1
|
Podor R, Salacroup J, Brau HP, Lautru J, Szenknect S, Candeias A. Design and use of a flow cell for observing evolving solid-fluid interfaces in a scanning electron microscope. Micron 2025; 195:103825. [PMID: 40233542 DOI: 10.1016/j.micron.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
The development of a flow cell dedicated to the direct observation of the interaction between a fluid (the fluid being a gas or a liquid) and a solid in a scanning electron microscope is reported. This fluid flow cell has two main differences and advantages compared with existing devices. Firstly, it has been designed to allow direct observation of complex corrosion, dissolution, nucleation and/or growth processes taking place at solid materials surface. Secondly, the fluid circulates continuously in the cell maintaining constant chemical conditions thanks to the renewal of the fluid in contact with the solid. An electron-transparent SiNx window is used to isolate the interior of the flow cell from the vacuum of the SEM chamber. The surface of the sample is observed by recording images in backscattered electron mode. The contrasts observed in this mode are in good agreement with the results of Monte-Carlo simulations of electron trajectories and backscattered electron emissions carried out on model systems. Monte-Carlo simulations are used to determine the operating limits of the flow cell.
Collapse
Affiliation(s)
- R Podor
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France.
| | - J Salacroup
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France; NewTec Scientific, Caveirac F-30820, France
| | - H P Brau
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France
| | - J Lautru
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France
| | - S Szenknect
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France
| | - A Candeias
- NewTec Scientific, Caveirac F-30820, France
| |
Collapse
|
2
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415728. [PMID: 39981755 PMCID: PMC11962711 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| | - Serin Lee
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Körner
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergImmerwahrstraße 2a91054ErlangenGermany
| | | | - Frances M. Ross
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| |
Collapse
|
3
|
Peng S, Xu L, Cao Z, Jiao C, Liu W, Lu Y, Wang W, Chen B. Visualizing In Situ Nucleation and Growth Dynamics of CdSe-Based Heterostructures Regulated by the Water/Oil-Phase Microenvironment. NANO LETTERS 2025; 25:3662-3669. [PMID: 39985459 DOI: 10.1021/acs.nanolett.5c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Wet-chemical reactions, covering almost all solution-based synthesis in either the oil-phase or water-phase microenvironment, lead to the as-formed products with distinct morphologies, structures, and functionalities. However, crystal nucleation and growth dynamics under those microenvironments for the same material system have not been clarified. Using in situ transmission electron microscopy on the classical II-VI CdSe-based heterostructures with atomic scale resolution, notably, we revealed the formation of Au on the CdSe surface in the oil phase while the AuSe product was nucleated in the water phase. The nucleation was analogous to the two-step amorphous-to-crystalline transition, followed by growth or coalescence into polycrystalline nanoparticles. During the ex situ growth, the majority of AuSe was polycrystalline (∼79%) in the water phase, in contrast to ∼52% in the oil phase. Surprisingly, the proportion of single crystals prevailed, which was significantly increased to ∼76% in the in situ case. Such distinct behaviors were further verified through the liquid-cell environment and elemental characterizations.
Collapse
Affiliation(s)
- Simin Peng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linfeng Xu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zetan Cao
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuangwei Jiao
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Liu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Lu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenlong Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Wan J, Zhang Q, Liu E, Chen Y, Zheng J, Ren A, Drisdell WS, Zheng H. In-situ/ operando study of Cu-based nanocatalysts for CO 2 electroreduction using electrochemical liquid cell TEM. Front Chem 2025; 13:1525245. [PMID: 39950133 PMCID: PMC11821932 DOI: 10.3389/fchem.2025.1525245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
The structure of a nanocatalyst during electrocatalytic reactions often deviates from its pristine structure due to intrinsic properties, or physical and chemical adsorption at the catalytic surfaces. Taking Cu-based catalysts for CO2 electroreduction reactions (CO2RR) as an example, they often experience segregation, leaching, and alloying during reactions. With the recent breakthrough development of high-resolution polymer electrochemical liquid cells, in-situ electrochemical liquid cell transmission electron microscopy (EC-TEM) alongside other advanced microscopy techniques, has become a powerful platform for revealing electrocatalysts restructuring at the atomic level. Considering the complex reactions involving electrified solid-liquid interfaces and catalyst structural evolution with intermediates, systematic studies with multimodal approaches are crucial. In this article, we demonstrate a research protocol for the study of electrocatalysts structural evolution during reactions using the in-situ EC-TEM platform. Using Cu and CuAg nanowire catalysts for CO2RR as model systems, we describe the experimental procedures and findings. We highlight the platform's crucial role in elucidating atomic-scale pathways of nanocatalyst restructuring and identifying catalytic active sites, as well as avoiding potential artifacts to ensure unbiased conclusions. Using the multimodal characterization toolbox, we provide the opportunity to correlate the structure of a working catalyst with its performance. Finally, we discuss advancements as well as the remaining gap in elucidating the structural-performance relationship of working catalysts. We expect this article will assist in establishing guidelines for future investigations of complex electrochemical reactions, such as CO₂RR and other catalytic processes, using the in-situ EC-TEM platform.
Collapse
Affiliation(s)
- Jiawei Wan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Qiubo Zhang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ershuai Liu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yi Chen
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Jiana Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Amy Ren
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Walter S. Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Zhang DY, Xu Z, Li JY, Mao S, Wang H. Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics. ACS NANO 2025; 19:120-151. [PMID: 39723464 DOI: 10.1021/acsnano.4c12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions. We highlight the crucial role of graphene grids in cryogenic electron microscopy for achieving Ångstrom-level resolution for resolving molecular structures and the importance of graphene liquid cells in liquid-phase TEM for directly observing dynamics with subnanometer resolution at a frame rate of several frames per second, as well as the cross-talks of the two imaging modes. To understand the chemistry and physics encoded in these molecular movies, incorporating machine learning algorithms for image analysis provides a promising approach that further bolsters the resolution adventure. Besides reviewing the recent advances and methodologies in TEM imaging of individual molecules using graphene, this review also outlines future directions to improve these techniques and envision problems in molecular science, chemistry, and biology that could benefit from these experiments.
Collapse
Affiliation(s)
- De-Yi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhipeng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
6
|
Ummethala G, Jada R, Dutta-Gupta S, Park J, Tavabi AH, Basak S, Hooley R, Sun H, Pérez Garza HH, Eichel RA, Dunin-Borkowski RE, Malladi SRK. Real-time visualisation of fast nanoscale processes during liquid reagent mixing by liquid cell transmission electron microscopy. Commun Chem 2025; 8:8. [PMID: 39789330 PMCID: PMC11718259 DOI: 10.1038/s42004-025-01407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell. We succeeded in visualising a fast nanoscale crystallisation mechanism when an organic molecule of R-BINOL-CN dissolved in chloroform interacts with methanol. The scanning transmission electron microscopy images recorded in real-time during the interaction of the two volatile solvents reveal the formation of chain-like structures of R-BINOL-CN particles, whereas they coalesce to form single large particles when methanol is absent. Our approach of mixing liquids establishes a platform for novel LCTEM studies of a wide range of electron-beam-sensitive materials, including drug molecules, polymers and molecular amphiphiles.
