1
|
Xu H, Wang Y, Wang W, Fu YX, Qiu J, Shi Y, Yuan L, Dong C, Hu X, Chen YG, Guo X. ILC3s promote intestinal tuft cell hyperplasia and anthelmintic immunity through RANK signaling. Sci Immunol 2025; 10:eadn1491. [PMID: 40378237 DOI: 10.1126/sciimmunol.adn1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/01/2024] [Accepted: 04/24/2025] [Indexed: 05/18/2025]
Abstract
Helminth infections, particularly in developing countries, remain a notable health burden worldwide. Group 3 innate lymphoid cells (ILC3s) are enriched in the intestine and play a critical role in immunity against extracellular bacteria and fungi. However, whether ILC3s are involved in intestinal helminth infection is still unclear. Here, we report that helminth infection reprograms ILC3s, which, in turn, promote anthelmintic immunity. ILC3-derived RANKL [receptor activator of NF-κB (nuclear factor κB) ligand] synergizes with interleukin-13 (IL-13) to facilitate intestinal tuft cell expansion after helminth infection, which further activates the tuft cell-group 2 innate lymphoid cell (ILC2) circuit to control helminth infection. Deletion of RANKL in ILC3s or deletion of RANK or its downstream adaptor RelB in intestinal epithelial cells substantially diminishes tuft cell hyperplasia and dampens anthelmintic immunity. Thus, ILC3s play an indispensable role in protecting against helminth infection through the regulation of intestinal tuft cell hyperplasia and type 2 immunity.
Collapse
Affiliation(s)
- Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Yibo Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wenyan Wang
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yang-Xin Fu
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Shi
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Lei Yuan
- Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Westlake University, Hangzhou 310030, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
2
|
Zhao Q, Jiang C. Dietary fuel or fire: Fatty acids rewire gut ILC3s. Immunity 2025; 58:1175-1177. [PMID: 40367918 DOI: 10.1016/j.immuni.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Long-term consumption of diets high in fats has detrimental impacts on the immune system, but the window necessary for initiating these effects is unclear. In this issue of Immunity, Xiong et al.1 demonstrate that even short-term exposure to saturated fats impairs ILC3 function and renders the intestine vulnerable to inflammation and injury.
Collapse
Affiliation(s)
- Qixiang Zhao
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| |
Collapse
|
3
|
Pellon A, Palacios A, Abecia L, Rodríguez H, Anguita J. Friends to remember: innate immune memory regulation by the microbiota. Trends Microbiol 2025; 33:510-520. [PMID: 39794207 DOI: 10.1016/j.tim.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Innate immune memory (IIM) is the process by which, upon a primary challenge, innate immune cells alter their epigenetic, transcriptional, and immunometabolic profiles, resulting in modified secondary responses. Unlike infections or other immune-system-related diseases, the role of IIM in nonpathogenic contexts is less understood. An increasing body of research has shown that normal microbiota members or their metabolic byproducts induce alternative memory phenotypes, suggesting that memory cells contribute to homeostasis in mucosal areas. In this review, we discuss the newest insights in the emerging field of IIM to the microbiota and the potential of manipulating these long-term responses to promote better mucosal health.
Collapse
Affiliation(s)
- Aize Pellon
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain.
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Present address: Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza; Galdakao, Spain and Cell Therapy, Stem Cells and Tissues Group, BioBizkaia Health Research Institute; Barakaldo, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Department of Immunology, Microbiology, and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Tao H, Geng J, Bai L, Su D, Zhao Y, Xu G, Zhang M. Regulation of innate lymphoid cell by microbial metabolites. J Mol Med (Berl) 2025; 103:491-509. [PMID: 40128460 DOI: 10.1007/s00109-025-02530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Innate lymphoid cells (ILCs) are a unique category of immune cell that lack antigen-specific receptors yet possess the capacity to detect signals from the surrounding tissue. The majority of ILCs reside in the lymphoid and mucosal tissues, maintaining close associations with the microbiota. Beyond the contributions of accessory cells and adaptive immune cells, accumulating studies demonstrate that microbial metabolites serve a crucial role in mediating the relationship between ILCs and the microbiota. In this review, we highlight and summarize the roles of microbial metabolites from different sources in modulating ILC subsets, proposing these metabolites as potential therapeutic mechanisms in ILC-mediated diseases.
Collapse
Affiliation(s)
- Hongji Tao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jingjing Geng
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Long Bai
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Yu Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Mingming Zhang
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
5
|
Wang H, Wang T, He Z, Wen C, Huang L, Wang M. Deciphering the Role of Innate Lymphoid Cells Group 3 in the Gut Microenvironment: A Narrative Review of Their Novel Contributions to Autoimmune Disease Pathogenesis. J Inflamm Res 2025; 18:5741-5757. [PMID: 40322535 PMCID: PMC12048713 DOI: 10.2147/jir.s512652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Type 3 Innate lymphoid cells (ILC3s) play a crucial role in intestinal immune function by serving as an innate effector that contributes to early-life defense against pathogens and helps protect the intestines from bacterial infections. ILC3s exert their immune function through cytokine secretion, patrolling actions and the generation of memory ILC3s that aid in repairing epithelial tissue and preserving mucosal barrier integrity. Moreover, dysregulation of ILC3s function has been implicated in the pathogenesis and progression of autoimmune diseases. This comprehensive review aims to explore the interactions between gut microbes, gut microbial metabolites, and diet in relation to ILC3s within the context of the gut microenvironment. Furthermore, the gut microenvironment has the potential to influence distant extra-intestinal sites through immunomodulation, thereby modifying their risk of inflammation. The gut has emerged as a significant focus of autoimmune disease research in recent years. However, the relationship between gut ILC3s and autoimmune diseases remains poorly understood. This paper aims to examine the potential association between ILC3s and autoimmune diseases.
