1
|
Jayakrishnan M, Havlová M, Veverka V, Regnard C, Becker PB. Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers. Nucleic Acids Res 2025; 53:gkaf202. [PMID: 40164442 DOI: 10.1093/nar/gkaf202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard chromatin fiber integrity. In Drosophila, the chromodomain protein MSL3 binds H3K36me3 at X-chromosomal genes to implement dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Because depletion of K36me3 had variable, locus-specific effects on the interactions of those readers, we systematically studied K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2, and K36me3 each contribute to distinct chromatin states. Monitoring the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD, and Ash1 revealed local, context-specific methylation signatures. Each methyltransferase governs K36 methylation in dedicated genomic regions, with minor overlaps. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at putative enhancers. The mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
Collapse
Affiliation(s)
- Muhunden Jayakrishnan
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| | - Magdalena Havlová
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| |
Collapse
|
2
|
Cofre J. The first embryo, the origin of cancer and animal phylogeny. V. Cancer stem cells as the unifying biomechanical principle between embryology and oncology. MECHANOBIOLOGY IN MEDICINE 2025; 3:100110. [PMID: 40396136 PMCID: PMC12082149 DOI: 10.1016/j.mbm.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 05/22/2025]
Abstract
The role of embryology in metazoan evolution is rooted deeply in the history of science. Viewing Neoplasia as an evolutionary engine provides a scientific basis for reexamining the disease cancer. Once the embryo is understood as a benign tumor with a pivotal role in the evolution of all animal forms, there will be an immediate paradigm shift in the search for cancer cure, potentially revealing insights that may be buried within the great developmental transitions of metazoans. This article discusses one of the unifying principles between embryology and oncology, namely cancer stem cells. Some considerations are also provided on the central role of physics and biomechanics in the assembly of the first embryo, which can be regarded as a differentiated benign tumor. Mechanical impregnation of the nucleus of a stem cell, culminating in a totipotent/multipotent cell, was a major event safeguarding the success of embryogenesis throughout evolution. Germ cells in the earliest ctenophore embryos underwent delayed differentiation, subsequent to the mechanical assembly of the embryo. Finally, a discussion is presented on the concept that cancer and embryogenesis (cancer and healthy stem cells) are two sides of the same coin, that is, of the same process. The only difference is that cancer stem cells reveal themselves in inappropriate contexts. Neoplasia is a free force, whereas cancer is a force contained by animal organization.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Federal University of Santa Catarina, Sala 313b, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
3
|
Mirizio G, Sampson S, Iwafuchi M. Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming. Regen Ther 2025; 28:246-252. [PMID: 39834592 PMCID: PMC11745816 DOI: 10.1016/j.reth.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs. The action of pioneer TFs is both influenced by and exerts influence on epigenetic regulation. Despite significant advances, many direct reprogramming processes remain inefficient, which limits their reliability for clinical applications. In this review, we discuss the molecular mechanisms underlying pioneer TF-driven reprogramming, with a focus on their interactions with epigenetic modifiers, including Polycomb repressive complexes (PRCs), nucleosome remodeling and deacetylase (NuRD) complexes, and the DNA methylation machinery. A deeper understanding of the dynamic interplay between pioneer TFs and epigenetic modifiers will be essential for advancing reprogramming technologies and unlocking their full clinical potential.
Collapse
Affiliation(s)
- Gerardo Mirizio
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Samuel Sampson
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| |
Collapse
|
4
|
Katznelson A, Hernandez B, Fahning H, Tapia K, Burton A, Zhang J, Torres-Padilla ME, Plachta N, Zaret KS, McCarthy RL. ERH Enables Early Embryonic Differentiation and Overlays H3K9me3 Heterochromatin on a Cryptic Pluripotency H3K9me3 Landscape in Somatic Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.06.597604. [PMID: 38895478 PMCID: PMC11185749 DOI: 10.1101/2024.06.06.597604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Enhancer of Rudimentary Homolog (ERH) is an evolutionarily conserved protein originally characterized in fission yeast 1 and recently shown to maintain H3K9me3 in human fibroblasts 2 . Here, we find that ERH depletion in fibroblasts reverts the H3K9me3 landscape to an embryonic stem cell (ESC) state and enables activation of naïve and pluripotency genes and transposable elements during induced pluripotent stem cell (iPSC) reprogramming. We find that ERH similarly represses totipotent and alternative lineage programs during mouse preimplantation development and is required for proper segregation of the inner cell mass and trophectoderm cell lineages. During human ESC differentiation into germ layer lineages, ERH silences naïve and pluripotency genes, transposable elements, and alternative lineage somatic genes. As in fission yeast, we find that mammalian ERH interacts with RNA-binding proteins to engage and repress its chromatin targets. Our findings reveal a fundamental role for ERH in cell fate specification via the initiation and maintenance of early developmental gene repression.
Collapse
|
5
|
Martin CJ, Nagarajan P, Oser EA, Popova LV, Parthun MR. Distinct Classes of Lamin-Associated Domains are Defined by Differential Patterns of Repressive Histone Methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629719. [PMID: 39763892 PMCID: PMC11702658 DOI: 10.1101/2024.12.20.629719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A large fraction of the genome interacts with the nuclear periphery through lamina-associated domains (LADs), repressive regions which play an important role in genome organization and gene regulation across development. Despite much work, LAD structure and regulation are not fully understood, and a mounting number of studies have identified numerous genetic and epigenetic differences within LADs, demonstrating they are not a uniform group. Here we profile Lamin B1, HP1β, H3K9me3, H3K9me2, H3K27me3, H3K14ac, H3K27ac, and H3K9ac in MEF cell lines derived from the same mouse colony and cluster LADs based on the abundance and distribution of these features across LADs. We find that LADs fall into 3 groups, each enriched in a unique set of histone modifications and genomic features. Each group is defined by a different heterochromatin modification (H3K9me3, H3K9me2, or H3K27me3), suggesting that all three of these marks play important roles in regulation of LAD chromatin and potentially of lamina association. We also discover unique features of LAD borders, including a LAD border-specific enrichment of H3K14ac. These results reveal important distinctions between LADs and highlight the rich diversity and complexity in LAD structure and regulatory mechanisms.
Collapse
Affiliation(s)
- Caden J. Martin
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth A. Oser
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Liudmila V. Popova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R. Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Mrabti C, Yang N, Desdín-Micó G, Alonso-Calleja A, Vílchez-Acosta A, Pico S, Parras A, Piao Y, Schoenfeldt L, Luo S, Haghani A, Brooke RT, Maza MDC, Branchina C, Bignon Y, Maroun CY, von Meyenn F, Naveiras O, Horvath S, Sen P, Ocampo A. Loss of H3K9 trimethylation leads to premature aging. RESEARCH SQUARE 2024:rs.3.rs-4012025. [PMID: 39764087 PMCID: PMC11702797 DOI: 10.21203/rs.3.rs-4012025/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Aging is the major risk factor for most human diseases and represents a major socioeconomical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Alterations in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of the repressive histone modification, histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, "TKOc", carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information might directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.