Collapse
Affiliation(s)
- Govind Ummethala
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ravi Jada
- Advanced Organic Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Shourya Dutta-Gupta
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Junbeom Park
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shibabrata Basak
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Hongyu Sun
- DENSsolutions B.V, Delft, The Netherlands
| | | | - Rüdiger-A Eichel
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Sai Rama Krishna Malladi
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India.
| |
Collapse
|
7
|
DiCecco L, Tang T, Sone ED, Grandfield K. Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407539. [PMID: 39523734 PMCID: PMC11735904 DOI: 10.1002/smll.202407539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Liquid transmission electron microscopy (TEM) is a newly established technique broadly used to study reactions in situ. Since its emergence, complex and multifaceted biomineralization processes have been revealed with real-time resolution, where classical and non-classical mineralization pathways have been dynamically observed primarily for Ca and Fe-based mineral systems in situ. For years, classical crystallization pathways have dominated theories on biomineralization progression despite observations of non-traditional routes involving precursor phases using traditional- and cryo-TEM. The new dynamic lens provided by liquid TEM is a key correlate to techniques limited to time-stamped, static observations - helping shift paradigms in biomineralization toward non-classical theories with dynamic mechanistic visualization. Liquid TEM provides new insights into fundamental biomineralization processes and essential physiological and pathological processes for a wide range of organisms. This review critically reviews a summary of recent in situ liquid TEM research related to the biomineralization field. Key liquid TEM preparation and imaging parameters are provided as a foundation for researchers while technical challenges are discussed. In future, the expansion of liquid TEM research in the biomineralization field will lead to transformative discoveries, providing complementary dynamic insights into biological systems.
Collapse
Affiliation(s)
- Liza‐Anastasia DiCecco
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkPA16802USA
| | - Tengteng Tang
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Center for Applied Biomechanics and Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22911USA
| | - Eli D. Sone
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONM5S 3G9Canada
- Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
- Faculty of DentistryUniversity of TorontoTorontoONM5G 1G6Canada
| | - Kathryn Grandfield
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| |
Collapse
|
8
|
Smeaton MA, Abellan P, Spurgeon SR, Unocic RR, Jungjohann KL. Tutorial on In Situ and Operando (Scanning) Transmission Electron Microscopy for Analysis of Nanoscale Structure-Property Relationships. ACS NANO 2024; 18:35091-35103. [PMID: 39690460 PMCID: PMC11697340 DOI: 10.1021/acsnano.4c09256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
In situ and operando (scanning) transmission electron microscopy [(S)TEM] is a powerful characterization technique that uses imaging, diffraction, and spectroscopy to gain nano-to-atomic scale insights into the structure-property relationships in materials. This technique is both customizable and complex because many factors impact the ability to collect structural, compositional, and bonding information from a sample during environmental exposure or under application of an external stimulus. In the past two decades, in situ and operando (S)TEM methods have diversified and grown to encompass additional capabilities, higher degrees of precision, dynamic tracking abilities, enhanced reproducibility, and improved analytical tools. Much of this growth has been shared through the community and within commercialized products that enable rapid adoption and training in this approach. This tutorial aims to serve as a guide for students, collaborators, and nonspecialists to learn the important factors that impact the success of in situ and operando (S)TEM experiments and assess the value of the results obtained. As this is not a step-by-step guide, readers are encouraged to seek out the many comprehensive resources available for gaining a deeper understanding of in situ and operando (S)TEM methods, property measurements, data acquisition, reproducibility, and data analytics.
Collapse
Affiliation(s)
| | - Patricia Abellan
- Nantes
Université, CNRS, Institut des Matériaux de Nantes Jean
Rouxel, IMN, F-44000 Nantes, France
| | - Steven R. Spurgeon
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Raymond R. Unocic
- Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | |
Collapse
|
9
|
Wu ZP, Dinh D, Maswadeh Y, Caracciolo DT, Zhang H, Li T, Vargas JA, Madiou M, Chen C, Kong Z, Li Z, Zhang H, Ruiz Martínez J, Lu SS, Wang L, Ren Y, Petkov V, Zhong CJ. Interfacial Reactivity-Triggered Oscillatory Lattice Strains of Nanoalloys. J Am Chem Soc 2024; 146:35264-35274. [PMID: 39656092 DOI: 10.1021/jacs.4c12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Understanding the structure evolution of nanoalloys under reaction conditions is vital to the design of active and durable catalysts. Herein, we report an operando measurement of the dynamic lattice strains of dual-noble-metal alloyed with an earth-abundant metal as a model electrocatalyst in a working proton-exchange membrane fuel cell using synchrotron high-energy X-ray diffraction coupled with pair distribution function analysis. The results reveal an interfacial reaction-triggered oscillatory lattice strain in the alloy nanoparticles upon surface dealloying. Analysis of the lattice strains with an apparent oscillatory irregularity in terms of frequency and amplitude using time-frequency domain transformation and theoretical calculation reveals its origin from a metal atom vacancy diffusion pathway to facilitate realloying upon dealloying. This process, coupled with surface metal partial oxidation, constitutes a key factor for the nanoalloy's durability under the electrocatalytic oxygen reduction reaction condition, which serves as a new guiding principle for engineering durable or self-healable electrocatalysts for sustainable fuel cell energy conversion.
Collapse
Affiliation(s)
- Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dong Dinh
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Yazan Maswadeh
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
- Material Science Division, Eurofins EAG Laboratories, Sunnyvale, California 94086, United States
| | - Dominic T Caracciolo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Hui Zhang
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
| | - Tianyi Li
- X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jorge A Vargas
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
- Unidad Académica de Física, Universidad Autónoma de Zacatecas, Zacatecas 98098, Mexico
| | - Merry Madiou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zeqi Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Huabin Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz Martínez
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Susan S Lu
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lichang Wang
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Yang Ren
- X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
10
|
Nicolas WJ, Gillman C, Weaver SJ, Clabbers MTB, Shiriaeva A, Her AS, Martynowycz MW, Gonen T. Comprehensive microcrystal electron diffraction sample preparation for cryo-EM. Nat Protoc 2024:10.1038/s41596-024-01088-7. [PMID: 39706914 DOI: 10.1038/s41596-024-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/09/2024] [Indexed: 12/23/2024]
Abstract
Microcrystal electron diffraction (MicroED) has advanced structural methods across a range of sample types, from small molecules to proteins. This cryogenic electron microscopy (cryo-EM) technique involves the continuous rotation of small 3D crystals in the electron beam, while a high-speed camera captures diffraction data in the form of a movie. The crystal structure is subsequently determined by using established X-ray crystallographic software. MicroED is a technique still under development, and hands-on expertise in sample preparation, data acquisition and processing is not always readily accessible. This comprehensive guide on MicroED sample preparation addresses commonly used methods for various sample categories, including room temperature solid-state small molecules and soluble and membrane protein crystals. Beyond detailing the steps of sample preparation for new users, and because every crystal requires unique growth and sample-preparation conditions, this resource provides instructions and optimization strategies for MicroED sample preparation. The protocol is suitable for users with expertise in biochemistry, crystallography, general cryo-EM and crystallography data processing. MicroED experiments, from sample vitrification to final structure, can take anywhere from one workday to multiple weeks, especially when cryogenic focused ion beam milling is involved.
Collapse
Affiliation(s)
- William J Nicolas
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Cody Gillman
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sara J Weaver
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T B Clabbers
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Ampon Sae Her
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Wu H, Sun H, Oerlemans RAJF, Li S, Shao J, Wang J, Joosten RRM, Lou X, Luo Y, Zheng H, Abdelmohsen LKEA, Garza HHP, van Hest JCM, Friedrich H. Understanding, Mimicking, and Mitigating Radiolytic Damage to Polymers in Liquid Phase Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402987. [PMID: 39548916 DOI: 10.1002/adma.202402987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Advances in liquid phase transmission electron microscopy (LP-TEM) have enabled the monitoring of polymer dynamics in solution at the nanoscale, but radiolytic damage during LP-TEM imaging limits its routine use in polymer science. This study focuses on understanding, mimicking, and mitigating radiolytic damage observed in functional polymers in LP-TEM. It is quantitatively demonstrated how polymer damage occurs across all conceivable (LP-)TEM environments, and the key characteristics and differences between polymer degradation in water vapor and liquid water are elucidated. Importantly, it is shown that the hydroxyl radical-rich environment in LP-TEM can be approximated by UV light irradiation in the presence of hydrogen peroxide, allowing the use of bulk techniques to probe damage at the polymer chain level. Finally, the protective effects of commonly used hydroxyl radical scavengers are compared, revealing that the effectiveness of graphene's protection is distance-dependent. The work provides detailed methodological guidance and establishes a baseline for polymer degradation in LP-TEM, paving the way for future research on nanoscale tracking of shape transitions and drug encapsulation of polymer assemblies in solution.