Collapse
Affiliation(s)
- Hongli Wang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Tengyue Wang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Zhixing He
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chengping Wen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Lin Huang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Mingzhu Wang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
6
|
Fonseca-Pereira D, Bae S, Clay SL, Michaud M, MacDonald MH, Glickman JN, Garrett WS. The metabolic sensor LKB1 regulates ILC3 homeostasis and mitochondrial function. Cell Rep 2025; 44:115456. [PMID: 40120107 DOI: 10.1016/j.celrep.2025.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are tissue-resident cells that sense environmental cues, control infections, and promote tissue homeostasis at mucosal surfaces. The metabolic sensor liver kinase B1 (LKB1) integrates intracellular stress, metabolism, and mitochondrial function to promote the development and effector functions of a variety of immune cells; however, the role of LKB1 in ILC3 function was unknown. Here, we show that LKB1 is crucial for adult ILC3 homeostasis, cytokine production, and mitochondrial function. ILC3-specific LKB1 deletion resulted in a reduced number of ILC3s and interleukin-22 (IL-22) production. LKB1-deficient ILC3s had decreased survival, mitochondrial dysfunction, cytoplasmic lipid accumulation, and altered bioenergetics. Using LKB1 downstream kinase modulators, we found that LKB1 regulation of ILC3 survival and IL-22 production requires signaling through microtubule affinity-regulating kinases (MARKs). Mechanistically, LKB1 deficiency resulted in increased reactive oxygen species (ROS) production and NFAT2 and PD-1 expression. Our work reveals that metabolic regulation of enteric ILC3 function by an LKB1-dependent signaling network is crucial for intestinal immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Diogo Fonseca-Pereira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Slater L Clay
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Meghan H MacDonald
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Jonathan N Glickman
- Gastrointestinal Pathology, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA; Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
7
|
Zhang X, He J, Shao Y. Research progress and development potential of oncolytic vaccinia virus. Chin Med J (Engl) 2025; 138:777-791. [PMID: 40097373 PMCID: PMC11970828 DOI: 10.1097/cm9.0000000000003585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 03/19/2025] Open
Abstract
ABSTRACT Oncolytic virotherapy is a promising therapeutic approach treating tumors, where oncolytic viruses (OVs) can selectively infect and lyse tumor cells through replication, while also triggering long-lasting anti-tumor immune responses. Vaccinia virus (VV) has emerged as a leading candidate for use as an OV due to its broad cytophilicity and robust capacity to express exogenous genes. Consequently, oncolytic vaccinia virus (OVV) has entered clinical trials. This review provides an overview of the key strategies used in the development of OVV, summarizes the findings from clinical trials, and addresses the challenges that must be overcome in the advancement of OVV-based therapies. Furthermore, it explores potential future strategies for enhancing the development and clinical application of OVV, intending to improve tumor treatment outcomes. The review aims to facilitate the further development and clinical adoption of OVV, thereby advancing tumor therapies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Changping Laboratory, Beijing 102206, China
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiangshan He
- Changping Laboratory, Beijing 102206, China
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yiming Shao
- Changping Laboratory, Beijing 102206, China
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| |
Collapse
|
8
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
9
|
Mhlanga MM, Fanucchi S, Ozturk M, Divangahi M. Cellular and Molecular Mechanisms of Innate Memory Responses. Annu Rev Immunol 2025; 43:615-640. [PMID: 40279311 DOI: 10.1146/annurev-immunol-101721-035114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
There has been an increasing effort to understand the memory responses of a complex interplay among innate, adaptive, and structural cells in peripheral organs and bone marrow. Trained immunity is coined as the de facto memory of innate immune cells and their progenitors. These cells acquire epigenetic modifications and shift their metabolism to equip an imprinted signature to a persistent fast-responsive functional state. Recent studies highlight the contribution of noncoding RNAs and modulation of chromatin structures in establishing this epigenetic readiness for potential immune perturbations. In this review, we discuss recent studies that highlight trained immunity-mediated memory responses emerging intrinsically in innate immune cells and as a complex interplay with other cells at the organ level. Lastly, we survey epigenetic contributors to trained immunity phenotypes-specifically, a recently discovered regulatory circuit coordinating the regulation of a key driver of trained immunity.
Collapse
Affiliation(s)
- Musa M Mhlanga
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands;
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mumin Ozturk
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands;
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maziar Divangahi
- Departments of Medicine, Pathology, and Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, McGill International TB Centre, and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada;
| |
Collapse
|
10
|
Wang J, Yan F, Xiong M, Dong J, Yang W, Xu X. Effects of Yeast β-Glucan Supplementation on Calf Intestinal and Respiratory Health. Animals (Basel) 2025; 15:997. [PMID: 40218391 PMCID: PMC11988033 DOI: 10.3390/ani15070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
The physiological functions of newborn calves are undeveloped, especially the immune system, making them susceptible to infections. In recent years, the theory of trained immunity has attracted attention and provided new strategies to prevent unknown infections in animals. This study investigated the effects of feeding yeast β-glucan on the intestinal and respiratory health of calves during the suckling period. Newborn Holstein calves (average birth weight: 36.18 ± 0.61 kg, mean ± SE) were randomly assigned to two groups: the PO (Per Os) group (n = 22) and the CON (Control) group (n = 22). Calves in the PO group were fed a yeast β-glucan solution (0.1 g/mL, 65 mg/kg body weight) at 3 and 6 days of age, respectively, while calves in the CON group received equal volumes of sterile saline orally at the same time. Blood and fecal samples were collected at 7 and 30 days of age, respectively. The results showed that (1) Compared to the CON group, being fed yeast β-glucan resulted in an inflammatory response after 24 h of the second administration, including increased gene expression of interleukin-6 (IL-6, p < 0.01), interleukin-1 beta (IL-1β, p < 0.01), and malonaldehyde (MDA, p < 0.001) content. Also, stimulation with β-glucan increased the concentrations of secreted immunoglobulin A (sIgA, p < 0.01) and defensins (p < 0.05) in the rectal feces. (2) Pre-stimulation with yeast β-glucan effectively reduced the incidence of diarrhea (p < 0.05) and bovine respiratory disease (BRD, p < 0.05) from day 31 to day 60. (3) At 30 days of age, the pre-stimulated calves had significantly lower serum DAO (p < 0.001) and MDA levels (p < 0.05), while they had higher levels of serum IL-6 (p < 0.01) and fecal slgA (p < 0.05) than calves in the CON group. (4) Pre-stimulation with yeast β-glucan altered the intestinal bacterial community; the Beta diversity results showed that the CON group and the PO group were clustered separately in the principal coordinate analysis (PCoA) graph. Obviously, the PO group sample points were more clustered. In conclusion, this study highlights the potential of yeast β-glucan-induced trained immunity to improve calf health during the suckling period. The findings offer new insights into the prevention of intestinal and respiratory infections in calves.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiurong Xu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.W.); (F.Y.); (M.X.); (J.D.); (W.Y.)
| |
Collapse
|
11
|
Yin H, Chen J, Li C. Immune Memory: A New Frontier in Treating Recurrent Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2025; 68:31. [PMID: 40100550 DOI: 10.1007/s12016-025-09039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The recurrence of inflammatory skin diseases represents a significant challenge in clinical practice, primarily mediated by immune memory. In inflammatory skin diseases, immune memory encompasses adaptive immune memory, trained immunity, and inflammatory memory, which are conducted by adaptive immune cells, innate immune cells, and structural cells, respectively. Adaptive immune memory is established through gene rearrangement, leading to antigen-specific immune memory. In contrast, trained immunity and inflammatory memory are formed through epigenetic and metabolic reprogramming, resulting in non-specific immune memory. Different types of immune memory work synergistically to aggravate localized inflammation in recurrent inflammatory skin diseases. However, immune memory in specific cells, such as macrophages, may also play an immunoregulatory role under certain conditions. We reviewed the immune memory mechanisms in different inflammatory skin diseases and discussed future strategies for targeted regulation of the molecular mechanisms underlying immune memory, such as targeted biological agents and epigenetic modifications. Additionally, we explored the potential for precise regulation of immune memory and its application in personalized treatment for recurrent inflammatory skin diseases.
