1
|
Maizels RM, McSorley HJ, Smits HH, Ten Dijke P, Hinck AP. Cytokines from parasites: manipulating host responses by molecular mimicry. Biochem J 2025; 482:BCJ20253061. [PMID: 40302223 DOI: 10.1042/bcj20253061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
Helminth parasites have evolved sophisticated methods for manipulating the host immune response to ensure long-term survival in their chosen niche, for example, by secreting products that interfere with the host cytokine network. Studies on the secretions of Heligmosomoides polygyrus have identified a family of transforming growth factor-β (TGF-β) mimics (TGMs), which bear no primary amino acid sequence similarity to mammalian TGF-β, but functionally replicate or antagonise TGF-β effects in restricted cell types. The prototypic member, TGM1, induces in vitro differentiation of Foxp3+ T regulatory cells and attenuates airway allergic and intestinal inflammation in animal models. TGM1 is one of a family of ten TGM proteins expressed by H. polygyrus. It is a five-domain modular protein in which domains 1-2 bind TGFBR1, and domain 3 binds TGFBR2; domains 4-5 increase its potency by binding a co-receptor, CD44, highly expressed on immune cells. Domains 4-5 are more diverse in other TGMs, which bind co-receptors on cells such as fibroblasts. One variant, TGM6, lacks domains 1-2 and hence cannot transduce a signal but binds TGFBR2 through domain 3 and a co-receptor expressed on fibroblasts through domains 4-5 and blocks TGF-β signalling in fibroblasts and epithelial cells; T cells do not express the co-receptor and are not inhibited by TGM6. Hence, different family members have evolved to act as agonists or antagonists on various cell types. TGMs, which function by molecularly mimicking binding of the host cytokine to the host TGF-β receptors, are examples of highly evolved immunomodulators from parasites, including those that block interleukin (IL)-13 and IL-33 signalling, modulate macrophage and dendritic cell responses and modify host cell metabolism. The emerging panoply and potency of helminth evasion molecules illustrates the range of strategies in play to maintain long-term infections in the mammalian host.
Collapse
Affiliation(s)
- Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Glasgow, U.K
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Hermelijn H Smits
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, Leiden, Netherlands
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15260, U.S.A
| |
Collapse
|
2
|
Xiong H, Guo J. Targeting Hepatic Stellate Cells for the Prevention and Treatment of Liver Cirrhosis and Hepatocellular Carcinoma: Strategies and Clinical Translation. Pharmaceuticals (Basel) 2025; 18:507. [PMID: 40283943 PMCID: PMC12030350 DOI: 10.3390/ph18040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatic stellate cells (HSC) are the major source of myofibroblasts (MFB) in fibrosis and cancer- associated fibroblasts (CAF) in both primary and metastatic liver cancer. Over the past few decades, there has been significant progress in understanding the cellular and molecular mechanisms by which liver fibrosis and HCC occur, as well as the key roles of HSC in their pathogenesis. HSC-targeted approaches using specific surface markers and receptors may enable the selective delivery of drugs, oligonucleotides, and therapeutic peptides that exert optimized anti-fibrotic and anti-HCC effects. Recent advances in omics, particularly single-cell sequencing and spatial transcriptomics, hold promise for identifying new HSC targets for diagnosing and treating liver fibrosis/cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| | - Jinsheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| |
Collapse
|
3
|
Wang S, Xu D, Xiao L, Liu B, Yuan X. Radiation-induced lung injury: from mechanism to prognosis and drug therapy. Radiat Oncol 2025; 20:39. [PMID: 40082925 PMCID: PMC11907960 DOI: 10.1186/s13014-025-02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Radiation induced lung injury, known as the main complication of thoracic radiation, remains to be a major resistance to tumor treatment. Based on the recent studies on radiation-induced lung injury, this review collated the possible mechanisms at the level of target cells and key pathways, corresponding prognostic models including predictors, patient size, number of centers, radiotherapy technology, construction methods and accuracy, and pharmacotherapy including drugs, targets, therapeutic effects, impact on anti-tumor treatment and research types. The research priorities and limitations are summarized to provide a reference for the research and management of radiation-induced lung injury.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210000, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Chaimon S, Phuphisut O, Reamtong O, Ampawong S, Fongsodsri K, Chantree P, Thanongsaksrikul J, Malaithong P, Sreesai S, Maleewong W, Sadaow L, Martviset P, Adisakwattana P. Molecular and biological characterization of transforming growth factor-β homolog derived from Trichinella spiralis. Sci Rep 2024; 14:31229. [PMID: 39732815 DOI: 10.1038/s41598-024-82599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches. Bioinformatics analyses indicated that TsTGH2 belongs to the TGF-β subfamily. Recombinant TsTGH2 (rTsTGH2) expressed in Escherichia coli was used to produce a polyclonal antibody (pAb) in mice. Western blot and immunolocalization using pAb detected native TsTGH2 in crude worm antigens from muscle larvae and adults, showing it was mainly localized in the body wall muscles and the epithelia of the ovary and uterus. To assess the interplay between TsTGH2 and the human TGF-β signaling pathway, rTsTGH2 produced in a HEK293T cell was incubated with the SBE luciferase-HEK293 cell. The result indicated a significant increase in luciferase activity after treatment with rTsTGH2 compared to untreated control (p < 0.05). In conclusion, these findings are the first to characterize the basic properties and functions of TGF-β homologs in T. spiralis, demonstrating their interaction with the human TGF-β receptor. Further investigation is required to identify and optimize an appropriate expression system or conditions for TsTGH2. Additionally, studies are needed to clarify the specific role of native TsTGH2 in parasite development and host immunomodulation.
Collapse
Affiliation(s)
- Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand
| | - Preeyarat Malaithong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Suthasinee Sreesai
- Central Equipment Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wanchai Maleewong
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lakkhana Sadaow
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand.
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Jin M, Seed RI, Cai G, Shing T, Wang L, Ito S, Cormier A, Wankowicz SA, Jespersen JM, Baron JL, Carey ND, Campbell MG, Yu Z, Tang PK, Cossio P, Wen W, Lou J, Marks J, Nishimura SL, Cheng Y. Dynamic allostery drives autocrine and paracrine TGF-β signaling. Cell 2024; 187:6200-6219.e23. [PMID: 39288764 PMCID: PMC11531391 DOI: 10.1016/j.cell.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
TGF-β, essential for development and immunity, is expressed as a latent complex (L-TGF-β) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvβ8 activates L-TGF-β1/GARP. The dogma is that mature TGF-β must physically dissociate from L-TGF-β1 for signaling to occur. Our previous studies discovered that αvβ8-mediated TGF-β autocrine signaling can occur without TGF-β1 release from its latent form. Here, we show that mice engineered to express TGF-β1 that cannot release from L-TGF-β1 survive without early lethal tissue inflammation, unlike those with TGF-β1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-β1 signaling without release where αvβ8 binding redistributes the intrinsic flexibility of L-TGF-β1 to expose TGF-β1 to its receptors. Dynamic allostery explains the TGF-β3 latency/activation mechanism and why TGF-β3 functions distinctly from TGF-β1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.
Collapse
Affiliation(s)
- Mingliang Jin
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Robert I Seed
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Guoqing Cai
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Tiffany Shing
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Li Wang
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Saburo Ito
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | | | | | - Jody L Baron
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Nicholas D Carey
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Phu K Tang
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - James Marks
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | | | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA.
| |
Collapse
|
7
|
Holmström MO, Ruders JH, Riley CH, Larsen MK, Grauslund JH, Kjær L, Skov V, Ellervik C, Guo BB, Linden M, Hasselbalch HC, Andersen MH. The CALR mutations enhance the expression of the immunosuppressive proteins GARP and LAP on peripheral blood lymphocytes through increased binding of activated platelets. Br J Haematol 2024; 205:1417-1429. [PMID: 39161981 DOI: 10.1111/bjh.19711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Recently, an antibody which inhibits the glycoprotein A repetitions predominant (GARP)-mediated release of active transforming growth factor beta (TGFβ) from the TGFβ propeptide latency-associated peptide (LAP) showed preclinical activity in a murine model of the chronic myeloproliferative neoplasms (MPN). Consequently, we investigated the expression of the immunosuppressive molecules LAP and GARP on peripheral blood lymphocytes from 56 MPN patients and 11 healthy donors (HD). We found that lymphocytes from patients with MPN express higher levels of LAP and GARP with no strong differences found between the different MPN diagnoses. The impact of clinical parameters on the expression of LAP and GARP by lymphocytes showed that patients with calreticulin (CALR)mut MPN have increased expression compared with HD and patients with the Januskinase2 (JAK2) mutation. The fraction of lymphocytes bound to activated platelets (aPLT) strongly correlate to LAP and GARP expression suggesting that it is not the lymphocytes themselves but aPLT, which confer the increased expression of GARP and LAP on MPN patient lymphocytes. Notably, no differences in neither platelet counts nor anti-thrombotic therapy was identified between patients with JAK2- and CALRmut patients. Analysis of platelet gene expression failed to identify differences in expression of relevant genes between JAK2- and CALRmut patients.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Josephine Hallundbæk Ruders
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | | | | | - Jacob Handlos Grauslund
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Biochemistry, Zealand University Hospital, Koege, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Belinda B Guo
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew Linden
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Kou YY, Liu J, Chang YT, Liu LY, Sun F, Li YL, Leng JR, Lin HW, Yang F. Marine derived macrolide bryostatin 4 inhibits the TGF-β signaling pathway against acute erythroleukemia. Cell Oncol (Dordr) 2024; 47:1863-1878. [PMID: 39083211 DOI: 10.1007/s13402-024-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 10/11/2024] Open
Abstract
PURPOSE Acute erythroleukemia (AEL) is a rare and highly aggressive subtype of acute myeloid leukemia (AML) with an extremely poor prognosis when treated with available drugs. Therefore, new investigational agents capable of inducing remission are urgently required. METHODS Bioinformatics analysis, western blot and qRT-PCR were used to reveal the potential biological mechanism of bryostatin 4 (B4), an antineoplastic macrolide derived from the marine bryozoan Bugula neritina. Then, in vivo experiments were conducted to evaluate the role of transforming growth factor (TGF)-β signaling in the progression of AEL. RESULTS Our results revealed that the proliferation of K562 cells and TF-1 cells was significantly inhibited by B4 at IC50 values of 37 nM and 52 nM, respectively. B4 inhibited TGF-β signaling and its downstream pathway targets, particularly the phosphorylation of Smad2, Smad3, Ras, C-RAF, ERK1/2, and MEK. B4 also played an important role in cell invasion and migration in K562 cells and TF-1 cells by reducing the protein levels of the mesenchymal cell marker vimentin. Moreover, Flow cytometry and western blot analyses demonstrated that B4 induced apoptosis and initiated G0/G1 phase arrest by modulating mitochondrial dysfunction and cyclin-dependent kinase (CDK) expression. CONCLUSION These findings indicated that B4 could inhibit the proliferation, migration, invasion, and TGF-β signaling pathways of AEL cells, thus suggesting that B4 possesses therapeutic potential as a treatment for AEL.