Collapse
Affiliation(s)
- Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Roy A J F Oerlemans
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Siyu Li
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Xianwen Lou
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Hongkui Zheng
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | | | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
12
|
Lee S, Watanabe T, Ross FM, Park JH. Temperature Dependent Growth Kinetics of Pd Nanocrystals: Insights from Liquid Cell Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403969. [PMID: 39109568 DOI: 10.1002/smll.202403969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Indexed: 12/20/2024]
Abstract
Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeung Hun Park
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA, 90292, USA
| |
Collapse
|
13
|
Cai M, Zhang Y, He P, Zhang Z. Recent Advances in Revealing the Electrocatalytic Mechanism for Hydrogen Energy Conversion System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405008. [PMID: 39075971 DOI: 10.1002/smll.202405008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Indexed: 07/31/2024]
Abstract
In light of the intensifying global energy crisis and the mounting demand for environmental protection, it is of vital importance to develop advanced hydrogen energy conversion systems. Electrolysis cells for hydrogen production and fuel cell devices for hydrogen utilization are indispensable in hydrogen energy conversion. As one of the electrolysis cells, water splitting involves two electrochemical reactions, hydrogen evolution reaction and oxygen evolution reaction. And oxygen reduction reaction coupled with hydrogen oxidation reaction, represent the core electrocatalytic reactions in fuel cell devices. However, the inherent complexity and the lack of a clear understanding of the structure-performance relationship of these electrocatalytic reactions, have posed significant challenges to the advancement of research in this field. In this work, the recent development in revealing the mechanism of electrocatalytic reactions in hydrogen energy conversion systems is reviewed, including in situ characterization and theoretical calculation. First, the working principles and applications of operando measurements in unveiling the reaction mechanism are systematically introduced. Then the application of theoretical calculations in the design of catalysts and the investigation of the reaction mechanism are discussed. Furthermore, the challenges and opportunities are also summarized and discussed for paving the development of hydrogen energy conversion systems.
Collapse
Affiliation(s)
- Mingxin Cai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiran Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Peilei He
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhicheng Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
14
|
Chao HY, Nolan AM, Hall AT, Golberg D, Park C, Yang WCD, Mo Y, Sharma R, Cumings J. Resistance of Boron Nitride Nanotubes to Radiation-Induced Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18328-18337. [PMID: 39502808 PMCID: PMC11533215 DOI: 10.1021/acs.jpcc.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024]
Abstract
We present unprecedented results on the damage thresholds and pathways for boron nitride nanotubes (BNNT) under the influence of energetic electrons in an oxidative gas environment, using an environmental aberration-corrected electron microscope over a range of oxygen pressures. We observe a damage cascade process that resists damage until a higher electron dose, compared with carbon nanotubes, initiating at defect-free BNNT sidewalls and proceeding through the conversion from crystalline nanotubes to amorphous boron nitride (BN), resisting oxidation throughout. We compare with prior results on the oxidation of carbon nanotubes and present a model that attributes the onset of damage in both cases to a physisorbed oxygen layer that reduces the threshold for damage onset. Surprisingly, increased temperatures offer protection against damage, as do electron dose rates that significantly exceed the oxygen dose rates, and our model attributes both effects to a physisorbed oxygen population.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Department of Materials Science and Engineering, University of Maryland at College Park, College Park, Maryland 20742, United States
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Adelaide M Nolan
- Department of Materials Science and Engineering, University of Maryland at College Park, College Park, Maryland 20742, United States
| | - Alex T Hall
- Department of Materials Science and Engineering, University of Maryland at College Park, College Park, Maryland 20742, United States
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan
| | - Cheol Park
- Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Wei-Chang David Yang
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yifei Mo
- Department of Materials Science and Engineering, University of Maryland at College Park, College Park, Maryland 20742, United States
| | - Renu Sharma
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John Cumings
- Department of Materials Science and Engineering, University of Maryland at College Park, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Koo K, Seo JH, Lee J, Lee S, Kwon JH. Investigating Charge-Induced Transformations of Metal Nanoparticles in a Radically-Inert Liquid: A Liquid-Cell TEM Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1709. [PMID: 39513789 PMCID: PMC11547474 DOI: 10.3390/nano14211709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
We present a novel in situ liquid-cell transmission electron microscopy (TEM) approach to study the behavior of metal nanoparticles under high-energy electron irradiation. By utilizing a radically-inert liquid environment, we aim to minimize radiolysis effects and explore the influence of charge-induced transformations. We observed complex dynamics in nanoparticle behavior, including morphological changes and transitions between amorphous and crystalline states. These transformations are attributed to the delicate interplay between charge accumulation on the nanoparticles and enhanced radiolysis, suggesting a significant role for charge-assisted processes in nanoparticle evolution. Our findings provide valuable insights into the fundamental mechanisms driving nanoparticle behavior at the nanoscale and demonstrate the potential of liquid-cell TEM for studying complex physicochemical processes in controlled environments.
Collapse
Affiliation(s)
- Kunmo Koo
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (K.K.); (J.H.S.); (J.L.)
| | - Jong Hyeok Seo
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (K.K.); (J.H.S.); (J.L.)
- Department of Nano Convergence Measurement, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Joohyun Lee
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (K.K.); (J.H.S.); (J.L.)
| | - Sooheyong Lee
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (K.K.); (J.H.S.); (J.L.)
- Department of Nano Convergence Measurement, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji-Hwan Kwon
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (K.K.); (J.H.S.); (J.L.)
- Department of Nano Convergence Measurement, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Parlinska-Wojtan M, Tarnawski TR, Depciuch J, De Marco ML, Sobczak K, Matlak K, Pawlyta M, Schaeublin RE, Chee SW. Understanding the Growth of Electrodeposited PtNi Nanoparticle Films Using Correlated In Situ Liquid Cell Transmission Electron Microscopy and Synchrotron Radiation. NANO LETTERS 2024; 24:12361-12367. [PMID: 39146017 PMCID: PMC11468670 DOI: 10.1021/acs.nanolett.4c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Electrodeposition is a versatile method for synthesizing nanostructured films, but controlling the morphology of films containing two or more elements requires a detailed understanding of the deposition process. We used liquid cell transmission electron microscopy to follow the electrodeposition of PtNi nanoparticle films on a carbon electrode during cyclic voltammetry. These in situ observations show that the film thickness increases with each cycle, and by the fourth cycle, branched and porous structures could be deposited. Synchrotron studies using in situ transmission X-ray microscopy further revealed that Ni was deposited in the oxide phase. Ex situ studies of bulk electrodeposited PtNi nanoparticle films indicated the number of cycles and the scanning rate were the most influential parameters, resulting in a different thickness, a different homogeneity, a different nanoparticle size, and a different surface structure, while the precursor concentration did not have a significant influence. By varying the potential range, we were able to obtain films with different elemental compositions.
Collapse
Affiliation(s)
| | | | - Joanna Depciuch
- Institute
of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland
- Department
of Biochemistry and Molecular Biology, Medical
University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Maria Letizia De Marco
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Kamil Sobczak
- Faculty
of Chemistry, Biological and Chemical Research
Centre, 02-089 Warszawa, Poland
| | - Krzysztof Matlak
- Solaris
National Synchrotron Radiation Centre, Jagiellonian
University, Czerwone
Maki 98, 30-392 Krakow, Poland
| | - Mirosława Pawlyta
- Materials
Research Laboratory, Silesian University
of Technology, Konarskiego
18A, 44-100 Gliwice, Poland
| | - Robin E. Schaeublin
- ScopeM-Scientific
Center for Optical and Electron Microscopy, ETH Zürich, 8093 Zürich, Switzerland
| | - See Wee Chee
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
18
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
19
|
Zhang L, Iwata R, Lu Z, Wang X, Díaz-Marín CD, Zhong Y. Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions. Chem Rev 2024; 124:10052-10111. [PMID: 39194152 DOI: 10.1021/acs.chemrev.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.