Collapse
Affiliation(s)
- Hang Yin
- Department of Dermatology, Xijing Hospital, Forth Military Medical University, Xi'an, 710032, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Forth Military Medical University, Xi'an, 710032, China.
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Forth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Qu Q, Ma YM, Zhang WB, Chen R, Wang ZH, Jin WX, Huang YW, Xuan ZY, Liu MJ, Chen XL, Lv WJ, Guo SN. Period circadian clock 3 is crucial for regulation of IL-22-producing type 3 innate lymphoid cells by flavonoids from Shen Ling Bai Zhu San to alleviate colitis. Int J Biol Macromol 2025; 288:138730. [PMID: 39672410 DOI: 10.1016/j.ijbiomac.2024.138730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Type 3 Innate lymphoid cells (ILC3s) functions bear complex response during Inflammatory bowel diseases (IBD). Here, our study first analyzed the main pharmacological components in Shen Ling Bai Zhu San n-butanol extracts (S-Nb), and then explored whether S-Nb administrated immune response of ILC3s, and how it regulates ILC3s. Shen Ling Bai Zhu San (SLBZS) or S-Nb were administrated for 7 days to analyze the frequency of ILC3s and their produced cytokine. Using siRNA technology to knock down the expression of period circadian clock 2 (Per2) and period circadian clock 3 (Per3) and Anti-IL-22 antibody was supplied to mice, then detecting the moderator effect of S-Nb on colitis. The most class of S-Nb is flavonoids, with a content of approximately 48%. Oral administration of S-Nb enhanced the production of NCR+ILC3s and IL-22 produced by ILC3s, but did not alter IL-17A. Surprisingly, knocking down the expression of Per3 instead of Per2 inhibited the modulation effect of S-Nb on colitis and reduced IL-22 production, whether originating from NCR+ILC3s or NCR-ILC3s. After neutralizing the expression of IL-22 in mice, S-Nb was deprived of ability to alleviate colitis. The reason why S-Nb alleviates colitis is by enhancing the expression of Per3 via flavonoids, which in turn promotes the secretion of IL-22+ILC3s in intestine.
Collapse
Affiliation(s)
- Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi-Mu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Bo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhi-Hua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Xin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi-Wen Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhao-Ying Xuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Meng-Jie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao-Li Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei-Jie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Shi-Ning Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
13
|
Zhang Z, Schaefer C, Jiang W, Lu Z, Lee J, Sziraki A, Abdulraouf A, Wick B, Haeussler M, Li Z, Molla G, Satija R, Zhou W, Cao J. A panoramic view of cell population dynamics in mammalian aging. Science 2025; 387:eadn3949. [PMID: 39607904 PMCID: PMC11910726 DOI: 10.1126/science.adn3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
To elucidate aging-associated cellular population dynamics, we present PanSci, a single-cell transcriptome atlas profiling >20 million cells from 623 mouse tissues across different life stages, sexes, and genotypes. This comprehensive dataset reveals >3000 different cellular states and >200 aging-associated cell populations. Our panoramic analysis uncovered organ-, lineage-, and sex-specific shifts in cellular dynamics during life-span progression. Moreover, we identify both systematic and organ-specific alterations in immune cell populations associated with aging. We further explored the regulatory roles of the immune system on aging and pinpointed specific age-related cell population expansions that are lymphocyte dependent. Our "cell-omics" strategy enhances comprehension of cellular aging and lays the groundwork for exploring the complex cellular regulatory networks in aging and aging-associated diseases.
Collapse
Affiliation(s)
- Zehao Zhang
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Chloe Schaefer
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Weirong Jiang
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Ziyu Lu
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Abdulraouf Abdulraouf
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Brittney Wick
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | | | - Zhuoyan Li
- New York Genome Center, New York, NY, USA
| | | | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Wei Zhou
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Junyue Cao
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
14
|
Yin R, Wang T, Sun J, Dai H, Zhang Y, Liu N, Liu H. Postbiotics From Lactobacillus Johnsonii Activates Gut Innate Immunity to Mitigate Alcohol-Associated Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405781. [PMID: 39574408 PMCID: PMC11727117 DOI: 10.1002/advs.202405781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/10/2024] [Indexed: 01/14/2025]
Abstract
Prolonged alcohol consumption disrupts the gut microbiota and the immune system, contributing to the pathogenesis of alcohol-associated liver disease (ALD). Probiotic-postbiotic intervention strategies can effectively relieve ALD by maintaining gut homeostasis. Herein, the efficacy of heat-killed Lactobacillus johnsonii (HKLJ) in mitigating alcoholic liver damage is demonstrated in mouse models of ALD. The gut-liver axis is identified as a pivotal pathway for the protective effects of L. johnsonii against ALD. Specifically, HKLJ is found to upregulate the expression of intestinal lysozymes, thereby enhancing the production of immunoregulatory substances from gut bacteria, which subsequently activated the Nucleotide-binding oligomerization domain 2 (NOD2)-interleukin (IL-23)-IL-22 innate immune axis. The elevated IL-22 upregulated the antimicrobial peptide synthesis to maintain intestinal homeostasis and moreover activated the Signal transducer and activator of Transcription3 (STAT3) pathway in the liver to facilitate the repair of hepatic injuries. The heat-killed L. johnsonii provoked immunity helps correct the gut microbiota dysbiosis, specifically by reversing the reduction of butyrate-producing bacteria (such as Faecalibaculum rodentium) and the expansion of opportunistic pathogens (such as Helicobacter sp. and Pichia kudriavzevii) induced by ethanol. The findings provide novel insights into the gut microbiota-liver axis that may be leveraged to enhance the treatment of ALD.
Collapse
Affiliation(s)
- Ruopeng Yin
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tao Wang
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Jingzu Sun
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Huanqin Dai
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuting Zhang
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ningning Liu
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Hongwei Liu
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
15
|
Berkinbayeva M, Gu W, Chen Z, Gao P. Group 3 Innate Lymphoid Cells: A Potential Therapeutic Target for Steroid Resistant Asthma. Clin Rev Allergy Immunol 2024; 68:1. [PMID: 39751959 PMCID: PMC11698894 DOI: 10.1007/s12016-024-09012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation. Recent studies provided evidence that innate lymphoid cells type 3 (ILC3s) might be potential therapeutic targets for non-eosinophilic asthma (NEA) and SRA. Like Th17 cells, ILC3s play crucial roles in immune responses, inflammation, and tissue homeostasis, contributing to disease severity and corticosteroid resistance in NEA. Biologics targeting ILC3-related pathways have shown promise in managing Th2-low asthma, suggesting new avenues for SRA treatment. This review aims to explore the risk factors for SRA, discuss the challenges and mechanisms underlying SRA, consolidate current findings on innate lymphoid cells, and elucidate their role in respiratory conditions. We present the latest findings on the involvement of ILC3s in human diseases and explore their potential mechanisms in SRA development. Furthermore, we review emerging therapeutic biologics targeting ILC3-related pathways in managing NEA and SRA. This review highlights current challenges, and emerging therapeutic strategies, and addresses a significant gap in asthma research, with implications for improving the management of steroid-resistant asthma.