Collapse
Affiliation(s)
- Yan-Yu Kou
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- School of Pharmacy, Shanghai JiaoTong University, Shanghai, China
| | - Jie Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Yung-Ting Chang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Li-Yun Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Fan Sun
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Yi-Lin Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Jia-Rong Leng
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Hou-Wen Lin
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China.
| | - Fan Yang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China.
| |
Collapse
|
9
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Liu X, Li S, Wang L, Ma K. Microecological regulation in HCC therapy: Gut microbiome enhances ICI treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167230. [PMID: 38734322 DOI: 10.1016/j.bbadis.2024.167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The exploration of the complex mechanisms of cancer immunotherapy is rapidly evolving worldwide, and our focus is on the interaction of hepatocellular carcinoma (HCC) with immune checkpoint inhibitors (ICIs), particularly as it relates to the regulatory role of the gut microbiome. An important basis for the induction of immune responses in HCC is the presence of specific anti-tumor cells that can be activated and reinforced by ICIs, which is why the application of ICIs results in sustained tumor response rates in the majority of HCC patients. However, mechanisms of acquired resistance to immunotherapy in unresectable HCC result in no long-term benefit for some patients. The significant heterogeneity of inter-individual differences in the gut microbiome in response to treatment with ICIs makes it possible to target modulation of specific gut microbes to assist in augmenting checkpoint blockade therapies in HCC. This review focuses on the complex relationship between the gut microbiome, host immunity, and HCC, and emphasizes that manipulating the gut microbiome to improve response rates to cancer ICI therapy is a clinical strategy with unlimited potential.
Collapse
Affiliation(s)
- Xuliang Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| | - Kexin Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
11
|
Jackson JW, Frederick C Streich, Pal A, Coricor G, Boston C, Brueckner CT, Canonico K, Chapron C, Cote S, Dagbay KB, Danehy FT, Kavosi M, Kumar S, Lin S, Littlefield C, Looby K, Manohar R, Martin CJ, Wood M, Zawadzka A, Wawersik S, Nicholls SB, Datta A, Buckler A, Schürpf T, Carven GJ, Qatanani M, Fogel AI. An antibody that inhibits TGF-β1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. Sci Signal 2024; 17:eadn6052. [PMID: 38980922 DOI: 10.1126/scisignal.adn6052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Inhibitors of the transforming growth factor-β (TGF-β) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-β homologs has safety liabilities. TGF-β1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-β-binding proteins (LTBPs) present TGF-β1 in the extracellular matrix, and TGF-β1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-β1 presented by LTBPs but did not bind to TGF-β1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-β1 that is not accessible on GARP- or LRRC33-presented TGF-β1, explaining the antibody's selectivity for LTBP-complexed TGF-β1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-β1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-β inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-β1 as an approach for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Ajai Pal
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - George Coricor
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Chris Boston
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Shaun Cote
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Kevin B Dagbay
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Mania Kavosi
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Sandeep Kumar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Susan Lin
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Kailyn Looby
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Rohan Manohar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Marcie Wood
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
- ToxStrategies LLC, 23501 Cinco Ranch Boulevard, Katy, TX 77494, USA
| | - Agatha Zawadzka
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Stefan Wawersik
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Abhishek Datta
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Thomas Schürpf
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Adam I Fogel
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Sachan N, Phoon CK, Bu L, Zilberberg L, Ahamed J, Rifkin DB. Binding requirements for latent transforming growth factor Beta2 activation. Matrix Biol Plus 2024; 22:100149. [PMID: 38831847 PMCID: PMC11145359 DOI: 10.1016/j.mbplus.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
Although the mechanism for activation of latent TGFβ1 and TGFβ3 is understood to involve the binding of the TGFβ propeptide (LAP) to both an integrin and an insoluble substrate, the activation of latent TGFβ2 has been unclear because the TGFβ2 LAP does not have the classical integrin binding sequence found in the other two TGFβ isoform LAPs. To assess the potential requirement for covalent linkage with a matrix or cell surface protein for the activation of latent TGFβ2, we generated mice in which the TGFβ2 Cys residue predicted to be involved in binding was mutated to Ser (Tgfb2C24S). We reasoned that, if covalent interaction with a second molecule is required for latent TGFβ2 activation, mutant mice should display a Tgfb2 null (Tgfb2-/-)-like phenotype. Tgfb2C24S mice closely phenocopy Tgfb2-/- mice with death in utero between E18 and P1 and with congenital heart and kidney defects similar to those described for Tgfb2-/- mice. The mutant latent TGFβ2 is secreted at levels similar to WT, yet TGFβ signaling monitored as nuclear pSmad2 is suppressed. We conclude that, like latent TGFβ1, latent TGFβ2 activation requires binding to an immobilized matrix or plasma membrane molecule.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lei Bu
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lior Zilberberg
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel B. Rifkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
14
|
Wang Z, Xie D, Li J, Zhai Z, Lu Z, Tian X, Niu Y, Zhao Q, Zheng P, Dong L, Wang C. Molecular force-induced liberation of transforming growth factor-beta remodels the spleen for ectopic liver regeneration. J Hepatol 2024; 80:753-763. [PMID: 38244845 DOI: 10.1016/j.jhep.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND & AIMS Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-β (TGF-β) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-β. RESULTS sHA-X efficiently bound to the abundant latent TGF-β in the spleen. It provided the molecular force to liberate the active TGF-β dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-β and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-β to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jiayi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ziyu Zhai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhuojian Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xuejiao Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Qi Zhao
- Department of Biomedical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
15
|
Harding AT, Ocwieja K, Jeong M, Zhang Y, Leger V, Jhala N, Stankovic KM, Gehrke L. Human otic progenitor cell models of congenital hearing loss reveal potential pathophysiologic mechanisms of Zika virus and cytomegalovirus infections. mBio 2024; 15:e0019924. [PMID: 38440980 PMCID: PMC11005345 DOI: 10.1128/mbio.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood. It is challenging to study human inner ear cells because they are encased in bone and also scarce as autopsy samples. Recent advances in culturing human stem cell-derived otic progenitor cells (OPCs) have allowed us herein to describe successful in vitro infection of OPCs with HCMV and ZIKV, and also to propose potential mechanisms by which each viral infection could affect hearing. We find that ZIKV infection rapidly and significantly induces the expression of type I interferon and interferon-stimulated genes, while OPC viability declines, at least in part, from apoptosis. In contrast, HCMV infection did not appear to upregulate interferons or cause a reduction in cell viability, and instead disrupted expression of key genes and pathways associated with inner ear development and function, including Cochlin, nerve growth factor receptor, SRY-box transcription factor 11, and transforming growth factor-beta signaling. These findings suggest that ZIKV and HCMV infections cause congenital hearing loss through distinct pathways, that is, by inducing progenitor cell death in the case of ZIKV infection, and by disruption of critical developmental pathways in the case of HCMV infection. IMPORTANCE Congenital virus infections inflict substantial morbidity and devastating disease in neonates worldwide, and hearing loss is a common outcome. It has been difficult to study viral infections of the human hearing apparatus because it is embedded in the temporal bone of the skull. Recent technological advances permit the differentiation of otic progenitor cells (OPCs) from human-induced pluripotent stem cells. This paper is important for demonstrating that inner ear virus infections can be modeled in vitro using OPCs. We infected OPCs with two viruses associated with congenital hearing loss: human cytomegalovirus (HCMV), a DNA virus, or Zika virus (ZIKV), an RNA virus. An important result is that the gene expression and cytokine production profiles of HCMV/ZIKV-infected OPCs are markedly dissimilar, suggesting that mechanisms of hearing loss are also distinct. The specific molecular regulatory pathways identified in this work could suggest important targets for therapeutics.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Ocwieja
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Boston Childrens’ Hospital, Boston, Massachusetts, USA
| | - Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yichen Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Valerie Leger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nairuti Jhala
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Tindall RR, Bailey-Lundberg JM, Cao Y, Ko TC. The TGF-β superfamily as potential therapeutic targets in pancreatic cancer. Front Oncol 2024; 14:1362247. [PMID: 38500662 PMCID: PMC10944957 DOI: 10.3389/fonc.2024.1362247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
The transforming growth factor (TGF)-β superfamily has important physiologic roles and is dysregulated in many pathologic processes, including pancreatic cancer. Pancreatic cancer is one of the most lethal cancer diagnoses, and current therapies are largely ineffective due to tumor resistance and late-stage diagnosis with poor prognosis. Recent efforts are focused on the potential of immunotherapies in improving therapeutic results for patients with pancreatic cancer, among which TGF-β has been identified as a promising target. This review focuses on the role of TGF-β in the diseased pancreas and pancreatic cancer. It also aims to summarize the current status of therapies targeting the TGF-β superfamily and postulate potential future directions in targeting the TGF-β signaling pathways.
