structure of 315-19-1D12 Fab in complex with the hemagglutinin (HA) trimer revealed the antibody to recognize the helix A region of the HA stem, at the supersite of vulnerability recognized by group 1-specific and by cross-group-neutralizing antibodies. 315-19-1D12 was derived from HV1-2 and KV2-28 genes and appeared to form a new antibody class. Bioinformatic analysis indicated its group 2 neutralization specificity to be a consequence of four key residue positions. We specifically tested the impact of the group 1-specific N33 glycan, which decreased but did not abolish group 2 binding of 315-19-1D12. Overall, this study highlights the recognition of a broad group 2-neutralizing antibody, revealing unexpected diversity in neutralization specificity for antibodies that recognize the HA stem supersite.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mateo Reveiz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Wang G, Zhao Y, Zhou Y, Jiang L, Liang L, Kong F, Yan Y, Wang X, Wang Y, Wen X, Zeng X, Tian G, Deng G, Shi J, Liu L, Chen H, Li C. PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence. PLoS Pathog 2022; 18:e1010446. [PMID: 35377920 PMCID: PMC9009768 DOI: 10.1371/journal.ppat.1010446] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/14/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuan Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Fandi Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Ya Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xuyuan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yihan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xia Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| |
Collapse
|
42
|
Subbarao K. What influenza activity can we anticipate in 2022? Med J Aust 2022; 216:239-241. [DOI: 10.5694/mja2.51437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza Doherty Institute Melbourne VIC
| |
Collapse
|
43
|
Yuan S, Jiang SC, Zhang ZW, Fu YF, Zhu F, Li ZL, Hu J. Abuse of Amantadine in Poultry May Be Associated with Higher Fatality Rate of H5N1 Infections in Humans. J Med Virol 2022; 94:2588-2597. [PMID: 35170774 DOI: 10.1002/jmv.27664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 11/07/2022]
Abstract
Amantadine, an anti-viral drug, has been widely used in human anti-influenza treatments. However, several highly-pathogenic avian influenza viruses show amantadine-resistance mutations in the viral matrix 2 (M2) protein. Here we analyzed global H5N1 sequencing data and calculate possible correlations between frequencies of key mutations in M2 and the mortality rates. We found that frequency of L26I/V27A mutation in M2 (isolated from both human and avian hosts) is linearly correlated with the mortality rates of human H5N1 infections. The significant correlation between M2 mutations in avians and the mortality rates in humans suggest that the pre-existence of L26I/V27A in birds may determine patient fatalities after trans-infections from avian to human hosts. 100% prevalence of L26I/V27A mutation increased the mortality rates from 51% (95% CI 37%-65%) to 89% (95% CI 88%-90%). Mutations involving Leu26 or Val27 were identified to be the major mutations emerging from drug selection pressure. Thus the emergence of the super H5N1 virus with a fatality over 90% may be attributed to the abuse of amantadine in poultry, especially in some southeast Asian countries. A more stringent control to anti-viral veterinary drugs is imperative. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Si-Cong Jiang
- Chengdu KangHong Pharmaceutical Group Comp. Ltd., Chengdu, 610036, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi'an, 710032, China
| | - Jing Hu
- School of Medicine, Northwest University, Xi'an, 710069, China
| |
Collapse
|
44
|
Perlas A, Argilaguet J, Bertran K, Sánchez-González R, Nofrarías M, Valle R, Ramis A, Cortey M, Majó N. Dual Host and Pathogen RNA-Seq Analysis Unravels Chicken Genes Potentially Involved in Resistance to Highly Pathogenic Avian Influenza Virus Infection. Front Immunol 2022; 12:800188. [PMID: 35003125 PMCID: PMC8727699 DOI: 10.3389/fimmu.2021.800188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.