Collapse
Affiliation(s)
- Marzhan Berkinbayeva
- Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA
| | - Wenjing Gu
- Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhifeng Chen
- Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
| |
Collapse
|
16
|
Yang J, Cui S, Shao B, Zhao Y, Wang Z, Liu Q, Zhang Y, Yang D. ScRNA-seq reveals trained immunity-engaged Th17 cell activation against Edwardsiella piscicida-induced intestinal inflammation in teleost. Microbiol Res 2024; 289:127912. [PMID: 39326350 DOI: 10.1016/j.micres.2024.127912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Mucosal immunity typically involves innate and adaptive immune cells, while the cellular mechanism of teleost's intestinal immune cells that engages gut homeostasis against bacterial infection remains largely unknown. Taking advantage of the enteric fish pathogen (Edwardsiella piscicida) infection-induced intestinal inflammation in turbot (Scophthalmus maximus), we find that β-glucan training could mitigate the bacterial infection-induced intestinal inflammation. Through single-cell transcriptome profiling and cellular function analysis, we identify that E. piscicida infection could tune down the activation of intestinal Th17 cells, while β-glucan-training could preserve the potential to amplify and restore the function of intestinal Th17 cells. Moreover, through pharmacological inhibitor treatment, we identify that Th17 cells are essential for ameliorating bacterial infection-induced intestinal inflammation in teleost. Taken together, these results suggest a new concept of trained immunity activation to regulate the intestinal Th17 cells' function, which might contribute to better developing strategies for maintaining gut homeostasis against bacterial infection.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Shu Cui
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Boning Shao
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbo Zhao
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
17
|
Wang Y, Qin Y, Kang Q, Wang H, Zhou S, Wu Y, Liu Y, Su Y, Guo Y, Xiu M, He J. Therapeutic potential of Astragalus membranaceus-Pueraria lobata decoction for the treatment of chemotherapy bowel injury. FASEB J 2024; 38:e70102. [PMID: 39382026 DOI: 10.1096/fj.202401677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Qin
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Kang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huinan Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Wu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yun Su
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
- Second Provincial People's Hospital of Gansu, Lanzhou, China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
18
|
Ilangovan J, Neves JF, Santos AF. Innate lymphoid cells in immunoglobulin E-mediated food allergy. Curr Opin Allergy Clin Immunol 2024; 24:419-425. [PMID: 39132724 PMCID: PMC11356679 DOI: 10.1097/aci.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Recognition of the importance of innate lymphoid cells (ILCs) in the immune mechanisms of food allergy has grown in recent years. This review summarizes recent findings of ILCs in immunoglobulin E (IgE)-mediated food allergy. New research on ILCs in the context of the microbiome and other atopic diseases are also considered with respect to how they can inform understanding of the role of ILCs in food allergy. RECENT FINDINGS ILCs can mediate allergic and tolerogenic responses through multiple pathways. A novel subset of interleukin (IL)-10 producing ILC2s are associated with tolerance following immunotherapy to grass pollen, house dust mite allergy and lipid transfer protein allergy. ILC2s can drive food allergen-specific T cell responses in an antigen-specific manner. A memory subset of ILC2s has been identified through studies of other atopic diseases and is associated with effectiveness of response to therapy. SUMMARY The role of ILCs in food allergy and oral tolerance is relatively understudied compared to other diseases. ILCs can modulate immune responses through several mechanisms, and it is likely that these are of importance in the context of food allergy. Better understanding of theses pathways may help to answer fundamental questions regarding the development of food allergy and lead to novel therapeutic targets and treatment.
Collapse
Affiliation(s)
- Janarthanan Ilangovan
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Centre for Host Microbiome Interactions
| | | | - Alexandra F. Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London
- Children's Allergy Service, Guy's and St Thomas’ Hospital, London, UK
| |
Collapse
|
19
|
Chen D, Wu J, Zhang F, Lyu R, You Q, Qian Y, Cai Y, Tian X, Tao H, He Y, Nawaz W, Wu Z. Trained immunity of intestinal tuft cells during infancy enhances host defense against enteroviral infections in mice. EMBO Mol Med 2024; 16:2516-2538. [PMID: 39261649 PMCID: PMC11479266 DOI: 10.1038/s44321-024-00128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Innate immune cells have been acknowledged as trainable in recent years. While intestinal tuft cells are recognized for their crucial roles in the host defense against intestinal pathogens, there remains uncertainty regarding their trainability. Enterovirus 71 (EV71), a prevalent enterovirus that primarily infects children but rarely infects adults. At present, there is a significant expansion of intestinal tuft cells in the EV71-infected mouse model, which is associated with EV71-induced interleukin-25 (IL-25) production. Further, we found that IL-25 pre-treatment at 2 weeks old mouse enabled tuft cells to acquire immune memory. This was evidenced by the rapid expansion and stronger response of IL-25-trained tuft cells in response to EV71 infection at 6 weeks old, surpassing the reactivity of naïve tuft cells in mice without IL-25-trained progress. Interestingly, IL-25-trained intestinal tuft cells exhibit anti-enteroviral effect via producing a higher level of IL-25. Mechanically, IL-25 treatment upregulates spermidine/spermine acetyl-transferase enzyme (SAT1) expression, mediates intracellular polyamine deficiency, further inhibits enterovirus replication. In summary, tuft cells can be trained by IL-25, which supports faster and higher level IL-25 production in response to EV71 infection and further exhibits anti-enteroviral effect via SAT1-mediated intracellular polyamine deficiency. Given that IL-25 can be induced by multiple gut microbes during human growth and development, including shifts in gut flora abundance, which may partially explain the different susceptibility to enteroviral infections between adults and children.
Collapse
Affiliation(s)
- Deyan Chen
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Wu
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruining Lyu
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qiao You
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoyan Tian
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hongji Tao
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yating He
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Waqas Nawaz
- Hȏpital Maisonneuve-Rosemont, School of medicine, University of Montreal, Montreal, Canada
| | - Zhiwei Wu
- Medical School of Nanjing University, Nanjing, Jiangsu, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| |
Collapse
|
20
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
21
|
Taira CL, Dos Santos Dias L, Lichtenberger S, Whitehead AJ, Kischkel B, Netea MG, Klein BS, Wüthrich M. Vaccination with O-linked Mannans Protects against Systemic Candidiasis through Innate Lymphocyte Populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:843-852. [PMID: 39109925 PMCID: PMC11426167 DOI: 10.4049/jimmunol.2400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Candida spp. are the fourth leading cause of bloodstream infections in hospitalized patients and the most common cause of invasive fungal infection. No vaccine against Candida spp. or other fungal pathogens of humans is available. We recently discovered the Blastomyces Dectin-2 ligand endoglucanase 2 that harbors antigenic and adjuvant functions and can function as a protective vaccine against that fungus. We also reported that the adjuvant activity, which is mediated by O-mannans decorating the C terminus of Blastomyces Dectin-2 ligand endoglucanase 2, can augment peptide Ag-induced vaccine immunity against heterologous agents, including Cryptococcus, Candida, and influenza. In this article, we report that the O-linked mannans alone, in the absence of any antigenic peptide, can also protect against systemic candidiasis, reducing kidney fungal load and increasing survival in a Dectin-2-dependent manner. We found that this long-term glycan-induced protection is mediated by innate lymphocyte populations including TCR-γδ+ T cells, innate lymphoid cells, and NK cells that subsequently activate and release reactive oxygen species from neutrophils and monocytes. Our findings suggest that Blastomyces O-mannan displayed by Eng2 induces a form of protective trained immunity mediated by innate lymphocyte populations.
