1
|
Burton EM, Maestri D, White S, Liang JH, Mitra B, Asara JM, Gewurz BE. Epstein-Barr virus latent membrane protein 1 subverts IMPDH pathways to drive B-cell oncometabolism. PLoS Pathog 2025; 21:e1013092. [PMID: 40367275 DOI: 10.1371/journal.ppat.1013092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/01/2025] [Indexed: 05/16/2025] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple types of cancers, many of which express the viral oncoprotein Latent Membrane Protein 1 (LMP1). LMP1 contributes to both epithelial and B-cell transformation. Although metabolism reprogramming is a cancer hallmark, much remains to be learned about how LMP1 alters lymphocyte oncometabolism. To gain insights into key B-cell metabolic pathways subverted by LMP1, we performed systematic metabolomic analyses on B cells with conditional LMP1 expression. This approach highlighted that LMP highly induces de novo purine biosynthesis, with xanthosine-5-P (XMP) as one of the most highly LMP1-upregulated metabolites. Consequently, IMPDH inhibition by mycophenolic acid (MPA) triggered death of LMP1-expressing EBV-transformed lymphoblastoid cell lines (LCL), a key model for EBV-driven immunoblastic lymphomas. Whereas MPA instead caused growth arrest of Burkitt lymphoma cells with the EBV latency I program, conditional LMP1 expression triggered their death, and this phenotype was rescuable by guanosine triphosphate (GTP) supplementation, implicating LMP1 as a key driver of B-cell GTP biosynthesis. Although both IMPDH isozymes are expressed in LCLs, only IMPDH2 was critical for LCL survival, whereas both contributed to proliferation of Burkitt cells with the EBV latency I program. Both LMP1 C-terminal cytoplasmic tail domains critical for primary human B-cell transformation were important for XMP production, and each contributed to LMP1-driven Burkitt cell sensitivity to MPA. Metabolomic analyses further highlighted roles of NF-kB, mitogen activated kinase and protein kinase C downstream of LMP1 in support of XMP abundance. Of these, only protein kinase C activity was important for supporting GTP levels in LMP1 expressing Burkitt cells. MPA also de-repressed EBV lytic antigens, including LMP1 itself in latency I Burkitt cells, highlighting crosstalk between the purine biosynthesis pathway and the EBV epigenome. These results suggest novel oncometabolism-based therapeutic approaches to LMP1-driven lymphomas.
Collapse
Affiliation(s)
- Eric M Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Davide Maestri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shaowen White
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jin-Hua Liang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Li Z, Liang Z, Qi H, Luo X, Wang M, Du Z, Guo W. Lactate shuttling links histone lactylation to adult hippocampal neurogenesis in mice. Dev Cell 2025; 60:1182-1198.e8. [PMID: 39765233 DOI: 10.1016/j.devcel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Lactate has emerged as a central metabolic fuel and an important signaling molecule. Its availability participates in various brain functions. Although lactate homeostasis is vital for adult hippocampal neurogenesis and cognition, it is still unknown how shuttles lactate across the plasma membrane of neural stem cells (NSCs) to control their activity and neurogenic potential. In this study, we show that monocarboxylate transporter (MCT)1 and MCT2, respectively, control efflux and influx of lactate in the murine NSCs, thereby maintaining intracellular lactate homeostasis. Mechanistically, lactate shuttling links histone lactylation to govern NSC proliferation through MDM2-p53 signaling pathway. Notably, genetic ablation of MCT2 from NSCs or pharmacological inhibition of MDM2-P53 interaction prevents voluntary running-induced NSC proliferation in the murine adult hippocampus. Taken together, our findings demonstrate that lactate shuttling controls histone lactylation, which acts as a nexus for controlling adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Zhimin Li
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Huan Qi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Du
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Fdel AM, Waters L, Sharma I, Jones S, Gee J, Atack JR, Banerjee S, Mehellou Y. Oxidative Stress-Responsive 1 Kinase Catalytic Activity Promotes Triple Negative Breast Cancer Oncogenic Potential. ACS Pharmacol Transl Sci 2025; 8:726-735. [PMID: 40109757 PMCID: PMC11915029 DOI: 10.1021/acsptsci.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
The protein kinase OSR1 has been highlighted as a biomarker for a poor prognosis in breast cancer (BC) patients. To further decipher the mechanism underpinning this, we studied the expression, phosphorylation status, and catalytic activity of OSR1 across a series of BC cell lines. OSR1 was found to be expressed across the various luminal and triple negative BC (TNBC) cell lines studied, although it was only constitutively active in the highly migratory TNBC cell line MDA-MB-231. Although this cell line carries p53 mutations, our data indicated that OSR1 constitutive kinase activity of the OSR1 in MDA-MB-231 was independent of p53. Interestingly, the inhibition of OSR1 had no significant impact on MDA-MB-231 cell viability, but it was found to contribute to its substantial cell migration and invasion, as this was significantly attenuated by the WNK/OSR1 inhibitor WNK463. Analogously, the overexpression of constitutively active OSR1 in the poorly migrating BC cell line MCF7 enhanced its cell mobility. Collectively, our results indicate that the pharmacological inhibition of OSR1 could be a promising novel strategy for preventing the oncogenic potential of TNBC.
Collapse
Affiliation(s)
- Azeza M Fdel
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
| | - Loren Waters
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| | - Ira Sharma
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Samuel Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
| | - Julia Gee
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Youcef Mehellou
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|
4
|
Wu K, Ge XX, Duan XF, Li JQ, Wang K, Chen QH, Huang ZM, Zhang WY, Wu Y, Li Q. Wip1 phosphatase activator QGC-8-52 specifically sensitizes p53-negative cancer cells to chemotherapy while protecting normal cells. Drug Resist Updat 2025; 79:101196. [PMID: 39787991 DOI: 10.1016/j.drup.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
PP2C serine-threonine phosphatase Wip1 plays an important role in normal tissue homeostasis, stress signaling and pathogenesis of various human diseases. It is an attractive drug target for cancer treatment and inhibition of its expression or activity constitute a novel therapeutic intervention strategy to prevent the development of various cancers. However, previous strategies for Wip1 suppression may be ineffective in cancers lacking p53. Here, we have characterized the activity of a novel Wip1 phosphatase activator, QGC-8-52, in preclinical models of breast malignancies. QGC-8-52 significantly sensitizes the cancer cell lines with p53 deletion to chemotherapeutic agents. This effect was mediated by the Wip1-FOXO3a interaction and subsequent dephosphorylation of Thr487 that resulted, in response to anticancer treatment, in enhancing the transcription activity of FOXO3a on the proapoptotic TRAIL gene. The sensitizing effect of Wip1 activation on chemotherapeutic drugs only targeted cancer cells lacking p53. The activation of Wip1 in normal cells provided protection from anticancer drug-induced apoptosis by reducing the strength of upstream signaling to p53. Therefore, during the treatment of anticancer drugs, the activated Wip1 phosphatase boosts the apoptosis of p53-negative tumors and protects normal tissues. Our findings may represent an effective and safe therapeutic strategy for cancers with p53 deletion.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charls Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Xiao-Xiao Ge
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Xiao-Fan Duan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Jie-Qing Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Zhi-Min Huang
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charls Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Qun Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| |
Collapse
|
5
|
Sun Y, Chou J, Dong K, Gygi SP, Gewurz BE. Insights into the Absence of Lymphoma Despite Fulminant Epstein-Barr Virus Infection in Patients with XIAP Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633616. [PMID: 39868266 PMCID: PMC11761029 DOI: 10.1101/2025.01.17.633616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
X-linked Lymphoproliferative Syndromes (XLP), which arise from mutations in the SH2D1A or XIAP genes, are characterized by the inability to control Epstein-Barr Virus (EBV) infection. While primary EBV infection triggers severe diseases in each, lymphomas occur at high rates with XLP-1 but not with XLP-2. Why XLP-2 patients are apparently protected from EBV-driven lymphomagenesis, in contrast to all other described congenital conditions that result in heightened susceptibility to EBV, remains a key open question. To gain insights, we cross-compared newly EBV infected versus immune stimulated B-cells from XLP-2 patients or upon XIAP CRISPR knockout, relative to healthy controls. XIAP perturbation impeded outgrowth of newly EBV-infected primary human B-cells, though had no impact on proliferation of B-cells stimulated by CD40 ligand and interleukin-21 or upon established EBV-immortalized lymphoblastoid cell lines (LCLs). B-cells from XLP-2 patients or in which XIAP was depleted by CRISPR editing exhibited a markedly lower EBV transformation efficiency than healthy control B-cells. Mechanistically, nascent EBV infection activated p53-mediated apoptosis signaling, whose effects on transforming B-cell death were counteracted by XIAP. In the absence of XIAP, EBV infection triggered high rates of apoptosis, not seen with CD40L/IL-21 stimulation. Moreover, inflammatory cytokines are present at high levels in XLP-2 patient serum with fulminant EBV infection, which heightened apoptosis induction in newly EBV-infected cells. These findings highlight the crucial role of XIAP in supporting early stages of EBV-driven B-cell immortalization and provide insights into the absence of EBV+ lymphoma in XLP-2 patients.