Collapse
Affiliation(s)
- Rachel R. Tindall
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- McGovern Medical School, Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanna Cao
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tien C. Ko
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
17
|
Wang Q, Ni S, Ling L, Wang S, Xie H, Ren Z. Ginkgolide B Blocks Vascular Remodeling after Vascular Injury via Regulating Tgf β1/Smad Signaling Pathway. Cardiovasc Ther 2023; 2023:8848808. [PMID: 38125702 PMCID: PMC10732976 DOI: 10.1155/2023/8848808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Coronary artery disease (CAD) is the most prevalent cardiovascular disease worldwide, resulting in myocardial infarction (MI) and even sudden death. Following percutaneous coronary intervention (PCI), restenosis caused by vascular remodeling is always formed at the stent implantation site. Here, we show that Ginkgolide B (GB), a naturally occurring terpene lactone, effectively suppresses vascular remodeling and subsequent restenosis in wild-type mice following left carotid artery (LCA) injury. Additional experiments reveal that GB exerts a protective effect on vascular remodeling and further restenosis through modulation of the Tgfβ1/Smad signaling pathway in vivo and in human vascular smooth muscle cells (HVSMAs) but not in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, the beneficial effect of GB is abolished after incubated with pirfenidone (PFD, a drug for idiopathic pulmonary fibrosis, IPF), which can inhibit Tgfβ1. In Tgfβ1-/- mice, treatment with pirfenidone capsules and Yinxingneizhi Zhusheye (including Ginkgolide B) fails to improve vascular remodeling and restenosis. In conclusion, our data identify that GB could be a potential novel therapeutic agent to block vessel injury-associated vascular remodeling and further restenosis and show significant repression of Tgfβ1/Smad signaling pathway.
Collapse
Affiliation(s)
- Quan Wang
- Hubei University of Science and Technology, Xianning 437100, China
| | - Shuai Ni
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Li Ling
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siqi Wang
- Hubei University of Science and Technology, Xianning 437100, China
| | - Hanbin Xie
- Collections Conservation Research Center, Shanghai Natural History Museum (Branch of Shanghai Science and Technology Museum), Shanghai 200041, China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
18
|
Zhang X, Sharma P, Maschmeyer P, Hu Y, Lou M, Kim J, Fujii H, Unutmaz D, Schwabe RF, Winau F. GARP on hepatic stellate cells is essential for the development of liver fibrosis. J Hepatol 2023; 79:1214-1225. [PMID: 37348791 PMCID: PMC10592496 DOI: 10.1016/j.jhep.2023.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND & AIMS Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-β docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-β. Moreover, cell contraction of HSCs in the context of TGF-β activation was tested in a GARP-dependent fashion. RESULTS Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-β and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-β. Considering that systemic blockade of TGF-β has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-β activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-β docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Maschmeyer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu Hu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica Kim
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Robert F Schwabe
- Department of Medicine, College of Physicians and Surgeons, Institute of Human Nutrition, Columbia University, New York, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Xu J, Dong B, Yang G, Yang B, Wang X, Gu Y, Zhang G, Lian Y, Zhang W, Zhang M, Li T, Zang Y, Tan M, Li Q, Wang X, Yu Z, Jiang J, Huang H, Qin J. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell 2023; 41:1345-1362.e9. [PMID: 37352863 DOI: 10.1016/j.ccell.2023.05.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Lineage plasticity causes therapeutic resistance; however, it remains unclear how the fate conversion and phenotype switching of cancer-associated fibroblasts (CAFs) are implicated in disease relapse. Here, we show that androgen deprivation therapy (ADT)-induced SPP1+ myofibroblastic CAFs (myCAFs) are critical stromal constituents that drive the development of castration-resistant prostate cancer (CRPC). Our results reveal that SPP1+ myCAFs arise from the inflammatory CAFs in hormone-sensitive PCa; therefore, they represent two functional states of an otherwise ontogenically identical cell type. Antiandrogen treatment unleashes TGF-β signaling, resulting in SOX4-SWI/SNF-dependent CAF phenotype switching. SPP1+ myCAFs in turn render PCa refractory to ADT via an SPP1-ERK paracrine mechanism. Importantly, these sub-myCAFs are associated with inferior therapeutic outcomes, providing the rationale for inhibiting polarization or paracrine mechanisms to circumvent castration resistance. Collectively, our results highlight that therapy-induced phenotypic switching of CAFs is coupled with disease progression and that targeting this stromal component may restrain CRPC.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Mingyu Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tianyi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Sichuan University, 20 Renmin South Road, Chengdu 610041, China
| | - Xiaoming Wang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
21
|
Le VQ, Zhao B, Ramesh S, Toohey C, DeCosta A, Mintseris J, Liu X, Gygi S, Springer TA. A specialized integrin-binding motif enables proTGF-β2 activation by integrin αVβ6 but not αVβ8. Proc Natl Acad Sci U S A 2023; 120:e2304874120. [PMID: 37279271 PMCID: PMC10268255 DOI: 10.1073/pnas.2304874120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Activation of latent transforming growth factor (TGF)-β2 is incompletely understood. Unlike TGF-β1 and β3, the TGF-β2 prodomain lacks a seven-residue RGDLXX (L/I) integrin-recognition motif and is thought not to be activated by integrins. Here, we report the surprising finding that TGF-β2 contains a related but divergent 13-residue integrin-recognition motif (YTSGDQKTIKSTR) that specializes it for activation by integrin αVβ6 but not αVβ8. Both classes of motifs compete for the same binding site in αVβ6. Multiple changes in the longer motif underlie its specificity. ProTGF-β2 structures define interesting differences from proTGF-β1 and the structural context for activation by αVβ6. Some integrin-independent activation is also seen for proTGF-β2 and even more so for proTGF-β3. Our findings have important implications for therapeutics to αVβ6 in clinical trials for fibrosis, in which inhibition of TGF-β2 activation has not been anticipated.
Collapse
Affiliation(s)
- Viet Q. Le
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Bo Zhao
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Siddanth Ramesh
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
| | - Cameron Toohey
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
| | - Adam DeCosta
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School,Boston, MA02115
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School,Boston, MA02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School,Boston, MA02115
| | - Timothy A. Springer
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
22
|
Burlingham WJ, Jankowska-Gan E, Fechner JH, Little CJ, Wang J, Hong S, Molla M, Sullivan JA, Foley DP. Extracellular Vesicle-associated GARP/TGFβ:LAP Mediates "Infectious" Allo-tolerance. Transplant Direct 2023; 9:e1475. [PMID: 37250483 PMCID: PMC10212611 DOI: 10.1097/txd.0000000000001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
Here we test the hypothesis that, like CD81-associated "latent" IL35, the transforming growth factor (TGF)β:latency-associated peptide (LAP)/glycoprotein A repetitions predominant (GARP) complex was also tethered to small extracellular vesicles (sEVs), aka exosomes, produced by lymphocytes from allo-tolerized mice. Once these sEVs are taken up by conventional T cells, we also test whether TGFβ could be activated suppressing the local immune response. Methods C57BL/6 mice were tolerized by i.p. injection of CBA/J splenocytes followed by anti-CD40L/CD154 antibody treatment on days 0, 2, and 4. On day 35, spleen and lymph nodes were extracted and isolated lymphocytes were restimulated with sonicates of CBA splenocytes overnight. sEVs were extracted from culture supernatants by ultracentrifugation (100 000g) and assayed for (a) the presence of TGFβ:LAP associated with tetraspanins CD81,CD63, and CD9 by enzyme-linked immunosorbent assay; (b) GARP, critical to membrane association of TGFβ:LAP and to activation from its latent form, as well as various TGFβ receptors; and (c) TGFβ-dependent function in 1° and 2° immunosuppression of tetanus toxoid-immunized B6 splenocytes using trans-vivo delayed-type hypersensitivity assay. Results After tolerization, CBA-restimulated lymphocytes secreted GARP/TGFβ:LAP-coated extracellular vesicles. Like IL35 subunits, but unlike IL10, which was absent from ultracentrifuge pellets, GARP/TGFβ:LAP was mainly associated with CD81+ exosomes. sEV-bound GARP/TGFβ:LAP became active in both 1° and 2° immunosuppression, the latter requiring sEV uptake by "bystander" T cells and reexpression on the cell surface. Conclusions Like other immune-suppressive components of the Treg exosome, which are produced in a latent form, exosomal GARP/TGFβ:LAP produced by allo-specific regulatory T cells undergoes either immediate activation (1° suppression) or internalization by naive T cells, followed by surface reexpression and subsequent activation (2°), to become suppressive. Our results imply a membrane-associated form of TGFβ:LAP that, like exosomal IL35, can target "bystander" lymphocytes. This new finding implicates exosomal TGFβ:LAP along with Treg-derived GARP as part of the infectious tolerance network.