Collapse
Affiliation(s)
- Lenan Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ryuichi Iwata
- Toyota Central R&D Laboratories, Inc, Nagakute City 480-1192, Japan
| | - Zhengmao Lu
- Institute of Mechanical Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Xuanjie Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Ji P, Lei X, Su D. In Situ Transmission Electron Microscopy Methods for Lithium-Ion Batteries. SMALL METHODS 2024; 8:e2301539. [PMID: 38385838 DOI: 10.1002/smtd.202301539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Indexed: 02/23/2024]
Abstract
In situ Transmission Electron Microscopy (TEM) stands as an invaluable instrument for the real-time examination of the structural changes in materials. It features ultrahigh spatial resolution and powerful analytical capability, making it significantly versatile across diverse fields. Particularly in the realm of Lithium-Ion Batteries (LIBs), in situ TEM is extensively utilized for real-time analysis of phase transitions, degradation mechanisms, and the lithiation process during charging and discharging. This review aims to provide an overview of the latest advancements in in situ TEM applications for LIBs. Additionally, it compares the suitability and effectiveness of two techniques: the open cell technique and the liquid cell technique. The technical aspects of both the open cell and liquid cell techniques are introduced, followed by a comparison of their applications in cathodes, anodes, solid electrolyte interphase (SEI) formation, and lithium dendrite growth in LIBs. Lastly, the review concludes by stimulating discussions on possible future research trajectories that hold potential to expedite the progression of battery technology.
Collapse
Affiliation(s)
- Pengxiang Ji
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xincheng Lei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Guan Y, Kümper J, Mürtz SD, Kumari S, Hausoul PJC, Palkovits R, Sautet P. Origin of copper dissolution under electrocatalytic reduction conditions involving amines. Chem Sci 2024:d4sc01944j. [PMID: 39170715 PMCID: PMC11331451 DOI: 10.1039/d4sc01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Cu dissolution has been identified as the dominant process that causes cathode degradation and losses even under cathodic conditions involving methylamine. Despite extensive experimental research, our fundamental and theoretical understanding of the atomic-scale mechanism for Cu dissolution under electrochemical conditions, eventually coupled with surface restructuring processes, is limited. Here, driven by the observation that the working Cu electrode is corroded using mixtures of acetone and methylamine even under reductive potential conditions (-0.75 V vs. RHE), we employed Grand Canonical density functional theory to understand this dynamic process under potential from a microscopic perspective. We show that amine ligands in solution directly chemisorb on the electrode, coordinate with the metal center, and drive the rearrangement of the copper surface by extracting Cu as adatoms in low coordination positions, where other amine ligands can coordinate and stabilize a surface copper-ligand complex, finally forming a detached Cu-amine cationic complex in solution, even under negative potential conditions. Calculations predict that dissolution would occur for a potential of -1.1 V vs. RHE or above. Our work provides a fundamental understanding of Cu dissolution facilitated by surface restructuring in amine solutions under electroreduction conditions, which is required for the rational design of durable Cu-based cathodes for electrochemical amination or other amine involving reduction processes.
Collapse
Affiliation(s)
- Yani Guan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Justus Kümper
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Sonja D Mürtz
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Peter J C Hausoul
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
- Institute for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich Am Brainergy Park 4 52428 Jülich Germany
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
22
|
Cao T, Liu Y, Gao C, Yuan Y, Chen W, Zhang T. Understanding Nanoscale Interactions between Minerals and Microbes: Opportunities for Green Remediation of Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39093060 DOI: 10.1021/acs.est.4c05324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In situ contaminant degradation and detoxification mediated by microbes and minerals is an important element of green remediation. Improved understanding of microbe-mineral interactions on the nanoscale offers promising opportunities to further minimize the environmental and energy footprints of site remediation. In this Perspective, we describe new methodologies that take advantage of an array of multidisciplinary tools─including multiomics-based analysis, bioinformatics, machine learning, gene editing, real-time spectroscopic and microscopic analysis, and computational simulations─to identify the key microbial drivers in the real environments, and to characterize in situ the dynamic interplay between minerals and microbes with high spatiotemporal resolutions. We then reflect on how the knowledge gained can be exploited to modulate the binding, electron transfer, and metabolic activities at the microbe-mineral interfaces, to develop new in situ contaminant degradation and detoxication technologies with combined merits of high efficacy, material longevity, and low environmental impacts. Two main strategies are proposed to maximize the synergy between minerals and microbes, including using mineral nanoparticles to enhance the versatility of microorganisms (e.g., tolerance to environmental stresses, growth and metabolism, directed migration, selectivity, and electron transfer), and using microbes to synthesize and regenerate highly dispersed nanostructures with desired structural/surface properties and reactivity.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Cheng Gao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yuxin Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
23
|
Arenas Esteban D, Wang D, Kadu A, Olluyn N, Sánchez-Iglesias A, Gomez-Perez A, González-Casablanca J, Nicolopoulos S, Liz-Marzán LM, Bals S. Quantitative 3D structural analysis of small colloidal assemblies under native conditions by liquid-cell fast electron tomography. Nat Commun 2024; 15:6399. [PMID: 39080248 PMCID: PMC11289127 DOI: 10.1038/s41467-024-50652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Electron tomography has become a commonly used tool to investigate the three-dimensional (3D) structure of nanomaterials, including colloidal nanoparticle assemblies. However, electron microscopy is typically done under high-vacuum conditions, requiring sample preparation for assemblies obtained by wet colloid chemistry methods. This involves solvent evaporation and deposition on a solid support, which consistently alters the nanoparticle organization. Here, we suggest using electron tomography to study nanoparticle assemblies in their original colloidal liquid environment. To address the challenges related to electron tomography in liquid, we devise a method that combines fast data acquisition in a commercial liquid-cell with a dedicated alignment and reconstruction workflow. We present the advantages of this methodology in accurately characterizing two different systems. 3D reconstructions of assemblies comprising polystyrene-capped Au nanoparticles encapsulated in polymeric shells reveal less compact and more distorted configurations for experiments performed in a liquid medium compared to their dried counterparts. A similar expansion can be observed in quantitative analysis of the surface-to-surface distances of self-assembled Au nanorods in water rather than in a vacuum, in agreement with bulk measurements. This study, therefore, emphasizes the importance of developing high-resolution characterization tools that preserve the native environment of colloidal nanostructures.
Collapse
Affiliation(s)
- Daniel Arenas Esteban
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Da Wang
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ajinkya Kadu
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
| | - Noa Olluyn
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | | | | | | | - Luis M Liz-Marzán
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
- Cinbio, Universidade de Vigo, 36310, Vigo, Spain.
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
24
|
Zhang D, Shao Y, Zhou J, Zhan Q, Wen Z, Mao S, Wei J, Qi L, Shao Y, Wang H. Nanopipette dynamic microscopy unveils nano coffee ring. Proc Natl Acad Sci U S A 2024; 121:e2314320121. [PMID: 38954540 PMCID: PMC11252805 DOI: 10.1073/pnas.2314320121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Liquid-phase electron microscopy (LP-EM) imaging has revolutionized our understanding of nanosynthesis and assembly. However, the current closed geometry limits its application for open systems. The ubiquitous physical process of the coffee-ring phenomenon that underpins materials and engineering science remains elusive at the nanoscale due to the lack of experimental tools. We introduce a quartz nanopipette liquid cell with a tunable dimension that requires only standard microscopes. Depending on the imaging condition, the open geometry of the nanopipette allows the imaging of evaporation-induced pattern formation, but it can also function as an ordinary closed-geometry liquid cell where evaporation is negligible despite the nano opening. The nano coffee-ring phenomenon was observed by tracking individual nanoparticles in an evaporating nanodroplet created from a thin liquid film by interfacial instability. Nanoflows drive the assembly and disruption of a ring pattern with the absence of particle-particle correlations. With surface effects, nanoflows override thermal fluctuations at tens of nanometers, in which nanoparticles displayed a "drunken man trajectory" and performed work at a value much smaller than kBT.