Collapse
Affiliation(s)
- Yizhe Sun
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Janet Chou
- Division of Immunology, Department of Pediatrics Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kevin Dong
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2025; 329:e13409. [PMID: 39425547 PMCID: PMC11742653 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
| | - Prajwal Gurung
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
- Interdisciplinary Graduate Program in Human ToxicologyUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
- Center for Immunology and Immune Based DiseaseUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
7
|
Xiong B, Zhang X, Sangji D, Ni L, Fan M, Fan B. Mechanisms of breast cancer treatment using Gentiana robusta: evidence from comprehensive bioinformatics investigation. Sci Rep 2024; 14:31567. [PMID: 39738201 PMCID: PMC11686125 DOI: 10.1038/s41598-024-76063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 01/01/2025] Open
Abstract
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation. Building upon prior research on QJ's chemical constituents, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the DAVID database. Network interactions and core genes were identified using Cytoscape 3.9.1. Key target genes, including Interleukin-6 (IL-6), tumour suppressor gene P53 (TP53), and epidermal growth factor receptor (EGFR), were selected for molecular docking with QJ's active components, 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D, employing Schrodinger Maestro 13.5. Molecular dynamics (MD) simulations were performed using the Desmond program. A total of 270 intersection targets of active ingredients and diseases were identified, with three core targets determined through network topology screening. Enrichment analysis highlighted the involvement of QJ in breast cancer treatment, primarily through the hsa05200 cancer signaling pathway and the hsa04066 HIF-1 signaling pathway. Molecular docking and dynamics simulations demonstrated the close interaction of 2'-O-β-D-glucopyranosyl-gentiopicroside (QJ17) and macrophylloside D (QJ25) with IL6, TP53, and EGFR, and other target genes, showcasing a stabilizing effect. In conclusion, this study unveils the effective components and potential mechanisms of 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D in breast cancer prevention and treatment. The identified components act on target genes such as IL6, TP53, and EGFR, regulating crucial pathways including the cancer signaling and Hypoxia-inducible factor 1 (HIF-1) signaling pathways. These findings provide valuable insights into the therapeutic potential of QJ in breast cancer management. However, further experimental research are needed to validate the computational findings of QJ.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongzhi Sangji
- Tibetan Medical Hospital of Xizang Autonomous Region, Lhasa, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingjie Fan
- Department of Pharmacy, Shanghai Fourth Rehabilitation Hospital, Shanghai, China.
| | - Beibei Fan
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Ursch LT, Müschen JS, Ritter J, Klermund J, Bernard BE, Kolb S, Warmuth L, Andrieux G, Miller G, Jiménez-Muñoz M, Theis FJ, Boerries M, Busch DH, Cathomen T, Schumann K. Modulation of TCR stimulation and pifithrin-α improve the genomic safety profile of CRISPR-engineered human T cells. Cell Rep Med 2024; 5:101846. [PMID: 39637860 PMCID: PMC11722128 DOI: 10.1016/j.xcrm.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-engineered chimeric antigen receptor (CAR) T cells are at the forefront of novel cancer treatments. However, several reports describe the occurrence of CRISPR-induced chromosomal aberrations. So far, measures to increase the genomic safety of T cell products focused mainly on the components of the CRISPR-Cas9 system and less on T cell-intrinsic features, such as their massive expansion after T cell receptor (TCR) stimulation. Here, we describe driving forces of indel formation in primary human T cells. Increased T cell activation and proliferation speed correlate with larger deletions. Editing of non-activated T cells reduces the risk of large deletions with the downside of reduced knockout efficiencies. Alternatively, the addition of the small-molecule pifithrin-α limits large deletions, chromosomal translocations, and aneuploidy in a p53-independent manner while maintaining the functionality of CRISPR-engineered T cells, including CAR T cells. Controlling T cell activation and pifithrin-α treatment are easily implementable strategies to improve the genomic integrity of CRISPR-engineered T cells.
Collapse
Affiliation(s)
- Laurenz T Ursch
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Jule S Müschen
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Julia Ritter
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Bettina E Bernard
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Saskia Kolb
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Linda Warmuth
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Gregor Miller
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marina Jiménez-Muñoz
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; School of Computing, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Dirk H Busch
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; German Center for Infection Research, Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kathrin Schumann
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; TUM, Institute for Advanced Study, 85748 Garching, Germany.
| |
Collapse
|
9
|
Yu X, Hao L, Liu X, Jin S, Li Y, Liu Y, Ji Y. Electrochemical one-pot cascade synthesis of thio(seleno)cyanato-substituted thiazolidine-2-imines without external electrolyte. Org Biomol Chem 2024; 22:9366-9370. [PMID: 39498627 DOI: 10.1039/d4ob01626b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A novel synthetic method has been developed for generating thio(seleno)cyanato-substituted thiazolidine-2-imines via an electrochemical one-pot cascade reaction. This reaction employs isothiocyanates, N-2-en-1-amines, and KSCN (or KSeCN) under mild conditions, obviating the need for metals, chemical oxidants, and external electrolytes. The protocol is effective with unactivated alkenes and facilitates the synthesis of five- and six-membered thio(seleno)cyanato-substituted thiazolidine-2-imines. The versatility is demonstrated by its straightforward operation and scalability to gram-scale production, underscoring its potential for broader application.
Collapse
Affiliation(s)
- Xiao Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| | - Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| | - Shengkui Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| | - Yangchen Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| | - Yiping Liu
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| |
Collapse
|
10
|
Sathya TA, Viswanathan S, Kolar AB, Jahirhussain G, Alagumanian S, Sobana S, Arumugam N. Environmental profiling of gold nanoparticles by flavonoids fractionalization from carrica papaya leaf extract for photocatalytic debasement of organic contaminants and it's cyto-toxic analysis. ENVIRONMENTAL RESEARCH 2024; 259:119445. [PMID: 38942259 DOI: 10.1016/j.envres.2024.119445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
In present investigation, Carica papaya leaf extract has been employed as a bio-reductant agent in order to synthesize ecologically sustainable bio-coupled gold nanoparticles. The formation of gold nanoparticles was confirmed based on colour change of solution and its surface plasmon resonance peak measured using UV-Vis Spectrophotometer (UV-Vis). The Morphology and size of nanoparticles were determined using transmission electron microscope (SEM/TEM), and its crystalline structure by X-ray diffraction studies. Surface area was determined via BET isotherm analysis. The elemental composition of Au nanoparticles was developed using the technique of energy dispersive spectroscopy (EDS). Furthermore, FTIR analysis delineated the presence of functional groups present in the samples of the synthesized AuNPs. Thus, the efficiency of bio coupled Au nanoparticles in photo catalytically decomposing methylene blue was examined under the influence of visible light., the lethal MB colorant had been reduced to 95 % Within 90 min. And also 60% TOC removal was recorded after 5 min of degradation reaction, which increased to 99% after 90 min. Furthermore, cytotoxic experiments on Michigan Cancer Foundations-7 (MCF-7) cell lines showed that Au nanoparticles are effective anticancer agents with an IC50 of 87.2 g/mL on the top of the present work revealed the eco-safety and affordable production of Au nanoparticles from Carica papaya leaf extract, which displayed photocatalytic debasement of organic pollutants and cyto-toxicity effects was investigated.
Collapse
Affiliation(s)
- T A Sathya
- PG & Research Department of Microbiology, Vivekanandha College of Arts and Sciences (Autonomous) for Women, Elayampalayam, Tiruchencode, 637205, Tamil Nadu, India.
| | - S Viswanathan
- PG &Research Centre of Microbiology, Sri Paramakalyani College, Alwarkurichi, 627412, Tamil Nadu, India.
| | - Amzad Basha Kolar
- PG Department of Botany, The New College (Autonomous), Affiliated to University of Madras, Chennai, 600014, Tamil Nadu, India
| | - G Jahirhussain
- PG & Research Department of Botany, Government Arts College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli-24, Karur, 639005, Tamil Nadu, India
| | - S Alagumanian
- PG& Research Department of Botany, H.H The Rajah's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli-24, Pudukkottai, 622001, Tamil Nadu, India
| | - S Sobana
- PG& Research Department of Physics, H.H The Rajah's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli-24, Pudukkottai, 622001, Tamil Nadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Wu KKL, Xu X, Wu M, Li X, Hoque M, Li GHY, Lian Q, Long K, Zhou T, Piao H, Xu A, Hui HX, Cheng KKY. MDM2 induces pro-inflammatory and glycolytic responses in M1 macrophages by integrating iNOS-nitric oxide and HIF-1α pathways in mice. Nat Commun 2024; 15:8624. [PMID: 39366973 PMCID: PMC11452520 DOI: 10.1038/s41467-024-53006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
M1 macrophages induce protective immunity against infection, but also contribute to metabolic and inflammatory diseases. Here we show that the E3 ubiquitin ligase, MDM2, promotes the glycolytic and inflammatory activities of M1 macrophage by increasing the production of IL-1β, MCP-1 and nitric oxide (NO). Mechanistically, MDM2 triggers the ubiquitination and degradation of E3 ligase, SPSB2, to stabilize iNOS and increases production of NO, which s-nitrosylates and activates HIF-1α for triggering the glycolytic and pro-inflammatory programs in M1 macrophages. Myeloid-specific haplodeletion of MDM2 in mice not only blunts LPS-induced endotoxemia and NO production, but also alleviates obesity-induced adipose tissue-resident macrophage inflammation. By contrast, MDM2 haplodeletion induces higher mortality, tissue damage and bacterial burden, and also suppresses M1 macrophage response, in the cecal ligation and puncture-induced sepsis mouse model. Our findings thus identify MDM2 as an activator of glycolytic and inflammatory responses in M1 macrophages by connecting the iNOS-NO and HIF-1α pathways.