Collapse
Affiliation(s)
- William J. Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Ewa Jankowska-Gan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - John H. Fechner
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Christopher J. Little
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI
| | - Seungpyo Hong
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI
| | - Miraf Molla
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jeremy A. Sullivan
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - David P. Foley
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
23
|
Sui Y, Li S, Fu XQ, Zhao ZJ, Xing S. Bioinformatics analyses of combined databases identify shared differentially expressed genes in cancer and autoimmune disease. J Transl Med 2023; 21:109. [PMID: 36765396 PMCID: PMC9921081 DOI: 10.1186/s12967-023-03943-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoimmune genesis in terms of immune responses remains to be summed up. METHODS Considering the high disease prevalence, we chose invasive ductal carcinoma (IDC) and systemic lupus erythematosus (SLE) to study the potential commonalities of immune responses. We obtained gene expression data of IDC/SLE patients and normal controls from five IDC databases (GSE29044, GSE21422, GSE22840, GSE15852, and GSE9309) and five SLE databases (GSE154851, GSE99967, GSE61635, GSE50635, and GSE17755). We intended to identify genes differentially expressed in both IDC and SLE by using three bioinformatics tools including GEO2R, the limma R package, and Weighted Gene Co-expression Network Analysis (WGCNA) to perform function enrichment, protein-protein network, and signaling pathway analyses. RESULTS The mRNA levels of signal transducer and activator of transcription 1 (STAT1), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase like (OASL), and PML nuclear body scaffold (PML) were found to be differentially expressed in both IDC and SLE by using three different bioinformatics tools of GEO2R, the limma R package and WGCNA. From the combined databases in this study, the mRNA levels of STAT1 and OAS1 were increased in IDC while reduced in SLE. And the mRNA levels of OASL and PML were elevated in both IDC and SLE. Based on Kyoto Encyclopedia of Genes and Genomes pathway analysis and QIAGEN Ingenuity Pathway Analysis, both IDC and SLE were correlated with the changes of multiple components involved in the Interferon (IFN)-Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. CONCLUSION The expression levels of STAT1 and OAS1 manifest the opposite expression tendency across cancer and autoimmune disease. They are components in the IFN-JAK-STAT signaling pathway related to both tumorigenesis and autoimmune genesis. STAT1 and OAS1-associated IFN-JAK-STAT signaling could explain the commonalities during tumorigenesis and autoimmune genesis and render significant information for more precise treatment from the point of immune homeostasis.
Collapse
Affiliation(s)
- Yuan Sui
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Shuping Li
- grid.266902.90000 0001 2179 3618Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Xue-Qi Fu
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
24
|
Lecomte S, Devreux J, de Streel G, van Baren N, Havelange V, Schröder D, Vaherto N, Vanhaver C, Vanderaa C, Dupuis N, Pecquet C, Coulie PG, Constantinescu SN, Lucas S. Therapeutic activity of GARP:TGF-β1 blockade in murine primary myelofibrosis. Blood 2023; 141:490-502. [PMID: 36322928 PMCID: PMC10651781 DOI: 10.1182/blood.2022017097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by the clonal expansion of myeloid cells, notably megakaryocytes (MKs), and an aberrant cytokine production leading to bone marrow (BM) fibrosis and insufficiency. Current treatment options are limited. TGF-β1, a profibrotic and immunosuppressive cytokine, is involved in PMF pathogenesis. While all cell types secrete inactive, latent TGF-β1, only a few activate the cytokine via cell type-specific mechanisms. The cellular source of the active TGF-β1 implicated in PMF is not known. Transmembrane protein GARP binds and activates latent TGF-β1 on the surface of regulatory T lymphocytes (Tregs) and MKs or platelets. Here, we found an increased expression of GARP in the BM and spleen of mice with PMF and tested the therapeutic potential of a monoclonal antibody (mAb) that blocks TGF-β1 activation by GARP-expressing cells. GARP:TGF-β1 blockade reduced not only fibrosis but also the clonal expansion of transformed cells. Using mice carrying a genetic deletion of Garp in either Tregs or MKs, we found that the therapeutic effects of GARP:TGF-β1 blockade in PMF imply targeting GARP on Tregs. These therapeutic effects, accompanied by increased IFN-γ signals in the spleen, were lost upon CD8 T-cell depletion. Our results suggest that the selective blockade of TGF-β1 activation by GARP-expressing Tregs increases a CD8 T-cell-mediated immune reaction that limits transformed cell expansion, providing a novel approach that could be tested to treat patients with myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Sara Lecomte
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Julien Devreux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Nicolas van Baren
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Hematology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - David Schröder
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Noora Vaherto
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Noémie Dupuis
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Christian Pecquet
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
| | - Pierre G. Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
| | - Stefan N. Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Oxford, University of Oxford, Oxford, United Kingdom
| | - Sophie Lucas
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
| |
Collapse
|
25
|
Bachmann M, Kessler J, Burri E, Wehrle-Haller B. New tools to study the interaction between integrins and latent TGFβ1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525682. [PMID: 36747767 PMCID: PMC9901185 DOI: 10.1101/2023.01.26.525682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transforming growth factor beta (TGFβ) 1 regulates cell differentiation and proliferation in different physiological settings, but is also involved in fibrotic progression and protects tumors from the immune system. Integrin αVβ6 has been shown to activate latent TGFβ1 by applying mechanical forces onto the latency-associated peptide (LAP). While the extracellular binding between αVβ6 and LAP1 is well characterized, less is known about the cytoplasmic adaptations that enable αVβ6 to apply such forces. Here, we generated new tools to facilitate the analysis of this interaction. We combined the integrin-binding part of LAP1 with a GFP and the Fc chain of human IgG. This chimeric protein, sLAP1, revealed a mechanical rearrangement of immobilized sLAP1 by αVβ6 integrin. This unique interaction was not observed between sLAP1 and other integrins. We also analyzed αVβ6 integrin binding to LAP2 and LAP3 by creating respective sLAPs. Compared to sLAP1, integrin αVβ6 showed less binding to sLAP3 and no rearrangement. These observations indicate differences in the binding of αVβ6 to LAP1 and LAP3 that have not been appreciated so far. Finally, αVβ6-sLAP1 interaction was maintained even at strongly reduced cellular contractility, highlighting the special mechanical connection between αVβ6 integrin and latent TGFβ1.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Jérémy Kessler
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Elisa Burri
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
26
|
Villar VH, Subotički T, Đikić D, Mitrović-Ajtić O, Simon F, Santibanez JF. Transforming Growth Factor-β1 in Cancer Immunology: Opportunities for Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:309-328. [PMID: 37093435 DOI: 10.1007/978-3-031-26163-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transforming growth factor-beta1 (TGF-β) regulates a plethora of cell-intrinsic processes that modulate tumor progression in a context-dependent manner. Thus, although TGF-β acts as a tumor suppressor in the early stages of tumorigenesis, in late stages, this factor promotes tumor progression and metastasis. In addition, TGF-β also impinges on the tumor microenvironment by modulating the immune system. In this aspect, TGF-β exhibits a potent immunosuppressive effect, which allows both cancer cells to escape from immune surveillance and confers resistance to immunotherapy. While TGF-β inhibits the activation and antitumoral functions of T-cell lymphocytes, dendritic cells, and natural killer cells, it promotes the generation of T-regulatory cells and myeloid-derived suppressor cells, which hinder antitumoral T-cell activities. Moreover, TGF-β promotes tumor-associated macrophages and neutrophils polarization from M1 into M2 and N1 to N2, respectively. Altogether, these effects contribute to the generation of an immunosuppressive tumor microenvironment and support tumor promotion. This review aims to analyze the relevant evidence on the complex role of TGF-β in cancer immunology, the current outcomes of combined immunotherapies, and the anti-TGF-β therapies that may improve the success of current and new oncotherapies.
Collapse
Affiliation(s)
- Víctor H Villar
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Tijana Subotički
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragoslava Đikić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Olivera Mitrović-Ajtić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile.
