1
|
Jamaleddine H, Rogers D, Perreault G, Postat J, Patel D, Mandl JN, Khadra A. Chronic infection control relies on T cells with lower foreign antigen binding strength generated by N-nucleotide diversity. PLoS Biol 2024; 22:e3002465. [PMID: 38300945 PMCID: PMC10833529 DOI: 10.1371/journal.pbio.3002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.
Collapse
Affiliation(s)
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Geneviève Perreault
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Jérémy Postat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
3
|
Jiang N, Malone M, Chizari S. Antigen-specific and cross-reactive T cells in protection and disease. Immunol Rev 2023; 316:120-135. [PMID: 37209375 PMCID: PMC10524458 DOI: 10.1111/imr.13217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Human T cells have a diverse T-cell receptor (TCR) repertoire that endows them with the ability to identify and defend against a broad spectrum of antigens. The universe of possible antigens that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, the T-cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and cross-reactive T-cell responses play pivotal roles in both protective and pathological immune responses in numerous diseases. In this review, we explore the implications of these antigen-driven T-cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, and cancer as examples. We also summarize recent technological advances that facilitate high-throughput profiling of antigen-specific and cross-reactive T-cell responses experimentally, as well as computational biology approaches that predict these interactions.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Malone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
4
|
Shanmuganad S, Ferguson A, Paranjpe A, Cianciolo EE, Katz JD, Herold MJ, Hildeman DA. Subset-specific and temporal control of effector and memory CD4+ T cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530323. [PMID: 36909576 PMCID: PMC10002744 DOI: 10.1101/2023.03.01.530323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Following their proliferative expansion and differentiation into effector cells like Th1, Tfh, and T central memory precursors (Tcmp), most effector CD4+ T cells die, while some survive and become memory cells. Here, we explored how Bcl-2 family members controlled the survival of CD4+ T cells during distinct phases of mouse acute LCMV infection. During expansion, we found that Th1 cells dominated the response, downregulated expression of Bcl-2, and did not require Bcl-2 for survival. Instead, they relied on the anti-apoptotic protein, A1 for survival. Similarly, Th17 cells in an EAE model also depended on A1 for survival. However, after the peak of the response, CD4+ effector T cells required Bcl-2 to counteract Bim to aid their transition into memory. This Bcl-2 dependence persisted in established memory CD4+ T cells. Combined, these data show a temporal switch in Bcl-2 family-mediated survival of CD4+ T cells over the course of an immune response. This knowledge can help improve T cell survival to boost immunity and conversely, target pathogenic T cells.
Collapse
|
5
|
Robinson AM, Higgins BW, Shuparski AG, Miller KB, McHeyzer-Williams LJ, McHeyzer-Williams MG. Evolution of antigen-specific follicular helper T cell transcription from effector function to memory. Sci Immunol 2022; 7:eabm2084. [PMID: 36206356 PMCID: PMC9881730 DOI: 10.1126/sciimmunol.abm2084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding how follicular helper T cells (TFH) regulate the specialization, maturation, and differentiation of adaptive B cell immunity is crucial for developing durable high-affinity immune protection. Using indexed single-cell molecular strategies, we reveal a skewed intraclonal assortment of higher-affinity T cell receptors and the distinct molecular programming of the localized TFH compartment compared with emigrant conventional effector TH cells. We find a temporal shift in B cell receptor class switch, which permits identification of inflammatory and anti-inflammatory modules of transcriptional programming that subspecialize TFH function before and during the germinal center (GC) reaction. Late collapse of this local primary GC reaction reveals a persistent post-GC TFH population that discloses a putative memory TFH program. These studies define subspecialized antigen-specific TFH transcriptional programs that progressively change with antibody class-specific evolution of high-affinity B cell immunity and a memory TFH transcriptional program that emerges upon local GC resolution.
Collapse
|
6
|
Teng YHF, Quah HS, Suteja L, Dias JML, Mupo A, Bashford-Rogers RJM, Vassiliou GS, Chua MLK, Tan DSW, Lim DWT, Iyer NG. Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures. Cancer Immunol Immunother 2022; 71:989-998. [PMID: 34580764 PMCID: PMC8476067 DOI: 10.1007/s00262-021-03047-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 08/25/2021] [Indexed: 12/02/2022]
Abstract
Despite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias toward the generation of shared/public immune receptor chains. These studies were performed in viral diseases where public T cell receptors (TCR) appear to confer better protective responses. Selective pressures generating common TCR clonotypes are currently not well understood, but it is believed that they confer a growth advantage. As very little is known about public TCR clonotypes in cancer, here we set out to determine the extent of shared TCR clonotypes in the intra-tumor microenvironments of virus- and non-virus-driven head and neck cancers using TCR sequencing. We report that tumor-infiltrating T cell clonotypes were indeed shared across individuals with the same cancer type, where the majority of shared sequences were specific to the cancer type (i.e., viral versus non-viral). These shared clonotypes were not particularly enriched in EBV-associated nasopharynx cancer but, in both cancers, exhibited distinct characteristics, namely shorter CDR3 lengths, restricted V- and J-gene usages, and also demonstrated convergent V(D)J recombination. Many of these shared TCRs were expressed in patients with a shared HLA background. Pattern recognition of CDR3 amino acid sequences revealed strong convergence to specific pattern motifs, and these motifs were uniquely found to each cancer type. This suggests that they may be enriched for specificity to common antigens found in the tumor microenvironment of different cancers. The identification of shared TCRs in infiltrating tumor T cells not only adds to our understanding of the tumor-adaptive immune recognition but could also serve as disease-specific biomarkers and guide the development of future immunotherapies.
Collapse
Affiliation(s)
- Yvonne H. F. Teng
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Hong Sheng Quah
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lisda Suteja
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - João M. L. Dias
- Hutchison/MRC Research Centre, MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK
| | | | | | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, CB2 0AW UK
| | - Melvin L. K. Chua
- Duke-NUS Medical School, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Daniel S. W. Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Darren W. T. Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - N. Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610 Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Campion SL, Brenna E, Thomson E, Fischer W, Ladell K, McLaren JE, Price DA, Frahm N, McElrath JM, Cohen KW, Maenza JR, Walsh SR, Baden LR, Haynes BF, Korber B, Borrow P, McMichael AJ. Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial. J Clin Invest 2021; 131:e150823. [PMID: 34850742 PMCID: PMC8631594 DOI: 10.1172/jci150823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1-seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen.