Collapse
Affiliation(s)
- Kelvin Ka-Lok Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaofan Xu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Manyin Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital Fudan University, Shanghai, China
| | - Moinul Hoque
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gloria Hoi Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tongxi Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hailong Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Beijing, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
12
|
Wu A, Zhao C. Astilbin Induces Apoptosis in Oral Squamous Cell Carcinoma through p53 Reactivation and Mdm-2 Inhibition. DOKL BIOCHEM BIOPHYS 2024; 518:429-441. [PMID: 39196525 DOI: 10.1134/s1607672924600374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a frequently occurring malignancy in the head and neck region. The most commonly mutated gene in OSCC is the tumor suppressor gene p53 (TP53), linked to lower survival and treatment resistance in OSCC patients. Astilbin is a flavonoid amongst several herbal treatments with a variety of pharmacological actions mainly including antioxidant, anti-inflammatory, and anti-cancer characteristics. This study evaluated the effects of astilbin on proliferation of OSCC cell lines SCC90 and SCC4 (bearing a p53 mutation) in relevance to p53 and Mdm-2 pathways. Astilbin inhibited the proliferation of SCC4 and SCC90 cells in a dose- and time-dependent manner. The IC50 values for both the cell lines were about 75 μM for astilbin. A p53 activator (RITA) was used to determine the effects of astilbin on p53 activity, and the results demonstrated synergistic reduction in cell growth. However, when combined with pifithrin-α (a p53 inhibitor), astilbin demonstrated a strong inhibition of its response. Astilbin reduced the mitochondrial membrane potential in SCC4 cells, which is a sign of apoptotic activity. Astilbin decreased the amounts of Mdm-2 (negative regulator of p53) and increased the expression of the p53 gene and protein. In a p53-dependent manner, astilbin suppressed the ability of SCC4 cells to form colonies and heal wounds. This was followed by the induction of mitochondrial intrinsic apoptosis via the activation of caspases 9 and 3, cleavage of PARP, and the suppression of pro-apoptotic Bid. Astilbin-induced p53-mediated apoptosis in OSCC cells as herbal medicinal ingredients.
Collapse
Affiliation(s)
- Aimin Wu
- School of Medicine, JingChu University of Technology, 448000, JingMen, Hubei, China
| | - Chungang Zhao
- School of Medicine, JingChu University of Technology, 448000, JingMen, Hubei, China.
| |
Collapse
|
13
|
Ji H, Qiao O, Zhang Y, Wang W, Han X, Zhang X, Liu C, Gao W. Dual targeting of wild-type p53 and gut microbiota by Magnolol represses key metabolic process and kills CRC cells. Phytother Res 2024; 38:4982-4998. [PMID: 37326338 DOI: 10.1002/ptr.7924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Cancer cells consume considerable glucose quantities and majorly employ glycolysis for ATP generation. This metabolic signature (the Warburg effect) allows cancer cells to channel glucose to biosynthesis to support and maintain their dramatic growth along with proliferation. Currently, our understanding of the metabolic and mechanistic implications of the Warburg effect along with its relationship with biosynthesis remains unclear. Herein, we illustrate that the tumor repressor p53 mediate Magnolol (MAG) triggers colon cancer cell apoptosis. And MAG regulates the glycolytic and oxidative phosphorylation steps through transcriptional modulation of its downstream genes TP53-induced glycolysis modulator and biosynthesis of cytochrome c oxidase, attenuating cell proliferation and tumor growth in vivo and in vitro. Meanwhile, we show that MAG cooperates with its own intestinal microflora characteristic metabolites to repress tumors, especially remarkably declined kynurenine (Kyn)/tryptophan (Trp) ratio. Besides, strong relationships of MAG influenced genes, microbiota, as well as metabolites, were explored. Therefore, we established that p53-microbiota-metabolites function as a mechanism, which enable therapy approaches against metabolism-implicated colorectal cancer, in particular MAG as a prospective candidate for treating colorectal cancer.
Collapse
Affiliation(s)
- Haixia Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Ou Qiao
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Wenzhe Wang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Xiaoyin Han
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Xinyu Zhang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Changxiao Liu
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Wenyuan Gao
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Short SP, Brown RE, Chen Z, Pilat JM, McElligott BA, Meenderink LM, Bickart AC, Blunt KM, Jacobse J, Wang J, Simmons AJ, Xu Y, Yang Y, Parang B, Choksi YA, Goettel JA, Lau KS, Hiebert SW, Williams CS. MTGR1 is required to maintain small intestinal stem cell populations. Cell Death Differ 2024; 31:1170-1183. [PMID: 39048708 PMCID: PMC11369156 DOI: 10.1038/s41418-024-01346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Undifferentiated intestinal stem cells (ISCs) are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis where they differentiate into specialized cell types. Coordinated execution of complex transcriptional programs is necessary to allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss specifically in ISC biology. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic and functional analyses revealed deficiencies in Mtgr1-null ISCs, including deregulated ISC-associated transcriptional programs. Ex vivo, intestinal organoids established from Mtgr1-null mice were unable to survive and expand due to aberrant differentiation and loss of stem and proliferative cells. Together, these results indicate that the role of MTGR1 in intestinal differentiation is likely stem cell intrinsic and identify a novel role for MTGR1 in maintaining ISC function.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Leslie M Meenderink
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Alexander C Bickart
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Koral M Blunt
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Bobak Parang
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Yash A Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Jeremy A Goettel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Scott W Hiebert
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA.
| |
Collapse
|
15
|
Mao R, Zhu Z, Yang F, Sun D, Zhou X, Cao W, Qin X, Dang W, Liu H, Tian H, Zhang K, Wu Q, Liu X, Zheng H. Picornavirus VP3 protein induces autophagy through the TP53-BAD-BAX axis to promote viral replication. Autophagy 2024; 20:1928-1947. [PMID: 38752369 PMCID: PMC11346532 DOI: 10.1080/15548627.2024.2350270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/28/2024] Open
Abstract
Macroautophagy/autophagy and apoptosis are pivotal interconnected host cell responses to viral infection, including picornaviruses. Here, the VP3 proteins of picornaviruses were determined to trigger autophagy, with the autophagic flux being triggered by the TP53-BAD-BAX axis. Using foot-and-mouth disease virus (FMDV) as a model system, we unraveled a novel mechanism of how picornavirus hijacks autophagy to bolster viral replication and enhance pathogenesis. FMDV infection induced both autophagy and apoptosis in vivo and in vitro. FMDV VP3 protein facilitated the phosphorylation and translocation of TP53 from the nucleus into the mitochondria, resulting in BAD-mediated apoptosis and BECN1-mediated autophagy. The amino acid Gly129 in VP3 is essential for its interaction with TP53, and crucial for induction of autophagy and apoptosis. VP3-induced autophagy and apoptosis are both essential for FMDV replication, while, autophagy plays a more important role in VP3-mediated pathogenesis. Mutation of Gly129 to Ala129 in VP3 abrogated the autophagic regulatory function of VP3, which significantly decreased the viral replication and pathogenesis of FMDV. This suggested that VP3-induced autophagy benefits viral replication and pathogenesis. Importantly, this Gly is conserved and showed a common function in various picornaviruses. This study provides insight for developing broad-spectrum antivirals and genetic engineering attenuated vaccines against picornaviruses.Abbreviations: 3-MA, 3-methyladenine; ATG, autophagy related; BAD, BCL2 associated agonist of cell death; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X, apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCL2, BCL2 apoptosis regulator; BID, BH3 interacting domain death agonist; BIP-V5, BAX inhibitor peptide V5; CFLAR/FLIP, CASP8 and FADD like apoptosis regulator; CPE, cytopathic effects; CQ, chloroquine; CV, coxsackievirus; DAPK, death associated protein kinase; DRAM, DNA damage regulated autophagy modulator; EV71, enterovirus 71; FMDV, foot-and-mouth disease virus; HAV, hepatitis A virus; KD, knockdown; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MOI, multiplicity of infection; MTOR, mechanistic target of rapamycin kinase; PML, promyelocytic leukemia; PV, poliovirus; SVA, Seneca Valley virus; TCID50, 50% tissue culture infectious doses; TOR, target of rapamycin. TP53/p53, tumor protein p53; WCL, whole-cell lysate.