Collapse
Affiliation(s)
- Albert Perlas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Argilaguet
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kateri Bertran
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Raúl Sánchez-González
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Miquel Nofrarías
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Rosa Valle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Antonio Ramis
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Natàlia Majó
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
45
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
46
|
Chen L, Li G, Tian Y, Zeng T, Xu W, Gu T, Lu L. RNA Sequencing Reveals circRNA Expression Profiles in Chicken DF1 Cells Infected with H5N1 Influenza Virus. Animals (Basel) 2022; 12:ani12020158. [PMID: 35049781 PMCID: PMC8772545 DOI: 10.3390/ani12020158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary H5N1 is a highly pathogenic avian influenza virus that seriously harms the poultry industry and public health worldwide. However, its pathogenesis is still not well understood. In this study, we analyzed the expression profile of circular RNAs (circRNAs) in H5N1-infected chicken embryo fibroblast (DF1) cells and found their expression to change more significantly as the infection was extended. Differentially expressed circRNAs were significantly enriched in terms relating to virus replication and immune response, suggesting that circRNAs play important roles in the pathogenesis of H5N1 infection. Our study provides new insights into the mechanisms underlying H5N1–host interaction. Abstract H5N1, a highly pathogenic avian influenza virus that is prevalent in Asia, seriously harms the poultry industry and global public health. However, its pathogenesis is still not well understood. Circular RNAs (circRNAs), a newly identified type of RNA, reportedly play crucial roles in various pathogenic processes. In this study, RNA sequencing was performed to analyze the expression profile of circRNAs in H5N1-infected chicken embryo fibroblast (DF1) cells. A total of 14,586 circRNAs were identified. The expression profiles of infected cells changed more significantly, relative to uninfected cells, as the infection period was extended; namely, 261, 626, and 1103 circRNAs exhibited differential expression in cells infected for 6 h, 12 h, and 20 h, respectively. GO and KEGG enrichment analysis revealed significant enrichment of the parental genes of the differentially expressed circRNAs for viral replication and immune response-related pathways, such as positive regulation of transcription from the RNA polymerase II promoter, positive regulation of I-kappaB kinase/NF-kappaB signaling, innate immune response, and ubiquitin protein ligase activity. In conclusion, we identified the expression profile of circRNAs in H5N1-infected chicken DF1 cells. Bioinformatic analyses of the dysregulated circRNAs suggest that circRNAs might play important roles in the pathogenesis of H5N1 infection, offering new insights into the mechanisms underlying H5N1–host interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lizhi Lu
- Correspondence: ; Tel.: +86-0571-8640-4216
| |
Collapse
|
47
|
SUMOylation of matrix protein M1 and filamentous morphology collectively contribute to the replication and virulence of highly pathogenic H5N1 avian influenza viruses in mammals. J Virol 2021; 96:e0163021. [PMID: 34908445 PMCID: PMC8865470 DOI: 10.1128/jvi.01630-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The matrix protein (M1) of influenza A virus plays an important role in replication, assembly, and budding. A previous study found that aspartic acid (D) at position 30 and alanine (A) at position 215 of M1 contribute to the high pathogenicity of H5N1 viruses in mice, and double mutations of D to asparagine (N) at position 30 (D30N) and A to threonine (T) at position 215 (A215T) in M1 dramatically attenuate H5N1 viruses in mice. However, the underlying mechanisms by which these M1 mutations attenuate the virulence of H5N1 viruses are unknown. Here, we found that the amino acid mutation A215T eliminates the SUMOylation of M1 by reducing its interaction with the host SUMO1 protein, significantly reducing the stability of M1, slowing the export of the M1-vRNP complex from the nucleus to the cytoplasm, and reducing viral replication in MDCK cells. We further found that the D30N mutation in M1 alters the shape of progeny viruses from filamentous to spherical virions. Our findings reveal an essential role for M1 215A SUMOylation and M1 30D-related filamentous morphology in the pathogenesis of avian influenza viruses, which could be targeted in novel antiviral drug designs. IMPORTANCE Identification of the pathogenic mechanism of highly pathogenic avian influenza viruses in mammals is helpful to develop novel anti-influenza virus strategies. Two amino acid mutations (D30N and A215T) in M1 were found to collectively attenuate H5N1 influenza viruses in mice, but the underlying mechanism remained unknown. This study found that the A215T mutation significantly decreases the SUMOylation of M1, which in turn attenuates the replication of H5N1 virus in mammalian cells. The D30N mutation in M1 was found to change the virion shape from filamentous to spherical. These findings are important for understanding the molecular mechanism of virulence of highly pathogenic avian influenza viruses in mammals.