Collapse
Affiliation(s)
- Cleison Ledesma Taira
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Lucas Dos Santos Dias
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sarah Lichtenberger
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Alexander J Whitehead
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
22
|
Rahman MA, Silva de Castro I, Schifanella L, Bissa M, Franchini G. Vaccine induced mucosal and systemic memory NK/ILCs elicit decreased risk of SIV/SHIV acquisition. Front Immunol 2024; 15:1441793. [PMID: 39301032 PMCID: PMC11410642 DOI: 10.3389/fimmu.2024.1441793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024] Open
Abstract
SIV and HIV-based envelope V1-deleted (ΔV1) vaccines, delivered systemically by the DNA/ALVAC/gp120 platform, decrease the risk of mucosal SIV or SHIV acquisition more effectively than V1-replete vaccines. Here we investigated the induction of mucosal and systemic memory-like NK cells as well as antigen-reactive ILC response by DNA/ALVAC/gp120-based vaccination and their role against SIV/SHIV infection. ΔV1 HIV vaccination elicited a higher level of mucosal TNF-α+ and CD107+ memory-like NK cells than V1-replete vaccination, suggesting immunogen dependence. Mucosal memory-like NK cells, systemic granzyme B+ memory NK cells, and vaccine-induced mucosal envelope antigen-reactive IL-17+ NKp44+ ILCs, IL-17+ ILC3s, and IL-13+ ILC2 subsets were linked to a lower risk of virus acquisition. Additionally, mucosal memory-like NK cells and mucosal env-reactive IFN-γ+ ILC1s and env- reactive IL-13+ ILC2 subsets correlated with viral load control. We further observed a positive correlation between post-vaccination systemic and mucosal memory-like NK cells, suggesting vaccination enhances the presence of these cells in both compartments. Mucosal and systemic memory-like NK cells positively correlated with V2-specific ADCC responses, a reproducible correlate of reduced risk of SIV/HIV infection. In contrast, an increased risk was associated with the level of mucosal PMA/Ionomycin-induced IFN-γ+ and CD107+ NKG2A-NKp44- ILCs. Plasma proteomic analyses demonstrated that suppression of mucosal memory-like NK cells was linked to the level of CCL-19, LT-α, TNFSF-12, and IL-15, suppression of systemic env-reactive granzyme B+ memory-like NK cells was associated with the level of OLR1, CCL-3, and OSM, and suppression of IL-17+ ILCs immunity was correlated with the level of IL-6 and CXCL-9. In contrast, FLT3 ligand was associated with promotion of protective mucosal env-reactive IL-17+ responses. These findings emphasize the importance of mucosal memory-like NK cell and envelope- reactive ILC responses for protection against mucosal SIV/SHIV acquisition.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
23
|
Wang W, Li N, Guo X. The crosstalk between ILC3s and adaptive immunity in diseases. FEBS J 2024; 291:3965-3977. [PMID: 37994218 DOI: 10.1111/febs.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s), the innate counterpart of Th17 cells, are enriched in the mucosal area and lymphoid tissues. ILC3s interact with a variety of cells through their effector molecules and play an important role in the host defense against a spectrum of infections. Recent studies suggest that the extensive crosstalk between ILC3s and adaptive immune cells, especially T cells, is essential for maintaining tissue homeostasis. Here we discuss recent advances in the crosstalk between ILC3s and adaptive immune responses in multiple tissues and diseases. Understanding how ILC3s engage with adaptive immune cells will enhance our comprehension of diseases and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Huang S, Ye Q, Wang A, Chen Y. Paeoniae Decoction restores intestinal barrier dysfunction by promoting the interaction between ILC3 and gut flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155873. [PMID: 39024673 DOI: 10.1016/j.phymed.2024.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Intestinal barrier dysfunction is a significant contributor to the recurrence and refractory of ulcerative colitis (UC). Promoting the interaction between group 3 innate lymphoid cells (ILC3s) and gut flora is a valuable strategy for mucosal repair. Paeoniae decoction (PD) is a compound commonly used in clinical treatment of UC, but its exact mechanism remains unclear. PURPOSE We aimed to investigate the protective effect of PD on intestinal mucosal injury induced by dextran sulfate sodium (DSS) in chronic colitis, as well as to elucidate its potential mechanism. METHODS C57BL/6 mice were induced with chronic colitis by 2 % DSS and divided into four groups: control group, model group, PD low dose (4 g/kg), and high dose (8 g/kg) group. The effectiveness of PD in treating chronic colitis mice was evaluated based on changes in body weight, colon length, colon pathological tissue scores, and the mRNA levels of inflammatory factors IL-6 and IL-1β. The expressions of intestinal epithelial tight junction proteins (ZO-1 and Occludin), IL-22, and MUC2 were observed using immunofluorescence and RT-PCR. Additionally, the proportion of ILC3 and natural cytotoxicity receptor (NCR)+ ILC3 in the colon were detected using flow cytometry. Furthermore, UHPLC-QE-MS was utilized to identify chemical components of PD and network pharmacology was employed to predict potential pathways for PD intervention in UC. Subsequently, MNK-3 cells (ILC3 in vitro cell line) and NCM460 cells were used to verify the network pharmacology results. Finally, the effects of PD on UC gut flora have been explored using in vitro fermentation and 16S rDNA techniques. RESULTS The results showed that PD significantly restored body weight and colon length in mice with chronic colitis, while also reducing colon inflammatory cell infiltration and the expression of IL-6 and IL-1β. Additionally, PD notably promoted the expression of MUC2, ZO-1, Occludin, and IL-22, as well as increasing the ratio of ILC3 and NCR+ILC3. UHPLC-QE-MS analysis identified 443 components of PD, and network pharmacology suggested that PD could target the aryl hydrocarbon receptor (AHR) signaling pathway, which was confirmed by MNK-3 cells and in vitro fermentation experiments. Furthermore, MNK-3-conditioned medium (CM) increased the expression of ZO-1 and Occludin in NCM460 cells. In addition, 16S rDNA results indicated that PD promoted the abundance of Lactobacillales, thus contributing to mucosal damage repair by activating the AHR signal in ILC3s. CONCLUSION In summary, our study demonstrates that PD repairs intestinal mucosal damage in chronic colitis by regulating the interaction of gut flora with ILC3, and the specific mechanism is related to the activation of AHR signaling pathway.