Collapse
Affiliation(s)
- Ruoqing Mao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dehui Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoli Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingfeng Wu
- Analysis and Test Group, Center for Technical Development and Analysis Service, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
16
|
Strasser AS, Gonzalez-Reiche AS, Zhou X, Valdebenito-Maturana B, Ye X, Zhang B, Wu M, van Bakel H, Jabs EW. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption. Nat Commun 2024; 15:7154. [PMID: 39168984 PMCID: PMC11339411 DOI: 10.1038/s41467-024-51328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Roberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis. Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo. In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions.
Collapse
Affiliation(s)
- Arielle S Strasser
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Braulio Valdebenito-Maturana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| |
Collapse
|
17
|
Chen H, Xiang J, Liu Y, Pi W, Zhang H, Wu L, Liu Y, Ji S, Li Y, Cui S, Liu K, Fu X, Sun X. Customized Proteinaceous Nanoformulation for In Vivo Chemical Reprogramming. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311845. [PMID: 38720198 DOI: 10.1002/adma.202311845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Sweat gland (SwG) regeneration is crucial for the functional rehabilitation of burn patients. In vivo chemical reprogramming that harnessing the patient's own cells in damaged tissue is of substantial interest to regenerate organs endogenously by pharmacological manipulation, which could compensate for tissue loss in devastating diseases and injuries, for example, burns. However, achieving in vivo chemical reprogramming is challenging due to the low reprogramming efficiency and an unfavorable tissue environment. Herein, this work has developed a functionalized proteinaceous nanoformulation delivery system containing prefabricated epidermal growth factor structure for on-demand delivery of a cocktail of seven SwG reprogramming components to the dermal site. Such a chemical reprogramming system can efficiently induce the conversion of epidermal keratinocytes into SwG myoepithelial cells, resulting in successful in situ regeneration of functional SwGs. Notably, in vivo chemical reprogramming of SwGs is achieved for the first time with an impressive efficiency of 30.6%, surpassing previously reported efficiencies. Overall, this proteinaceous nanoformulation provides a platform for coordinating the target delivery of multiple pharmacological agents and facilitating in vivo SwG reprogramming by chemicals. This advancement greatly improves the clinical accessibility of in vivo reprogramming and offers a non-surgical, non-viral, and cell-free strategy for in situ SwG regeneration.
Collapse
Affiliation(s)
- Huating Chen
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine Peking Union Medical College, Beijing, 100730, P. R. China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wei Pi
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine Peking Union Medical College, Beijing, 100730, P. R. China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Lu Wu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Shaoyuan Cui
- Department of Nephrology, the First Medical Center, Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, 100048, P. R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| |
Collapse
|
18
|
Jeong Y, Han J, Jang KL. Reactive Oxygen Species Induction by Hepatitis B Virus: Implications for Viral Replication in p53-Positive Human Hepatoma Cells. Int J Mol Sci 2024; 25:6606. [PMID: 38928309 PMCID: PMC11204012 DOI: 10.3390/ijms25126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis B virus (HBV) infects approximately 300 million people worldwide, causing chronic infections. The HBV X protein (HBx) is crucial for viral replication and induces reactive oxygen species (ROS), leading to cellular damage. This study explores the relationship between HBx-induced ROS, p53 activation, and HBV replication. Using HepG2 and Hep3B cell lines that express the HBV receptor NTCP, we compared ROS generation and HBV replication relative to p53 status. Results indicated that HBV infection significantly increased ROS levels in p53-positive HepG2-NTCP cells compared to p53-deficient Hep3B-NTCP cells. Knockdown of p53 reduced ROS levels and enhanced HBV replication in HepG2-NTCP cells, whereas p53 overexpression increased ROS and inhibited HBV replication in Hep3B-NTCP cells. The ROS scavenger N-acetyl-L-cysteine (NAC) reversed these effects. The study also found that ROS-induced degradation of the HBx is mediated by the E3 ligase Siah-1, which is activated by p53. Mutations in p53 or inhibition of its transcriptional activity prevented ROS-mediated HBx degradation and HBV inhibition. These findings reveal a p53-dependent negative feedback loop where HBx-induced ROS increases p53 levels, leading to Siah-1-mediated HBx degradation and HBV replication inhibition. This study offers insights into the molecular mechanisms of HBV replication and identifies potential therapeutic targets involving ROS and p53 pathways.
Collapse
Affiliation(s)
- Yuna Jeong
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Park JC, Kim YJ, Hwang GH, Kang CY, Bae S, Cha HJ. Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways. Nat Commun 2024; 15:4002. [PMID: 38734692 PMCID: PMC11088699 DOI: 10.1038/s41467-024-48111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gue-Ho Hwang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Young Kang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangsu Bae
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Li T, Hu D, Huang Y, Zhou Y, Zhang JQ, Zhang C, Zhang Y, Hou Y, Ren H. Light-Driven Access to Selenium-Substituted Thiazole-2-imine Derivatives. J Org Chem 2024; 89:5328-5336. [PMID: 38595055 DOI: 10.1021/acs.joc.3c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The thiazole-2-imine derivatives with interesting pharmacological activities have attracted significant attention. However, previously reported synthesis strategies usually suffered from some drawbacks, such as the use of metals/additive and harsh reaction conditions. Herein, we developed a metal- and photoinitiator-free photocatalytic strategy for the synthesis of various selenium-substituted thiazole-2-imine derivatives for the first time. The reaction displayed mild reaction conditions, simple operation, a broad substrate scope (37 examples), and good to excellent yields.
Collapse
Affiliation(s)
- Tangle Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yiwen Huang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yu Zhou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chun Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yili Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yanan Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
22
|
Morral C, Ayyaz A, Kuo HC, Fink M, Verginadis II, Daniel AR, Burner DN, Driver LM, Satow S, Hasapis S, Ghinnagow R, Luo L, Ma Y, Attardi LD, Koumenis C, Minn AJ, Wrana JL, Lee CL, Kirsch DG. p53 promotes revival stem cells in the regenerating intestine after severe radiation injury. Nat Commun 2024; 15:3018. [PMID: 38589357 PMCID: PMC11001929 DOI: 10.1038/s41467-024-47124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.
Collapse
Affiliation(s)
- Clara Morral
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arshad Ayyaz
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Hsuan-Cheng Kuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Danielle N Burner
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lucy M Driver
- Department of Radiation Oncology, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Sloane Satow
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | | | - Reem Ghinnagow
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Laura D Attardi
- Departments of Radiation Oncology and Genetics, Stanford University, Palo Alto, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University, Durham, NC, USA.
- Department of Pathology, Duke University, Durham, NC, USA.