Collapse
Affiliation(s)
- Suzanne L. Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Elaine Thomson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Will Fischer
- Los Alamos National Laboratory, Santa Fe, New Mexico, USA
| | | | | | - David A. Price
- Division of Infection and Immunity and
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Juliana M. McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Janine R. Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen R. Walsh
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lindsey R. Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Barton F. Haynes
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bette Korber
- Los Alamos National Laboratory, Santa Fe, New Mexico, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Grassmann S, Mihatsch L, Mir J, Kazeroonian A, Rahimi R, Flommersfeld S, Schober K, Hensel I, Leube J, Pachmayr LO, Kretschmer L, Zhang Q, Jolly A, Chaudhry MZ, Schiemann M, Cicin-Sain L, Höfer T, Busch DH, Flossdorf M, Buchholz VR. Early emergence of T central memory precursors programs clonal dominance during chronic viral infection. Nat Immunol 2020; 21:1563-1573. [DOI: 10.1038/s41590-020-00807-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|
9
|
Abstract
One of the hallmarks of the vertebrate adaptive immune system is the prolific expansion of individual cell clones that encounter their cognate antigen. More recently, however, there is growing evidence for the clonal expansion of innate lymphocytes, particularly in the context of pathogen challenge. Clonal expansion not only serves to amplify the number of specific lymphocytes to mount a robust protective response to the pathogen at hand but also results in selection and differentiation of the responding lymphocytes to generate a multitude of cell fates. Here, we summarize the evidence for clonal expansion in innate lymphocytes, which has primarily been observed in natural killer (NK) cells responding to cytomegalovirus infection, and consider the requirements for such a response in NK cells in light of those for T cells. Furthermore, we discuss multiple aspects of heterogeneity that both contribute to and result from the fundamental immunological process of clonal expansion, highlighting the parallels between innate and adaptive lymphocytes, with a particular focus on NK cells and CD8+ T cells.
Collapse
|
10
|
Faro J, von Haeften B, Gardner R, Faro E. A Sensitivity Analysis Comparison of Three Models for the Dynamics of Germinal Centers. Front Immunol 2019; 10:2038. [PMID: 31543878 PMCID: PMC6729701 DOI: 10.3389/fimmu.2019.02038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/12/2019] [Indexed: 01/25/2023] Open
Abstract
Germinal centers (GCs) are transient anatomical microenvironments where antibody affinity maturation and memory B cells generation takes place. In the past, models of Germinal Center (GC) dynamics have focused on understanding antibody affinity maturation rather than on the main mechanism(s) driving their rise-and-fall dynamics. Here, based on a population dynamics model core, we compare three mechanisms potentially responsible for this GC biphasic behavior dependent on follicular dendritic cell (FDC) maturation, follicular T helper (Tfh) cell maturation, and antigen depletion. Analyzing the kinetics of B and T cells, as well as its parameter sensitivities, we found that only the FDC-maturation-based model could describe realistic GC dynamics, whereas the simple Tfh-maturation and antigen-depletion mechanisms, as implemented here, could not. We also found that in all models the processes directly related to Tfh cell kinetics have the highest impact on GC dynamics. This suggests the existence of some still unknown mechanism(s) tuning GC dynamics by affecting Tfh cell response to proliferation-inducing stimuli.
Collapse
Affiliation(s)
- Jose Faro
- Area of Immunology, Faculty of Biology, CINBIO (Biomedical Research Center), University of Vigo, Vigo, Spain
- Instituto Biomédico de Vigo, Vigo, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Bernardo von Haeften
- Departamento de Física, FCEyN, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Emilio Faro
- Department of Applied Mathematics II, University of Vigo, Vigo, Spain
| |
Collapse
|
11
|
Arakawa A, Vollmer S, Tietze J, Galinski A, Heppt MV, Bürdek M, Berking C, Prinz JC. Clonality of CD4 + Blood T Cells Predicts Longer Survival With CTLA4 or PD-1 Checkpoint Inhibition in Advanced Melanoma. Front Immunol 2019; 10:1336. [PMID: 31275310 PMCID: PMC6591437 DOI: 10.3389/fimmu.2019.01336] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Recognition of cancer antigens drives the clonal expansion of cancer-reactive T cells, which is thought to contribute to restricted T-cell receptor (TCR) repertoires in tumor-infiltrating lymphocytes (TILs). To understand how tumors escape anti-tumor immunity, we investigated tumor-associated T-cell repertoires of patients with advanced melanoma and after blockade of the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PD-1). TCR Vβ-gene spectratyping allowed us to quantify restrictions of T-cell repertoires and, further, diversities of T-cell clones. In this study, we show that the blood TCR repertoires were variably restricted in CD4+ and extensively restricted in CD8+ T cells of patients with advanced melanoma, and contained clones in both T-cell fractions prior to the start of immunotherapy. A greater diversification especially of CD4+ blood T-cell clones before immunotherapy showed statistically significant correlations with long-term survival upon CTLA4 or PD-1 inhibition. Analysis of TILs and corresponding blood available in one patient indicated that blood clonality may at least partially be related to the clonal expansion in the tumor microenvironment. In patients who developed severe immune-related adverse events (IrAEs), CD4+ and CD8+ TCR spectratypes became more restricted during anti-CTLA4 treatment, suggesting that newly expanded oligoclonal T-cell responses may contribute to IrAEs. This study reveals diverse T-cell clones in the blood of melanoma patients prior to immunotherapy, which may reflect the extent to which T cells are able to react against melanoma and potentially control melanoma progression. Therefore, the T-cell clonality in the circulation may have predictive value for antitumor responses from checkpoint inhibition.
Collapse
Affiliation(s)
- Akiko Arakawa
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Julia Tietze
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Adrian Galinski
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Markus V Heppt
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Maja Bürdek
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carola Berking
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Jörg C Prinz
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
12
|
Simon S, Wu Z, Cruard J, Vignard V, Fortun A, Khammari A, Dreno B, Lang F, Rulli SJ, Labarriere N. TCR Analyses of Two Vast and Shared Melanoma Antigen-Specific T Cell Repertoires: Common and Specific Features. Front Immunol 2018; 9:1962. [PMID: 30214446 PMCID: PMC6125394 DOI: 10.3389/fimmu.2018.01962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Among Immunotherapeutic approaches for cancer treatment, the adoptive transfer of antigen specific T cells is still a relevant approach, that could have higher efficacy when further combined with immune check-point blockade. A high number of adoptive transfer trials have been performed in metastatic melanoma, due to its high immunogenic potential, either with polyclonal TIL or antigen-specific polyclonal populations. In this setting, the extensive characterization of T cell functions and receptor diversity of infused polyclonal T cells is required, notably for monitoring purposes. We developed a clinical grade procedure for the selection and amplification of polyclonal CD8 T cells, specific for two shared and widely expressed melanoma antigens: Melan-A and MELOE-1. This procedure is currently used in a clinical trial for HLA-A2 metastatic melanoma patients. In this study, we characterized the T-cell diversity (T-cell repertoire) of such T cell populations using a new RNAseq strategy. We first assessed the added-value of TCR receptor sequencing, in terms of sensitivity and specificity, by direct comparison with cytometry analysis of the T cell populations labeled with anti-Vß-specific antibodies. Results from these analyzes also confirmed specific features already reported for Melan-A and MELOE-1 specific T cell repertoires in terms of V-alpha recurrence usage, on a very high number of T cell clonotypes. Furthermore, these analyses also revealed undescribed features, such as the recurrence of a specific motif in the CDR3α region for MELOE-1 specific T cell repertoire. Finally, the analysis of a large number of T cell clonotypes originating from various patients revealed the existence of public CDR3α and ß clonotypes for Melan-A and MELOE-1 specific T cells. In conclusion, this method of high throughput TCR sequencing is a reliable and powerful approach to deeply characterize polyclonal T cell repertoires, and to reveal specific features of a given TCR repertoire, that would be useful for immune follow-up of cancer patients treated by immunotherapeutic approaches.