Collapse
Affiliation(s)
- Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Sara Pico
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Siyuan Luo
- Departement of Health Sciences and Technology, ETH Zurich, Zurich
| | | | - Robert T. Brooke
- Epigenetic Clock Development, Foundation, Torrance, California, USA
| | - María del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Yohan Bignon
- INSERM U1242 Oncogenesis Stress Signaling, Centre de Lutte Contre le Cancer Eugène Marquis, University of Rennes, Rennes, France
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Olaia Naveiras
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| |
Collapse
|
7
|
Chandrasekaran TT, Choudalakis M, Bröhm A, Weirich S, Kouroukli AG, Ammerpohl O, Rathert P, Bashtrykov P, Jeltsch A. SETDB1 activity is globally directed by H3K14 acetylation via its Triple Tudor Domain. Nucleic Acids Res 2024; 52:13690-13705. [PMID: 39540436 DOI: 10.1093/nar/gkae1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a major protein lysine methyltransferase trimethylating lysine 9 on histone H3 (H3K9) which is involved in heterochromatin formation and silencing of repeat elements (REs). It contains a unique Triple Tudor Domain (3TD), which specifically binds the dual modification of H3K14ac in the presence of H3K9me1/2/3. Here, we explored the role of the 3TD H3-tail interaction for the H3K9 methylation activity of SETDB1. We generated a binding reduced 3TD mutant and demonstrate in biochemical methylation assays on peptides and recombinant nucleosomes containing H3K14ac and H3K14ac analogs, respectively, that H3K14 acetylation is crucial for the 3TD mediated recruitment of SETDB1. We also observe this effect in cells where SETDB1 binding and activity is globally correlated with H3K14ac, and knockout of the H3K14 acetyltransferase HBO1 causes a drastic reduction in H3K9me3 levels at SETDB1 dependent sites. Regions with DNA hypomethylation after SETDB1 knockout also show an enrichment in SETDB1-dependent H3K9me3 and H3K14ac. Further analyses revealed that 3TD is particularly important at specific target regions like L1M REs, where H3K9me3 cannot be efficiently reconstituted by the 3TD mutant of SETDB1. In summary, our data demonstrate that the H3K9me3 and H3K14ac are not antagonistic marks but rather the presence of H3K14ac is required for SETDB1 recruitment via 3TD binding to H3K9me1/2/3-K14ac regions and establishment of H3K9me3.
Collapse
Affiliation(s)
- Thyagarajan T Chandrasekaran
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michel Choudalakis
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexandra G Kouroukli
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89091 Ulm, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89091 Ulm, Germany
| | - Philipp Rathert
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Shang Y, Wang Z, Xi L, Wang Y, Liu M, Feng Y, Wang J, Wu Q, Xiang X, Chen M, Ding Y. Droplet-based single-cell sequencing: Strategies and applications. Biotechnol Adv 2024; 77:108454. [PMID: 39271031 DOI: 10.1016/j.biotechadv.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Notable advancements in single-cell omics technologies have not only addressed longstanding challenges but also enabled unprecedented studies of cellular heterogeneity with unprecedented resolution and scale. These strides have led to groundbreaking insights into complex biological systems, paving the way for a more profound comprehension of human biology and diseases. The droplet microfluidic technology has become a crucial component in many single-cell sequencing workflows in terms of throughput, cost-effectiveness, and automation. Utilizing a microfluidic chip to encapsulate and profile individual cells within droplets has significantly improved single-cell research. Therefore, this review aims to comprehensively elaborate the droplet microfluidics-assisted omics methods from a single-cell perspective. The strategies for using droplet microfluidics in the realms of genomics, epigenomics, transcriptomics, and proteomics analyses are first introduced. On this basis, the focus then turns to the latest applications of this technology in different sequencing patterns, including mono- and multi-omics. Finally, the challenges and further perspectives of droplet-based single-cell sequencing in both foundational research and commercial applications are discussed.
Collapse
Affiliation(s)
- Yuting Shang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhengzheng Wang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liqing Xi
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yantao Wang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meijing Liu
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ying Feng
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinran Xiang
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China; Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China.
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programmes and repeats in pluripotent cells. Nat Cell Biol 2024; 26:2115-2128. [PMID: 39482359 DOI: 10.1038/s41556-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
H3K9me3 heterochromatin, established by lysine methyltransferases (KMTs) and compacted by heterochromatin protein 1 (HP1) isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3 heterochromatin stability is presently limited to individual domains and DNA repeats. Here we engineered Suv39h2-knockout mouse embryonic stem cells to degrade remaining two H3K9me3 KMTs within 1 hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A 'binary switch' governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMT depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening and exit from pluripotency within 12 h. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3 heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael B Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Liu X, Li J, Zhu L, Huang J, Zhang Q, Wang J, Xie J, Dong Q, Zou Z, Huang G, Gu Q, Wang J, Li J. Mechanistic insights into zinc oxide nanoparticles induced embryotoxicity via H3K9me3 modulation. Biomaterials 2024; 311:122679. [PMID: 38943823 DOI: 10.1016/j.biomaterials.2024.122679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The widespread application of nanoparticles (NPs) in various fields has raised health concerns, especially in reproductive health. Our research has shown zinc oxide nanoparticles (ZnONPs) exhibit the most significant toxicity to pre-implantation embryos in mice compared to other common NPs. In patients undergoing assisted reproduction technology (ART), a significant negative correlation was observed between Zn concentration and clinical outcomes. Therefore, this study explores the impact of ZnONPs exposure on pre-implantation embryonic development and its underlying mechanisms. We revealed that both in vivo and in vitro exposure to ZnONPs impairs pre-implantation embryonic development. Moreover, ZnONPs were found to reduce the pluripotency of mouse embryonic stem cells (mESCs), as evidenced by teratoma and diploid chimera assays. Employing multi-omics approaches, including RNA-Seq, CUT&Tag, and ATAC-seq, the embryotoxicity mechanisms of ZnONPs were elucidated. The findings indicate that ZnONPs elevate H3K9me3 levels, leading to increased heterochromatin and consequent inhibition of gene expression related to development and pluripotency. Notably, Chaetocin, a H3K9me3 inhibitor, sucessfully reversed the embryotoxicity effects induced by ZnONPs. Additionally, the direct interaction between ZnONPs and H3K9me3 was verified through pull-down and immunoprecipitation assays. Collectively, these findings offer new insights into the epigenetic mechanisms of ZnONPs toxicity, enhancing our understanding of their impact on human reproductive health.
Collapse
Affiliation(s)
- Xuemei Liu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jie Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jianwu Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qiang Dong
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Qi Gu
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jianyu Wang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
11
|
Pinzon-Arteaga CA, O'Hara R, Mazzagatti A, Ballard E, Hu Y, Pan A, Schmitz DA, Wei Y, Sakurai M, Ly P, Banaszynski LA, Wu J. TASOR expression in naive embryonic stem cells safeguards their developmental potential. Cell Rep 2024; 43:114887. [PMID: 39453814 PMCID: PMC11646706 DOI: 10.1016/j.celrep.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 10/27/2024] Open
Abstract
The seamless transition through stages of pluripotency relies on a balance between transcription factor networks and epigenetic mechanisms. Here, we reveal the crucial role of the transgene activation suppressor (TASOR), a component of the human silencing hub (HUSH) complex, in maintaining cell viability during the transition from naive to primed pluripotency. TASOR loss in naive pluripotent stem cells (PSCs) triggers replication stress, disrupts H3K9me3 heterochromatin, and impairs silencing of LINE-1 (L1) transposable elements, with more severe effects in primed PSCs. Notably, the survival of Tasor knockout PSCs during this transition can be restored by inhibiting caspase or deleting the mitochondrial antiviral signaling protein (MAVS). This suggests that unscheduled L1 expression activates an innate immune response, leading to cell death specifically in cells exiting naive pluripotency. Our findings highlight the importance of epigenetic programs established in naive pluripotency for normal development.