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
- Department of Radiation Oncology, Duke University, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Zhang Y, Li X, Tian H, Xi M, Zhou J, Li H. p53 Activation Facilitates Transdifferentiation of Human Cardiac Fibroblasts into Endothelial Cells. Tissue Eng Part A 2024; 30:330-339. [PMID: 37819701 DOI: 10.1089/ten.tea.2023.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Vascular endothelial cells (ECs), locating at the inner side of vascular lumen, play critical roles in maintaining vascular function and participate in tissue repair and neovascularization. Although increasing studies have shown positive effects of transplantation of vascular ECs or their precursor cells on neovascularization and functional recovery of ischemic tissues, the quantity of in vivo ECs is limited and their quality is affected by age, gender, disease, and others, which hinder their clinical application and further study. Chemical transdifferentiation is a promising approach to generate patient-specific cells. In this process, somatic cells are directly converted into desired cell types without the risk of tumorigenicity by pluripotent cell transplantation and exogenous gene introduction by transgene technology. In the present study, we derived ECs from human cardiac fibroblasts (CFs) through an optimized chemical induction method. The derived ECs expressed endothelial specific markers, took up low-density lipoprotein, secreted angiogenic cytokines under hypoxic condition, and formed microvessels in vitro and in vivo. This CF-EC transition bypassed pluripotency and germ layer differentiation, but underwent a stage of endothelialization. Although p53 maintained the same level during the period of CF-EC transdifferentiation, we could modulate p53 transcriptional activity to further improve cell transition efficiency, which mainly functioned at the later stage of endothelialization. Optimization and exploring the regulatory mechanism of CF-EC transition complement each other, which not only broadens the sources of patient-specific ECs but also provides valuable references for the in vivo direct transdifferentiation study and the elucidation of endothelial development and dysfunction. Impact statement This study provides an optimized chemical induction method to derive endothelial cells (ECs) from human cardiac fibroblasts (CFs), which not only broadens the sources of patient-specific ECs but also provides a good research model of mesenchymal-endothelial transition. Studying the molecular process and regulatory mechanism of CF-EC transdifferentiation will provide valuable references for the in vivo direct transdifferentiation for clinical therapy and deepen the understanding of endothelial development and dysfunction.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology and School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xuefeng Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hong Tian
- Department of Histology and Embryology and School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Xi
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jinsong Zhou
- Department of Histology and Embryology and School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hai Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Yoon H, Jang KL. Hydrogen Peroxide Inhibits Hepatitis C Virus Replication by Downregulating Hepatitis C Virus Core Levels through E6-Associated Protein-Mediated Proteasomal Degradation. Cells 2023; 13:62. [PMID: 38201266 PMCID: PMC10778395 DOI: 10.3390/cells13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis C virus (HCV) is constantly exposed to considerable oxidative stress, characterized by elevated levels of reactive oxygen species, including hydrogen peroxide (H2O2), during acute and chronic infection in the hepatocytes of patients. However, the effect of oxidative stress on HCV replication is largely unknown. In the present study, we demonstrated that H2O2 downregulated HCV Core levels to inhibit HCV replication. For this purpose, H2O2 upregulated p53 levels, resulting in the downregulation of both the protein and enzyme activity levels of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b, and activated the expression of E6-associated protein (E6AP) through promoter hypomethylation in the presence of HCV Core. E6AP, an E3 ligase, induced the ubiquitin-dependent proteasomal degradation of HCV Core in a p53-dependent manner. The inhibitory effect of H2O2 on HCV replication was almost completely nullified either by treatment with a representative antioxidant, N-acetyl-L-cysteine, or by knockdown of p53 or E6AP using a specific short hairpin RNA, confirming the roles of p53 and E6AP in the inhibition of HCV replication by H2O2. This study provides insights into the mechanisms that regulate HCV replication under conditions of oxidative stress in patients.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea;
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea;
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
25
|
Wang W, Wang H, Long Y, Li Z, Li J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2023; 14:20. [PMID: 38254620 PMCID: PMC10813359 DOI: 10.3390/biom14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Apoptosis is a physiological process that occurs in all cell types of the human body, and it profoundly changes the fate of hair by affecting hair follicle cells. This review outlines the cellular changes, intrinsic biochemical characteristics, and mechanisms underlying apoptosis and summarizes the hair follicle life cycle, including development, cycle stages, and corresponding cellular changes. Finally, the relationship between apoptosis and the hair cycle is discussed and the significance of apoptosis in hair loss conditions and drug treatments is highlighted. Apoptosis induces cellular changes and exhibits distinctive properties through intricate signaling pathways. Hair follicles undergo cyclic periods of growth, regression, and dormancy. Apoptosis is closely correlated with the regression phase by triggering hair follicle cell death and shedding. Regulation of apoptosis in hair follicles plays an essential role in hair loss due to maladies and drug treatments. Mitigating apoptosis can enhance hair growth and minimize hair loss. A comprehensive understanding of the correlation between apoptosis and the hair cycle can facilitate the development of novel treatments to prevent hair loss and stimulate hair regeneration.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
26
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Williams C, Brown R, Zhao Y, Wang J, Chen Z, Blunt K, Pilat J, Parang B, Choksi Y, Lau K, Hiebert S, Short S, Jacobse J, Xu Y, Yang Y, Goettel J. MTGR1 is required to maintain small intestinal stem cell populations. RESEARCH SQUARE 2023:rs.3.rs-3315071. [PMID: 37790452 PMCID: PMC10543309 DOI: 10.21203/rs.3.rs-3315071/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Undifferentiated intestinal stem cells (ISCs), particularly those marked by Lgr5, are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis, where they differentiate into a variety of specialized cell types. This process requires coordinated execution of complex transcriptional programs, which allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Thus, disrupting these programs may negatively impact homeostasis and response to injury. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss on ISC biology and differentiation programs. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic analyses revealed MTGR1 loss may instead promote stem cell differentiation into transit-amplifying cells at the expense of cycling ISC populations. Furthermore, ex vivo intestinal organoids established from Mtgr1 null were found nearly completely unable to survive and expand, likely due to aberrant ISC differentiation, suggesting that Mtgr1 null ISCs were functionally deficient as compared to WT ISCs. Together, these results identify a novel role for MTGR1 in ISC function and suggest that MTGR1 is required to maintain the undifferentiated state.
Collapse
Affiliation(s)
| | | | | | - Jing Wang
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang W, Ma F, Cheung YT, Zeng G, Zhou Y, Chen Z, Liang L, Luo T, Tong R. Marine Alkaloid Lepadins E and H Induce Ferroptosis for Cancer Chemotherapy. J Med Chem 2023; 66:11201-11215. [PMID: 37578947 DOI: 10.1021/acs.jmedchem.3c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Induction of ferroptosis emerges as an effective method for cancer treatment. With massive efforts to elucidate the ferroptosis mechanism, the development of new ferroptosis inducers proceeds rather slowly, with only a few small molecules identified. Herein, we report our discovery of marine alkaloid lepadins E and H as a new class of ferroptosis inducers. Our in vitro studies show that lepadins E and H exhibit significant cytotoxicity, promote p53 expression, increase ROS production and lipid peroxides, reduce SLC7A11 and GPX4 levels, and upregulate ACSL4 expression, all of which consistently support induction of ferroptosis through the classical p53-SLC7A11-GPX4 pathway. Our animal model study of lepadin H confirms its in vivo antitumor efficacy with negligible toxicity to normal organs. This work elucidates the mode of action of lepadins (E and H) and verifies their in vivo efficacy as a new class of ferroptosis inducers for anticancer therapy with translational potential.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Foqing Ma
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Guihua Zeng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lixin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Tuoping Luo
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
29
|
Herath D, Even B, Oranger M, Foresti R, Papy D, Boyer L, Boczkowski J, Dagouassat M. Secreted phospholipase A2 XIIA triggers a mitochondrial damage-induced senescence in chronic obstructive pulmonary disease fibroblasts. Free Radic Biol Med 2023; 205:129-140. [PMID: 37257701 DOI: 10.1016/j.freeradbiomed.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
RATIONALE Lung fibroblast senescence is involved in the pathophysiology of chronic obstructive pulmonary disease (COPD). However, the mechanisms underlining this phenomenon are still poorly understood. Secreted phospholipases (sPLA2, a subclass of phospholipases) are secreted by senescent cells and can in turn induce senescence. However, their role in fibroblasts senescence in COPD is unknown. OBJECTIVES The aim of this study was to analyze the role of sPLA2 in pulmonary fibroblast senescence. METHODS Fibroblasts were isolated from patients with COPD and control subjects, and senescence markers and inflammatory profile was analyzed. sPLA2 levels were quantified in serum of COPD and controls. MAIN RESULTS In comparison with non-smokers and smoker controls, senescent lung COPD fibroblasts exhibited a higher mRNA and protein expression of the sPLA2 isoform XIIA and of syndecan 4 (one of its receptors). sPLA2 XIIA induced in turn senescence of non-senescent pulmonary fibroblasts via a pathway involving consecutively syndecan 4, activation of MAPK and p-serine 727 STAT-3, increased mitochondrial ROS production, and activation of AMPK/p53. This pathway was associated with a specific inflammatory secretome (IL-10, IL-12 and TNFα), globally suggesting occurrence of a mitochondrial damage-induced senescence. COPD fibroblasts were more susceptible to this sPLA2 XIIA effect than cells from controls subjects. sPLA2 XIIA levels were significantly higher in serum from COPD patients as compared to controls. CONCLUSION sPLA2 XIIA is involved in senescence in COPD and could be a potential target to dampen this process.
Collapse
Affiliation(s)
- Danushki Herath
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| | - Benjamin Even
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| | | | - Roberta Foresti
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| | | | - Laurent Boyer
- AP-HP, Hopital Henri Mondor, Service de Physiologie Explorations Fonctionnelles, F-94010, Creteil, France.
| | - Jorge Boczkowski
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France; AP-HP, Hopital Henri Mondor, Antenne de Pneumologie, F-94010, Creteil, France.
| | | |
Collapse
|
30
|
Hemmati F, Akinpelu A, Song J, Amiri F, McDaniel A, McMurray C, Afthinos A, Andreadis ST, Aitken AV, Biancardi VC, Gerecht S, Mistriotis P. Downregulation of YAP Activity Restricts P53 Hyperactivation to Promote Cell Survival in Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302228. [PMID: 37267923 PMCID: PMC10427377 DOI: 10.1002/advs.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 06/04/2023]
Abstract
Cell migration through confining three dimensional (3D) topographies can lead to loss of nuclear envelope integrity, DNA damage, and genomic instability. Despite these detrimental phenomena, cells transiently exposed to confinement do not usually die. Whether this is also true for cells subjected to long-term confinement remains unclear at present. To investigate this, photopatterning and microfluidics are employed to fabricate a high-throughput device that circumvents limitations of previous cell confinement models and enables prolonged culture of single cells in microchannels with physiologically relevant length scales. The results of this study show that continuous exposure to tight confinement can trigger frequent nuclear envelope rupture events, which in turn promote P53 activation and cell apoptosis. Migrating cells eventually adapt to confinement and evade cell death by downregulating YAP activity. Reduced YAP activity, which is the consequence of confinement-induced YAP1/2 translocation to the cytoplasm, suppresses the incidence of nuclear envelope rupture and abolishes P53-mediated cell death. Cumulatively, this work establishes advanced, high-throughput biomimetic models for better understanding cell behavior in health and disease, and underscores the critical role of topographical cues and mechanotransduction pathways in the regulation of cell life and death.