Collapse
Affiliation(s)
- Sylvain Simon
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Zhong Wu
- Qiagen Sciences, Frederick, MD, United States
| | - J Cruard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Virginie Vignard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.,Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Agnes Fortun
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Amir Khammari
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.,Department of Dermato-Cancerology of Nantes Hospital, Nantes, France
| | - Brigitte Dreno
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.,Department of Dermato-Cancerology of Nantes Hospital, Nantes, France
| | - Francois Lang
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | | | - Nathalie Labarriere
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.,Centre Hospitalier Universitaire Nantes, Nantes, France
| |
Collapse
|
13
|
Qu C, Wang Y, Fan C. Response to Letter to the Editor re 'Be cautious for exceptional results in evaluating the effect of adolescent booster of hepatitis B vaccine'. Int J Infect Dis 2018; 66:153-156. [PMID: 29158135 DOI: 10.1016/j.ijid.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Chunfeng Qu
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yuting Wang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunsun Fan
- Department of Etiology, Qidong People's Hospital/Qidong Liver Cancer Institute, Jiangsu 226200, China
| |
Collapse
|
14
|
Adams NM, O'Sullivan TE, Geary CD, Karo JM, Amezquita RA, Joshi NS, Kaech SM, Sun JC. NK Cell Responses Redefine Immunological Memory. THE JOURNAL OF IMMUNOLOGY 2017; 197:2963-2970. [PMID: 27824591 DOI: 10.4049/jimmunol.1600973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 01/16/2023]
Abstract
Immunological memory has traditionally been regarded as a unique trait of the adaptive immune system. Nevertheless, there is evidence of immunological memory in lower organisms and invertebrates, which lack an adaptive immune system. Despite their innate ability to rapidly produce effector cytokines and kill virally infected or transformed cells, NK cells also exhibit adaptive characteristics such as clonal expansion, longevity, self-renewal, and robust recall responses to antigenic or nonantigenic stimuli. In this review, we highlight the intracellular and extracellular requirements for memory NK cell generation and describe the emerging evidence for memory precursor NK cells and their derivation.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenny M Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
15
|
Zhou DM, Xu YX, Zhang LY, Sun Y, Wang ZY, Yuan YQ, Fu JX. The role of follicular T helper cells in patients with malignant lymphoid disease. ACTA ACUST UNITED AC 2017; 22:412-418. [PMID: 28281408 DOI: 10.1080/10245332.2017.1300623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To investigate the dynamic change of follicular T helper cells (TFH) in patients with malignant lymphoid disease (MLD) and to explore its clinical significance. METHODS The dynamic change of TFH cells, ICOS+- and PD-1+ TFH cells at pretreatment and different treatment periods was determined by flow cytometry in 85 MLD patients. Concentration of interleukin 21 (IL-21) was evaluated by ELISA, and the correlation between clinical prognosis and the ratio of TFH cells was analyzed. RESULTS Significantly increased ICOS+- and PD-1+ TFH cells were found in MLD patients at pretreatment compared to healthy controls. Decreased or even close to normal levels of ICOS+- and PD-1+ TFH cells were found at the end of treatment. However, in the patients with progressive disease, high levels of ICOS+- and PD-1+ TFH cells were found. Moreover, a significantly increased plasma IL-21 level was found in MLD patients. Negative correlation was found between the level of ICOS+-, PD-1+ TFH cells, as well as IL-21 and the prognosis of MLD. CONCLUSIONS Significantly increased TFH cell ratios were found in patients with MLD, and decreased TFH cells ratios could be expected in those treatment-effective patients, which could be used as the therapeutic efficacy index.
Collapse
Affiliation(s)
- Dong-Ming Zhou
- a Department of Hematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Yan-Xia Xu
- a Department of Hematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Li-Ying Zhang
- a Department of Hematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Yu Sun
- a Department of Hematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Zi-Yan Wang
- a Department of Hematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Yu-Qing Yuan
- a Department of Hematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Jin-Xiang Fu
- a Department of Hematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
16
|
Wang Y, Chen T, Lu LL, Wang M, Wang D, Yao H, Fan C, Qi J, Zhang Y, Qu C. Adolescent booster with hepatitis B virus vaccines decreases HBV infection in high-risk adults. Vaccine 2017; 35:1064-1070. [PMID: 28069363 DOI: 10.1016/j.vaccine.2016.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/24/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neutralizing antibodies (anti-HBs) after immunization with hepatitis B virus (HBV) vaccines against HBV surface antigen (HBsAg) wane after 10-15years. We analyzed the effect of an adolescent booster given to vaccination-protected children born to mothers with different HBsAg-carrying status against HBV infection in their mature adulthood. METHODS A total of 9793 individuals, who were HBsAg-negative at childhood (baseline) and donated blood samples, both during childhood and adulthood, from the vaccination group in "Qidong Hepatitis B Intervention Study", were enrolled. Among them 7414 received a one-dose, 10μg-recombinant HBV vaccine booster at 10-14years of age. At endpoint (23-28years of age), we determined the HBV serological markers and quantified their serum HBV-DNA in each of the chronic HBV-infected adults. RESULTS Fifty-seven adults were identified as chronic HBV infection, indicated by HBsAg(+)&anti-HBc(+) for more than 6months. The individuals who were born to HBsAg-positive mothers (high-risk adults) had significantly increased risk of developing chronic HBV infections in adulthood compared with those who were born to HBsAg-negative mothers; the adjusted odds ratio (OR) was 12.56, 95%CI:7.14-22.08. The seronegative status of anti-HBs at 10-11years of age significantly increased the risk of HBV infections among the high-risk adults. When HBsAg(-)&anti-HBc(+) children who were born to HBsAg-positive mothers 70% of them remained as the status and 10% of them developed HBsAg(+)&anti-HBc(+). While when they were born to HBsAg-negative mothers 1.05% HBsAg(-)&anti-HBc(+) children developed HBsAg(+)&anti-HBc(+) and 24.74% of them remained as the status in 12-18years. One dose of adolescent booster showed significant protection on high-risk adults from chronic HBV infection; P for trend was 0.015. CONCLUSIONS Maternal HBsAg-positive status was an independent risk factor for vaccination-protected children to develop HBV breakthrough infection in adulthood. Adolescent boosters might be appropriate for high-risk individuals who were born to HBsAg-positive mothers when their serum anti-HBs<10mIU/ml.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Ling-Ling Lu
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Minjie Wang
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongmei Wang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongyu Yao
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Chunsun Fan
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China
| | - Jun Qi
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yawei Zhang
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, Jiangsu Province 226200, China; Department of Surgery, Department of Environmental Health Sciences, Yale School of Public Health, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chunfeng Qu
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
17
|
|
18
|
Stepwise B-cell-dependent expansion of T helper clonotypes diversifies the T-cell response. Nat Commun 2016; 7:10281. [PMID: 26728651 PMCID: PMC4728444 DOI: 10.1038/ncomms10281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor diversity underpins adaptive immunity by providing the ground for clonal selection of lymphocytes with the appropriate antigen reactivity. Current models attribute T cell clonal selection during the immune response to T-cell receptor (TCR) affinity for either foreign or self peptides. Here, we report that clonal selection of CD4(+) T cells is also extrinsically regulated by B cells. In response to viral infection, the antigen-specific TCR repertoire is progressively diversified by staggered clonotypic expansion, according to functional avidity, which correlates with self-reactivity. Clonal expansion of lower-avidity T-cell clonotypes depends on availability of MHC II-expressing B cells, in turn influenced by B-cell activation. B cells clonotypically diversify the CD4(+) T-cell response also to vaccination or tumour challenge, revealing a common effect.