Collapse
Affiliation(s)
- Shaowei Huang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Qiujuan Ye
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Anjiang Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China.
| | - Ye Chen
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China; Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
25
|
Su X, Zhao L, Zhang H, Wang D, Sun J, Shen L. Sirtuin 6 inhibits group 3 innate lymphoid cell function and gut immunity by suppressing IL-22 production. Front Immunol 2024; 15:1402834. [PMID: 39253083 PMCID: PMC11381250 DOI: 10.3389/fimmu.2024.1402834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Group 3 innate lymphoid cells (ILC3s) are enriched in the intestinal mucosa and play important roles in host defense against infection and inflammatory diseases. Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD+)- dependent deacetylase and has been shown to control intestinal epithelial cell differentiation and survival. However, the role of SIRT6 in ILC3s remains unknown. Methods To investigate the role of SIRT6 in gut ILC3s, we generated SIRT6 conditional knockout mice by crossing Rorccre and Sirt6flox/flox mice. Cell number and cytokine production was examined using flow cytometry. Citrobacter rodentium infection and dextran sodium sulfate-induced colitis models were used to determine the role of SIRT6 in gut defense. RT-qPCR, flow cytometry and immunohistochemistry were used to assess the intestinal inflammatory responses. Results Here we show that SIRT6 inhibits IL-22 expression in intestinal ILC3s in a cell-intrinsic manner. Deletion of SIRT6 in ILC3s does not affect the cell numbers of total ILC3s and subsets, but results in increased IL-22 production. Furthermore, ablation of SIRT6 in ILC3s protects mice against Citrobacter rodentium infection and dextran sodium sulfate-induced colitis. Our results suggest that SIRT6 may play a role in ILC3 function by regulating gut immune responses against bacterial infection and inflammation. Discussion Our finding provided insight into the relation of epigenetic regulators with IL-22 production and supplied a new perspective for a potential strategy against inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiaohui Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linfeng Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huasheng Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongdi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiping Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Wang W, Ma L, Liu B, Ouyang L. The role of trained immunity in sepsis. Front Immunol 2024; 15:1449986. [PMID: 39221248 PMCID: PMC11363069 DOI: 10.3389/fimmu.2024.1449986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection, characterized by a systemic inflammatory response to infection. The use of antibiotics, fluid resuscitation, and organ support therapy has limited prognostic benefit in patients with sepsis, and its incidence is not diminishing, which is attracting increased attention in medicine. Sepsis remains one of the most debilitating and expensive illnesses. One of the main reasons of septic mortality is now understood to be disruption of immune homeostasis. Immunotherapy is revolutionizing the treatment of illnesses in which dysregulated immune responses play a significant role. This "trained immunity", which is a potent defense against infection regardless of the type of bacteria, fungus, or virus, is attributed to the discovery that the innate immune cells possess immune memory via metabolic and epigenetic reprogramming. Here we reviewed the immunotherapy of innate immune cells in sepsis, the features of trained immunity, and the relationship between trained immunity and sepsis.
Collapse
Affiliation(s)
| | | | | | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
27
|
Gan Y, Zhang J, Qi F, Hu Z, Sweren E, Reddy SK, Chen L, Feng X, Grice EA, Garza LA, Wang G. Commensal microbe regulation of skin cells in disease. Cell Host Microbe 2024; 32:1264-1279. [PMID: 39146798 PMCID: PMC11457753 DOI: 10.1016/j.chom.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Human skin is the host to various commensal microbes that constitute a substantial microbial community. The reciprocal communication between these microbial inhabitants and host cells upholds both the morphological and functional attributes of the skin layers, contributing indispensably to microenvironmental and tissue homeostasis. Thus, disruption of the skin barrier or imbalances in the microbial communities can exert profound effects on the behavior of host cells. This influence, mediated by the microbes themselves or their metabolites, manifests in diverse outcomes. In this review, we examine existing knowledge to provide insight into the nuanced behavior exhibited by the microbiota on skin cells in health and disease states. These interactions provide insight into potential cellular targets for future microbiota-based therapies to prevent and treat skin disease.
Collapse
Affiliation(s)
- Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Evan Sweren
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xinyi Feng
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Elizabeth A Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luis A Garza
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
28
|
Mathä L, Krabbendam L, Martinez Høyer S, Heesters BA, Golebski K, Kradolfer C, Ghaedi M, Ma J, Stadhouders R, Bachert C, Cardell LO, Zhang N, Holtappels G, Reitsma S, Helgers LC, Geijtenbeek TB, Coquet JM, Takei F, Spits H, Martinez-Gonzalez I. Human CD127 negative ILC2s show immunological memory. J Exp Med 2024; 221:e20231827. [PMID: 38889332 PMCID: PMC11187981 DOI: 10.1084/jem.20231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
ILC2s are key players in type 2 immunity and contribute to maintaining homeostasis. ILC2s are also implicated in the development of type 2 inflammation-mediated chronic disorders like asthma. While memory ILC2s have been identified in mouse, it is unknown whether human ILC2s can acquire immunological memory. Here, we demonstrate the persistence of CD45RO, a marker previously linked to inflammatory ILC2s, in resting ILC2s that have undergone prior activation. A high proportion of these cells concurrently reduce the expression of the canonical ILC marker CD127 in a tissue-specific manner. Upon isolation and in vitro stimulation of CD127-CD45RO+ ILC2s, we observed an augmented ability to proliferate and produce cytokines. CD127-CD45RO+ ILC2s are found in both healthy and inflamed tissues and display a gene signature of cell activation. Similarly, mouse memory ILC2s show reduced expression of CD127. Our findings suggest that human ILC2s can acquire innate immune memory and warrant a revision of the current strategies to identify human ILC2s.