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Dr. Subotica 4, POB 102, 11129, Belgrade, Serbia.
| |
Collapse
|
27
|
Wang D, Sun Z, Zhu X, Zheng X, Zhou Y, Lu Y, Yan P, Wang H, Liu H, Jin J, Zhu H, Sun R, Wang Y, Fu B, Tian Z, Wei H. GARP-mediated active TGF-β1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT. Blood 2022; 140:2788-2804. [PMID: 35981475 PMCID: PMC10653097 DOI: 10.1182/blood.2022015474] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/05/2023] Open
Abstract
Relapse is a leading cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia (AML). However, the underlying mechanisms remain poorly understood. Natural killer (NK) cells play a crucial role in tumor surveillance and cancer immunotherapy, and NK cell dysfunction has been observed in various tumors. Here, we performed ex vivo experiments to systematically characterize the mechanisms underlying the dysfunction of bone marrow-derived NK (BMNK) cells isolated from AML patients experiencing early relapse after allo-HSCT. We demonstrated that higher levels of active transforming growth factor β1 (TGF-β1) were associated with impaired effector function of BMNK cells in these AML patients. TGF-β1 activation was induced by the overexpression of glycoprotein A repetitions predominant on the surface of CD4+ T cells. Active TGF-β1 significantly suppressed mTORC1 activity, mitochondrial oxidative phosphorylation, the proliferation, and cytotoxicity of BMNK cells. Furthermore, pretreatment with the clinical stage TGF-β1 pathway inhibitor, galunisertib, significantly restored mTORC1 activity, mitochondrial homeostasis, and cytotoxicity. Importantly, the blockade of the TGF-β1 signaling improved the antitumor activity of NK cells in a leukemia xenograft mouse model. Thus, our findings reveal a mechanism explaining BMNK cell dysfunction and suggest that targeted inhibition of TGF-β1 signaling may represent a potential therapeutic intervention to improve outcomes in AML patients undergoing allo-HSCT or NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Dongyao Wang
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Zimin Sun
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyu Zhu
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohu Zheng
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yonggang Zhou
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yichen Lu
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Peidong Yan
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiru Wang
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Huilan Liu
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Jin
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Huaiping Zhu
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Binqing Fu
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Haiming Wei
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
28
|
Lahimchi MR, Eslami M, Yousefi B. New insight into GARP striking role in cancer progression: application for cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:33. [PMID: 36460874 DOI: 10.1007/s12032-022-01881-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022]
Abstract
T regulatory cells play a crucial role in antitumor immunity suppression. Glycoprotein-A repetitions predominant (GARP), transmembrane cell surface marker, is mostly expressed on Tregs and mediates intracellular organization of transforming growth factor-beta (TGF-β). The physiological role of GARP is immune system homeostasis, while it may cause tumor development by upregulating TGF-β secretion. Despite the vast application of anti- programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte Antigen-4 (CTLA-4) antibodies in immunotherapy, anti-GARP antibodies have the advantage of better response in patients who has resistance to anti-PD-1/PD-L1. Furthermore, simultaneous administration of anti-GARP antibody and anti-PD-1/PD-L1 antibody is much more effective than anti-PD-1/PD-L1 alone. It is worth mentioning that the GARP-mTGF-β complex is more potent than secretory TGF-β to induce T helper 17 cells differentiation in HIV + patients. On the other hand, TGF-β is an effective cytokine in cancer development, and some microRNAs could control its secretion by regulating GARP. In the present review, some information is provided about the undeniable role of GARP in cancer progression and its probable importance as a novel prognostic biomarker. Anti-GARP antibodies are also suggested for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Majid Eslami
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran. .,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
29
|
Daly SM, Peraza A, Newfeld SJ. Computational analysis of prodomain cysteines in human TGF-β proteins reveals frequent loss of disulfide-dependent regulation in tumors. G3 (BETHESDA, MD.) 2022; 12:jkac271. [PMID: 36214621 PMCID: PMC9713452 DOI: 10.1093/g3journal/jkac271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 03/23/2024]
Abstract
The functionally diverse members of the human Transforming Growth Factor-β (TGF-β) family are tightly regulated. TGF-β regulation includes 2 disulfide-dependent mechanisms-dimerization and partner protein binding. The specific cysteines participating in these regulatory mechanisms are known in just 3 of the 33 human TGF-β proteins. Human prodomain alignments revealed that 24 TGF-β prodomains contain conserved cysteines in 2 highly exposed locations. There are 3 in the region of the β8 helix that mediates dimerization near the prodomain carboxy terminus. There are 2 in the Association region that mediates partner protein binding near the prodomain amino terminus. The alignments predict the specific cysteines contributing to disulfide-dependent regulation of 72% of human TGF-β proteins. Database mining then identified 9 conserved prodomain cysteine mutations and their disease phenotypes in 7 TGF-β proteins. Three common adenoma phenotypes for prodomain cysteine mutations suggested 7 new regulatory heterodimer pairs. Two common adenoma phenotypes for prodomain and binding partner cysteine mutations revealed 17 new regulatory interactions. Overall, the analysis of human TGF-β prodomains suggests a significantly expanded scope of disulfide-dependent regulation by heterodimerization and partner protein binding; regulation that is often lost in tumors.
Collapse
Affiliation(s)
- Samantha M Daly
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Ashley Peraza
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
30
|
Kedmi R, Najar TA, Mesa KR, Grayson A, Kroehling L, Hao Y, Hao S, Pokrovskii M, Xu M, Talbot J, Wang J, Germino J, Lareau CA, Satpathy AT, Anderson MS, Laufer TM, Aifantis I, Bartleson JM, Allen PM, Paidassi H, Gardner JM, Stoeckius M, Littman DR. A RORγt + cell instructs gut microbiota-specific T reg cell differentiation. Nature 2022; 610:737-743. [PMID: 36071167 PMCID: PMC9908423 DOI: 10.1038/s41586-022-05089-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/08/2022] [Indexed: 01/19/2023]
Abstract
The mutualistic relationship of gut-resident microbiota and the host immune system promotes homeostasis that ensures maintenance of the microbial community and of a largely non-aggressive immune cell compartment1,2. The consequences of disturbing this balance include proximal inflammatory conditions, such as Crohn's disease, and systemic illnesses. This equilibrium is achieved in part through the induction of both effector and suppressor arms of the adaptive immune system. Helicobacter species induce T regulatory (Treg) and T follicular helper (TFH) cells under homeostatic conditions, but induce inflammatory T helper 17 (TH17) cells when induced Treg (iTreg) cells are compromised3,4. How Helicobacter and other gut bacteria direct T cells to adopt distinct functions remains poorly understood. Here we investigated the cells and molecular components required for iTreg cell differentiation. We found that antigen presentation by cells expressing RORγt, rather than by classical dendritic cells, was required and sufficient for induction of Treg cells. These RORγt+ cells-probably type 3 innate lymphoid cells and/or Janus cells5-require the antigen-presentation machinery, the chemokine receptor CCR7 and the TGFβ activator αv integrin. In the absence of any of these factors, there was expansion of pathogenic TH17 cells instead of iTreg cells, induced by CCR7-independent antigen-presenting cells. Thus, intestinal commensal microbes and their products target multiple antigen-presenting cells with pre-determined features suited to directing appropriate T cell differentiation programmes, rather than a common antigen-presenting cell that they endow with appropriate functions.
Collapse
Affiliation(s)
- Ranit Kedmi
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Tariq A Najar
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Kailin R Mesa
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Allyssa Grayson
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA
| | - Lina Kroehling
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Yuhan Hao
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.,New York Genome Center, New York, NY, USA
| | - Stephanie Hao
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Maria Pokrovskii
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA.,Calico Life Sciences, LLC, South San Francisco, CA, USA
| | - Mo Xu
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA.,National Institute for Biological Sciences, Beijing, China
| | - Jhimmy Talbot
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jiaxi Wang
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joe Germino
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA.,Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA.,Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Terri M Laufer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, C. Michael Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Juliet M Bartleson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Federation Bio, South San Francisco, CA, USA
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Marlon Stoeckius
- Technology Innovation Lab, New York Genome Center, New York, NY, USA.,10X Genomics, Stockholm, Sweden
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA. .,Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
31
|
Freitas NL, Gomes YCP, Souza FDS, Torres RC, Echevarria-Lima J, Leite ACCB, Lima MASD, Araújo AQC, Silva MTT, Espíndola ODM. Lessons from the Cerebrospinal Fluid Analysis of HTLV-1-Infected Individuals: Biomarkers of Inflammation for HAM/TSP Development. Viruses 2022; 14:v14102146. [PMID: 36298702 PMCID: PMC9609689 DOI: 10.3390/v14102146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease that leads to motor impairment due to a chronic inflammatory process in the central nervous system (CNS). However, the HAM/TSP pathogenesis is not completely clear, and biomarkers to define the disease prognosis are still necessary. Thus, we aimed to identify biomarkers for HAM/TSP and potential mechanisms involved in disease development. To that end, the concentrations of VILIP-1, BDNF, VEGF, β-NGF, TGF-β1, fractalkine/CX3CL1, IL-6, IL-18, and TNF-α, and the soluble forms of TREM-1, TREM-2, and RAGE, were assessed using a multiplex bead-based immunoassay in paired cerebrospinal fluid (CSF) and serum samples from HAM/TSP patients (n = 20), asymptomatic HTLV-1 carriers (AC) (n = 13), and HTLV-1-seronegative individuals (n = 9), with the results analyzed according to the speed of HAM/TSP progression. HAM/TSP patients had elevated fractalkine in the serum but not in the CSF, particularly those with low neuroinflammatory activity (CSF/serum ratio of neopterin <1 and of CXCL10 < 2). HAM/TSP patients with normal CSF levels of neurofilament light chain (NfL) showed elevated β-NGF in serum, and serum BDNF levels were increased in HTLV-1-infected individuals, particularly in HTLV-1 AC. Both HTLV-1 AC and HAM/TSP patients had lower TGF-β1 levels in CSF compared to uninfected individuals, and HAM/TSP patients with active CNS inflammation showed higher CSF levels of IL-18, which correlated with markers of inflammation, neuronal death, and blood−brain-barrier permeability. Although none of the factors evaluated were associated with the speed of HAM/TSP progression, reduced TGF-β1 levels in CSF suggest that suppressive responses to control subclinical and/or active neurodegeneration are impaired, while increased CSF IL-18 indicates the involvement of inflammasome-mediated mechanisms in HAM/TSP development.