Collapse
|
19
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
20
|
Merkenschlager J, Kassiotis G. Narrowing the Gap: Preserving Repertoire Diversity Despite Clonal Selection during the CD4 T Cell Response. Front Immunol 2015; 6:413. [PMID: 26322045 PMCID: PMC4531291 DOI: 10.3389/fimmu.2015.00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/28/2015] [Indexed: 01/14/2023] Open
Abstract
T cell immunity relies on the generation and maintenance of a diverse repertoire of T cell antigen receptors (TCRs). The strength of signaling emanating from the TCR dictates the fate of T cells during development, as well as during the immune response. Whereas development of new T cells in the thymus increases the available TCR repertoire, clonal selection during the immune response narrows TCR diversity through the outgrowth of clonotypes with the fittest TCR. To ensure maintenance of TCR diversity in the antigen-selected repertoire, specific mechanisms can be envisaged that facilitate the participation of T cell clonotypes with less than best fit TCRs. Here, we summarize the evidence for the existence of such mechanisms that can prevent the loss of diversity. A number of T cell-autonomous or extrinsic factors can reverse clonotypic hierarchies set by TCR affinity for given antigen. Although not yet complete, understanding of these factors and their mechanism of action will be critical in interventional attempts to mold the antigen-selected TCR repertoire.
Collapse
Affiliation(s)
| | - George Kassiotis
- Mill Hill Laboratory, The Francis Crick Institute , London , UK ; Department of Medicine, Faculty of Medicine, Imperial College London , London , UK
| |
Collapse
|
21
|
Burchill MA, Tamburini BA, Kedl RM. T cells compete by cleaving cell surface CD27 and blocking access to CD70-bearing APCs. Eur J Immunol 2015; 45:3140-9. [PMID: 26179759 DOI: 10.1002/eji.201545749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/05/2015] [Accepted: 07/13/2015] [Indexed: 01/31/2023]
Abstract
T cells compete against each other for access to molecules on APCs in addition to peptide/MHC complexes. However, the identity of cell surface molecules that influence T-cell competition, other than peptide/MHC, have yet to be defined. Here, we identify CD70, a TNF ligand expressed on activated APCs, as an important mediator of T-cell competition for APCs. Upon engagement of CD27 by CD70, CD27 is proteolytically cleaved from the surface of the interacting CD8(+) T cell and captured by CD70 expressing dendritic cells. The capture of CD27 effectively masks CD70 on APCs, disallowing the interaction with CD27 on other competing T cells. Collectively, our data indicate that T cells compete against each other for access to the TNF-ligand CD70, an interaction that affects the duration and potency of T cell/DC interactions, thus influencing the repertoire of responding CD8(+) T cells to self or foreign antigens.
Collapse
Affiliation(s)
- Matthew A Burchill
- School of Medicine, Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Beth A Tamburini
- School of Medicine, Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Ross M Kedl
- School of Medicine, Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
22
|
Serre L, Fazilleau N, Guerder S. Central tolerance spares the private high-avidity CD4(+) T-cell repertoire specific for an islet antigen in NOD mice. Eur J Immunol 2015; 45:1946-56. [PMID: 25884569 DOI: 10.1002/eji.201445290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/17/2015] [Accepted: 04/14/2015] [Indexed: 11/09/2022]
Abstract
Although central tolerance induces the deletion of most autoreactive T cells, some autoreactive T cells escape thymic censorship. Whether potentially harmful autoreactive T cells present distinct TCRαβ features remains unclear. Here, we analyzed the TCRαβ repertoire of CD4(+) T cells specific for the S100β protein, an islet antigen associated with type 1 diabetes. We found that diabetes-resistant NOD mice deficient for thymus specific serine protease (TSSP), a protease that impairs class II antigen presentation by thymic stromal cells, were hyporesponsive to the immunodominant S100β1-15 epitope, as compared to wild-type NOD mice, due to intrathymic negative selection. In both TSSP-deficient and wild-type NOD mice, the TCRαβ repertoire of S100β-specific CD4(+) T cells though diverse showed a specific bias for dominant TCRα rearrangements with limited CDR3α diversity. These dominant TCRα chains were public since they were found in all mice. They were of intermediate- to low-avidity. In contrast, high-avidity T cells expressed unique TCRs specific to each individual (private TCRs) and were only found in wild-type NOD mice. Hence, in NOD mice, the autoreactive CD4(+) T-cell compartment has two major components, a dominant and public low-avidity TCRα repertoire and a private high-avidity CD4(+) T-cell repertoire; the latter is deleted by re-enforced negative selection.
Collapse
Affiliation(s)
- Laurent Serre
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
23
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
24
|
Dynamics of the cytotoxic T cell response to a model of acute viral infection. J Virol 2015; 89:4517-26. [PMID: 25653453 DOI: 10.1128/jvi.03474-14] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy.
Collapse
|
25
|
A novel method for analysis of human T cell repertoires by real-time PCR. J Immunol Methods 2014; 412:24-34. [PMID: 24983878 DOI: 10.1016/j.jim.2014.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/19/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
T lymphocyte responses to challenges with multiple pathogens depend on the diversity of their T cell receptors (TcRs) that are heteroduplexes of alpha and beta chains. The regions of alpha and beta chains that define TcR specificity are encoded by rearranged variable (V) and joining (J) genes that are separated by variable numbers of nucleotides that encode the complementarity determining region 3 (CDR3). The assumption that a "healthy" T cell compartment exhibits broad TcR and CDR3 diversity has driven development of methods to evaluate diversity of TcR beta transcripts expressed by T lymphocyte populations and subpopulations in inflammatory sites and human malignancies. To that end, we have developed the BV:BJ matrix assay that uniquely generates a single statistic that describes TcR repertoire diversity and improves identification of beta transcripts expressed by expanded T cell clonotypes. The BV:BJ matrix uses rigorously selected primers specific for individual V and J genes to amplify beta transcripts in real-time PCRs driven by 533 BV:BJ primer pairs. The quantitative control of real-time PCRs produces Shannon entropy estimates of diversity that are reproducible over a range of template amounts and amenable to statistical analyses that have been difficult to perform with existing methods of repertoire analysis.