Collapse
Affiliation(s)
- Laura Mathä
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, Canada
| | - Lisette Krabbendam
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Erasmus Medical Center, University of Rotterdam, Rotterdam, Netherlands
| | | | - Balthasar A. Heesters
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Chantal Kradolfer
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Maryam Ghaedi
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Junjie Ma
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center, University of Rotterdam, Rotterdam, Netherlands
| | - Claus Bachert
- Department of Oto-Rhino-Laryngology, Münster University, Münster, Germany
- Sun Yat-sen University, The First Affiliated Hospital, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- ENT-Department, Karolinska University Hospital, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Nan Zhang
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Sietze Reitsma
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Leanne Carijn Helgers
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B.H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan M. Coquet
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Itziar Martinez-Gonzalez
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Xing Z, Li X, He J, Chen Y, Zhu L, Zhang X, Huang Z, Tang J, Guo Y, He Y. OLFM4 modulates intestinal inflammation by promoting IL-22 +ILC3 in the gut. Commun Biol 2024; 7:914. [PMID: 39075283 PMCID: PMC11286877 DOI: 10.1038/s42003-024-06601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play key roles in intestinal inflammation. Olfactomedin 4 (OLFM4) is highly expressed in the colon and has a potential role in dextran sodium sulfate-induced colitis. However, the detailed mechanisms underlying the effects of OLFM4 on ILC3-mediated colitis remain unclear. In this study, we identify OLFM4 as a positive regulator of IL-22+ILC3. OLFM4 expression in colonic ILC3s increases substantially during intestinal inflammation in humans and mice. Compared to littermate controls, OLFM4-deficient (OLFM4-/-) mice are more susceptible to bacterial infection and display greater resistance to anti-CD40 induced innate colitis, together with impaired IL-22 production by ILC3, and ILC3s from OLFM4-/-mice are defective in pathogen resistance. Besides, mice with OLFM4 deficiency in the RORγt compartment exhibit the same trend as in OLFM4-/-mice, including colonic inflammation and IL-22 production. Mechanistically, the decrease in IL-22+ILC3 caused by OLFM4 deficiency involves the apoptosis signal-regulating kinase 1 (ASK1)- p38 MAPK signaling-dependent downregulation of RAR-related orphan receptor gamma (RORγt) protein. The OLFM4-metadherin (MTDH) complex upregulates p38/RORγt signaling, which is necessary for IL-22+ILC3 activation. The findings indicate that OLFM4 is a novel regulator of IL-22+ILC3 and essential for modulating intestinal inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Zhe Xing
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaogang Zhang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Zhang Y, Han L, Dong J, Yuan Z, Yao W, Ji P, Hua Y, Wei Y. Shaoyao decoction improves damp-heat colitis by activating the AHR/IL-22/STAT3 pathway through tryptophan metabolism driven by gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117874. [PMID: 38342152 DOI: 10.1016/j.jep.2024.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of Shaoyao Decoction (SYD), a traditional Chinese medicine prescription, in treating damp-heat colitis is established, but its underlying mechanism remains to be elucidated. AIM OF THE STUDY Our study aims to investigate the effect and mechanism of action of SYD in treating damp-heat colitis. MATERIALS AND METHODS A mouse model of damp-heat colitis was induced and treated with SYD via gavage for seven days. The therapeutic efficacy of SYD was assessed through clinical indicators and histopathological examinations. The inflammatory factors and oxidative stress parameters were detected by ELISA and biochemical kits. We also analyzed alterations in the gut microbiome via 16 S rRNA gene sequencing and quantified serum indole derivatives using targeted tryptophan metabolomics. Western blotting and immunofluorescence were used to detect the expressions of AHR, CYP1A1, STAT3 and tight junction (TJ) proteins. The ELISA kit was utilized to detect the content of antibacterial peptides (Reg3β and Reg3γ) in colon. The immunohistochemistry was employed to detect the expressions of proliferating cell nuclear antigen (PCNA) protein. RESULTS SYD effectively alleviated symptoms in mice with damp-heat colitis, including body weight loss, shortened colon, elevated DAI, enlarged spleen, and damage to the intestinal mucosa. SYD notably reduced IL-6, TNF-α, IL-1β and MDA levels in colon tissues, while increasing IL-10 and T-AOC levels. Furthermore, SYD mitigated gut microbiota disturbance, restored microbial tryptophan metabolite production (such as IA, IAA, and IAld), notably increased the protein levels of AHR, CYP1A1 and p-STAT3 in colon tissue, and elevated the IL-22 level. Moreover, the expression levels of Reg3β, Reg3γ, occludin, ZO-1 and PCNA were increased in SYD group. CONCLUSION Our study showed that SYD ameliorates damp-heat colitis by restructuring gut microbiota structure, enhancing the metabolism of tryptophan associated with gut microbiota to activate the AHR/IL-22/STAT3 pathway, thereby recovering damaged intestinal mucosa. This research offers novel insights into the therapeutic mechanisms of SYD on damp-heat colitis.
Collapse
Affiliation(s)
- Yahui Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Luoxia Han
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaqi Dong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
31
|
Das A, Martinez-Ruiz GU, Bouladoux N, Stacy A, Moraly J, Vega-Sendino M, Zhao Y, Lavaert M, Ding Y, Morales-Sanchez A, Harly C, Seedhom MO, Chari R, Awasthi P, Ikeuchi T, Wang Y, Zhu J, Moutsopoulos NM, Chen W, Yewdell JW, Shapiro VS, Ruiz S, Taylor N, Belkaid Y, Bhandoola A. Transcription factor Tox2 is required for metabolic adaptation and tissue residency of ILC3 in the gut. Immunity 2024; 57:1019-1036.e9. [PMID: 38677292 PMCID: PMC11096055 DOI: 10.1016/j.immuni.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.
Collapse
Affiliation(s)
- Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gustavo Ulises Martinez-Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Faculty of Medicine, Research Division, National Autonomous University of Mexico, Mexico City, Mexico; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maria Vega-Sendino
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Christelle Harly
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Mina O Seedhom
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Parirokh Awasthi
- Mouse Modeling Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, NIDCR, NIH, Bethesda, MD, USA
| | - Yueqiang Wang
- Shenzhen Typhoon HealthCare, Shenzhen, Guangdong, China
| | - Jinfang Zhu
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
32
|
Wang X, Yuan W, Yang C, Wang Z, Zhang J, Xu D, Sun X, Sun W. Emerging role of gut microbiota in autoimmune diseases. Front Immunol 2024; 15:1365554. [PMID: 38765017 PMCID: PMC11099291 DOI: 10.3389/fimmu.2024.1365554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhangxue Wang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xicai Sun
- Department of Hospital Office, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Wenchang Sun
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
33
|
Serafini N, Di Santo JP. Group 3 innate lymphoid cells: A trained Gutkeeper. Immunol Rev 2024; 323:126-137. [PMID: 38491842 DOI: 10.1111/imr.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) are tissue-resident immune lymphocytes that critically regulate intestinal homeostasis, organogenesis, and immunity. ILC3s possess the capacity to "sense" the inflammatory environment within tissues, especially in the context of pathogen challenges that imprints durable non-antigen-specific changes in ILC3 function. As such, ILC3s become a new actor in the emerging field of trained innate immunity. Here, we summarize recent discoveries regarding ILC3 responses to bacterial challenges and the role these encounters play in triggering trained innate immunity. We further discuss how signaling events throughout ILC3 ontogeny potentially control the development and function of trained ILC3s. Finally, we highlight the open questions surrounding ILC3 "training" the answers to which may reveal new insights into innate immunity. Understanding the fundamental concepts behind trained innate immunity could potentially lead to the development of new strategies for improving immunity-based modulation therapies for inflammation, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| |
Collapse
|
34
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
35
|
Martinez-Gonzalez I, Takei F. New insights into ILC2 memory. Immunol Rev 2024; 323:118-125. [PMID: 38506432 DOI: 10.1111/imr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) are innate lymphocytes involved in type 2 immunity. ILC2s are abundant at the barrier tissues and upon allergen exposure, respond to epithelial-derived alarmins by producing type 2 cytokines (e.g., IL-5 and IL-13). Upon activation, some of these activated ILC2s acquire immunological memory and can mount enhanced responses upon further allergen encounters. Here, we review recent findings of the cellular and molecular mechanisms underlying immune memory in ILC2s both in mice and humans and discuss the implications of memory ILC2s in the context of allergic diseases.