Collapse
Affiliation(s)
- Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ryan O'Hara
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emily Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingying Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Pan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; St. Mark's School of Texas, Dallas, TX 75230, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura A Banaszynski
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Kondratowski S, Cohen D, Deyell RJ, Sandhu A, Bush JW. Immunohistochemical study of histone protein 3 modification in pediatric osteosarcoma identifies reduced H3K27me3 as a marker of poor treatment response. PLoS One 2024; 19:e0309471. [PMID: 39570878 PMCID: PMC11581320 DOI: 10.1371/journal.pone.0309471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/07/2024] [Indexed: 11/24/2024] Open
Abstract
The most common pediatric primary malignant bone tumor, osteosarcoma, is often described as genetically non-recurrent and heterogeneous. Neoadjuvant chemotherapy is typically followed by resection and assessment of treatment response, which helps inform prognosis. Identifying biomarkers that may impact chemotherapy response and survival could aid in upfront risk stratification and identify patients in highest need of innovative therapies for future clinical trials. Relative to conventional genetics, little is known about osteosarcoma epigenetics. We aimed to characterize the methylation and phosphorylation status in osteosarcoma using histone markers found in primary diagnostic biopsies and their paired metastases. We constructed two tissue microarray sets from 58 primary diagnostic samples and 54 temporally-separated but related metastatic or recurrent samples, with tissue blocks available from 2002-2022. Clinical charts were reviewed for post-therapy necrosis response, presence of metastatic disease or recurrence, and overall survival. We evaluated 6 histone H3 residues using immunohistochemistry, including H3K4me3, H3K9me3, H3K27me2, H3K27me3, H3S10T11phos, and H3S28phos. Tumors were scored with low (<25%) or high (≥25%) nuclear staining of tumor cells. Diagnostic biopsies with low H3K27me3 nuclear staining were associated with poor treatment response (≤90% necrosis) at the time of definitive excision (P<0.05). We observed loss of H3S10T11phos expression in metastatic and recurrent resections specimens compared to the primary tumor (P<0.05). Expression patterns for the remaining histone markers did not show significant associations with disease parameters or survival. Although larger cohort studies are needed, these results support the expanded evaluation of histone markers, particularly H3K27me3 and H3S10T11phos, in osteosarcoma biology and risk stratification.
Collapse
Affiliation(s)
| | - Danielle Cohen
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca J. Deyell
- Department of Pediatrics and Division of Hematology, Oncology, and Bone Marrow Transplant, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ash Sandhu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jonathan W. Bush
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Division of Anatomical Pathology, BC Children’s and Women’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Luo Y, Zeng X, Dai X, Tian Y, Li J, Zhang Q, Dong Q, Qin L, Huang G, Gu Q, Wang J, Li J. Copper Oxide Nanoparticles Impair Mouse Preimplantation Embryonic Development through Disruption of Mitophagy-Mediated Metabolism. ACS NANO 2024; 18:31244-31260. [PMID: 39487804 PMCID: PMC11562798 DOI: 10.1021/acsnano.4c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Copper oxide nanoparticles (CuONPs) have been widely applied, posing potential risks to human health. Although the toxicity of CuONPs on the liver and spleen has been reported, their effects on reproductive health remain unexplored. In this study, we investigate the effects of CuONPs on embryonic development and their potential mechanisms. Our results demonstrate that CuONPs exposure impairs mouse preimplantation embryonic development, particularly affecting the morula-to-blastocyst transition. Additionally, CuONPs were found to reduce the pluripotency of the inner cell mass (ICM) and mouse embryonic stem cells (mESCs). Mechanistically, CuONPs block autophagic flux and impair mitophagy, leading to the accumulation of damaged mitochondria. This mitochondrial dysfunction leads to reduced tricarboxylic acid (TCA) cycle activity and decreased α-ketoglutarate (α-KG) production. Insufficient α-KG induces the failure of DNA demethylation, reducing corresponding chromatin accessibility and consequently inhibiting ICM-specific genes expressions. Similar reduced development and inhibitions of pluripotency gene expression were observed in CuONPs-treated human blastocysts. Moreover, in women undergoing assisted reproductive technology (ART), a negative correlation was found between urinary Cu ion concentrations and clinical outcomes. Collectively, our study elucidates the mitophagy-mediated metabolic mechanisms of CuONPs embryotoxicity, improving our understanding of the potential reproductive toxicity associated with it.
Collapse
Affiliation(s)
- Yunyao Luo
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Xi Zeng
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Xue Dai
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Yin Tian
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Jie Li
- Institute
of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qi Zhang
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Qiang Dong
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Lifeng Qin
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Guoning Huang
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Qi Gu
- Key
Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory
of Membrane Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100864, China
| | - Jianyu Wang
- Institute
of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jingyu Li
- Chongqing
Key Laboratory of Human Embryo Engineering and Precision Medicine,
Center for Reproductive Medicine, Women
and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China
- Chongqing
Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing 400013, China
| |
Collapse
|
14
|
Gantner BN, Palma FR, Pandkar MR, Sakiyama MJ, Arango D, DeNicola GM, Gomes AP, Bonini MG. Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes. Trends Cancer 2024; 10:992-1008. [PMID: 39277448 DOI: 10.1016/j.trecan.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Madhura R Pandkar
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Marcelo G Bonini
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Oleksiewicz U, Kuciak M, Jaworska A, Adamczak D, Bisok A, Mierzejewska J, Sadowska J, Czerwinska P, Mackiewicz AA. The Roles of H3K9me3 Writers, Readers, and Erasers in Cancer Immunotherapy. Int J Mol Sci 2024; 25:11466. [PMID: 39519018 PMCID: PMC11546771 DOI: 10.3390/ijms252111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks. Epigenetic processes influence chromatin structure and accessibility, thus governing gene expression, replication, and DNA damage repair. However, aberrations within epigenetic signatures are frequently observed in cancer. One of the key epigenetic marks is the trimethylation of histone 3 at lysine 9 (H3K9me3), confined mainly within constitutive heterochromatin to suppress DNA accessibility. It is deposited at repetitive elements, centromeric and telomeric loci, as well as at the promoters of various genes. Dysregulated H3K9me3 deposition disrupts multiple pathways, including immune signaling. Consequently, altered H3K9me3 dynamics may modify the efficacy of immunotherapy. Indeed, growing evidence highlights the pivotal roles of various proteins mediating H3K9me3 deposition (SETDB1/2, SUV39H1/2), erasure (KDM3, KDM4 families, KDM7B, LSD1) and interpretation (HP1 proteins, KAP1, CHD4, CDYL, UHRF1) in modulating immunotherapy effectiveness. Here, we review the existing literature to synthesize the available information on the influence of these H3K9me3 writers, erasers, and readers on the response to immunotherapy.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Monika Kuciak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Anna Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Dominika Adamczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Bisok
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Julia Mierzejewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Justyna Sadowska
- Department of Health Sciences, The Jacob of Paradies University, 66-400 Gorzow Wielkopolski, Poland
| | - Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Andrzej A. Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| |
Collapse
|
16
|
Xia K, Hui Y, Zhang L, Qiu Q, Zhong J, Chen H, Liu X, Wang L, Chen Z. SETDB1 targeting SESN2 regulates mitochondrial damage and oxidative stress in renal ischemia-reperfusion injury. BMC Biol 2024; 22:246. [PMID: 39443993 PMCID: PMC11515507 DOI: 10.1186/s12915-024-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The role of histone methyltransferase SETDB1 in renal ischemia-reperfusion (I/R) injury has not been explored yet. This study aims to investigate the potential mechanism of SETDB1 in regulating renal I/R injury and its impact on mitochondrial damage and oxidative stress. METHODS The in vivo model of renal I/R in mice and the in vitro model of hypoxia/reoxygenation (H/R) in human renal tubular epithelial cells (HK-2) were constructed to detect the expression of SETDB1. Next, the specific inhibitor (R,R)-59 and knockdown viruses were used to inhibit SETDB1 and verify its effects on mitochondrial damage and oxidative stress. Chromatin immunoprecipitation (ChIP) and coimmunoprecipitation (CoIP) were implemented to explore the in-depth mechanism of SETDB1 regulating renal I/R injury. RESULTS The study found that SETDB1 had a regulatory role in mitochondrial damage and oxidative stress during renal I/R injury. Notably, SESN2 was identified as a target of SETDB1, and its expression was under the influence of SETDB1. Besides, SESN2 mediated the regulation of SETDB1 on renal I/R injury. Through deeper mechanistic studies, we uncovered that SETDB1 collaborates with heterochromatin HP1β, facilitating the labeling of H3K9me3 on the SESN2 promoter and impeding SESN2 expression. CONCLUSIONS The SETDB1/HP1β-SESN2 axis emerges as a potential therapeutic strategy for mitigating renal I/R injury.