Collapse
Affiliation(s)
- Deyi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Yi Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Jiayi Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiangwei Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Ziyang Wen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, People’s Republic of China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| |
Collapse
|
25
|
Pileni MP. "Nano-egg" superstructures of hydrophobic nanocrystals dispersed in water. Phys Chem Chem Phys 2024; 26:16931-16941. [PMID: 38835199 DOI: 10.1039/d4cp01299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In this feature article, we use hydrophobic ferrite (Fe3O4) nanocrystal shells filled with Au nanocrystals self-assembled into 3D superlattices and dispersed in water. These superstructures act as nano-heaters. The stability of such superstructures is very high, even for several years, when stored at room temperature. When subjected to an electron beam, the inverted structure of Fe3O4 structures is gradually dissolved due to the formation of hydrated electrons and hydroxyl radicals.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université, Department of Chemistry, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
26
|
Lan Y, Wang Y, Wang Y, Lu G, Liu L, Tang T, Li M, Cheng Y, Xiao J, Li X. Chip-Inspired Design of High-Performance Lithium-Sulfur Batteries by Integrating Monodisperse Sulfur Nanoreactors on Graphene. ACS NANO 2024; 18:15638-15650. [PMID: 38848453 DOI: 10.1021/acsnano.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
For practical application of lithium-sulfur batteries (LSBs), designing devices with an overall optimal structure instead of modifying electrode materials is significant. Herein, we report a chip-inspired design of a vertically integrated structure as an LSB cathode by implanting Mo2C nanoparticles and nanosulfur into the reduced graphene oxide (rGO) matrix. This configuration enabled the synthesis of isolated sulfur nanoreactors (S-NRs) integrated in a tandem array on the rGO, generating chip-like integrated LSBs. The spatial confinement/protection and concentration gradient of the S-NRs effectively avoided the dissolution, diffusion, and loss of polysulfides, thereby enhancing the sulfur utilization and redox reaction kinetics. Additionally, the adaptive storage energy can be improved by utilizing the tandem, isolation, and synergistic multiplicative effect among the nanoreactor units. As a result, the integrated LSB cathode obtained excellent electrochemical performances with an initial capacity of 1392 mAh g-1 at 0.1C, a low capacity decay rate of 0.017% per cycle during 1500 cycles of operation at 0.5C, and a superior rate performance. This work provides a rational design idea and method of further advancing the precise preparation of high-performance energy storage devices.
Collapse
Affiliation(s)
- Yudong Lan
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Yiwen Wang
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Yu Wang
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guiling Lu
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ling Liu
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Tao Tang
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Yong Cheng
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianrong Xiao
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Xinyu Li
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
27
|
Shi F, Tieu P, Hu H, Peng J, Zhang W, Li F, Tao P, Song C, Shang W, Deng T, Gao W, Pan X, Wu J. Direct in-situ imaging of electrochemical corrosion of Pd-Pt core-shell electrocatalysts. Nat Commun 2024; 15:5084. [PMID: 38877007 PMCID: PMC11178921 DOI: 10.1038/s41467-024-49434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Corrosion of electrocatalysts during electrochemical operations, such as low potential - high potential cyclic swapping, can cause significant performance degradation. However, the electrochemical corrosion dynamics, including structural changes, especially site and composition specific ones, and their correlation with electrochemical processes are hidden due to the insufficient spatial-temporal resolution characterization methods. Using electrochemical liquid cell transmission electron microscopy, we visualize the electrochemical corrosion of Pd@Pt core-shell octahedral nanoparticles towards a Pt nanoframe. The potential-dependent surface reconstruction during multiple continuous in-situ cyclic voltammetry with clear redox peaks is captured, revealing an etching and deposition process of Pd that results in internal Pd atoms being relocated to external surface, followed by subsequent preferential corrosion of Pt (111) terraces rather than the edges or corners, simultaneously capturing the structure evolution also allows to attribute the site-specific Pt and Pd atomic dynamics to individual oxidation and reduction events. This work provides profound insights into the surface reconstruction of nanoparticles during complex electrochemical processes.
Collapse
Affiliation(s)
- Fenglei Shi
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hao Hu
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Jiaheng Peng
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Wencong Zhang
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Fan Li
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Peng Tao
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Chengyi Song
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Wen Shang
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Tao Deng
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Wenpei Gao
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Jianbo Wu
- Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
28
|
Davletshin A, Song W. Operando scanning electron microscopy platform for in situ imaging of fluid evolution in nanoporous shale. LAB ON A CHIP 2024; 24:2920-2926. [PMID: 38660746 DOI: 10.1039/d3lc01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fluid-solid interactions in nanoporous materials underlie processes fundamental to natural and engineered processes, including the thermochemical transformation of argillaceous materials during high-level nuclear waste disposal. Operando fluid-solid resolution at the nanoscale, however, is still not possible with existing optical and electron microscopy approaches that are constrained by the diffraction limit of light and by vacuum-fluid incompatibility, respectively. In this work, we develop an operando scanning electron microscopy (SEM) platform that enables the first direct in situ imaging of dynamic fluid-solid interactions in nanoporous materials with spatio-temporal-chemical resolutions of ∼2.5 nm per pixel and 10 fps, along with elemental distributions. Using this platform, we reveal necessary conditions for thermochemical pore and fracture generation in shales and measure their surface wetting characteristics that constrain the feasibility of high-level nuclear waste containment. Notably, we show that low heating-rate conditions typical of radioactive decay produce hydrocarbon liquids that wet fracture and pore surfaces in a self-sealing manner to impede aqueous radionuclide advection.
Collapse
Affiliation(s)
- Artur Davletshin
- Center for Subsurface Energy and the Environment, University of Texas at Austin, USA.
| | - Wen Song
- Center for Subsurface Energy and the Environment, University of Texas at Austin, USA.
| |
Collapse
|
29
|
Hu H, Yang R, Zeng Z. Advances in Electrochemical Liquid-Phase Transmission Electron Microscopy for Visualizing Rechargeable Battery Reactions. ACS NANO 2024; 18:12598-12609. [PMID: 38723158 DOI: 10.1021/acsnano.4c03319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This review presents an overview of the application of electrochemical liquid-phase transmission electron microscopy (ELP-TEM) in visualizing rechargeable battery reactions. The technique provides atomic-scale spatial resolution and real-time temporal resolution, enabling direct observation and analysis of battery materials and processes under realistic working conditions. The review highlights key findings and insights obtained by ELP-TEM on the electrochemical reaction mechanisms and discusses the current limitations and future prospects of ELP-TEM, including improvements in spatial and temporal resolution and the expansion of the scope of materials and systems that can be studied. Furthermore, the review underscores the critical role of ELP-TEM in understanding and optimizing the design and fabrication of high-performance, long-lasting rechargeable batteries.
Collapse
Affiliation(s)
- Honglu Hu
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
| | - Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| |
Collapse
|
30
|
Dong W, Dai Z, Liu L, Zhang Z. Toward Clean 2D Materials and Devices: Recent Progress in Transfer and Cleaning Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303014. [PMID: 38049925 DOI: 10.1002/adma.202303014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/30/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional (2D) materials have tremendous potential to revolutionize the field of electronics and photonics. Unlocking such potential, however, is hampered by the presence of contaminants that usually impede the performance of 2D materials in devices. This perspective provides an overview of recent efforts to develop clean 2D materials and devices. It begins by discussing conventional and recently developed wet and dry transfer techniques and their effectiveness in maintaining material "cleanliness". Multi-scale methodologies for assessing the cleanliness of 2D material surfaces and interfaces are then reviewed. Finally, recent advances in passive and active cleaning strategies are presented, including the unique self-cleaning mechanism, thermal annealing, and mechanical treatment that rely on self-cleaning in essence. The crucial role of interface wetting in these methods is emphasized, and it is hoped that this understanding can inspire further extension and innovation of efficient transfer and cleaning of 2D materials for practical applications.