Collapse
Affiliation(s)
- Nicole Lardini Freitas
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Yago Côrtes Pinheiro Gomes
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Flávia dos Santos Souza
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Rafael Carvalho Torres
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
| | - Juliana Echevarria-Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | | | | | - Abelardo Queiroz Campos Araújo
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Marcus Tulius Teixeira Silva
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Otávio de Melo Espíndola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Correspondence:
| |
Collapse
|
32
|
Li PH, Kong XY, He YZ, Liu Y, Peng X, Li ZH, Xu H, Luo H, Park J. Recent developments in application of single-cell RNA sequencing in the tumour immune microenvironment and cancer therapy. Mil Med Res 2022; 9:52. [PMID: 36154923 PMCID: PMC9511789 DOI: 10.1186/s40779-022-00414-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
The advent of single-cell RNA sequencing (scRNA-seq) has provided insight into the tumour immune microenvironment (TIME). This review focuses on the application of scRNA-seq in investigation of the TIME. Over time, scRNA-seq methods have evolved, and components of the TIME have been deciphered with high resolution. In this review, we first introduced the principle of scRNA-seq and compared different sequencing approaches. Novel cell types in the TIME, a continuous transitional state, and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer. Thus, we concluded novel cell clusters of cancer-associated fibroblasts (CAFs), T cells, tumour-associated macrophages (TAMs) and dendritic cells (DCs) discovered after the application of scRNA-seq in TIME. We also proposed the development of TAMs and exhausted T cells, as well as the possible targets to interrupt the process. In addition, the therapeutic interventions based on cellular interactions in TIME were also summarized. For decades, quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer. Summarizing the current findings, we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy, which can subsequently be implemented in the clinic. Finally, we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xiang-Yu Kong
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Ya-Zhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610044, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Diseases Centre, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xi Peng
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Zhi-Hui Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre, Chengdu, 610044, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
33
|
Li A, Chang Y, Song NJ, Wu X, Chung D, Riesenberg BP, Velegraki M, Giuliani GD, Das K, Okimoto T, Kwon H, Chakravarthy KB, Bolyard C, Wang Y, He K, Gatti-Mays M, Das J, Yang Y, Gewirth DT, Ma Q, Carbone D, Li Z. Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8 + T cell antitumor immunity. J Immunother Cancer 2022; 10:e005433. [PMID: 36096533 PMCID: PMC9472209 DOI: 10.1136/jitc-2022-005433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor β (TGFβ) in the tumor microenvironment (TME). TGFβ drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8+ T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGFβ1, TGFβ2 and TGFβ3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. METHODS We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. RESULTS We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGFβ isoforms. PIIO-1 lacks recognition of GARP-TGFβ complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP+ and GARP- cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGFβ signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8+ T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. CONCLUSION GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGFβ activation, enhance CD8+ T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - No-Joon Song
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Xingjun Wu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Dongjun Chung
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Brian P Riesenberg
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Giuseppe D Giuliani
- Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Physics, The Ohio State University, Columbus, Ohio, USA
| | - Komal Das
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Tamio Okimoto
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hyunwoo Kwon
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Karthik B Chakravarthy
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kai He
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jayajit Das
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Yiping Yang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Hematology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, USA
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David Carbone
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
34
|
Duan Z, Lin X, Wang L, Zhen Q, Jiang Y, Chen C, Yang J, Lee CH, Qin Y, Li Y, Zhao B, Wang J, Zhang Z. Specificity of TGF-β1 signal designated by LRRC33 and integrin α Vβ 8. Nat Commun 2022; 13:4988. [PMID: 36008481 PMCID: PMC9411592 DOI: 10.1038/s41467-022-32655-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/03/2022] [Indexed: 12/20/2022] Open
Abstract
Myeloid lineage cells present the latent form of transforming growth factor-β1 (L-TGF-β1) to the membrane using an anchor protein LRRC33. Integrin αVβ8 activates extracellular L-TGF-β1 to trigger the downstream signaling functions. However, the mechanism designating the specificity of TGF-β1 presentation and activation remains incompletely understood. Here, we report cryo-EM structures of human L-TGF-β1/LRRC33 and integrin αVβ8/L-TGF-β1 complexes. Combined with biochemical and cell-based analyses, we demonstrate that LRRC33 only presents L-TGF-β1 but not the -β2 or -β3 isoforms due to difference of key residues on the growth factor domains. Moreover, we reveal a 2:2 binding mode of integrin αVβ8 and L-TGF-β1, which shows higher avidity and more efficient L-TGF-β1 activation than previously reported 1:2 binding mode. We also uncover that the disulfide-linked loop of the integrin subunit β8 determines its exquisite affinity to L-TGF-β1. Together, our findings provide important insights into the specificity of TGF-β1 signaling achieved by LRRC33 and integrin αVβ8.
Collapse
Affiliation(s)
- Zelin Duan
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Xuezhen Lin
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China
| | - Lixia Wang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China
| | - Qiuxin Zhen
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Yuefeng Jiang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Chuxin Chen
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yan Qin
- Parthenon Therapeutics, 40 Guest street, Boston, MA, 02135, USA
| | - Ying Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China
| | - Bo Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China.
| | - Jianchuan Wang
- Center for Translational Research, Shenzhen Bay Laboratory, 518007, Shenzhen, Guangdong, China.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
35
|
This S, Paidassi H. New perspectives on the regulation of germinal center reaction via αvβ8- mediated activation of TGFβ. Front Immunol 2022; 13:942468. [PMID: 36072589 PMCID: PMC9441935 DOI: 10.3389/fimmu.2022.942468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a long-known modulator of immune responses but has seemingly contradictory effects on B cells. Among cytokines, TGFβ has the particularity of being produced and secreted in a latent form and must be activated before it can bind to its receptor and induce signaling. While the concept of controlled delivery of TGFβ signaling via αvβ8 integrin-mediated activation has gained some interest in the field of mucosal immunity, the role of this molecular mechanism in regulating T-dependent B cell responses is just emerging. We review here the role of TGFβ and its activation, in particular by αvβ8 integrin, in the regulation of mucosal IgA responses and its demonstrated and putative involvement in regulating germinal center (GC) B cell responses. We examine both the direct effect of TGFβ on GC B cells and its ability to modulate the functions of helper cells, namely follicular T cells (Tfh and Tfr) and follicular dendritic cells. Synthetizing recently published works, we reconcile apparently conflicting data and propose an innovative and unified view on the regulation of the GC reaction by TGFβ, highlighting the role of its activation by αvβ8 integrin.
Collapse
Affiliation(s)
- Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie, Université de Montréal, Montréal, QC, Canada
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
36
|
Singh K, Sachan N, Ene T, Dabovic B, Rifkin D. Latent Transforming Growth Factor β Binding Protein 3 Controls Adipogenesis. Matrix Biol 2022; 112:155-170. [PMID: 35933071 DOI: 10.1016/j.matbio.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Transforming growth factor-beta (TGFβ) is released from cells as part of a trimeric latent complex consisting of TGFβ, the TGFβ propeptides, and either a latent TGFβ binding protein (LTBP) or glycoprotein-A repetitions predominant (GARP) protein. LTBP1 and 3 modulate latent TGFβ function with respect to secretion, matrix localization, and activation and, therefore, are vital for the proper function of the cytokine in a number of tissues. TGFβ modulates stem cell differentiation into adipocytes (adipogenesis), but the potential role of LTBPs in this process has not been studied. We observed that 72 h post adipogenesis initiation Ltbp1, 2, and 4 expression levels decrease by 74-84%, whereas Ltbp3 expression levels remain constant during adipogenesis. We found that LTBP3 silencing in C3H/10T1/2 cells reduced adipogenesis, as measured by the percentage of cells with lipid vesicles and the expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). Lentiviral mediated expression of an Ltbp3 mRNA resistant to siRNA targeting rescued the phenotype, validating siRNA specificity. Knockdown (KD) of Ltbp3 expression in 3T3-L1, M2, and primary bone marrow stromal cells (BMSC) indicated a similar requirement for Ltbp3. Epididymal and inguinal white adipose tissue fat pad weights of Ltbp3-/- mice were reduced by 62% and 57%, respectively, compared to wild-type mice. Inhibition of adipogenic differentiation upon LTBP3 loss is mediated by TGFβ, as TGFβ neutralizing antibody and TGFβ receptor I kinase blockade rescue the LTBP3 KD phenotype. These results indicate that LTBP3 has a TGFβ-dependent function in adipogenesis both in vitro and possibly in vivo.