Collapse
Affiliation(s)
- Kang Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Yumin Hui
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Long Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Qiangmin Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Jiacheng Zhong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Warren S, Xiong S, Robles-Magallanes D, Baizabal JM. A vector system encoding histone H3 mutants facilitates manipulations of the neuronal epigenome. Sci Rep 2024; 14:24415. [PMID: 39420029 PMCID: PMC11487264 DOI: 10.1038/s41598-024-74270-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The differentiation of developmental cell lineages is associated with genome-wide modifications in histone H3 methylation. However, the causal role of histone H3 methylation in transcriptional regulation and cell differentiation has been difficult to test in mammals. The experimental overexpression of histone H3 mutants carrying lysine-to-methionine (K-to-M) substitutions has emerged as an alternative tool for inhibiting the endogenous levels of histone H3 methylation at specific lysine residues. Here, we leverage the use of histone K-to-M mutants by creating Enhanced Episomal Vectors that enable the simultaneous depletion of multiple levels of histone H3 lysine 4 (H3K4) or lysine 9 (H3K9) methylation in projection neurons of the mouse cerebral cortex. Our approach also facilitates the simultaneous depletion of H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3, respectively) in cortical neurons. In addition, we report a tamoxifen-inducible Cre-FLEX system that allows the activation of mutant histones at specific developmental time points or in the adult cortex, leading to the depletion of specific histone marks. The tools presented here can be implemented in other experimental systems, such as human in vitro models, to test the combinatorial role of histone methylations in developmental fate decisions and the maintenance of cell identity.
Collapse
Affiliation(s)
- Sophie Warren
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sen Xiong
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | |
Collapse
|
18
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programs and repeats in pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613328. [PMID: 39345615 PMCID: PMC11429881 DOI: 10.1101/2024.09.16.613328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
H3K9me3-heterochromatin, established by lysine methyltransferases (KMTs) and compacted by HP1 isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3-heterochromatin stability is presently limited to individual domains and DNA repeats. We engineered Suv39h2 KO mouse embryonic stem cells to degrade remaining two H3K9me3-KMTs within one hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A "binary switch" governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMTs' depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening, and exit from pluripotency within 12 hr. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3-heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B. Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
19
|
Tomizawa SI, Fellows R, Ono M, Kuroha K, Dočkal I, Kobayashi Y, Minamizawa K, Natsume K, Nakajima K, Hoshi I, Matsuda S, Seki M, Suzuki Y, Aoto K, Saitsu H, Ohbo K. The non-canonical bivalent gene Wfdc15a controls spermatogenic protease and immune homeostasis. Development 2024; 151:dev202834. [PMID: 39222051 DOI: 10.1242/dev.202834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.
Collapse
Affiliation(s)
- Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Rachel Fellows
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Minamizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Koji Natsume
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shion Matsuda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Central Laboratory, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
20
|
An MJ, Kim JY, Kim J, Kim DH, Shin GS, Lee HM, Jo AR, Park Y, Hwangbo Y, Kim CH, Kim MJ, Jung YS, Kim J, Rhee S, Seo SB, Kim JW. Reorganization of H3K9me heterochromatin leads to neuronal impairment via the cascading destruction of the KDM3B-centered epigenomic network. iScience 2024; 27:110380. [PMID: 39165843 PMCID: PMC11334829 DOI: 10.1016/j.isci.2024.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
Histone H3K9 methylated heterochromatin silences repetitive non-coding sequences and lineage-specific genes during development, but how tissue-specific genes escape from heterochromatin in differentiated cells is unclear. Here, we examine age-dependent transcriptomic profiling of terminally differentiated mouse retina to identify epigenetic regulators involved in heterochromatin reorganization. The single-cell RNA sequencing analysis reveals a gradual downregulation of Kdm3b in cone photoreceptors during aging. Disruption of Kdm3b (Kdm3b +/- ) of 12-month-old mouse retina leads to the decreasing number of cones via apoptosis, and it changes the morphology of cone ribbon synapses. Integration of the transcriptome with epigenomic analysis in Kdm3b +/- retinas demonstrates gains of heterochromatin features in synapse assembly and vesicle transport genes that are downregulated via the accumulation of H3K9me1/2. Contrarily, losses of heterochromatin in apoptotic genes exacerbated retinal neurodegeneration. We propose that the KDM3B-centered epigenomic network is crucial for balancing of cone photoreceptor homeostasis via the modulation of gene set-specific heterochromatin features during aging.
Collapse
Affiliation(s)
- Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jinho Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Dae-Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun-Min Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Ah-Ra Jo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yuna Park
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yujeong Hwangbo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Mi Jin Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sang-Beom Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
21
|
Hoffman J, Zheng S, Zhang H, Murphy RF, Dahl KN. Image-based discrimination of the early stages of mesenchymal stem cell differentiation. Mol Biol Cell 2024; 35:ar103. [PMID: 38837346 PMCID: PMC11321037 DOI: 10.1091/mbc.e24-02-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells, which can be used in cellular and tissue therapeutics. MSCs cell number can be expanded in vitro, but premature differentiation results in reduced cell number and compromised therapeutic efficacies. Current techniques fail to discriminate the "stem-like" population from early stages (12 h) of differentiated MSC population. Here, we imaged nuclear structure and actin architecture using immunofluorescence and used deep learning-based computer vision technology to discriminate the early stages (6-12 h) of MSC differentiation. Convolutional neural network models trained by nucleus and actin images have high accuracy in reporting MSC differentiation; nuclear images alone can identify early stages of differentiation. Concurrently, we show that chromatin fluidity and heterochromatin levels or localization change during early MSC differentiation. This study quantifies changes in cell architecture during early MSC differentiation and describes a novel image-based diagnostic tool that could be widely used in MSC culture, expansion and utilization.
Collapse
Affiliation(s)
- Justin Hoffman
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Shiyuan Zheng
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Robert F. Murphy
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kris Noel Dahl
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
22
|
Mrabti C, Yang N, Desdín-Micó G, Alonso-Calleja A, Vílchez-Acosta A, Pico S, Parras A, Piao Y, Schoenfeldt L, Luo S, Haghani A, Brooke R, del Carmen Maza M, Branchina C, Maroun CY, von Meyenn F, Naveiras O, Horvath S, Sen P, Ocampo A. Loss of H3K9 trimethylation leads to premature aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604929. [PMID: 39091811 PMCID: PMC11291141 DOI: 10.1101/2024.07.24.604929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Modifications in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of repressive histone modification, Histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, (TKOc), carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.
Collapse
Affiliation(s)
- Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Sara Pico
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Siyuan Luo
- Departement of Health Sciences and Technology, ETH Zurich, Zurich
| | | | - Robert Brooke
- Epigenetic Clock Development, Foundation, Torrance, California, USA
| | - María del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Olaia Naveiras
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| |
Collapse
|
23
|
Jayakrishnan M, Havlová M, Veverka V, Regnard C, Becker P. Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers. Nucleic Acids Res 2024; 52:7627-7649. [PMID: 38813825 PMCID: PMC11260483 DOI: 10.1093/nar/gkae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
Collapse
Affiliation(s)
- Muhunden Jayakrishnan
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Havlová
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Catherine Regnard
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
24
|
Atinbayeva N, Valent I, Zenk F, Loeser E, Rauer M, Herur S, Quarato P, Pyrowolakis G, Gomez-Auli A, Mittler G, Cecere G, Erhardt S, Tiana G, Zhan Y, Iovino N. Inheritance of H3K9 methylation regulates genome architecture in Drosophila early embryos. EMBO J 2024; 43:2685-2714. [PMID: 38831123 PMCID: PMC11217351 DOI: 10.1038/s44318-024-00127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.