Collapse
Affiliation(s)
- Wenlong Dong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
31
|
Smith JW, Carnevale LN, Das A, Chen Q. Electron videography of a lipid-protein tango. SCIENCE ADVANCES 2024; 10:eadk0217. [PMID: 38630809 PMCID: PMC11023515 DOI: 10.1126/sciadv.adk0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Lauren N. Carnevale
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Aditi Das
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Li JY, Wang ZB, Xu ZP, Xiao DD, Gu L, Wang H. Modes of Nanodroplet Formation and Growth on an Ultrathin Water Film. J Phys Chem B 2024; 128:3732-3741. [PMID: 38568211 DOI: 10.1021/acs.jpcb.3c07150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Using nanobubbles as geometrical confinements, we create a thin water film (∼10 nm) in a graphene liquid cell and investigate the evolution of its instability at the nanoscale under transmission electron microscopy. The breakdown of the water films, resulting in the subsequent formation and growth of nanodroplets, is visualized and generalized into different modes. We identified distinct droplet formation and growth modes by analyzing the dynamic processes involving 61 droplets and 110 liquid bridges within 31 Graphene Liquid Cells (GLCs). Droplet formation is influenced by their positions in GLCs, taking on a semicircular shape at the edge and a circular shape in the middle. Growth modes include liquid mass transfer driven by Plateau-Rayleigh instability and merging processes in and out-of-plane of the graphene interface. Droplet growth can lead to the formation of liquid bridges for which we obtain multiview projections. Data analysis reveals the general dynamics of liquid bridges, including drawing liquids from neighboring residual water films, merging with surrounding droplets, and merging with other liquid bridges. Our experimental observations provide insights into fluid transport at the nanoscale.
Collapse
Affiliation(s)
- Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Zi-Bing Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Zhi-Peng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Dong-Dong Xiao
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
- School of Material Science and Engineering, Tsinghua University, Beijing 100190, P. R. China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
33
|
Sharma R, Yang WCD. Perspective and prospects of in situ transmission/scanning transmission electron microscopy. Microscopy (Oxf) 2024; 73:79-100. [PMID: 38006307 DOI: 10.1093/jmicro/dfad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
In situ transmission/scanning transmission electron microscopy (TEM/STEM) measurements have taken a central stage for establishing structure-chemistry-property relationship over the past couple of decades. The challenges for realizing 'a lab-in-gap', i.e. gap between the objective lens pole pieces, or 'a lab-on-chip', to be used to carry out experiments are being met through continuous instrumental developments. Commercially available TEM columns and sample holder, that have been modified for in situ experimentation, have contributed to uncover structural and chemical changes occurring in the sample when subjected to external stimulus such as temperature, pressure, radiation (photon, ions and electrons), environment (gas, liquid and magnetic or electrical field) or a combination thereof. Whereas atomic resolution images and spectroscopy data are being collected routinely using TEM/STEM, temporal resolution is limited to millisecond. On the other hand, better than femtosecond temporal resolution can be achieved using an ultrafast electron microscopy or dynamic TEM, but the spatial resolution is limited to sub-nanometers. In either case, in situ experiments generate large datasets that need to be transferred, stored and analyzed. The advent of artificial intelligence, especially machine learning platforms, is proving crucial to deal with this big data problem. Further developments are still needed in order to fully exploit our capability to understand, measure and control chemical and/or physical processes. We present the current state of instrumental and computational capabilities and discuss future possibilities.
Collapse
Affiliation(s)
- Renu Sharma
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Wei-Chang David Yang
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
34
|
Mulvey JT, Iyer KP, Ortega T, Merham JG, Pivak Y, Sun H, Hochbaum AI, Patterson JP. Correlating electrochemical stimulus to structural change in liquid electron microscopy videos using the structural dissimilarity metric. Ultramicroscopy 2024; 257:113894. [PMID: 38056395 DOI: 10.1016/j.ultramic.2023.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
In-situ liquid cell transmission electron microscopy (LCTEM) with electrical biasing capabilities has emerged as an invaluable tool for directly imaging electrode processes with high temporal and spatial resolution. However, accurately quantifying structural changes that occur on the electrode and subsequently correlating them to the applied stimulus remains challenging. Here, we present structural dissimilarity (DSSIM) analysis as segmentation-free video processing algorithm for locally detecting and quantifying structural change occurring in LCTEM videos. In this study, DSSIM analysis is applied to two in-situ LCTEM videos to demonstrate how to implement this algorithm and interpret the results. We show DSSIM analysis can be used as a visualization tool for qualitative data analysis by highlighting structural changes which are easily missed when viewing the raw data. Furthermore, we demonstrate how DSSIM analysis can serve as a quantitative metric and efficiently convert 3-dimensional microscopy videos to 1-dimenional plots which makes it easy to interpret and compare events occurring at different timepoints in a video. In the analyses presented here, DSSIM is used to directly correlate the magnitude and temporal scale of structural change to the features of the applied electrical bias. ImageJ, Python, and MATLAB programs, including a user-friendly interface and accompanying documentation, are published alongside this manuscript to make DSSIM analysis easily accessible to the scientific community.
Collapse
Affiliation(s)
- Justin T Mulvey
- Department of Material Science and Engineering, University of California-Irvine, Irvine, CA 92697, USA.
| | - Katen P Iyer
- Department of Material Science and Engineering, University of California-Irvine, Irvine, CA 92697, USA
| | - Tomàs Ortega
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA 92697, USA
| | - Jovany G Merham
- Department of Chemistry, University of California, California-Irvine, Irvine, CA 92697, USA
| | - Yevheniy Pivak
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, the Netherlands
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, the Netherlands
| | - Allon I Hochbaum
- Department of Material Science and Engineering, University of California-Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, California-Irvine, Irvine, CA 92697, USA; Department of Chemical and Biomolecular Engineering, University of California, California-Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, California-Irvine, Irvine, CA 92697, USA
| | - Joseph P Patterson
- Department of Material Science and Engineering, University of California-Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Zhou X, Chieng A, Wang S. Label-Free Optical Imaging of Nanoscale Single Entities. ACS Sens 2024; 9:543-554. [PMID: 38346398 PMCID: PMC10990724 DOI: 10.1021/acssensors.3c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The advancement of optical microscopy technologies has achieved imaging of nanoscale objects, including nanomaterials, virions, organelles, and biological molecules, at the single entity level. Recently developed plasmonic and scattering based optical microscopy technologies have enabled label-free imaging of single entities with high spatial and temporal resolutions. These label-free methods eliminate the complexity of sample labeling and minimize the perturbation of the analyte native state. Additionally, these imaging-based methods can noninvasively probe the dynamics and functions of single entities with sufficient throughput for heterogeneity analysis. This perspective will review label-free single entity imaging technologies and discuss their principles, applications, and key challenges.
Collapse
Affiliation(s)
- Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Andy Chieng
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
36
|
Smith JG, Sawant KJ, Zeng Z, Eldred TB, Wu J, Greeley JP, Gao W. Disproportionation chemistry in K 2PtCl 4 visualized at atomic resolution using scanning transmission electron microscopy. SCIENCE ADVANCES 2024; 10:eadi0175. [PMID: 38335285 PMCID: PMC10857378 DOI: 10.1126/sciadv.adi0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The direct observation of a solid-state chemical reaction can reveal otherwise hidden mechanisms that control the reaction kinetics. However, probing the chemical bond breaking and formation at the molecular level remains challenging because of the insufficient spatial-temporal resolution and composition analysis of available characterization methods. Using atomic-resolution differential phase-contrast imaging in scanning transmission electron microscopy, we have visualized the decomposition chemistry of K2PtCl4 to identify its transient intermediate phases and their interfaces that characterize the chemical reduction process. The crystalline structure of K2PtCl4 is found to undergo a disproportionation reaction to form K2PtCl6, followed by gradual reduction to crystalline Pt metal and KCl. By directly imaging different Pt─Cl bond configurations and comparing them to models predicted via density functional theory calculations, a causal connection between the initial and final states of a chemical reaction is established, showcasing new opportunities to resolve reaction pathways through atomistic experimental visualization.