Collapse
Affiliation(s)
- Farnaz Hemmati
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Ayuba Akinpelu
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Farshad Amiri
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Anya McDaniel
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Collins McMurray
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | | | - Stelios T. Andreadis
- Departments of Chemical and Biological EngineeringThe State University of New YorkBuffaloNY14260USA
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNY14228USA
- Center of Excellence in Bioinformatics and Life SciencesBuffaloNY14203USA
- Center for Cell Gene and Tissue Engineering (CGTE)University at BuffaloThe State University of New YorkBuffaloNY14260USA
| | - Andrew V. Aitken
- Department of AnatomyPhysiology and PharmacologyCollege of Veterinary MedicineAuburn UniversityAuburnAL36849USA
- Center for Neurosciences InitiativeAuburn UniversityAuburnAL36849USA
| | - Vinicia C. Biancardi
- Department of AnatomyPhysiology and PharmacologyCollege of Veterinary MedicineAuburn UniversityAuburnAL36849USA
- Center for Neurosciences InitiativeAuburn UniversityAuburnAL36849USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | |
Collapse
|
31
|
Shomali N, Kamrani A, Nasiri H, Heris JA, Shahabi P, Yousefi M, Mohammadinasab R, Sadeghvand S, Akbari M. An updated review of a novel method for examining P53 mutations in different forms of cancer. Pathol Res Pract 2023; 248:154585. [PMID: 37302277 DOI: 10.1016/j.prp.2023.154585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
In the past fifteen years, it has been clear that tumor-associated p53 mutations can cause behaviors distinct from those brought on by a simple loss of p53's tumor-suppressive function in its wild-type form. Many of these mutant p53 proteins develop oncogenic characteristics that allow them to encourage cell survival, invasion, and metastasis. But it is now understood that the immune response is also significantly influenced by the cancer cell's p53 status. The recruitment and activity of myeloid and T cells can be impacted by p53 loss or mutation in malignancies, allowing immune evasion and accelerating cancer growth. Additionally, p53 can work in immune cells, which can have various effects that either hinder or assist the growth of tumors. In this review article, we examined different mutations of P53 in some significant cancers, such as liver, colorectal, and prostate, and reviewed some new therapeutic approaches.
Collapse
Affiliation(s)
- Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Han J, Jang KL. All- trans Retinoic Acid Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation. Viruses 2023; 15:1456. [PMID: 37515144 PMCID: PMC10386411 DOI: 10.3390/v15071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to abolish the potential of HBx to downregulate the levels of p14, p16, and p21 and to stimulate cell growth during hepatitis B virus (HBV) infection, contributing to its chemopreventive and therapeutic effects against HBV-associated hepatocellular carcinoma. Here, we demonstrated that ATRA antagonizes HBx to inhibit HBV replication. For this effect, ATRA individually or in combination with HBx upregulated p53 levels, resulting in upregulation of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induces ubiquitination and proteasomal degradation of HBx in the presence of ATRA. The ability of ATRA to induce Siah-1-mediated HBx degradation and the subsequent inhibition of HBV replication was proven in an in vitro HBV replication model. The effects of ATRA became invalid when either p53 or Siah-1 was knocked down by a specific shRNA, providing direct evidence for the role of p53 and Siah-1 in the negative regulation of HBV replication by ATRA.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
33
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
34
|
Morral C, Ayyaz A, Kuo HC, Fink M, Verginadis I, Daniel AR, Burner DN, Driver LM, Satow S, Hasapis S, Ghinnagow R, Luo L, Ma Y, Attardi LD, Koumenis C, Minn AJ, Wrana JL, Lee CL, Kirsch DG. p53 promotes revival stem cells in the regenerating intestine after severe radiation injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538576. [PMID: 37162959 PMCID: PMC10168332 DOI: 10.1101/2023.04.27.538576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced GI injury. Through single-cell RNA-sequencing of the irradiated mouse intestine, we find that p53 target genes are specifically enriched in stem cells of the regenerating epithelium, including revival stem cells that promote animal survival after GI damage. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce revival stem cells. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells that is controlled by an Mdm2-mediated negative feedback loop. These results suggest that p53 suppresses severe radiation-indued GI injury by promoting intestinal epithelial cell reprogramming. One-Sentence Summary After severe radiation injury to the intestine, transient p53 activity induces revival stem cells to promote regeneration.
Collapse
|
35
|
Hesp K, van der Heijden JME, Munroe S, Sipkema D, Martens DE, Wijffels RH, Pomponi SA. First continuous marine sponge cell line established. Sci Rep 2023; 13:5766. [PMID: 37031251 PMCID: PMC10082835 DOI: 10.1038/s41598-023-32394-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
The potential of sponge-derived chemicals for pharmaceutical applications remains largely unexploited due to limited available biomass. Although many have attempted to culture marine sponge cells in vitro to create a scalable production platform for such biopharmaceuticals, these efforts have been mostly unsuccessful. We recently showed that Geodia barretti sponge cells could divide rapidly in M1 medium. In this study we established the first continuous marine sponge cell line, originating from G. barretti. G. barretti cells cultured in OpM1 medium, a modification of M1, grew more rapidly and to a higher density than in M1. Cells in OpM1 reached 1.74 population doublings after 30 min, more than twofold higher than the already rapid growth rate of 0.74 population doublings in 30 min in M1. The maximum number of population doublings increased from 5 doublings in M1 to at least 98 doublings in OpM1. Subcultured cells could be cryopreserved and used to inoculate new cultures. With these results, we have overcome a major obstacle that has blocked the path to producing biopharmaceuticals with sponge cells at industrial scale for decades.
Collapse
Affiliation(s)
- Kylie Hesp
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands.
| | | | - Stephanie Munroe
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Shirley A Pomponi
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| |
Collapse
|
36
|
Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells. Oncotarget 2023; 14:193-206. [PMID: 36913303 PMCID: PMC10010629 DOI: 10.18632/oncotarget.28382] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
Cancer therapy is limited by toxicity in normal cells and drug-resistance in cancer cells. Paradoxically, cancer resistance to certain therapies can be exploited for protection of normal cells, simultaneously enabling the selective killing of resistant cancer cells by using antagonistic drug combinations, which include cytotoxic and protective drugs. Depending on the mechanisms of drug-resistance in cancer cells, the protection of normal cells can be achieved with inhibitors of CDK4/6, caspases, Mdm2, mTOR, and mitogenic kinases. When normal cells are protected, the selectivity and potency of multi-drug combinations can be further enhanced by adding synergistic drugs, in theory, eliminating the deadliest cancer clones with minimal side effects. I also discuss how the recent success of Trilaciclib may foster similar approaches into clinical practice, how to mitigate systemic side effects of chemotherapy in patients with brain tumors and how to ensure that protective drugs would only protect normal cells (not cancer cells) in a particular patient.
Collapse
|
37
|
Mansky RH, Greguske EA, Yu D, Zarate N, Intihar TA, Tsai W, Brown TG, Thayer MN, Kumar K, Gomez-Pastor R. Tumor suppressor p53 regulates heat shock factor 1 protein degradation in Huntington's disease. Cell Rep 2023; 42:112198. [PMID: 36867535 PMCID: PMC10128052 DOI: 10.1016/j.celrep.2023.112198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
p53 and HSF1 are two major transcription factors involved in cell proliferation and apoptosis, whose dysregulation contributes to cancer and neurodegeneration. Contrary to most cancers, p53 is increased in Huntington's disease (HD) and other neurodegenerative diseases, while HSF1 is decreased. p53 and HSF1 reciprocal regulation has been shown in different contexts, but their connection in neurodegeneration remains understudied. Using cellular and animal models of HD, we show that mutant HTT stabilized p53 by abrogating the interaction between p53 and E3 ligase MDM2. Stabilized p53 promotes protein kinase CK2 alpha prime and E3 ligase FBXW7 transcription, both of which are responsible for HSF1 degradation. Consequently, p53 deletion in striatal neurons of zQ175 HD mice restores HSF1 abundance and decrease HTT aggregation and striatal pathology. Our work shows the mechanism connecting p53 stabilization with HSF1 degradation and pathophysiology in HD and sheds light on the broader molecular differences and commonalities between cancer and neurodegeneration.
Collapse
Affiliation(s)
- Rachel H Mansky
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin A Greguske
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dahyun Yu
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicole Zarate
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor A Intihar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tsai
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor G Brown
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mackenzie N Thayer
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kompal Kumar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
38
|
p53 Inhibition in Pancreatic Progenitors Enhances the Differentiation of Human Pluripotent Stem Cells into Pancreatic β-Cells. Stem Cell Rev Rep 2023; 19:942-952. [PMID: 36707464 DOI: 10.1007/s12015-023-10509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
The multipotent pancreatic progenitor cells (MPCs) co-expressing the transcription factors, PDX1 and NKX6.1, are the source of functional pancreatic β-cells. The aim of this study was to examine the effect of p53 inhibition in MPCs on the generation of PDX1+/NKX6.1+ MPCs and pancreatic β-cell generation. Human embryonic stem cells (hESCs) were differentiated into MPCs and β-cells. hESC-MPCs (stage 4) were treated with different concentrations of p53 inhibitors, and their effect was evaluated using different approaches. NKX6.1 was overexpressed during MPCs specification. Inhibition of p53 using pifithrin-μ (PFT-μ) at the MPC stage resulted in a significant increase in the number of PDX1+/NKX6.1+ cells and a reduction in the number of CHGA+/NKX6.1- cells. Further differentiation of MPCs treated with PFT-μ into pancreatic β-cells showed that PFT-μ treatment did not significantly change the number of C-Peptide+ cells; however, the number of C-PEP+ cells co-expressing glucagon (polyhormonal) was significantly reduced in the PFT-μ treated cells. Interestingly, overexpression of NKX6.1 in hESC-MPCs enhanced the expression of key MPC genes and dramatically suppressed p53 expression. Our findings demonstrated that the p53 inhibition during stage 4 of differentiation enhanced MPC generation, prevented premature endocrine induction and favored the differentiation into monohormonal β-cells. These findings suggest that adding a p53 inhibitor to the differentiation media can significantly enhance the generation of monohormonal β-cells.