Collapse
Affiliation(s)
- Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085, Freiburg im Breisgau, Germany
| | - Iris Valent
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Fides Zenk
- Brain Mind Institute, School of Life Sciences EPFL, SV3809, 1015, Lausanne, Switzerland
| | - Eva Loeser
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Michael Rauer
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Shwetha Herur
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Piergiuseppe Quarato
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgos Pyrowolakis
- Centre for Biological signaling studies, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Germano Cecere
- Institute Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Cedex 15, Paris, France
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
25
|
Keenan CR, Coughlan HD, Iannarella N, Tapia Del Fierro A, Keniry A, Johanson TM, Chan WF, Garnham AL, Whitehead LW, Blewitt ME, Smyth GK, Allan RS. Suv39h-catalyzed H3K9me3 is critical for euchromatic genome organization and the maintenance of gene transcription. Genome Res 2024; 34:556-571. [PMID: 38719473 PMCID: PMC11146594 DOI: 10.1101/gr.279119.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 06/05/2024]
Abstract
H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.
Collapse
Affiliation(s)
- Christine R Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Andres Tapia Del Fierro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lachlan W Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
26
|
Sen B, Xie Z, Thomas MD, Pattenden SG, Howard S, McGrath C, Styner M, Uzer G, Furey TS, Rubin J. Nuclear actin structure regulates chromatin accessibility. Nat Commun 2024; 15:4095. [PMID: 38750021 PMCID: PMC11096319 DOI: 10.1038/s41467-024-48580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Polymerized β-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.
Collapse
Affiliation(s)
- Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michelle D Thomas
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samantha G Pattenden
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean Howard
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Cody McGrath
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Korczmar EA, Bookstaver AK, Ober E, Goldfarb AN, Tenen DG, Trinh BQ. Transcriptional Regulation of the Lineage-Determining Gene PU.1 in Normal and Malignant Hematopoiesis: Current Understanding and Therapeutic Perspective. Front Biosci (Schol Ed) 2024; 16:10. [PMID: 38939973 DOI: 10.31083/j.fbs1602010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 06/29/2024]
Abstract
The ETS transcription factor PU.1 plays an essential role in blood cell development. Its precise expression pattern is governed by cis-regulatory elements (CRE) acting at the chromatin level. CREs mediate the fine-tuning of graded levels of PU.1, deviations of which can cause acute myeloid leukemia. In this review, we perform an in-depth analysis of the regulation of PU.1 expression in normal and malignant hematopoiesis. We elaborate on the role of trans-acting factors and the biomolecular interplays in mediating local chromatin dynamics. Moreover, we discuss the current understanding of CRE bifunctionality exhibiting enhancer or silencer activities in different blood cell lineages and future directions toward gene-specific chromatin-targeted therapeutic development.
Collapse
Affiliation(s)
- Emilia A Korczmar
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anna K Bookstaver
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ellison Ober
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, 117599 Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
28
|
Kress C, Jouneau L, Pain B. Reinforcement of repressive marks in the chicken primordial germ cell epigenetic signature: divergence from basal state resetting in mammals. Epigenetics Chromatin 2024; 17:11. [PMID: 38671530 PMCID: PMC11046797 DOI: 10.1186/s13072-024-00537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In mammals, primordial germ cells (PGCs), the embryonic precursors of the germline, arise from embryonic or extra-embryonic cells upon induction by the surrounding tissues during gastrulation, according to mechanisms which are elucidated in mice but remain controversial in primates. They undergo genome-wide epigenetic reprogramming, consisting of extensive DNA demethylation and histone post-translational modification (PTM) changes, toward a basal, euchromatinized state. In contrast, chicken PGCs are specified by preformation before gastrulation based on maternally-inherited factors. They can be isolated from the bloodstream during their migration to the genital ridges. Our prior research highlighted differences in the global epigenetic profile of cultured chicken PGCs compared with chicken somatic cells and mammalian PGCs. This study investigates the acquisition and evolution of this profile during development. RESULTS Quantitative analysis of global DNA methylation and histone PTMs, including their distribution, during key stages of chicken early development revealed divergent PGC epigenetic changes compared with mammals. Unlike mammalian PGCs, chicken PGCs do not undergo genome-wide DNA demethylation or exhibit a decrease in histone H3 lysine 9 dimethylation. However, chicken PGCs show 5‑hydroxymethylcytosine loss, macroH2A redistribution, and chromatin decompaction, mirroring mammalian processes. Chicken PGCs initiate their epigenetic signature during migration, progressively accumulating high global levels of H3K9me3, with preferential enrichment in inactive genome regions. Despite apparent global chromatin decompaction, abundant heterochromatin marks, including repressive histone PTMs, HP1 variants, and DNA methylation, persists in chicken PGCs, contrasting with mammalian PGCs. CONCLUSIONS Chicken PGCs' epigenetic signature does not align with the basal chromatin state observed in mammals, suggesting a departure from extensive epigenetic reprogramming. Despite disparities in early PGC development, the persistence of several epigenetic features shared with mammals implies their involvement in chromatin-regulated germ cell properties, with the distinctive elevation of chicken-specific H3K9me3 potentially participating in these processes.
Collapse
Affiliation(s)
- Clémence Kress
- Univ Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Stem Cell and Brain Research Institute, Bron, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Stem Cell and Brain Research Institute, Bron, France
| |
Collapse
|
29
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
30
|
Vukic M, Chouaref J, Della Chiara V, Dogan S, Ratner F, Hogenboom JZM, Epp TA, Chawengsaksophak K, Vonk KKD, Breukel C, Ariyurek Y, San Leon Granado D, Kloet SL, Daxinger L. CDCA7-associated global aberrant DNA hypomethylation translates to localized, tissue-specific transcriptional responses. SCIENCE ADVANCES 2024; 10:eadk3384. [PMID: 38335290 PMCID: PMC10857554 DOI: 10.1126/sciadv.adk3384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Disruption of cell division cycle associated 7 (CDCA7) has been linked to aberrant DNA hypomethylation, but the impact of DNA methylation loss on transcription has not been investigated. Here, we show that CDCA7 is critical for maintaining global DNA methylation levels across multiple tissues in vivo. A pathogenic Cdca7 missense variant leads to the formation of large, aberrantly hypomethylated domains overlapping with the B genomic compartment but without affecting the deposition of H3K9 trimethylation (H3K9me3). CDCA7-associated aberrant DNA hypomethylation translated to localized, tissue-specific transcriptional dysregulation that affected large gene clusters. In the brain, we identify CDCA7 as a transcriptional repressor and epigenetic regulator of clustered protocadherin isoform choice. Increased protocadherin isoform expression frequency is accompanied by DNA methylation loss, gain of H3K4 trimethylation (H3K4me3), and increased binding of the transcriptional regulator CCCTC-binding factor (CTCF). Overall, our in vivo work identifies a key role for CDCA7 in safeguarding tissue-specific expression of gene clusters via the DNA methylation pathway.