Collapse
Affiliation(s)
- Jacob G. Smith
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Kaustubh J. Sawant
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Tim B. Eldred
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jianbo Wu
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jeffrey P. Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenpei Gao
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
37
|
Park J, Jeong H, Noh N, Park JS, Ji S, Kang S, Huh Y, Hyun J, Yuk JM. Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309936. [PMID: 38016113 DOI: 10.1002/adma.202309936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Single-molecule techniques are powerful microscopy methods that provide new insights into biological processes. Liquid-phase transmission electron microscopy (LP-TEM) is an ideal single-molecule technique for overcoming the poor spatiotemporal resolution of optical approaches. However, single-molecule LP-TEM is limited by several challenges such as electron-beam-induced molecular damage, difficulty in identifying biomolecular species, and a lack of analytical approaches for conformational dynamics. Herein, a single-molecule graphene liquid-cell TEM (GLC-TEM) technique that enables the investigation of real-time structural perturbations of intact amyloid fibrils is presented. It is demonstrated that graphene membranes significantly extend the observation period of native amyloid beta proteins without causing oxidative damage owing to electron beams, which is necessary for imaging. Stochastic and time-resolved investigations of single fibrils reveal that structural perturbations in the early fibrillar stage are responsible for the formation of various amyloid polymorphs. The advantage of observing structural behavior in real time with unprecedented resolution will potentially make GLC-TEM a complementary approach to other single-molecule techniques.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeongseop Jeong
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Chungcheongbuk-do, Cheongju-si, 28119, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sung Kang
- Analysis and Assessment Research Center, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yoon Huh
- Analysis and Assessment Research Center, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
38
|
Bijelić L, Ruiz-Zepeda F, Hodnik N. The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure-property relationships of Pt-based fuel cells electrocatalysts. Inorg Chem Front 2024; 11:323-341. [PMID: 38235274 PMCID: PMC10790562 DOI: 10.1039/d3qi01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.
Collapse
Affiliation(s)
- Lazar Bijelić
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| | - Francisco Ruiz-Zepeda
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute for Metals and Technology IMT Lepi pot 11 1000 Ljubljana Slovenia
| | - Nejc Hodnik
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| |
Collapse
|
39
|
Pivak Y, Park J, Basak S, Eichel RA, Beker A, Rozene A, Pérez Garza HH, Sun H. High-resolution and analytical electron microscopy in a liquid flow cell via gas purging. Microscopy (Oxf) 2023; 72:520-524. [PMID: 37162280 DOI: 10.1093/jmicro/dfad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
Liquid-phase transmission electron microscopy (LPTEM) technique has been used to perform a wide range of in situ and operando studies. While most studies are based on the sample contrast change in the liquid, acquiring high qualitative results in the native liquid environment still poses a challenge. Herein, we present a novel and facile method to perform high-resolution and analytical electron microscopy studies in a liquid flow cell. This technique is based on removing the liquid from the observation area by a flow of gas. It is expected that the proposed approach can find broad applications in LPTEM studies.
Collapse
Affiliation(s)
- Yevheniy Pivak
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Junbeom Park
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Shibabrata Basak
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Rüdiger-Albert Eichel
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Anne Beker
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Alejandro Rozene
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | | | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| |
Collapse
|
40
|
Wang W, Erofeev I, He Y, Yang F, Yan H, Lu J, Mirsaidov U. Direct Observation of Hollow Bimetallic Nanoparticle Formation through Galvanic Replacement and Etching Reactions. NANO LETTERS 2023. [PMID: 37988597 DOI: 10.1021/acs.nanolett.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Hollow bimetallic nanoparticles (NPs) formed from metal oxide NP templates are widely used catalysts for hydrogen evolution and CO2 reduction reactions. Despite their importance in catalysis, the details of how these NPs form on the NP templates remain unclear. Here, using in situ liquid-phase transmission electron microscopy (TEM) imaging, we describe the conversion of Cu2O template NPs to hollow PdCu NPs. Our observations show that a polycrystalline PdCu shell forms on the surface of the template via a galvanic replacement reaction while the template undergoes anisotropic etching. This study provides important insights into the synthesis of hollow metallic nanostructures from metal oxide templates.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Ivan Erofeev
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Ya He
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Fangqi Yang
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
41
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
42
|
Gao L, Han S, Ni H, Zhu J, Wang L, Gao S, Wang Y, Huang D, Zhao Y, Zou R. Application of neutron imaging in observing various states of matter inside lithium batteries. Natl Sci Rev 2023; 10:nwad238. [PMID: 37854950 PMCID: PMC10581545 DOI: 10.1093/nsr/nwad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 10/20/2023] Open
Abstract
Lithium batteries have been essential technologies and become an integral part of our daily lives, powering a range of devices from phones to electric vehicles. To fully understand and optimize the performance of lithium batteries, it is necessary to investigate their internal states and processes through various characterization methods. Neutron imaging has been an indispensable complementary characterization technique to X-ray imaging or electron microscopy because of the unique interaction principle between neutrons and matter. It provides particular insights into the various states of matter inside lithium batteries, including the Li+ concentration in solid electrodes, the Li plating/stripping behavior of Li-metal anodes, the Li+ diffusion in solid ionic conductors, the distribution of liquid electrolytes and the generation of gases. This review aims to highlight the capabilities and advantages of neutron imaging in characterizing lithium batteries, as well as its current state of application in this field. Additionally, we discuss the potential of neutron imaging to contribute to the ongoing development of advanced batteries through its ability to visualize internal evolution.
Collapse
Affiliation(s)
- Lei Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Songbai Han
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haijin Ni
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinlong Zhu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liping Wang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Dubin Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yusheng Zhao
- Eastern Institute for Advanced Study, Ningbo 315201, China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Goldmann C, Chaâbani W, Hotton C, Impéror-Clerc M, Moncomble A, Constantin D, Alloyeau D, Hamon C. Confinement Effects on the Structure of Entropy-Induced Supercrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303380. [PMID: 37386818 DOI: 10.1002/smll.202303380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Depletion-induced self-assembly is routinely used to separate plasmonic nanoparticles (NPs) of different shapes, but less often for its ability to create supercrystals (SCs) in suspension. Therefore, these plasmonic assemblies have not yet reached a high level of maturity and their in-depth characterization by a combination of in situ techniques is still very much needed. In this work, gold triangles (AuNTs) and silver nanorods (AgNRs) are assembled by depletion-induced self-assembly. Small Angle X-ray Scattering (SAXS) and scanning electron microscopy (SEM) analysis shows that the AuNTs and AgNRs form 3D and 2D hexagonal lattices in bulk, respectively. The colloidal crystals are also imaged by in situ Liquid-Cell Transmission Electron Microscopy. Under confinement, the affinity of the NPs for the liquid cell windows reduces their ability to stack perpendicularly to the membrane and lead to SCs with a lower dimensionality than their bulk counterparts. Moreover, extended beam irradiation leads to disassembly of the lattices, which is well described by a model accounting for the desorption kinetics highlighting the key role of the NP-membrane interaction in the structural properties of SCs in the liquid-cell. The results shed light on the reconfigurability of NP superlattices obtained by depletion-induced self-assembly, which can rearrange under confinement.