Collapse
|
26
|
Reynolds C, Chong D, Raynsford E, Quigley K, Kelly D, Llewellyn-Hughes J, Altmann D, Boyton R. Elongated TCR alpha chain CDR3 favors an altered CD4 cytokine profile. BMC Biol 2014; 12:32. [PMID: 24886643 PMCID: PMC4046507 DOI: 10.1186/1741-7007-12-32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/04/2014] [Indexed: 12/04/2022] Open
Abstract
Background CD4 T lymphocyte activation requires T cell receptor (TCR) engagement by peptide/MHC (major histocompatibility complex) (pMHC). The TCR complementarity-determining region 3 (CDR3) contains variable α and β loops critical for pMHC recognition. During any immune response, tuning of TCR usage through progressive clonal selection occurs. Th1 and Th2 cells operate at different avidities for activation and display distinct transcriptional programs, although polarization may be plastic, influenced by pathogens and cytokines. We therefore hypothesized that CDR3αβ sequence features may intrinsically influence CD4 phenotype during progression of a response. Results We show that CD4 polarization involves distinct CDR3α usage: Th1 and Th17 cells favored short TCR CDR3α sequences of 12 and 11 amino acids, respectively, while Th2 cells favored elongated CDR3α loops of 14 amino acids, with lower predicted affinity. The dominant Th2- and Th1-derived TCRα sequences with14 amino acid CDR3 loops and 12 amino acid CDR3 loops, respectively, were expressed in TCR transgenics. The functional impact of these TCRα transgenes was assessed after in vivo priming with a peptide/adjuvant. The short, Th1-derived receptor transgenic T cell lines made IFNγ, but not IL-4, 5 or 13, while the elongated, Th2-derived receptor transgenic T cell lines made little or no IFNγ, but increased IL-4, 5 and 13 with progressive re-stimulations, mirrored by GATA-3 up-regulation. T cells from primed Th2 TCRα transgenics selected dominant TCR Vβ expansions, allowing us to generate TCRαβ transgenics carrying the favored, Th2-derived receptor heterodimer. Primed T cells from TCRαβ transgenics made little or no IL-17 or IFNγ, but favored IL-9 after priming with Complete Freund’s adjuvant and IL-4, 5, 9, 10 and 13 after priming with incomplete Freund’s. In tetramer-binding studies, this transgenic receptor showed low binding avidity for pMHC and polarized T cell lines show TCR avidity for Th17 > Th1 > Th2. While transgenic expression of a Th2-derived, ‘elongated’ TCR-CDR3α and the TCRαβ pair, clearly generated a program shifted away from Th1 immunity and with low binding avidity, cytokine-skewing could be over-ridden by altering peptide challenge dose. Conclusion We propose that selection from responding clones with distinctive TCRs on the basis of functional avidity can direct a preference away from Th1 effector responses, favoring Th2 cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rosemary Boyton
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
27
|
Thorborn G, Young GR, Kassiotis G. Effective T helper cell responses against retroviruses: are all clonotypes equal? J Leukoc Biol 2014; 96:27-37. [PMID: 24737804 DOI: 10.1189/jlb.2ri0613-347r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
Collapse
Affiliation(s)
| | - George R Young
- Divisions of Immunoregulation and Virology, Medical Research Council National Institute for Medical Research, The Ridgeway, London, United Kingdom; and
| | - George Kassiotis
- Divisions of Immunoregulation and Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
28
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
29
|
Reproducible selection of high avidity CD8+ T-cell clones following secondary acute virus infection. Proc Natl Acad Sci U S A 2014; 111:1485-90. [PMID: 24474775 DOI: 10.1073/pnas.1323736111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recall of memory CD8(+) cytotoxic T lymphocytes (CTLs), elicited by prior virus infection or vaccination, is critical for immune protection. The extent to which this arises as a consequence of stochastic clonal expansion vs. active selection of particular clones remains unclear. Using a parallel adoptive transfer protocol in combination with single cell analysis to define the complementarity determining region (CDR) 3α and CDR3β regions of individual T-cell receptor (TCR) heterodimers, we characterized the antigen-driven recall of the same memory CTL population in three individual recipients. This high-resolution analysis showed reproducible enrichment (or diminution) of particular TCR clonotypes across all challenged animals. These changes in clonal composition were TCRα- and β chain-dependent and were directly related to the avidity of the TCR for the virus-derived peptide (p) + major histocompatibility complex class I molecule. Despite this shift in clonotype representation indicative of differential selection, there was no evidence of overall repertoire narrowing, suggesting a strategy to optimize CTL responses while safeguarding TCR diversity.
Collapse
|
30
|
Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, Boin F, Fava A, Thoburn C, Kinde I, Jiao Y, Papadopoulos N, Kinzler KW, Vogelstein B, Rosen A. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 2014; 343:152-7. [PMID: 24310608 PMCID: PMC4038033 DOI: 10.1126/science.1246886] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Autoimmune diseases are thought to be initiated by exposures to foreign antigens that cross-react with endogenous molecules. Scleroderma is an autoimmune connective tissue disease in which patients make antibodies to a limited group of autoantigens, including RPC1, encoded by the POLR3A gene. As patients with scleroderma and antibodies against RPC1 are at increased risk for cancer, we hypothesized that the "foreign" antigens in this autoimmune disease are encoded by somatically mutated genes in the patients' incipient cancers. Studying cancers from scleroderma patients, we found genetic alterations of the POLR3A locus in six of eight patients with antibodies to RPC1 but not in eight patients without antibodies to RPC1. Analyses of peripheral blood lymphocytes and serum suggested that POLR3A mutations triggered cellular immunity and cross-reactive humoral immune responses. These results offer insight into the pathogenesis of scleroderma and provide support for the idea that acquired immunity helps to control naturally occurring cancers.
Collapse
Affiliation(s)
- Christine G. Joseph
- Ludwig Center, the Howard Hughes Medical Institutions, and the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Ami A. Shah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Andrew D. Skora
- Ludwig Center, the Howard Hughes Medical Institutions, and the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Livia A. Casciola-Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Fredrick M. Wigley
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Francesco Boin
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Andrea Fava
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chris Thoburn
- Division of Immunology, The Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Isaac Kinde
- Ludwig Center, the Howard Hughes Medical Institutions, and the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuchen Jiao
- Ludwig Center, the Howard Hughes Medical Institutions, and the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- Ludwig Center, the Howard Hughes Medical Institutions, and the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth W. Kinzler
- Ludwig Center, the Howard Hughes Medical Institutions, and the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, the Howard Hughes Medical Institutions, and the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Antony Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
31
|
Qiao SW, Christophersen A, Lundin KEA, Sollid LM. Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int Immunol 2013; 26:13-9. [PMID: 24038601 DOI: 10.1093/intimm/dxt037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD4⁺ T cells that recognize dietary gluten antigens presented by the disease-associated HLA-DQ2 or DQ8 molecules are central players in coeliac disease. Unbiased sequencing of the human TCRα variable (TRAV) and humanTCRβ variable (TRBV) genes of 68 HLA-DQ2.5-glia-α2-specific T cells from coeliac disease patients confirmed previous reports of over-usage of the TRBV7-2 gene segment, a conserved Arg residue in the complementarity-determining region (CDR) 3β loop and prevalent usage of the canonical ASSxRxTDTQY CDR3β loop among T cells with this specificity. In 30 clones that had the canonical TCRβ chain, we found a strict usage of the TRAV26-1 gene segment in the TCRα chain. There was variable usage of the TRAJ genes and diverse CDR3α sequences with no apparent conserved motifs. This study extends previous reports on biased TCR usage in both HLA-DQ2.5- and DQ8-restricted gluten-specific TCRs and provides data for further studies on TRAV and TRBV pairing.