Collapse
Affiliation(s)
- Maja Vukic
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Serkan Dogan
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Fallon Ratner
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Trevor A. Epp
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kallayanee Chawengsaksophak
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kelly K. D. Vonk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Susan L. Kloet
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
31
|
Barral A, Zaret KS. Pioneer factors: roles and their regulation in development. Trends Genet 2024; 40:134-148. [PMID: 37940484 PMCID: PMC10873006 DOI: 10.1016/j.tig.2023.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Pioneer factors are a subclass of transcription factors that can bind and initiate opening of silent chromatin regions. Pioneer factors subsequently regulate lineage-specific genes and enhancers and, thus, activate the zygotic genome after fertilization, guide cell fate transitions during development, and promote various forms of human cancers. As such, pioneer factors are useful in directed cell reprogramming. In this review, we define the structural and functional characteristics of pioneer factors, how they bind and initiate opening of closed chromatin regions, and the consequences for chromatin dynamics and gene expression during cell differentiation. We also discuss emerging mechanisms that modulate pioneer factors during development.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int J Mol Sci 2024; 25:1459. [PMID: 38338738 PMCID: PMC10855761 DOI: 10.3390/ijms25031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mammalian fertilization initiates the reprogramming of oocytes and sperm, forming a totipotent zygote. During this intricate process, the zygotic genome undergoes a maternal-to-zygotic transition (MZT) and subsequent zygotic genome activation (ZGA), marking the initiation of transcriptional control and gene expression post-fertilization. Histone modifications are pivotal in shaping cellular identity and gene expression in many mammals. Recent advances in chromatin analysis have enabled detailed explorations of histone modifications during ZGA. This review delves into conserved and unique regulatory strategies, providing essential insights into the dynamic changes in histone modifications and their variants during ZGA in mammals. The objective is to explore recent advancements in leading mechanisms related to histone modifications governing this embryonic development phase in depth. These considerations will be useful for informing future therapeutic approaches that target epigenetic regulation in diverse biological contexts. It will also contribute to the extensive areas of evolutionary and developmental biology and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi P.O. Box 4600, United Arab Emirates; (F.S.-L.); (N.I.-B.); (Y.M.C.-A.); (I.C.-H.); (C.A.V.-V.); (A.A.B.-H.); (Y.V.-C.)
| |
Collapse
|
33
|
Jain N, Zhao Z, Koche RP, Antelope C, Gozlan Y, Montalbano A, Brocks D, Lopez M, Dobrin A, Shi Y, Gunset G, Giavridis T, Sadelain M. Disruption of SUV39H1-Mediated H3K9 Methylation Sustains CAR T-cell Function. Cancer Discov 2024; 14:142-157. [PMID: 37934007 PMCID: PMC10880746 DOI: 10.1158/2159-8290.cd-22-1319] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/30/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Suboptimal functional persistence limits the efficacy of adoptive T-cell therapies. CD28-based chimeric antigen receptors (CAR) impart potent effector function to T cells but with a limited lifespan. We show here that the genetic disruption of SUV39H1, which encodes a histone-3, lysine-9 methyl-transferase, enhances the early expansion, long-term persistence, and overall antitumor efficacy of human CAR T cells in leukemia and prostate cancer models. Persisting SUV39H1-edited CAR T cells demonstrate improved expansion and tumor rejection upon multiple rechallenges. Transcriptional and genome accessibility profiling of repeatedly challenged CAR T cells shows improved expression and accessibility of memory transcription factors in SUV39H1-edited CAR T cells. SUV39H1 editing also reduces expression of inhibitory receptors and limits exhaustion in CAR T cells that have undergone multiple rechallenges. Our findings thus demonstrate the potential of epigenetic programming of CAR T cells to balance their function and persistence for improved adoptive cell therapies. SIGNIFICANCE T cells engineered with CD28-based CARs possess robust effector function and antigen sensitivity but are hampered by limited persistence, which may result in tumor relapse. We report an epigenetic strategy involving disruption of the SUV39H1-mediated histone-silencing program that promotes the functional persistence of CD28-based CAR T cells. See related article by López-Cobo et al., p. 120. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Nayan Jain
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors contributed equally to this work
| | - Zeguo Zhao
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors contributed equally to this work
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | - Michael Lopez
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anton Dobrin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuzhe Shi
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gertrude Gunset
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
34
|
Gouhier A, Dumoulin-Gagnon J, Lapointe-Roberge V, Harris J, Balsalobre A, Drouin J. Pioneer factor Pax7 initiates two-step cell-cycle-dependent chromatin opening. Nat Struct Mol Biol 2024; 31:92-101. [PMID: 38177665 DOI: 10.1038/s41594-023-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
Pioneer transcription factors direct cell differentiation by deploying new enhancer repertoires through their unique ability to target and initiate remodelling of closed chromatin. The initial steps of their action remain undefined, although pioneers have been shown to interact with nucleosomal target DNA and with some chromatin-remodeling complexes. We now define the sequence of events that enables the pioneer Pax7 with its unique abilities. Chromatin condensation exerted by linker histone H1 is the first constraint on Pax7 recruitment, and this establishes the initial speed of chromatin remodeling. The first step of pioneer action involves recruitment of the KDM1A (LSD1) H3K9me2 demethylase for removal of this repressive mark, as well as recruitment of the MLL complex for deposition of the activating H3K4me1 mark. Further progression of pioneer action requires passage through cell division, and this involves dissociation of pioneer targets from perinuclear lamin B. Only then are the SWI-SNF remodeling complex and the coactivator p300 recruited, leading to nucleosome displacement and enhancer activation. Thus, the unique features of pioneer actions are those occurring in the lamin-associated compartment of the nucleus. This model is consistent with previous work that showed a dependence on cell division for establishment of new cell fates.
Collapse
Affiliation(s)
- Arthur Gouhier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Justine Dumoulin-Gagnon
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
| | - Vincent Lapointe-Roberge
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Juliette Harris
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
| | - Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Chen S, Liu W, Xiong L, Tao Z, Zhao D. Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in Caenorhabditis elegans. RNA Biol 2024; 21:1-10. [PMID: 38531838 PMCID: PMC10978027 DOI: 10.1080/15476286.2024.2332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.
Collapse
Affiliation(s)
- Siyu Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Weihong Liu
- Intelligent Perception Lab, Hanwang Technology Co. Ltd, Beijing, China
| | - Lei Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiju Tao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Di Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
36
|
Qiu K, Vu D, Wang L, Bookstaver A, Dinh TN, Goldfarb AN, Tenen DG, Trinh BQ. Chromatin structure and 3D architecture define differential functions of PU.1 cis regulatory elements in human blood cell lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573782. [PMID: 38260486 PMCID: PMC10802337 DOI: 10.1101/2024.01.01.573782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The precise spatio-temporal expression of the hematopoietic ETS transcription factor PU.1 that determines the hematopoietic cell fates is tightly regulated at the chromatin level. However, it remains elusive as to how chromatin signatures are linked to this dynamic expression pattern of PU.1 across blood cell lineages. Here we performed an unbiased and in-depth analysis of the relationship between human PU.1 expression, the presence of trans-acting factors, and 3D architecture at various cis-regulatory elements (CRE) proximal to the PU.1 locus. We identified multiple novel CREs at the upstream region of the gene following an integrative inspection for conserved DNA elements at the chromatin-accessible regions in primary human blood lineages. We showed that a subset of CREs localize within a 10 kb-wide cluster that exhibits that exhibit molecular features of a myeloid-specific super-enhancer involved in mediating PU.1 autoregulation, including open chromatin, unmethylated DNA, histone enhancer marks, transcription of enhancer RNAs, and occupancy of the PU.1 protein itself. Importantly, we revealed the presence of common 35-kb-wide CTCF-bound insulated neighborhood that contains the CRE cluster, forming the chromatin territory for lineage-specific and CRE-mediated chromatin interactions. These include functional CRE-promoter interactions in myeloid and B cells but not in erythroid and T cells. Our findings also provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in defining certain CREs as enhancers or silencers in chromatin regulation of PU.1 expression. The study lays the groundwork for further examination of PU.1 CREs as well as epigenetic regulation in malignant hematopoiesis.