Collapse
|
39
|
Ma H, Ning Y, Wang L, Zhang W, Zheng P. Lnc956 regulates mouse embryonic stem cell differentiation in response to DNA damage in a p53-independent pathway. SCIENCE ADVANCES 2023; 9:eade9742. [PMID: 36662856 PMCID: PMC9858519 DOI: 10.1126/sciadv.ade9742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Maintaining genomic stability is crucial for embryonic stem cells (ESCs). ESCs with unrepaired DNA damage are eliminated through differentiation and apoptosis. To date, only tumor suppressor p53 is known to be implicated in this quality control process. Here, we identified a p53-independent quality control factor lncRNA NONMMUT028956 (Lnc956 for short) in mouse ESCs. Lnc956 is prevalently expressed in ESCs and regulates the differentiation of ESCs after DNA damage. Mechanistically, Ataxia telangiectasia mutated (ATM) activation drives m6A methylation of Lnc956, which promotes its interaction with Krüppel-like factor 4 (KLF4). Lnc956-KLF4 association sequestrates the KLF4 protein and prevents KLF4's transcriptional regulation on pluripotency. This posttranslational mechanism favors the rapid shutdown of the regulatory circuitry of pluripotency. Thus, ATM signaling in ESCs can activate two pathways mediated by p53 and Lnc956, respectively, which act together to ensure robust differentiation and apoptosis in response to unrepaired DNA damage.
Collapse
Affiliation(s)
- Huaixiao Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuqi Ning
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
40
|
Wang X, Zhou Y, Wang D, Wang Y, Zhou Z, Ma X, Liu X, Dong Y. Cisplatin-induced ototoxicity: From signaling network to therapeutic targets. Biomed Pharmacother 2023; 157:114045. [PMID: 36455457 DOI: 10.1016/j.biopha.2022.114045] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Administration of cisplatin, a common chemotherapeutic drug, has an inevitable side effect of sensorineural hearing loss. The main etiologies are stria vascularis injury, spiral ganglion degeneration, and hair cell death. Over several decades, the research scope of cisplatin-induced ototoxicity has expanded with the discovery of the molecular mechanism mediating inner ear cell death, highlighting the roles of reactive oxygen species and transport channels for cisplatin uptake into inner ear cells. Upon entering hair cells, cisplatin disrupts organelle metabolism, induces oxidative stress, and targets DNA to cause intracellular damage. Recent studies have also reported the role of inflammation in cisplatin-induced ototoxicity. In this article, we preform a narrative review of the latest reported molecular mechanisms of cisplatin-induced ototoxicity, from extracellular to intracellular. We build up a signaling network starting with cisplatin entering into the inner ear through the blood labyrinth barrier, disrupting cochlear endolymph homeostasis, and activating inflammatory responses of the outer hair cells. After entering the hair cells, cisplatin causes hair cell death via DNA damage, redox system imbalance, and mitochondrial and endoplasmic reticulum dysfunction, culminating in programmed cell death including apoptosis, necroptosis, autophagic death, pyroptosis, and ferroptosis. Based on the mentioned mechanisms, prominent therapeutic targets, such as channel-blocking drugs of cisplatin transporter, construction of cisplatin structural analogues, anti-inflammatory drugs, antioxidants, cell death inhibitors, and others, were collated. Considering the recent research efforts, we have analyzed the feasibility of the aforementioned therapeutic strategies and proposed our otoprotective approaches to overcome cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Xilu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Zhou
- Department of Obstetrics & gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dali Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Zhou
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Liu
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
41
|
Piantanida N, La Vecchia M, Sculco M, Talmon M, Palattella G, Kurita R, Nakamura Y, Ronchi AE, Dianzani I, Ellis SR, Fresu LG, Aspesi A. Deficiency of ribosomal protein S26, which is mutated in a subset of patients with Diamond Blackfan anemia, impairs erythroid differentiation. Front Genet 2022; 13:1045236. [PMID: 36579335 PMCID: PMC9790993 DOI: 10.3389/fgene.2022.1045236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by defective maturation of the erythroid progenitors in the bone marrow, for which treatment involves steroids, chronic transfusions, or hematopoietic stem cells transplantation. Diamond Blackfan anemia is caused by defective ribosome biogenesis due to heterozygous pathogenic variants in one of 19 ribosomal protein (RP) genes. The decreased number of functional ribosomes leads to the activation of pro-apoptotic pathways and to the reduced translation of key genes for erythropoiesis. Results and discussion: Here we characterized the phenotype of RPS26-deficiency in a cell line derived from human umbilical cord blood erythroid progenitors (HUDEP-1 cells). This model recapitulates cellular hallmarks of Diamond Blackfan anemia including: imbalanced production of ribosomal RNAs, upregulation of pro-apoptotic genes and reduced viability, and shows increased levels of intracellular calcium. Evaluation of the expression of erythroid markers revealed the impairment of erythroid differentiation in RPS26-silenced cells compared to control cells. Conclusions: In conclusion, for the first time we assessed the effect of RPS26 deficiency in a human erythroid progenitor cell line and demonstrated that these cells can be used as a scalable model system to study aspects of DBA pathophysiology that have been refractory to detailed investigation because of the paucity of specific cell types affected in this disorder.
Collapse
Affiliation(s)
- Noemy Piantanida
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marta La Vecchia
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Gioele Palattella
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | | | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Luigia Grazia Fresu
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy,*Correspondence: Anna Aspesi,
| |
Collapse
|
42
|
Mikhailov VF, Shulenina LV. Regulation of Gene Activity Is One of the Mechanisms for Changing Radiosensitivity. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
43
|
Wu X, Wang L, Li Z. Identification of 3-Phenylquinoline Derivative PQ1 as an Antagonist of p53 Transcriptional Activity. ACS OMEGA 2022; 7:43180-43189. [PMID: 36467924 PMCID: PMC9713874 DOI: 10.1021/acsomega.2c05891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Transcription factor p53 regulates cellular responses to environmental perturbations via the transcriptional activation of downstream target genes. Inappropriate p53 activation can trigger abnormal cellular responses, therefore leading to acute or chronic tissue damage, human developmental syndromes, and neurodegenerative diseases. Antagonists of p53 transcriptional activity provide prospective therapeutic applications and molecular probes. In this article, we identified five 3-phenylquinoline derivatives as potential p53 inhibitors through screening a chemical library consisting of 120 compounds, in which PQ1 was the most active compound. PQ1 had no effect on p53 protein levels and decreased the expression of p53 target gene p21. PQ1 thermally stabilizes the wild-type p53 protein. Further, transcriptomics confirmed that PQ1 exposure generated a similar regulatory effect to transcription profiles with a reported p53 transcriptional inhibitor pifithrin-α. However, compared to pifithrin-α, PQ1 increased the sensitivity of SW480 cells to 5FU. Taken together, PQ1 was a novel antagonist of p53 transcriptional activity. We propose that PQ1 could be developed as a chemical tool to pinpoint the physiological functions of p53 and a novel lead compound for targeting dysfunctional p53 activation.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern
Research Center for Traditional Chinese Medicine, The Key Laboratory
of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, No.
92, Wucheng Road, Taiyuan 030006, Shanxi, P.
R. China
- Shanxi
Key Laboratory of Redevelopment of Famous Local Traditional Chinese
Medicines, No. 92, Wucheng
Road, Taiyuan 030006, Shanxi, P. R. China
| | - Lu Wang
- Modern
Research Center for Traditional Chinese Medicine, The Key Laboratory
of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China
| | - Zhenyu Li
- Department
of Pharmacy, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan 250021, Shandong, P. R. China
| |
Collapse
|
44
|
Li M, Zhong A, Wu Y, Sidharta M, Beaury M, Zhao X, Studer L, Zhou T. Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nat Commun 2022; 13:6354. [PMID: 36302757 PMCID: PMC9613702 DOI: 10.1038/s41467-022-34045-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Precise gene editing in human pluripotent stem cells (hPSCs) holds great promise for studying and potentially treating human diseases. Both prime editing and base editing avoid introducing double strand breaks, but low editing efficiencies make those techniques still an arduous process in hPSCs. Here we report that co-delivering of p53DD, a dominant negative fragment of p53, can greatly enhance prime editing and cytosine base editing efficiencies in generating precise mutations in hPSCs. We further apply PE3 in combination with p53DD to efficiently create multiple isogenic hPSC lines, including lines carrying GBA or LRRK2 mutations associated with Parkinson disease and a LMNA mutation linked to Hutchinson-Gilford progeria syndrome. We also correct GBA and LMNA mutations in the patient-specific iPSCs. Our data show that p53DD improves PE3 efficiency without compromising the genome-wide safety, making it feasible for safe and routine generation of isogenic hPSC lines for disease modeling.