Collapse
|
48
|
Kida Y, Okuya K, Saito T, Yamagishi J, Ohnuma A, Hattori T, Miyamoto H, Manzoor R, Yoshida R, Nao N, Kajihara M, Watanabe T, Takada A. Structural Requirements in the Hemagglutinin Cleavage Site-Coding RNA Region for the Generation of Highly Pathogenic Avian Influenza Virus. Pathogens 2021; 10:1597. [PMID: 34959552 PMCID: PMC8707032 DOI: 10.3390/pathogens10121597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) with H5 and H7 hemagglutinin (HA) subtypes are derived from their low pathogenic counterparts following the acquisition of multiple basic amino acids in their HA cleavage site. It has been suggested that consecutive adenine residues and a stem-loop structure in the viral RNA region that encodes the cleavage site are essential for the acquisition of the polybasic cleavage site. By using a reporter assay to detect non-templated nucleotide insertions, we found that insertions more frequently occurred in the RNA region (29 nucleotide-length) encoding the cleavage site of an H5 HA gene that was predicted to have a stem-loop structure containing consecutive adenines than in a mutated corresponding RNA region that had a disrupted loop structure with fewer adenines. In virus particles generated by using reverse genetics, nucleotide insertions that created additional codons for basic amino acids were found in the RNA region encoding the cleavage site of an H5 HA gene but not in the mutated RNA region. We confirmed the presence of virus clones with the ability to replicate without trypsin in a plaque assay and to cause lethal infection in chicks. These results demonstrate that the stem-loop structure containing consecutive adenines in HA genes is a key molecular determinant for the emergence of H5 HPAIVs.
Collapse
Affiliation(s)
- Yurie Kida
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Kosuke Okuya
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Aiko Ohnuma
- Technical Office, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Rashid Manzoor
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Reiko Yoshida
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Tokiko Watanabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
49
|
Albery GF, Becker DJ, Brierley L, Brook CE, Christofferson RC, Cohen LE, Dallas TA, Eskew EA, Fagre A, Farrell MJ, Glennon E, Guth S, Joseph MB, Mollentze N, Neely BA, Poisot T, Rasmussen AL, Ryan SJ, Seifert S, Sjodin AR, Sorrell EM, Carlson CJ. The science of the host-virus network. Nat Microbiol 2021; 6:1483-1492. [PMID: 34819645 DOI: 10.1038/s41564-021-00999-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Better methods to predict and prevent the emergence of zoonotic viruses could support future efforts to reduce the risk of epidemics. We propose a network science framework for understanding and predicting human and animal susceptibility to viral infections. Related approaches have so far helped to identify basic biological rules that govern cross-species transmission and structure the global virome. We highlight ways to make modelling both accurate and actionable, and discuss the barriers that prevent researchers from translating viral ecology into public health policies that could prevent future pandemics.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington DC, USA.
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Liam Brierley
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad A Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emma Glennon
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maxwell B Joseph
- Earth Lab, Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO, USA
| | - Nardus Mollentze
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC - University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Benjamin A Neely
- National Institute of Standards and Technology, Charleston, SC, USA
| | - Timothée Poisot
- Québec Centre for Biodiversity Sciences, Montréal, Québec, Canada.,Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Stephanie Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Anna R Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Erin M Sorrell
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA.,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
50
|
Ripa RN, Sealy JE, Raghwani J, Das T, Barua H, Masuduzzaman M, Saifuddin A, Huq MR, Uddin MI, Iqbal M, Brown I, Lewis NS, Pfeiffer D, Fournie G, Biswas PK. Molecular epidemiology and pathogenicity of H5N1 and H9N2 avian influenza viruses in clinically affected chickens on farms in Bangladesh. Emerg Microbes Infect 2021; 10:2223-2234. [PMID: 34753400 PMCID: PMC8635652 DOI: 10.1080/22221751.2021.2004865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap in our knowledge, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection. Viral prevalence of each subtype was approximately 10% among farms for which veterinary advice was sought, indicating a high level of virus circulation in chicken farms despite the low number of reported outbreaks. The level of co-circulation of both subtypes on farms was high, with our study suggesting that in the field, the co-circulation of H5N1 and H9N2 can modulate disease severity, which could facilitate an underestimated level of AIV transmission in the poultry value chain. Finally, using newly generated whole-genome sequences, we investigate the evolutionary history of a small subset of H5N1 and H9N2 viruses. Our analyses revealed that for both subtypes, the sampled viruses were genetically most closely related to other viruses isolated in Bangladesh and represented multiple independent incursions. However, due to lack of longitudinal surveillance in this region, it is difficult to ascertain whether these viruses emerged from endemic strains circulating in Bangladesh or from neighbouring countries. We also show that amino acids at putative antigenic residues underwent a distinct replacement during 2012 which coincides with the use of H5N1 vaccines.
Collapse
Affiliation(s)
- Ripatun Nahar Ripa
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joshua E Sealy
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | | | - Tridip Das
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Himel Barua
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Masuduzzaman
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Akm Saifuddin
- Department of Physiology, Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Reajul Huq
- District Livestock Office, Chattogram, Department of Livestock Services, Bangladesh
| | - Mohammad Inkeyas Uddin
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Munir Iqbal
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Ian Brown
- Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Nicola S Lewis
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom.,Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Dirk Pfeiffer
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, China
| | - Guillaume Fournie
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|