Collapse
|
37
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
38
|
Jokl E, Mullan AF, Simpson K, Birchall L, Pearmain L, Martin K, Pritchett J, Raza S, Shah R, Hodson NW, Williams CJ, Camacho E, Zeef L, Donaldson I, Athwal VS, Hanley NA, Piper Hanley K. PAK1-dependent mechanotransduction enables myofibroblast nuclear adaptation and chromatin organization during fibrosis. Cell Rep 2023; 42:113414. [PMID: 37967011 DOI: 10.1016/j.celrep.2023.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Myofibroblasts are responsible for scarring during fibrosis. The scar propagates mechanical signals inducing a radical transformation in myofibroblast cell state and increasing profibrotic phenotype. Here, we show mechanical stress from progressive scarring induces nuclear softening and de-repression of heterochromatin. The parallel loss of H3K9Me3 enables a permissive state for distinct chromatin accessibility and profibrotic gene regulation. Integrating chromatin accessibility profiles with RNA expression provides insight into the transcription network underlying the switch in profibrotic myofibroblast states, emphasizing mechanoadaptive regulation of PAK1 as key drivers. Through genetic manipulation in liver and lung fibrosis, loss of PAK1-dependent signaling impairs the mechanoadaptive response in vitro and dramatically improves fibrosis in vivo. Moreover, we provide human validation for mechanisms underpinning PAK1-mediated mechanotransduction in liver and lung fibrosis. Collectively, these observations provide insight into the nuclear mechanics driving the profibrotic chromatin landscape in fibrosis, highlighting actomyosin-dependent mechanisms as potential therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Elliot Jokl
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Aoibheann F Mullan
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Kara Simpson
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Lindsay Birchall
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Laurence Pearmain
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Katherine Martin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - James Pritchett
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Sayyid Raza
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Rajesh Shah
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Nigel W Hodson
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Craig J Williams
- Department of Materials, University of Manchester, Manchester, UK
| | - Elizabeth Camacho
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| | - Leo Zeef
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Ian Donaldson
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Varinder S Athwal
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK; Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK; Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK; College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karen Piper Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.
| |
Collapse
|
39
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
40
|
Cui X, Shang X, Xie J, Xie C, Tang Z, Luo Q, Wu C, Wang G, Wang N, He K, Wang L, Huang L, Wan B, Roeder RG, Han ZG. Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett 2023; 575:216404. [PMID: 37739210 DOI: 10.1016/j.canlet.2023.216404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.
Collapse
Affiliation(s)
- Xiaofang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueying Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenyi Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Qing Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongchao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangxing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
41
|
Lyu X, Rowley MJ, Kulik MJ, Dalton S, Corces VG. Regulation of CTCF loop formation during pancreatic cell differentiation. Nat Commun 2023; 14:6314. [PMID: 37813869 PMCID: PMC10562423 DOI: 10.1038/s41467-023-41964-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Transcription reprogramming during cell differentiation involves targeting enhancers to genes responsible for establishment of cell fates. To understand the contribution of CTCF-mediated chromatin organization to cell lineage commitment, we analyzed 3D chromatin architecture during the differentiation of human embryonic stem cells into pancreatic islet organoids. We find that CTCF loops are formed and disassembled at different stages of the differentiation process by either recruitment of CTCF to new anchor sites or use of pre-existing sites not previously involved in loop formation. Recruitment of CTCF to new sites in the genome involves demethylation of H3K9me3 to H3K9me2, demethylation of DNA, recruitment of pioneer factors, and positioning of nucleosomes flanking the new CTCF sites. Existing CTCF sites not involved in loop formation become functional loop anchors via the establishment of new cohesin loading sites containing NIPBL and YY1 at sites between the new anchors. In both cases, formation of new CTCF loops leads to strengthening of enhancer promoter interactions and increased transcription of genes adjacent to loop anchors. These results suggest an important role for CTCF and cohesin in controlling gene expression during cell differentiation.
Collapse
Affiliation(s)
- Xiaowen Lyu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael J Kulik
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
42
|
Dong L, Liao H, Zhao L, Wang J, Wang C, Wang B, Sun Y, Xu L, Xia Y, Ling S, Lou X, Qin J. A functional crosstalk between the H3K9 methylation writers and their reader HP1 in safeguarding embryonic stem cell identity. Stem Cell Reports 2023; 18:1775-1792. [PMID: 37703822 PMCID: PMC10545489 DOI: 10.1016/j.stemcr.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation, as a hallmark of heterochromatin, has a central role in cell lineage and fate determination. Although evidence of a cooperation between H3K9 methylation writers and their readers has started to emerge, their actual interplay remains elusive. Here, we show that loss of H3K9 methylation readers, the Hp1 family, causes reduced expression of H3K9 methyltransferases, and that this subsequently leads to the exit of embryonic stem cells (ESCs) from pluripotency and a reciprocal gain of lineage-specific characteristics. Importantly, the phenotypes of Hp1-null ESCs can be rescued by ectopic expression of Setdb1, Nanog, and Oct4. Furthermore, Setdb1 ablation results in loss of ESC identity, which is accompanied by a reduction in the expression of Hp1 genes. Together, our data support a model in which the safeguarding of ESC identity involves the cooperation between the H3K9 methylation writers and their readers.
Collapse
Affiliation(s)
- Lixia Dong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Huaqi Liao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Linchun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Jingnan Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Congcong Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Bowen Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yanqi Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lijun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Xin Lou
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311100, China.
| | - Jinzhong Qin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
43
|
Brovkina MV, Chapman MA, Holding ML, Clowney EJ. Emergence and influence of sequence bias in evolutionarily malleable, mammalian tandem arrays. BMC Biol 2023; 21:179. [PMID: 37612705 PMCID: PMC10463633 DOI: 10.1186/s12915-023-01673-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The radiation of mammals at the extinction of the dinosaurs produced a plethora of new forms-as diverse as bats, dolphins, and elephants-in only 10-20 million years. Behind the scenes, adaptation to new niches is accompanied by extensive innovation in large families of genes that allow animals to contact the environment, including chemosensors, xenobiotic enzymes, and immune and barrier proteins. Genes in these "outward-looking" families are allelically diverse among humans and exhibit tissue-specific and sometimes stochastic expression. RESULTS Here, we show that these tandem arrays of outward-looking genes occupy AT-biased isochores and comprise the "tissue-specific" gene class that lack CpG islands in their promoters. Models of mammalian genome evolution have not incorporated the sharply different functions and transcriptional patterns of genes in AT- versus GC-biased regions. To examine the relationship between gene family expansion, sequence content, and allelic diversity, we use population genetic data and comparative analysis. First, we find that AT bias can emerge during evolutionary expansion of gene families in cis. Second, human genes in AT-biased isochores or with GC-poor promoters experience relatively low rates of de novo point mutation today but are enriched for non-synonymous variants. Finally, we find that isochores containing gene clusters exhibit low rates of recombination. CONCLUSIONS Our analyses suggest that tolerance of non-synonymous variation and low recombination are two forces that have produced the depletion of GC bases in outward-facing gene arrays. In turn, high AT content exerts a profound effect on their chromatin organization and transcriptional regulation.
Collapse
Affiliation(s)
- Margarita V Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret A Chapman
- Neurosciences Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Xu R, Zhu Q, Zhao Y, Chen M, Yang L, Shen S, Yang G, Shi Z, Zhang X, Shi Q, Kou X, Zhao Y, Wang H, Jiang C, Li C, Gao S, Liu X. Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos. Nat Commun 2023; 14:4807. [PMID: 37558707 PMCID: PMC10412629 DOI: 10.1038/s41467-023-40496-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) can be used to reprogram differentiated somatic cells to a totipotent state but has poor efficiency in supporting full-term development. H3K9me3 is considered to be an epigenetic barrier to zygotic genomic activation in 2-cell SCNT embryos. However, the mechanism underlying the failure of H3K9me3 reprogramming during SCNT embryo development remains elusive. Here, we perform genome-wide profiling of H3K9me3 in cumulus cell-derived SCNT embryos. We find redundant H3K9me3 marks are closely related to defective minor zygotic genome activation. Moreover, SCNT blastocysts show severely indistinct lineage-specific H3K9me3 deposition. We identify MAX and MCRS1 as potential H3K9me3-related transcription factors and are essential for early embryogenesis. Overexpression of Max and Mcrs1 significantly benefits SCNT embryo development. Notably, MCRS1 partially rescues lineage-specific H3K9me3 allocation, and further improves the efficiency of full-term development. Importantly, our data confirm the conservation of deficient H3K9me3 differentiation in Sertoli cell-derived SCNT embryos, which may be regulated by alternative mechanisms.