Collapse
Affiliation(s)
- Shuo-Wang Qiao
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital - Rikshospitalet, 0372 Oslo, Norway
| | | | | | | |
Collapse
|
32
|
Camberis M, Prout M, Tang SC, Forbes-Blom E, Robinson M, Kyle R, Belkaid Y, Paul W, Le Gros G. Evaluating the in vivo Th2 priming potential among common allergens. J Immunol Methods 2013; 394:62-72. [PMID: 23688767 DOI: 10.1016/j.jim.2013.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/08/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
Abstract
Exposure to allergens, both man-made and from our environment is increasingly associated with the development of significant human health issues such as allergy and asthma. Allergen induced production of the cytokine interleukin (IL-)4 by Th2 cells is central to the pathogenesis of allergic disease (Gavett et al., 1994). The development of the G4 mouse, that expresses green fluorescent protein (GFP) as a surrogate for IL-4 protein expression has made it possible to directly track the immune cells that produce IL-4. By combining a reliable intradermal immunisation technique with the transgenic G4 mouse we have been able to develop a novel & unique in vivo primary Th2 immune response model (PTh2). When allergens relevant to human disease are evaluated using the PTh2 assay a dose dependent hierarchy of allergenicity is revealed with environmental allergens (cockroach, house dust mite) the most potent and food allergens being the least. In addition, the PTh2 assay is extremely sensitive to the immunoregulatory effects of Mycobacterial extracts and immunosuppressive drugs on primary Th2 cell development. Taken together, this assay provides a standardised method for the identification of the structural and functional properties of proteins relevant to allergenicity, and is a powerful screening tool for novel lead compounds that are effective at inhibiting the primary Th2 response in allergic diseases.
Collapse
Affiliation(s)
- Mali Camberis
- Malaghan Institute of Medical Research, Box 7060, Wellington 6242, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De Boer RJ, Perelson AS. Antigen-stimulated CD4 T cell expansion can be limited by their grazing of peptide-MHC complexes. THE JOURNAL OF IMMUNOLOGY 2013; 190:5454-8. [PMID: 23606541 DOI: 10.4049/jimmunol.1203569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It was recently shown that the expansion of CD4(+) T cells during a primary immune reaction to a peptide from cytochrome c decreases ~0.5 log for every log increase in the number of cognate precursor cells, and that this remains valid over more than four orders of magnitude (Quiel et al. 2011. Proc. Natl. Acad. Sci. USA. 108: 3312-3317). This observed "power law" was explained by a mechanism where nondividing mature T cells inhibit the proliferation of less-differentiated cells of the same specificity. In this article, we interpret the same data by a mechanism where CD4(+) T cells acquire cognate peptide-MHC (pMHC) complexes from the surface of APCs, thereby increasing the loss rate of pMHC. We show that a mathematical model implementing this "T cell grazing" mechanism, and having a T cell proliferation rate that is determined by the concentration of pMHC, explains the data equally well. As a consequence, the data no longer unequivocally support the previous explanation, and the increased loss of pMHC complexes on APCs at high T cell densities is an equally valid interpretation of this striking data.
Collapse
Affiliation(s)
- Rob J De Boer
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
34
|
Corbo-Rodgers E, Wiehagen KR, Staub ES, Maltzman JS. Homeostatic division is not necessary for antigen-specific CD4+ memory T cell persistence. THE JOURNAL OF IMMUNOLOGY 2012; 189:3378-85. [PMID: 22956580 DOI: 10.4049/jimmunol.1201583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) memory T cells are generated in response to infection or vaccination, provide protection to the host against reinfection, and persist through a combination of enhanced survival and slow homeostatic turnover. We used timed deletion of the TCR-signaling adaptor molecule Src homology 2 domain-containing phosphoprotein of 76 kDa (SLP-76) with MHC:peptide tetramers to study the requirements for tonic TCR signals in the maintenance of polyclonal Ag-specific CD4(+) memory T cells. SLP-76-deficient I-A(b):gp61 cells are unable to rapidly generate effector cytokines or proliferate in response to secondary infection. In mice infected with lymphocytic choriomeningitis virus (LCMV) or Listeria monocytogenes expressing the LCMV gp61-80 peptide, SLP-76-deficient I-A(b):gp61(+) cells exhibit reduced division, similar to that seen in in vitro-generated CD44(hi) and endogenous CD4(+)CD44(hi) cells. Competitive bone marrow chimera experiments demonstrated that the decrease in homeostatic turnover in the absence of SLP-76 is a cell-intrinsic process. Surprisingly, despite the reduction in turnover, I-A(b):gp61(+) Ag-specific memory cells persist in normal numbers for >30 wk after LCMV infection in the absence of SLP-76. These data suggest the independent maintenance of a population of Ag-specific CD4(+) memory T cells in the absence of SLP-76 and normal levels of homeostatic division.
Collapse
Affiliation(s)
- Evann Corbo-Rodgers
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
35
|
Yousef S, Planas R, Chakroun K, Hoffmeister-Ullerich S, Binder TMC, Eiermann TH, Martin R, Sospedra M. TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+T Cells during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3618-30. [DOI: 10.4049/jimmunol.1201612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Baumgartner CK, Yagita H, Malherbe LP. A TCR affinity threshold regulates memory CD4 T cell differentiation following vaccination. THE JOURNAL OF IMMUNOLOGY 2012; 189:2309-17. [PMID: 22844120 DOI: 10.4049/jimmunol.1200453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection.
Collapse
|
37
|
Kim C, Jay DC, Williams MA. Stability and function of secondary Th1 memory cells are dependent on the nature of the secondary stimulus. THE JOURNAL OF IMMUNOLOGY 2012; 189:2348-55. [PMID: 22844122 DOI: 10.4049/jimmunol.1200244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Following acute infection in some mouse models, CD4+ memory T cells steadily decline over time. Conversely, in humans, CD4+ memory T cells can be maintained for many years at levels similar to CD8+ T cells. Because we previously observed that the longevity of Th1 memory cell survival corresponded to their functional avidity, we hypothesized that secondary challenge, which enriches for high functional avidity Th1 responders, would result in more stable Th1 memory populations. We found that following a heterologous secondary challenge, Th1 memory cells were maintained at stable levels compared with primary Th1 memory cells, showing little to no decline after day 75 postinfection. The improved stability of secondary Th1 memory T cells corresponded to enhanced homeostatic turnover; enhanced trafficking of effector memory Th1 cells to tissue sites of infection, such as the liver; and acquisition or maintenance of high functional avidity following secondary challenge. Conversely, a weaker homologous rechallenge failed to induce a stable secondary Th1 memory population. Additionally, homologous secondary challenge resulted in a transient loss of functional avidity by Th1 memory cells recruited into the secondary response. Our findings suggest that the longevity of Th1 memory T cells is dependent, at least in part, on the combined effects of primary and secondary Ag-driven differentiation. Furthermore, they demonstrate that the quality of the secondary challenge can have profound effects on the longevity and function of the ensuing secondary Th1 memory population.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, University of Utah, Salt Lake City, UT 84121, USA
| | | | | |
Collapse
|
38
|
Mittelstadt PR, Monteiro JP, Ashwell JD. Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J Clin Invest 2012; 122:2384-94. [PMID: 22653054 DOI: 10.1172/jci63067] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
Generation of a self-tolerant but antigen-responsive T cell repertoire occurs in the thymus. Although glucocorticoids are usually considered immunosuppressive, there is also evidence that they play a positive role in thymocyte selection. To address the question of how endogenous glucocorticoids might influence the adaptive immune response, we generated GRlck-Cre mice, in which the glucocorticoid receptor gene (GR) is deleted in thymocytes prior to selection. These mice were immunocompromised, with reduced polyclonal T cell proliferative responses to alloantigen, defined peptide antigens, and viral infection. This was not due to an intrinsic proliferation defect, because GR-deficient T cells responded normally when the TCR was cross-linked with antibodies or when the T cell repertoire was "fixed" with αβ TCR transgenes. Varying the affinity of self ligands in αβ TCR transgenic mice showed that affinities that would normally lead to thymocyte-positive selection caused negative selection, and alterations in the TCR repertoire of polyclonal T cells were confirmed by analysis of TCR Vβ CDR3 regions. Thus, endogenous glucocorticoids are required for a robust adaptive immune response because of their promotion of the selection of T cells that have sufficient affinity for self, and the absence of thymocyte glucocorticoid signaling results in an immunocompromised state.