Collapse
Affiliation(s)
- Karan Singh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nalani Sachan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Taylor Ene
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Branka Dabovic
- Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Rifkin
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA; Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Gaignage M, Zhang X, Stockis J, Dedobbeleer O, Michiels C, Cochez P, Dumoutier L, Coulie PG, Lucas S. Blocking GARP-mediated activation of TGF-β1 did not alter innate or adaptive immune responses to bacterial infection or protein immunization in mice. Cancer Immunol Immunother 2022; 71:1851-1862. [PMID: 34973084 PMCID: PMC9294018 DOI: 10.1007/s00262-021-03119-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022]
Abstract
Abstract Transmembrane protein GARP binds latent TGF-β1 to form GARP:(latent)TGF-β1 complexes on the surface of several cell types including Tregs, B-cells, and platelets. Upon stimulation, these cells release active TGF-β1. Blocking TGF-β1 activation by Tregs with anti-GARP:TGF-β1 mAbs overcomes resistance to PD1/PD-L1 blockade and induces immune-mediated regressions of murine tumors, indicating that Treg-derived TGF-β1 inhibits anti-tumor immunity. TGF-β1 exerts a vast array of effects on immune responses. For example, it favors differentiation of TH17 cells and B-cell switch to IgA production, two important processes for mucosal immunity. Here, we sought to determine whether treatment with anti-GARP:TGF-β1 mAbs would perturb immune responses to intestinal bacterial infection. We observed no aggravation of intestinal disease, no systemic dissemination, and no alteration of innate or adaptative immune responses upon oral gavage of C. rodentium in highly susceptible Il22r−/− mice treated with anti-GARP:TGF-β1 mAbs. To examine the effects of GARP:TGF-β1 blockade on Ig production, we compared B cell- and TH cell- responses to OVA or CTB protein immunization in mice carrying deletions of Garp in Tregs, B cells, or platelets. No alteration of adaptive immune responses to protein immunization was observed in the absence of GARP on any of these cells. Altogether, we show that antibody-mediated blockade of GARP:TGF-β1 or genetic deletion of Garp in Tregs, B cells or platelets, do not alter innate or adaptive immune responses to intestinal bacterial infection or protein immunization in mice. Anti-GARP:TGF-β1 mAbs, currently tested for cancer immunotherapy, may thus restore anti-tumor immunity without severely impairing other immune defenses. Précis Immunotherapy with GARP:TGF-β1 mAbs may restore anti-tumor immunity without impairing immune or inflammatory responses required to maintain homeostasis or host defense against infection, notably at mucosal barriers. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-03119-8.
Collapse
Affiliation(s)
- Mélanie Gaignage
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Xuhao Zhang
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Julie Stockis
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Olivier Dedobbeleer
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Camille Michiels
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Perrine Cochez
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Sophie Lucas
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium.
| |
Collapse
|
38
|
Zimmer N, Trzeciak ER, Graefen B, Satoh K, Tuettenberg A. GARP as a Therapeutic Target for the Modulation of Regulatory T Cells in Cancer and Autoimmunity. Front Immunol 2022; 13:928450. [PMID: 35898500 PMCID: PMC9309211 DOI: 10.3389/fimmu.2022.928450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Treg) play a critical role in immune homeostasis by suppressing several aspects of the immune response. Herein, Glycoprotein A repetitions predominant (GARP), the docking receptor for latent transforming growth factor (LTGF-β), which promotes its activation, plays a crucial role in maintaining Treg mediated immune tolerance. After activation, Treg uniquely express GARP on their surfaces. Due to its location and function, GARP may represent an important target for immunotherapeutic approaches, including the inhibition of Treg suppression in cancer or the enhancement of suppression in autoimmunity. In the present review, we will clarify the cellular and molecular regulation of GARP expression not only in human Treg but also in other cells present in the tumor microenvironment. We will also examine the overall roles of GARP in the regulation of the immune system. Furthermore, we will explore potential applications of GARP as a predictive and therapeutic biomarker as well as the targeting of GARP itself in immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niklas Zimmer
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Emily R. Trzeciak
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Graefen
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kazuki Satoh
- Early Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Andrea Tuettenberg,
| |
Collapse
|
39
|
Hou J, Wang X, Su C, Ma W, Zheng X, Ge X, Duan X. Reduced frequencies of Foxp3 +GARP + regulatory T cells in COPD patients are associated with multi-organ loss of tissue phenotype. Respir Res 2022; 23:176. [PMID: 35780120 PMCID: PMC9250745 DOI: 10.1186/s12931-022-02099-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background Expression of glycoprotein A dominant repeat (GARP) has been reported to occur only in activated human naturally occurring regulatory T cells (Tregs) and their clones, and not in activated effector T cells, indicating that GARP is a marker for bona fide Tregs. A different phenotype of chronic obstructive pulmonary disease (COPD) may have a different immunologic mechanism. Objective To investigate whether the distribution of Tregs defined by GARP is related to the multi-organ loss of tissue phenotype in COPD. Methods GARP expression on T cells from peripheral blood and bronchoalveolar lavage (BAL) collected from patients with COPD was examined by flow cytometry. The correlation of GARP expression to clinical outcomes and clinical phenotype, including the body mass index, lung function and quantitative computed tomography (CT) scoring of emphysema, was analyzed. Results Patients with more baseline emphysema had lower forced expiratory volume, body mass index (BMI), worse functional capacity, and more osteoporosis, thus, resembling the multiple organ loss of tissue (MOLT) phenotype. Peripheral Foxp3+GARP+ Tregs are reduced in COPD patients, and this reduction reversely correlates with quartiles of CT emphysema severity in COPD. Meanwhile, the frequencies of Foxp3+GARP− Tregs, which are characteristic of pro-inflammatory cytokine production, are significantly increased in COPD patients, and correlated with increasing quartiles of CT emphysema severity in COPD. Tregs in BAL show a similar pattern of variation in peripheral blood. Conclusion Decreased GARP expression reflects more advanced disease in MOLT phenotype of COPD. Our results have potential implications for better understanding of the immunological nature of COPD and the pathogenic events leading to lung damage. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02099-2.
Collapse
Affiliation(s)
- Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Xia Wang
- Ningxia Medical University, Ningxia, China
| | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Ningxia, China
| | - Weirong Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China.
| | - Xiangguo Duan
- College of Clinical Medicine, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
40
|
Jiang A, Qin Y, Springer TA. Loss of LRRC33-Dependent TGFβ1 Activation Enhances Antitumor Immunity and Checkpoint Blockade Therapy. Cancer Immunol Res 2022; 10:453-467. [PMID: 35181792 PMCID: PMC9052945 DOI: 10.1158/2326-6066.cir-21-0593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
TGFβ has multiple roles and gene products (TGFβ1, -β2, and -β3), which make global targeting of TGFβ undesirable. Expression of TGFβ requires association with milieu molecules, which localize TGFβ to the surface of specific cells or extracellular matrices. Here, we found that LRRC33 was specifically associated with TGFβ1, not TGFβ2 and TGFβ3, and was required for surface display and activation of TGFβ1 on tumor-infiltrating myeloid cells. Loss of LRRC33-dependent TGFβ1 activation slowed tumor growth and metastasis by enhancing innate and adaptive antitumor immunity in multiple mouse syngeneic tumor models. LRRC33 loss resulted in a more immunogenic microenvironment, with decreased myeloid-derived suppressor cells, more active CD8+ T and NK cells, and more skewing toward tumor-suppressive M1 macrophages. LRRC33 loss and PD-1 blockade synergized in controlling B16.F10 tumor growth. Our results demonstrate the importance of LRRC33 in tumor biology and highlight the therapeutic potential of dual blockade of the LRRC33/TGFβ1 axis and PD-1/PD-L1 in cancer immunotherapy.
Collapse
Affiliation(s)
- Aiping Jiang
- Program in Cellular and Molecular Medicine, Boston
Children’s Hospital; Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School; Boston, MA 02115, USA
| | - Yan Qin
- Program in Cellular and Molecular Medicine, Boston
Children’s Hospital; Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School; Boston, MA 02115, USA
- Current Address: Fuhong Therapeutics, 99 Hayden Ave d100,
Lexington MA 02421
| | - Timothy A. Springer
- Program in Cellular and Molecular Medicine, Boston
Children’s Hospital; Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
41
|
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol 2022; 7:eabi4613. [PMID: 35302863 PMCID: PMC10552796 DOI: 10.1126/sciimmunol.abi4613] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is inextricably linked to regulatory T cell (Treg) biology. However, precisely untangling the role for TGF-β1 in Treg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of Tregs. Among CD4+ T cells, Tregs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for Treg-derived TGF-β1 in Treg immunosuppression, TGF-β1 signaling is crucial for Treg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including TH17 cells. Here, we will review TGF-β1 signaling in Treg development and function and discuss knowledge gaps, future research, and the TGF-β1/Treg axis in the context of cancer immunotherapy and fibrosis.
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
42
|
Le VQ, Iacob RE, Zhao B, Su Y, Tian Y, Toohey C, Engen JR, Springer TA. Protection of the Prodomain α1-Helix Correlates with Latency in the Transforming Growth Factor-β Family. J Mol Biol 2022; 434:167439. [PMID: 34990654 PMCID: PMC8981510 DOI: 10.1016/j.jmb.2021.167439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022]
Abstract
The 33 members of the transforming growth factor beta (TGF-β) family are fundamentally important for organismal development and homeostasis. Family members are synthesized and secreted as pro-complexes of non-covalently associated prodomains and growth factors (GF). Pro-complexes from a subset of family members are latent and require activation steps to release the GF for signaling. Why some members are latent while others are non-latent is incompletely understood, particularly because of large family diversity. Here, we have examined representative family members in negative stain electron microscopy (nsEM) and hydrogen deuterium exchange (HDX) to identify features that differentiate latent from non-latent members. nsEM showed three overall pro-complex conformations that differed in prodomain arm domain orientation relative to the bound growth factor. Two cross-armed members, TGF-β1 and TGF-β2, were each latent. However, among V-armed members, GDF8 was latent whereas ActA was not. All open-armed members, BMP7, BMP9, and BMP10, were non-latent. Family members exhibited remarkably varying HDX patterns, consistent with large prodomain sequence divergence. A strong correlation emerged between latency and protection of the prodomain α1-helix from exchange. Furthermore, latency and protection from exchange correlated structurally with increased α1-helix buried surface area, hydrogen bonds, and cation-pi bonds. Moreover, a specific pattern of conserved basic and hydrophobic residues in the α1-helix and aromatic residues in the interacting fastener were found only in latent members. Thus, this first comparative survey of TGF-β family members reveals not only diversity in conformation and dynamics but also unique features that distinguish latent members.