Collapse
Affiliation(s)
- Mu Li
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Aaron Zhong
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Youjun Wu
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Mega Sidharta
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Michael Beaury
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Xiaolan Zhao
- grid.51462.340000 0001 2171 9952Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Lorenz Studer
- grid.51462.340000 0001 2171 9952The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| | - Ting Zhou
- grid.51462.340000 0001 2171 9952The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
45
|
Tumor Suppressor p53 Inhibits Hepatitis B Virus Replication by Downregulating HBx via E6AP-Mediated Proteasomal Degradation in Human Hepatocellular Carcinoma Cell Lines. Viruses 2022; 14:v14102313. [PMID: 36298868 PMCID: PMC9609658 DOI: 10.3390/v14102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
HBx, a multifunctional regulatory protein, plays an essential role in the replication and pathogenesis of the hepatitis B virus (HBV). In this study, we found that in human hepatoma cells, the tumor suppressor p53 downregulates HBx via ubiquitin-dependent proteasomal degradation. p53 transcriptional activity that results from HBV infection was not essential for this effect. This was shown by treatment with a potent p53 inhibitor, pifithrin-α. Instead, we found that p53 facilitated the binding of E6-associated protein (E6AP), which is an E3 ligase, to HBx and induced E6AP-mediated HBx ubiquitination in a ternary complex of p53, E6AP, and HBx. The ability of p53 to induce E6AP-mediated downregulation of HBx and inhibit HBV replication was demonstrated in an in vitro HBV infection system. This study may provide insights into the regulation of HBx and HBV replication, especially with respect to p53 status, which may also help in understanding HBV-associated tumorigenesis in patients.
Collapse
|
46
|
Ma T, Li H, Liu H, Peng Y, Lin T, Deng Z, Jia N, Chen Z, Wang P. Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p. Mol Ther 2022; 30:3313-3332. [PMID: 35619557 PMCID: PMC9552914 DOI: 10.1016/j.ymthe.2022.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/21/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Acute kidney injury (AKI) is increasingly identified as a crucial risk factor for progression to CKD. However, the factors governing AKI to CKD progression remain largely unknown. By high-throughput RNA sequencing, we found that Neat1_2, a transcript variant of Neat1, was upregulated in 40-min ischemia/reperfusion injury (IRI), which resulted in the development of renal fibrotic lesions. The upregulation of Neat1_2 in hypoxia-treated TECs was attributed to p53 transcriptional regulation. Gain- and loss-of-function studies, both in vitro and in vivo, demonstrated that Neat1_2 promoted apoptosis of injured TECs induced by IRI and caused tubulointerstitial inflammation and fibrosis. Mechanistically, Neat1_2 shares miRNA response elements with FADD, CASP-8, and CASP-3. Neat1_2 competitively binds to miR-129-5p and prevents miR-129-5p from decreasing the levels of FADD, CASP-8, and CASP-3, and ultimately facilitates TEC apoptosis. Increased expression of Neat1_2 associated with kidney injury and TEC apoptosis was recapitulated in human AKI, highlighting its clinical relevance. These findings suggest that preventing TEC apoptosis by hindering Neat1_2 expression may be a potential therapeutic strategy for AKI to CKD progression.
Collapse
Affiliation(s)
- Tongtong Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Hui Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yili Peng
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Tong Lin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Zhiya Deng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nan Jia
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
47
|
Ortega-Forte E, Hernández-García S, Vigueras G, Henarejos-Escudero P, Cutillas N, Ruiz J, Gandía-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell Mol Life Sci 2022; 79:510. [PMID: 36066676 PMCID: PMC9448686 DOI: 10.1007/s00018-022-04526-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oncosis (from Greek ónkos, meaning "swelling") is a non-apoptotic cell death process related to energy depletion. In contrast to apoptosis, which is the main form of cell death induced by anticancer drugs, oncosis has been relatively less explored but holds potential to overcome drug resistance phenomena. In this study, we report a novel rationally designed mitochondria-targeted iridium(III) complex (OncoIr3) with advantageous properties as a bioimaging agent. OncoIr3 exhibited potent anticancer activity in vitro against cancer cells and displayed low toxicity to normal dividing cells. Flow cytometry and fluorescence-based assays confirmed an apoptosis-independent mechanism involving energy depletion, mitochondrial dysfunction and cellular swelling that matched with the oncotic process. Furthermore, a Caenorhabditis elegans tumoral model was developed to test this compound in vivo, which allowed us to prove a strong oncosis-derived antitumor activity in animals (with a 41% reduction of tumor area). Indeed, OncoIr3 was non-toxic to the nematodes and extended their mean lifespan by 18%. Altogether, these findings might shed new light on the development of anticancer metallodrugs with non-conventional modes of action such as oncosis, which could be of particular interest for the treatment of apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
48
|
Falcon KT, Watt KEN, Dash S, Zhao R, Sakai D, Moore EL, Fitriasari S, Childers M, Sardiu ME, Swanson S, Tsuchiya D, Unruh J, Bugarinovic G, Li L, Shiang R, Achilleos A, Dixon J, Dixon MJ, Trainor PA. Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. Proc Natl Acad Sci U S A 2022; 119:e2116974119. [PMID: 35881792 PMCID: PMC9351356 DOI: 10.1073/pnas.2116974119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.
Collapse
Affiliation(s)
- Karla T. Falcon
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | - Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Daisuke Sakai
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | - Mihaela E. Sardiu
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160
| | - Selene Swanson
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - George Bugarinovic
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305
| | - Lin Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23284
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23284
| | - Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2408, Cyprus
| | - Jill Dixon
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Michael J. Dixon
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
49
|
Park JM, Yoon H, Jeong Y, Jang KL. Tumor suppressor p53 inhibits hepatitis C virus replication by inducing E6AP-mediated proteasomal degradation of the viral core protein. FEBS Lett 2022; 596:2525-2537. [PMID: 35918185 DOI: 10.1002/1873-3468.14461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p53 has been implicated in the host defense system against hepatitis C virus (HCV) infection, although the detailed mechanism remains unknown. Here, we found that p53 inhibits HCV replication by downregulating HCV Core protein levels in human hepatoma cells. For this effect, p53 potentiated the role of E6-associated protein (E6AP) as an E3 ligase to induce ubiquitination and proteasomal degradation of HCV Core. Specifically, p53 facilitated the binding of E6AP to HCV Core through direct interactions with the two proteins. In addition, E6AP failed to induce ubiquitination of HCV Core in the absence of p53, suggesting that p53 increases the E3 ligase activity of E6AP in a triple complex consisting of p53, E6AP, and HCV Core.
Collapse
Affiliation(s)
- Ji-Min Park
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunyoung Yoon
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Yuna Jeong
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
50
|
Satoh H, Ochi S, Mizuno K, Saga Y, Ujita S, Toyoda M, Nishiyama Y, Tada K, Matsushita Y, Deguchi Y, Suzuki K, Tanaka Y, Ueda H, Inaba T, Hosoi Y, Morita A, Aoki S. Design, synthesis and biological evaluation of 2-pyrrolone derivatives as radioprotectors. Bioorg Med Chem 2022; 67:116764. [PMID: 35635928 DOI: 10.1016/j.bmc.2022.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022]
Abstract
It is known that p53 is an important transcription factor and plays a central role in ionizing radiation (IR)-induced DNA damage responses such as cell cycle arrest, DNA repair and apoptosis. We previously reported that regulating p53 protein is an effective strategy for modulating cell fate by reducing the acute side effects of radiation therapy. Herein, we report on the discovery of STK160830 as a new radioprotector from a chemical library at The University of Tokyo and the design, synthesis and biological evaluation of its derivatives. The radioprotective activity of STK160830 itself and its derivatives that were synthesized in this work was evaluated using a leukemia cell line, MOLT-4 cells as a model of normal cells that express the p53 protein in a structure-activity relationships (SAR) study. The experimental results suggest that a direct relationship exists between the inhibitory effect of these STK160830 derivatives on the expression level of p53 and their radioprotective activity and that the suppression of p53 by STK160830 derivatives contribute to protecting MOLT-4 cells from apoptosis that is induced by exposure to radiation.
Collapse
Affiliation(s)
- Hidetoshi Satoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shintaro Ochi
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kosuke Mizuno
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yutaka Saga
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shohei Ujita
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Miyu Toyoda
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichi Nishiyama
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kasumi Tada
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yosuke Matsushita
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuichi Deguchi
- Center for Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Toshiya Inaba
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akinori Morita
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Biomedical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|