Collapse
Affiliation(s)
- Ruimin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Qianshu Zhu
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Yuyan Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Mo Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, 400013, Chongqing, China
| | - Lingyue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Shijun Shen
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Guang Yang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhifei Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Xiaolei Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Qi Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chong Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
45
|
Lan T, Hu L, Sun T, Wang X, Xiao Z, Shen D, Wu W, Luo Z, Wei C, Wang X, Liu M, Guo Y, Wang L, Wang Y, Lu Y, Yu Y, Yang F, Zhang C, Li Q. H3K9 trimethylation dictates neuronal ferroptosis through repressing Tfr1. J Cereb Blood Flow Metab 2023; 43:1365-1381. [PMID: 36960698 PMCID: PMC10369154 DOI: 10.1177/0271678x231165653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high morbidity and mortality worldwide. We have previously shown that ferroptosis contributes to neuronal loss in ICH mice. The overload of iron and dysfunction of glutathione peroxidase 4 (GPx4) promote neuronal ferroptosis post-ICH. However, how epigenetic regulatory mechanisms affect the ferroptotic neurons in ICH remains unclear. In the current study, hemin was used to induce ferroptosis in N2A and SK-N-SH neuronal cells to mimic ICH. The results showed that hemin-induced ferroptosis was accompanied by an increment of global level of trimethylation in histone 3 lysine 9 (H3K9me3) and its methyltransferase Suv39h1. Transcriptional target analyses indicated that H3K9me3 was enriched at the promoter region and gene body of transferrin receptor gene 1 (Tfr1) and repressed its expression upon hemin stimulation. Inhibition of H3K9me3 with inhibitor or siRNA against Suv39h1 aggravated hemin- and RSL3-induced ferroptosis by upregulating Tfr1 expression. Furthermore, Suv39h1-H3K9me3 mediated repression of Tfr1 contributes to the progression of ICH in mice. These data suggest a protective role of H3K9me3 in ferroptosis post ICH. The knowledge gained from this study will improve the understanding of epigenetic regulation in neuronal ferroptosis and shed light on future clinical research after ICH.
Collapse
Affiliation(s)
- Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tingting Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuechun Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaotong Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Mattei F, George JT, Jolly MK. Editorial: Organoids, organs-on-chip, nanoparticles and in silico approaches to dissect the tumor-immune dynamics and to unveil the drug resistance mechanisms to therapy in the tumor microenvironment. Front Immunol 2023; 14:1253551. [PMID: 37533861 PMCID: PMC10392942 DOI: 10.3389/fimmu.2023.1253551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
47
|
Gao L, Zhang Z, Zheng X, Wang F, Deng Y, Zhang Q, Wang G, Zhang Y, Liu X. The Novel Role of Zfp296 in Mammalian Embryonic Genome Activation as an H3K9me3 Modulator. Int J Mol Sci 2023; 24:11377. [PMID: 37511136 PMCID: PMC10379624 DOI: 10.3390/ijms241411377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The changes in epigenetic modifications during early embryonic development significantly impact mammalian embryonic genome activation (EGA) and are species-conserved to some degree. Here, we reanalyzed the published RNA-Seq of human, mouse, and goat early embryos and found that Zfp296 (zinc finger protein 296) expression was higher at the EGA stage than at the oocyte stage in all three species (adjusted p-value < 0.05 |log2(foldchange)| ≥ 1). Subsequently, we found that Zfp296 was conserved across human, mouse, goat, sheep, pig, and bovine embryos. In addition, we identified that ZFP296 interacts with the epigenetic regulators KDM5B, SMARCA4, DNMT1, DNMT3B, HP1β, and UHRF1. The Cys2-His2(C2H2) zinc finger domain TYPE2 TYPE3 domains of ZFP296 co-regulated the modification level of the trimethylation of lysine 9 on the histone H3 protein subunit (H3K9me3). According to ChIP-seq analysis, ZFP296 was also enriched in Trim28, Suv39h1, Setdb1, Kdm4a, and Ehmt2 in the mESC genome. Then, knockdown of the expression of Zfp296 at the late zygote of the mouse led to the early developmental arrest of the mouse embryos and failure resulting from a decrease in H3K9me3. Together, our results reveal that Zfp296 is an H3K9me3 modulator which is essential to the embryonic genome activation of mouse embryos.
Collapse
Affiliation(s)
- Lu Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Fan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yi Deng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Qian Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Guoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
48
|
Raimundo F, Prompsy P, Vert JP, Vallot C. A benchmark of computational pipelines for single-cell histone modification data. Genome Biol 2023; 24:143. [PMID: 37340307 PMCID: PMC10280832 DOI: 10.1186/s13059-023-02981-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Single-cell histone post translational modification (scHPTM) assays such as scCUT&Tag or scChIP-seq allow single-cell mapping of diverse epigenomic landscapes within complex tissues and are likely to unlock our understanding of various mechanisms involved in development or diseases. Running scHTPM experiments and analyzing the data produced remains challenging since few consensus guidelines currently exist regarding good practices for experimental design and data analysis pipelines. RESULTS We perform a computational benchmark to assess the impact of experimental parameters and data analysis pipelines on the ability of the cell representation to recapitulate known biological similarities. We run more than ten thousand experiments to systematically study the impact of coverage and number of cells, of the count matrix construction method, of feature selection and normalization, and of the dimension reduction algorithm used. This allows us to identify key experimental parameters and computational choices to obtain a good representation of single-cell HPTM data. We show in particular that the count matrix construction step has a strong influence on the quality of the representation and that using fixed-size bin counts outperforms annotation-based binning. Dimension reduction methods based on latent semantic indexing outperform others, and feature selection is detrimental, while keeping only high-quality cells has little influence on the final representation as long as enough cells are analyzed. CONCLUSIONS This benchmark provides a comprehensive study on how experimental parameters and computational choices affect the representation of single-cell HPTM data. We propose a series of recommendations regarding matrix construction, feature and cell selection, and dimensionality reduction algorithms.
Collapse
Affiliation(s)
- Félix Raimundo
- Google Research, Brain team, 75009, Paris, France
- Translational Research Department, Institut Curie, PSL Research University, 75005, Paris, France
| | - Pacôme Prompsy
- Translational Research Department, Institut Curie, PSL Research University, 75005, Paris, France
- CNRS UMR3244, Institut Curie, PSL Research University, 75005, Paris, France
| | - Jean-Philippe Vert
- Google Research, Brain team, 75009, Paris, France.
- Owkin, Inc, NY, New York, USA.
| | - Céline Vallot
- Translational Research Department, Institut Curie, PSL Research University, 75005, Paris, France.
- CNRS UMR3244, Institut Curie, PSL Research University, 75005, Paris, France.
| |
Collapse
|
49
|
McCarthy RL, Zhang J, Zaret KS. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem Sci 2023; 48:513-526. [PMID: 36990958 PMCID: PMC10182259 DOI: 10.1016/j.tibs.2023.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Rang FJ, Kind J, Guerreiro I. The role of heterochromatin in 3D genome organization during preimplantation development. Cell Rep 2023; 42:112248. [PMID: 37059092 DOI: 10.1016/j.celrep.2023.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023] Open
Abstract
During the early stages of mammalian development, the epigenetic state of the parental genome is completely reprogrammed to give rise to the totipotent embryo. An important aspect of this remodeling concerns the heterochromatin and the spatial organization of the genome. While heterochromatin and genome organization are intricately linked in pluripotent and somatic systems, little is known about their relationship in the totipotent embryo. In this review, we summarize the current knowledge on the reprogramming of both regulatory layers. In addition, we discuss available evidence on their relationship and put this in the context of findings in other systems.
Collapse
Affiliation(s)
- Franka J Rang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands.
| | - Isabel Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands.
| |
Collapse
|