Collapse
Affiliation(s)
- Viet Q Le
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Bo Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Immunology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Yuan Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Cameron Toohey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States. https://twitter.com/jrengen
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
43
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
44
|
Hexner-Erlichman Z, Fichtman B, Zehavi Y, Khayat M, Jabaly-Habib H, Izhaki-Tavor LS, Dessau M, Elpeleg O, Spiegel R. A Novel Homozygous Missense Variant in the LRRC32 Gene Is Associated With a New Syndrome of Cleft Palate, Progressive Vitreoretinopathy, Growth Retardation, and Developmental Delay. Front Pediatr 2022; 10:859034. [PMID: 35656379 PMCID: PMC9152136 DOI: 10.3389/fped.2022.859034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cleft lip and/or cleft palate are a common group of birth defects that further classify into syndromic and non-syndromic forms. The syndromic forms are usually accompanied by additional physical or cognitive abnormalities. Isolated cleft palate syndromes are less common; however, they are associated with a variety of congenital malformations and generally have an underlying genetic etiology. A single report in 2019 described a novel syndrome in three individuals, characterized by cleft palate, developmental delay and proliferative retinopathy due to a homozygous non-sense mutation in the LRRC32 gene encoding glycoprotein A repetitions predominant (GARP), a cell surface polypeptide crucial for the processing and maturation of transforming growth factor β (TGF-β). We describe a patient who presented with cleft palate, prenatal and postnatal severe growth retardation, global developmental delay, dysmorphic facial features and progressive vitreoretinopathy. Whole exome sequencing (WES) revealed a very rare homozygous missense variant in the LRRC32 gene, which resulted in substitution of a highly conserved isoleucine to threonine. Protein modeling suggested this variant may negatively affect GARP function on latent TGF-β activation. In summary, our report further expands the clinical features of cleft palate, proliferative retinopathy and developmental delay syndrome and emphasizes the association of LRRC32 pathogenic variants with this new syndrome.
Collapse
Affiliation(s)
| | - Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yoav Zehavi
- Department of Pediatrics, Emek Medical Center, Afula, Israel.,Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Morad Khayat
- Genetic Institute, Emek Medical Center, Afula, Israel
| | - Haneen Jabaly-Habib
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Department of Ophthalmology, Baruch Padeh Medical Center, Poriya, Israel
| | | | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Spiegel
- Department of Pediatrics, Emek Medical Center, Afula, Israel.,Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
46
|
Xiao C, Lu D, Chen J, Chen X, Lin H, Huang M, Cheng S, Wang Y, Liu Q, Zheng H. Human Olfactory Mesenchymal Stem Cells Are a Novel Candidate for Neurological Autoimmune Disease. Front Pharmacol 2021; 12:770884. [PMID: 34955841 PMCID: PMC8702423 DOI: 10.3389/fphar.2021.770884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Human olfactory mesenchymal stem cells (OMSC) have become a novel therapeutic option for immune disorder or demyelinating disease due to their immunomodulatory and regenerative potentials. However, the immunomodulatory effects of OMSC still need to be elucidated, and comparisons of the effects of different MSCs are also required in order to select an optimal cell source for further applications. Results: In animal experiments, we found neural functional recovery and delayed EAE attack in the OMSC treatment group. Compared with umbilical cord-derived mesenchymal stem cells (UMSC) treatment group and the control group, the OMSC treatment group had a better neurological improvement, lower serum levels of IFN-γ, and a lower proportion of CD4+IFN-γ+ T splenic lymphocyte. We also observed OMSC effectively suppressed CD4+IFN-γ+ T cell proportion in vitro when co-cultured with human peripheral blood-derived lymphocytes. The OMSC-mediated immunosuppressive effect on human CD4+IFN-γ+ T cells was attenuated by blocking cyclooxygenase activity. Conclusion: Our results suggest that OMSC treatment delayed the onset and promoted the neural functional recovery in the EAE mouse model possibly by suppressing CD4+IFN-γ+ T cells. OMSC transplantation might become an alternative therapeutic option for neurological autoimmune disease.
Collapse
Affiliation(s)
- Chongjun Xiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Di Lu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinshuo Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Chen
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huizhu Lin
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mudan Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shimei Cheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
47
|
Cancer bio-immunotherapy XVII annual NIBIT (Italian Network for Tumor Biotherapy) meeting, October 11-13 2019, Verona, Italy. Cancer Immunol Immunother 2021; 71:1777-1786. [PMID: 34755203 PMCID: PMC8577637 DOI: 10.1007/s00262-021-03104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/29/2021] [Indexed: 11/09/2022]
|
48
|
The role of pro-domains in human growth factors and cytokines. Biochem Soc Trans 2021; 49:1963-1973. [PMID: 34495310 PMCID: PMC8589418 DOI: 10.1042/bst20200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Many growth factors and cytokines are produced as larger precursors, containing pro-domains, that require proteolytic processing to release the bioactive ligand. These pro-domains can be significantly larger than the mature domains and can play an active role in the regulation of the ligands. Mining the UniProt database, we identified almost one hundred human growth factors and cytokines with pro-domains. These are spread across several unrelated protein families and vary in both their size and composition. The precise role of each pro-domain varies significantly between the protein families. Typically they are critical for controlling bioactivity and protein localisation, and they facilitate diverse mechanisms of activation. Significant gaps in our understanding remain for pro-domain function — particularly their fate once the bioactive ligand has been released. Here we provide an overview of pro-domain roles in human growth factors and cytokines, their processing, regulation and activation, localisation as well as therapeutic potential.
Collapse
|
49
|
Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, Xiao Q, Li A, Che X, Li Z, Zheng L. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther 2021; 6:366. [PMID: 34711804 PMCID: PMC8553927 DOI: 10.1038/s41392-021-00769-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
How tumor-associated macrophages transit from a predominant antitumor M1-like phenotype to a protumoral M2-like phenotype during the development of pancreatic ductal adenocarcinoma (PDA) remains to be elucidated. We thus conducted a study by employing a PDA-macrophage co-culture system, an "orthotopic" PDA syngeneic mouse model, and human PDA specimens, together with macrophages derived from GARP knockout mice and multiple analytic tools including whole-genome RNA sequencing, DNA methylation arrays, multiplex immunohistochemistry, metabolism measurement, and invasion/metastasis assessment. Our study showed that PDA tumor cells, through direct cell-cell contact, induce DNA methylation and downregulation of a panel of glucose metabolism and OXPHOS genes selectively in M1-like macrophages, leading to a suppressed glucose metabolic status in M1-like but not in M2-like macrophages. Following the interaction with PDA tumor cells, M1-like macrophages are reprogrammed phenotypically to M2-like macrophages. The interaction between M1-like macrophages and PDA cells is mediated by GARP and integrin αV/β8, respectively. Blocking either GARP or integrin would suppress tumor-induced DNA methylation in Nqo-1 gene and the reprogramming of M1-like macrophages. Glucose-response genes such as Il-10 are subsequently activated in tumor-educated M1-like macrophages. Partly through Il-10 and its receptor Il-10R on tumor cells, M1-like macrophages functionally acquire a pro-cancerous capability. Both exogenous M1-like and M2-like macrophages promote metastasis in a mouse model of PDA while such a role of M1-like macrophages is dependent on DNA methylation. Our results suggest that PDA cells are able to reprogram M1-like macrophages metabolically and functionally through a GARP-dependent and DNA methylation-mediated mechanism to adopt a pro-cancerous fate.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyi Pan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Sada Hospital, Fukuoka, Japan
| | - Noelle Jurcak
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen Muth
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jiaojiao Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Xiao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anqi Li
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Cancer Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Zihai Li
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
50
|
Lainé A, Labiad O, Hernandez-Vargas H, This S, Sanlaville A, Léon S, Dalle S, Sheppard D, Travis MA, Paidassi H, Marie JC. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat Commun 2021; 12:6228. [PMID: 34711823 PMCID: PMC8553942 DOI: 10.1038/s41467-021-26352-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Presence of TGFβ in the tumor microenvironment is one of the most relevant cancer immune-escape mechanisms. TGFβ is secreted in an inactive form, and its activation within the tumor may depend on different cell types and mechanisms than its production. Here we show in mouse melanoma and breast cancer models that regulatory T (Treg) cells expressing the β8 chain of αvβ8 integrin (Itgβ8) are the main cell type in the tumors that activates TGFβ, produced by the cancer cells and stored in the tumor micro-environment. Itgβ8 ablation in Treg cells impairs TGFβ signalling in intra-tumoral T lymphocytes but not in the tumor draining lymph nodes. Successively, the effector function of tumor infiltrating CD8+ T lymphocytes strengthens, leading to efficient control of tumor growth. In cancer patients, anti-Itgβ8 antibody treatment elicits similar improved cytotoxic T cell activation. Thus, this study reveals that Treg cells work in concert with cancer cells to produce bioactive-TGFβ and to create an immunosuppressive micro-environment.
Collapse
Affiliation(s)
- Alexandra Lainé
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Ossama Labiad
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Hector Hernandez-Vargas
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Sébastien This
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Amélien Sanlaville
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Sophie Léon
- Plateforme Ex-Vivo, Département de Recherche Translationnelle et d'Innovation, Centre Léon Bérard, Lyon, France
| | - Stéphane Dalle
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
- Department of Dermatology, Claude Bernard Université Lyon 1, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Dean Sheppard
- University of California San Francisco, San Francisco, CA, USA
| | - Mark A Travis
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Julien C Marie
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France.
| |
Collapse
|