Collapse
Affiliation(s)
- Paul R Mittelstadt
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
39
|
Kwok WW, Tan V, Gillette L, Littell CT, Soltis MA, LaFond RB, Yang J, James EA, DeLong JH. Frequency of epitope-specific naive CD4(+) T cells correlates with immunodominance in the human memory repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2537-44. [PMID: 22327072 PMCID: PMC3997369 DOI: 10.4049/jimmunol.1102190] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The frequency of epitope-specific naive CD4(+) T cells in humans has not been extensively examined. In this study, a systematic approach was used to examine the frequency of CD4(+) T cells that recognize the protective Ag of Bacillus anthracis in both anthrax vaccine-adsorbed vaccinees and nonvaccinees with HLA-DRB1*01:01 haplotypes. Three epitopes were identified that had distinct degrees of immunodominance in subjects that had received the vaccine. Average naive precursor frequencies of T cells specific for these different epitopes in the human repertoire ranged from 0.2 to 10 per million naive CD4(+) T cells, which is comparable to precursor frequencies observed in the murine repertoire. Frequencies of protective Ag-specific T cells were two orders of magnitude higher in immunized subjects than in nonvaccinees. The frequencies of epitope-specific memory CD4(+) T cells in vaccinees were directly correlated with the frequencies of precursors in the naive repertoire. At the level of TCR usage, at least one preferred Vβ in the naive repertoire was present in the memory repertoire. These findings implicate naive frequencies as a crucial factor in shaping the epitope specificity of memory CD4(+) T cell responses.
Collapse
Affiliation(s)
- William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101-2795, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Newell EW, Ely LK, Kruse AC, Reay PA, Rodriguez SN, Lin AE, Kuhns MS, Garcia KC, Davis MM. Structural basis of specificity and cross-reactivity in T cell receptors specific for cytochrome c-I-E(k). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5823-32. [PMID: 21490152 PMCID: PMC3754796 DOI: 10.4049/jimmunol.1100197] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
T cells specific for the cytochrome c Ag are widely used to investigate many aspects of TCR specificity and interactions with peptide-MHC, but structural information has long been elusive. In this study, we present structures for the well-studied 2B4 TCR, as well as a naturally occurring variant of the 5c.c7 TCR, 226, which is cross-reactive with more than half of possible substitutions at all three TCR-sensitive residues on the peptide Ag. These structures alone and in complex with peptide-MHC ligands allow us to reassess many prior mutagenesis results. In addition, the structure of 226 bound to one peptide variant, p5E, shows major changes in the CDR3 contacts compared with wild-type, yet the TCR V-region contacts with MHC are conserved. These and other data illustrate the ability of TCRs to accommodate large variations in CDR3 structure and peptide contacts within the constraints of highly conserved TCR-MHC interactions.
Collapse
Affiliation(s)
- Evan W. Newell
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Lauren K. Ely
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Andrew C. Kruse
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Philip A. Reay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Stephanie N. Rodriguez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Aaron E. Lin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Michael S. Kuhns
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
42
|
Benson R, Patakas A, McQueenie R, Ross K, McInnes I, Brewer J, Garside P. Arthritis in space and time - To boldly go! FEBS Lett 2011; 585:3640-8. [DOI: 10.1016/j.febslet.2011.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 01/13/2023]
|
43
|
Miles JJ, Douek DC, Price DA. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol 2011; 89:375-87. [PMID: 21301479 DOI: 10.1038/icb.2010.139] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The naïve T-cell repertoire is vast, containing millions of unique T-cell receptor (TCR) structures. Faced with such diversity, the mobilization of TCR structures from this enormous pool was once thought to be a stochastic, even chaotic, process. However, steady and systematic dissection over the last 20 years has revealed that this is not the case. Instead, the TCR repertoire deployed against individual antigens is routinely ordered and biased. Often, identical and near-identical TCR repertoires can be observed across different individuals, suggesting that the system encompasses an element of predictability. This review provides a catalog of αβ TCR bias by disease and by species, and discusses the mechanisms that govern this inherent and widespread phenomenon.
Collapse
Affiliation(s)
- John J Miles
- T Cell Modulation Laboratory, Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK.
| | | | | |
Collapse
|
44
|
Billam P, Bonaparte KL, Liu J, Ruckwardt TJ, Chen M, Ryder AB, Wang R, Dash P, Thomas PG, Graham BS. T Cell receptor clonotype influences epitope hierarchy in the CD8+ T cell response to respiratory syncytial virus infection. J Biol Chem 2011; 286:4829-41. [PMID: 21118816 PMCID: PMC3039322 DOI: 10.1074/jbc.m110.191437] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/27/2010] [Indexed: 01/19/2023] Open
Abstract
CD8+ T cell responses are important for recognizing and resolving viral infections. To better understand the selection and hierarchy of virus-specific T cell responses, we compared the T cell receptor (TCR) clonotype in parent and hybrid strains of respiratory syncytial virus-infected mice. K(d)M2(82-90) (SYIGSINNI) in BALB/c and D(b)M(187-195) (NAITNAKII) in C57Bl/6 are both dominant epitopes in parent strains but assume a distinct hierarchy, with K(d)M2(82-90) dominant to D(b)M(187-195) in hybrid CB6F1/J mice. The dominant K(d)M2(82-90) response is relatively public and is restricted primarily to the highly prevalent Vβ13.2 in BALB/c and hybrid mice, whereas D(b)M(187-195) responses in C57BL/6 mice are relatively private and involve multiple Vβ subtypes, some of which are lost in hybrids. A significant frequency of TCR CDR3 sequences in the D(b)M(187-195) response have a distinct "(D/E)WG" motif formed by a limited number of recombination strategies. Modeling of the dominant epitope suggested a flat, featureless structure, but D(b)M(187-195) showed a distinctive structure formed by Lys(7). The data suggest that common recombination events in prevalent Vβ genes may provide a numerical advantage in the T cell response and that distinct epitope structures may impose more limited options for successful TCR selection. Defining how epitope structure is interpreted to inform T cell function will improve the design of future gene-based vaccines.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Chimera/genetics
- Chimera/immunology
- Chimera/metabolism
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Complementarity Determining Regions/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Mice
- Mice, Inbred BALB C
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Viruses/genetics
- Respiratory Syncytial Viruses/immunology
- Respiratory Syncytial Viruses/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Padma Billam
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Kathryn L. Bonaparte
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Jie Liu
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Tracy J. Ruckwardt
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Man Chen
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Alex B. Ryder
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Rui Wang
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1892, and
| | - Pradyot Dash
- the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Paul G. Thomas
- the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Barney S. Graham
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| |
Collapse
|
45
|
Abstract
Protective immunity against a variety of infections depends on the amplification and differentiation of rare naïve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.