Collapse
Affiliation(s)
- Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Wajdi Chaâbani
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Claire Hotton
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Marianne Impéror-Clerc
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Adrien Moncomble
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, Strasbourg, 67034, France
| | - Damien Alloyeau
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| |
Collapse
|
44
|
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chem Commun (Camb) 2023; 59:12830-12846. [PMID: 37807847 DOI: 10.1039/d3cc03723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) has enabled unprecedented direct real time imaging of physicochemical processes during solution phase synthesis of metallic nanoparticles. LPTEM primarily provides images of nanometer scale, and sometimes atomic scale, metal nanoparticle crystallization processes, but provides little chemical information about organic surface ligands, metal-ligand complexes and reaction intermediates, and redox reactions. Likewise, complex electron beam-solvent interactions during LPTEM make it challenging to pinpoint the chemical processes, some involving exotic highly reactive radicals, impacting nanoparticle formation. Pairing LPTEM with correlative solution synthesis, ex situ chemical analysis, and theoretical modeling represents a powerful approach to gain a holistic understanding of the chemical processes involved in nanoparticle synthesis. In this feature article, we review recent work by our lab and others that has focused on elucidating chemical processes during nanoparticle synthesis using LPTEM and correlative chemical characterization and modeling, including mass and optical spectrometry, fluorescence microscopy, solution chemistry, and reaction kinetic modeling. In particular, we show how these approaches enable investigating redox chemistry during LPTEM, polymeric and organic capping ligands, metal deposition mechanisms on plasmonic nanoparticles, metal clusters and complexes, and multimetallic nanoparticle formation. Future avenues of research are discussed, including moving beyond electron beam induced nanoparticle formation by using light and thermal stimuli during LPTEM. We discuss prospects for real time LPTEM imaging and online chemical analysis of reaction intermediates using microfluidic flow reactors.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, College Park, MD 20742, USA
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| |
Collapse
|
45
|
Brummel O, Jacobse L, Simanenko A, Deng X, Geile S, Gutowski O, Vonk V, Lykhach Y, Stierle A, Libuda J. Chemical and Structural In-Situ Characterization of Model Electrocatalysts by Combined Infrared Spectroscopy and Surface X-ray Diffraction. J Phys Chem Lett 2023; 14:8820-8827. [PMID: 37750826 DOI: 10.1021/acs.jpclett.3c01777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
New diagnostic approaches are needed to drive progress in the field of electrocatalysis and address the challenges of developing electrocatalytic materials with superior activity, selectivity, and stability. To this end, we developed a versatile experimental setup that combines two complementary in-situ techniques for the simultaneous chemical and structural analysis of planar electrodes under electrochemical conditions: high-energy surface X-ray diffraction (HE-SXRD) and infrared reflection absorption spectroscopy (IRRAS). We tested the potential of the experimental setup by performing a model study in which we investigated the oxidation of preadsorbed CO on a Pt(111) surface as well as the oxidation of the Pt(111) electrode itself. In a single experiment, we were able to identify the adsorbates, their potential dependent adsorption geometries, the effect of the adsorbates on the surface morphology, and the structural evolution of Pt(111) during surface electro-oxidation. In a broader perspective, the combined setup has a high application potential in the field of energy conversion and storage.
Collapse
Affiliation(s)
- Olaf Brummel
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Leon Jacobse
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexander Simanenko
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Xin Deng
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Simon Geile
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Vedran Vonk
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Yaroslava Lykhach
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Andreas Stierle
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
46
|
Kashin AS, Prima DO, Arkhipova DM, Ananikov VP. An Unusual Microdomain Factor Controls Interaction of Organic Halides with the Palladium Phase and Influences Catalytic Activity in the Mizoroki-Heck Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302999. [PMID: 37381097 DOI: 10.1002/smll.202302999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
In this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase). Previously, it is assumed that molecular level factors, namely, carbon-halogen bond strength and the ease of bond breakage, are the sole factors determining the reactivity of aryl halides in catalytic transformations. The present work reports a new factor connected with the nature of the organic substrates used and their ability to form a microdomain structure and concentrate metallic species, highlighting the importance of considering both the molecular and microscale properties of the reaction mixtures.
Collapse
Affiliation(s)
- Alexey S Kashin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Darya O Prima
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Daria M Arkhipova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
47
|
Zhou S, Shi J, Liu S, Li G, Pei F, Chen Y, Deng J, Zheng Q, Li J, Zhao C, Hwang I, Sun CJ, Liu Y, Deng Y, Huang L, Qiao Y, Xu GL, Chen JF, Amine K, Sun SG, Liao HG. Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 2023; 621:75-81. [PMID: 37673990 DOI: 10.1038/s41586-023-06326-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/14/2023] [Indexed: 09/08/2023]
Abstract
Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.
Collapse
Affiliation(s)
- Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Jie Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Sangui Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Gen Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Fei Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Youhu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Junxian Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Qizheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Jiayi Li
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Chen Zhao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Inhui Hwang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Yu Deng
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Ling Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, People's Republic of China
| | - Gui-Liang Xu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, People's Republic of China.
| |
Collapse
|
48
|
Ye M, Xu T, Liu M, Zhu Y, Yuan D, Zhang H, Qin M, Sun L. Revealing Dominant Oxidative Species in Reactive Oxygen Species-Driven Rapid Chemical Etching. NANO LETTERS 2023; 23:7319-7326. [PMID: 37535017 DOI: 10.1021/acs.nanolett.3c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Reactive oxygen species (ROS) widely participate in a variety of chemical reactions in biological and chemical applications. However, due to the extremely short lifetime of most ROS, conventional ROS-detecting techniques cannot show real-time dynamic changes of ROS-driven chemical reactions and identify the actual role of individual reactive species in these reactions. Herein, using in situ liquid cell TEM complemented by ex situ experiments, we directly visualize ROS-driven rapid etching of Prussian bule (PB) in real time and identify the dominant reactive species in etching processes. The results reveal that highly oxidative •OH is the dominant reactive radical in ROS-driven rapid chemical etching and hollow mesoporous PB nanoparticles can be synthesized on a minute-level time scale via •OH-dominated rapid etching. This work provides insight into ROS-related oxidation, which can continuously improve our understanding of ROS chemistry and make ROS more widely applicable in advanced chemical etching.
Collapse
Affiliation(s)
- Mao Ye
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Min Liu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yatong Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Dundong Yuan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Ming Qin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
49
|
Zhao T, Jiang Y, Luo S, Ying Y, Zhang Q, Tang S, Chen L, Xia J, Xue P, Zhang JJ, Sun SG, Liao HG. On-chip gas reaction nanolab for in situ TEM observation. LAB ON A CHIP 2023; 23:3768-3777. [PMID: 37489871 DOI: 10.1039/d3lc00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The catalysis reaction mechanism at nano/atomic scale attracted intense attention in the past decades. However, most in situ characterization technologies can only reflect the average information of catalysts, which leads to the inability to characterize the dynamic changes of single nanostructures or active sites under operando conditions, and many micro-nanoscale reaction mechanisms are still unknown. The combination of in situ transmission electron microscopy (TEM) holder system with MEMS chips provides a solution for it, where the design and fabrication of MEMS chips are the key factors. Here, with the aid of finite element simulation, an ultra-stable heating chip was developed, which has an ultra-low thermal drift during temperature heating. Under ambient conditions within TEM, atomic resolution imaging was achieved during the heating process or at high temperature up to 1300 °C. Combined with the developed polymer membrane seal technique and nanofluidic control system, it can realize an adjustable pressure from 0.1 bar to 4 bar gas environment around the sample. By using the developed ultra-low drift gas reaction cells, the nanoparticle's structure evolution at atomic scale was identified during reaction.
Collapse
Affiliation(s)
- Tiqing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Youhong Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shiwen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yifan Ying
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Linzhi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Peng Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Jun Zhang
- Xiamen Chip-Nova Technology Co., Ltd., Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
50
|
Bladt E, Pivak Y, Park J, Weber D, Jo J, Basak S, Eichel RA, Sun H. Metal Electroplating/Stripping and 4D STEM Analysis Revealed by Liquid Phase Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1304-1305. [PMID: 37613644 DOI: 10.1093/micmic/ozad067.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Eva Bladt
- DENSsolutions B.V., Delft, The Netherlands
| | | | - Junbeom Park
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Weber
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Janghyun Jo
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shibabrata Basak
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Rüdiger-A Eichel
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Hongyu Sun
- DENSsolutions B.V., Delft, The Netherlands
| |
Collapse
|