Collapse
|
46
|
Kim C, Williams MA. Nature and nurture: T-cell receptor-dependent and T-cell receptor-independent differentiation cues in the selection of the memory T-cell pool. Immunology 2010; 131:310-7. [PMID: 20738422 DOI: 10.1111/j.1365-2567.2010.03338.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The initiation of a T-cell response begins with the interaction of an individual T-cell clone with its cognate antigen presented by MHC. Although the strength of the T-cell receptor (TCR) -antigen-MHC (TCR-pMHC) interaction plays an important and obvious role in the recruitment of T cells into the immune response, evidence in recent years has suggested that the strength of this initial interaction can influence various other aspects of the fate of an individual T-cell clone and its daughter cells. In this review, we will describe differences in the way CD4(+) and CD8(+) T cells incorporate antigen-driven differentiation and survival signals during the response to acute infection. Furthermore, we will discuss increasing evidence that the quality and/or quantity of the initial TCR-pMHC interaction can drive the differentiation and long-term survival of T helper type 1 memory populations.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
47
|
Schaller MA, Logue H, Mukherjee S, Lindell DM, Coelho AL, Lincoln P, Carson WF, Ito T, Cavassani KA, Chensue SW, Hogaboam CM, Lukacs NW, Kunkel SL. Delta-like 4 differentially regulates murine CD4 T cell expansion via BMI1. PLoS One 2010; 5:e12172. [PMID: 20808960 PMCID: PMC2923143 DOI: 10.1371/journal.pone.0012172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/15/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Studies have shown that Notch is essential for the maintenance of a T cell Th2 phenotype in vivo. It has also been shown that Notch ligands have diverse functions during T cell activation. We chose to investigate the role of Notch ligands during the Th2 response. PRINCIPAL FINDINGS We studied the relationship of two Notch ligands, delta-like 4 and jagged-1, to T cell proliferation in C57 Bl/6 mice. Our findings indicate that jagged-1 does not affect the rate of T cell proliferation in any subset examined. However, delta-like 4 causes an increase in the expansion of Th2 memory cells and a decrease in effector cell proliferation. Our in vivo studies indicate that the Notch system is dynamically regulated, and that blocking one Notch ligand increases the effective concentration of other Notch ligands, thus altering the response. Examination of genes related to the Notch pathway revealed that the Notch receptors were increased in memory T cells. Expression of BMI1, a gene involved in T cell proliferation, was also higher in memory T cells. Further experiments demonstrated that Notch directly regulates the expression of the BMI1 gene in T cells and may govern T cell proliferation through this pathway. CONCLUSIONS From these experiments we can make several novel conclusions about the role of Notch ligands in T cell biology. The first is that delta-like 4 suppresses effector cell proliferation and enhances Th2 memory cell proliferation. The second is that blocking one Notch ligand in vivo effectively increases the concentration of other Notch ligands, which can then alter the response.
Collapse
Affiliation(s)
- Matthew A Schaller
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Natural killer (NK) cells respond rapidly to transformed, stressed, or virally infected cells and provide a first-line immune defense against pathogen invasion and cancer. Thought to involve short-lived effector cells that are armed for battle, NK cells were not previously known to contribute in recall responses to pathogen re-encounter. Here, we highlight recent discoveries demonstrating that NK cells are not limited to driving primary immune responses to foreign antigen but can mount secondary responses contributing to immune memory. We also further characterize the phenotype and function of long-lived memory NK cells generated during viral infection.
Collapse
Affiliation(s)
- Joseph C. Sun
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Joshua N. Beilke
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Merindol N, Grenier AJ, Caty M, Charrier E, Duval A, Duval M, Champagne MA, Soudeyns H. Umbilical cord blood T cells respond against the Melan-A/MART-1 tumor antigen and exhibit reduced alloreactivity as compared with adult blood-derived T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:856-66. [PMID: 20543110 DOI: 10.4049/jimmunol.0902613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Umbilical cord blood (UCB) is increasingly used as a source of hematopoietic progenitor cells to treat a variety of disorders. UCB transplant is associated with comparatively reduced incidence of graft-versus-host disease, robust graft versus leukemia effect, and relatively high incidence of opportunistic infections, three processes in which donor-derived T lymphocytes are known to be predominantly involved. To examine the differential functionality of UCB T cells, CD8(+) T cells specific for the melanoma-associated HLA-A2-restricted Melan-A(26-35) A27L peptide were isolated from HLA-A2(+) and HLA-A2(-) UCB samples and HLA-A2(+) and HLA-A2(-) adult peripheral blood using A2/Melan-A tetramers. In UCB samples, A2/Melan-A(+) CD8(+) T cells were detected at a frequency of 0.04%, were more frequent in HLA-A2(+) UCB, and were polyclonal and mostly naive. Consistent with Ag-driven expansion, the frequency of A2/Melan-A(+) CD8(+) T cells was increased following stimulation with cognate peptide or polyclonal activation, they acquired cell-surface markers reflective of effector/memory differentiation, their TCR repertoire became oligoclonal, and they expressed cytolytic activity and produced IFN-gamma. Although functional properties of A2/Melan-A(+) CD8(+) T cells derived from HLA-A2(+) UCB resembled those of HLA-A2(+) adult peripheral blood, they were more likely to reach terminal differentiation following polyclonal stimulation and produced less IFN-gamma in response to cognate peptide. A2/Melan-A(+) CD8(+) T cells from HLA-A2(-) UCB were poorly cytolytic, produced little IFN-gamma, and were predominantly monofunctional or nonfunctional. These properties of UCB-derived CD8(+) T cells could contribute to the reduced incidence of graft-versus-host disease and heightened incidence of opportunistic infections observed following UCB transplant.
Collapse
Affiliation(s)
- Natacha Merindol
- Unité d'Immunopathologie Virale, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Aronica MA, Vogel N. Pathogens and immunologic memory in asthma: what have we learned? Expert Rev Clin Immunol 2010; 1:589-601. [PMID: 20477600 DOI: 10.1586/1744666x.1.4.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animal models and clinical studies of asthma have generated important insights into the first effector phase leading to the development of allergic airway disease and bronchial hyper-reactivity. In contrast, mechanisms related to asthma chronicity or persistence are less well understood. The CD4(+) T-helper 2 lymphocytes are known initiators of the inflammatory response associated with asthma. There is now increasing evidence that memory T-cells, sensitized against allergenic, occupational or viral antigens, are also involved in the persistence of asthma. Additionally, the role of pathogens in asthma has been linked to both the initial susceptibility to and flares of this disease. This review will discuss the potential links between infection and asthma, the role of the memory T-cells in asthma, and the potential mechanisms by which these factors interact to lead to the development and/or persistence of asthma.
Collapse
Affiliation(s)
- Mark A Aronica
- Cleveland Clinic Foundation, Department of Pulmonary, Allergy and Critical Care Medicine, Cleveland, OH 44195, USA.
| | | |
Collapse
|