Collapse
Affiliation(s)
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Daccache JA, Naik S. Inflammatory Memory in Chronic Skin Disease. JID INNOVATIONS 2024; 4:100277. [PMID: 38708420 PMCID: PMC11068922 DOI: 10.1016/j.xjidi.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Inflammation is a hallmark of remitting-relapsing dermatological diseases. Although a large emphasis has been placed on adaptive immune cells as mediators of relapse, evidence in epithelial and innate immune biology suggests that disease memory is widespread. In this study, we bring to the fore the concept of inflammatory memory or nonspecific training of long-lived cells in the skin, highlighting the epigenetic and other mechanisms that propagate memory at the cellular level. We place these findings in the context of psoriasis, a prototypic flaring disease known to have localized memory, and underscore the importance of targeting memory to limit disease flares.
Collapse
Affiliation(s)
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, New York, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, New York, USA
- Department of Medicine, NYU Langone Health, New York, New York, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Colton Center for Autoimmunity, NYU Langone Health, New York, New York, USA
| |
Collapse
|
37
|
Das S, Chauhan KS, Ahmed M, Akter S, Lu L, Colonna M, Khader SA. Lung type 3 innate lymphoid cells respond early following Mycobacterium tuberculosis infection. mBio 2024; 15:e0329923. [PMID: 38407132 PMCID: PMC11005430 DOI: 10.1128/mbio.03299-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Tuberculosis is the leading cause of death due to an infectious disease worldwide. Innate lymphoid type 3 cells (ILC3s) mediate early protection during Mycobacterium tuberculosis (Mtb) infection. However, the early signaling mechanisms that govern ILC3 activation or recruitment within the lung during Mtb infection are unclear. scRNA-seq analysis of Mtb-infected mouse lung innate lymphoid cells (ILCs) has revealed the presence of different clusters of ILC populations, suggesting heterogeneity. Using mouse models, we show that during Mtb infection, interleukin-1 receptor (IL-1R) signaling on epithelial cells drives ILC3 expansion and regulates ILC3 accumulation in the lung. Furthermore, our data revealed that C-X-C motif chemokine receptor 5 (CXCR5) signaling plays a crucial role in ILC3 recruitment from periphery during Mtb infection. Our study thus establishes the early responses that drive ILC3 accumulation during Mtb infection and points to ILC3s as a potential vaccine target. IMPORTANCE Tuberculosis is a leading cause of death due to a single infectious agent accounting for 1.6 million deaths each year. In our study, we determined the role of type 3 innate lymphoid cells in early immune events necessary for achieving protection during Mtb infection. Our study reveals distinct clusters of ILC2, ILC3, and ILC3/ILC1-like cells in Mtb infection. Moreover, our study reveal that IL-1R signaling on lung type 2 epithelial cells plays a key role in lung ILC3 accumulation during Mtb infection. CXCR5 on ILC3s is involved in ILC3 homing from periphery during Mtb infection. Thus, our study provides novel insights into the early immune mechanisms governed by innate lymphoid cells that can be targeted for potential vaccine-induced protection.
Collapse
Affiliation(s)
- Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kuldeep Singh Chauhan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Sadia Akter
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Lan Lu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Zhang Z, Schaefer C, Jiang W, Lu Z, Lee J, Sziraki A, Abdulraouf A, Wick B, Haeussler M, Li Z, Molla G, Satija R, Zhou W, Cao J. A Panoramic View of Cell Population Dynamics in Mammalian Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583001. [PMID: 38496474 PMCID: PMC10942312 DOI: 10.1101/2024.03.01.583001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
To elucidate the aging-associated cellular population dynamics throughout the body, here we present PanSci, a single-cell transcriptome atlas profiling over 20 million cells from 623 mouse tissue samples, encompassing a range of organs across different life stages, sexes, and genotypes. This comprehensive dataset allowed us to identify more than 3,000 unique cellular states and catalog over 200 distinct aging-associated cell populations experiencing significant depletion or expansion. Our panoramic analysis uncovered temporally structured, organ- and lineage-specific shifts of cellular dynamics during lifespan progression. Moreover, we investigated aging-associated alterations in immune cell populations, revealing both widespread shifts and organ-specific changes. We further explored the regulatory roles of the immune system on aging and pinpointed specific age-related cell population expansions that are lymphocyte-dependent. The breadth and depth of our 'cell-omics' methodology not only enhance our comprehension of cellular aging but also lay the groundwork for exploring the complex regulatory networks among varied cell types in the context of aging and aging-associated diseases.
Collapse
Affiliation(s)
- Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Chloe Schaefer
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Weirong Jiang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Abdulraouf Abdulraouf
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional M.D-Ph.D Program, New York, NY, USA
| | - Brittney Wick
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | | | - Zhuoyan Li
- New York Genome Center, New York, NY, USA
| | | | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
39
|
Lee HG, Rone JM, Li Z, Akl CF, Shin SW, Lee JH, Flausino LE, Pernin F, Chao CC, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel JP, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 2024; 627:865-872. [PMID: 38509377 PMCID: PMC11016191 DOI: 10.1038/s41586-024-07187-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph M Rone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Won Shin
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas E Flausino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc Charabati
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gavin Piester
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Iain C Clark
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Boston, MA, USA.
| |
Collapse
|
40
|
Cheng M, Li J, Song J, Song H, Chen Y, Tang H, Wei H, Sun R, Tian Z, Wang X, Peng H. RORα is required for expansion and memory maintenance of ILC1s via a lymph node-liver axis. Cell Rep 2024; 43:113786. [PMID: 38363684 DOI: 10.1016/j.celrep.2024.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Type 1 innate lymphoid cells (ILC1s) possess adaptive immune features, which confer antigen-specific memory responses against haptens and viruses. However, the transcriptional regulation of memory ILC1 responses is currently not known. We show that retinoic acid receptor-related orphan receptor alpha (RORα) has high expression in memory ILC1s in murine contact hypersensitivity (CHS) models. RORα deficiency diminishes ILC1-mediated CHS responses significantly but has no effect on memory T cell-mediated CHS responses. During sensitization, RORα promotes sensitized-ILC1 expansion by suppressing expression of cell-cycle repressors in draining lymph nodes. RORα programs gene-expression patterns related to cell survival and is required for the long-term maintenance of memory ILC1s in the liver. Our findings reveal RORα to be a key transcriptional factor for sensitized-ILC1 expansion and long-term maintenance of memory ILC1s.
Collapse
Affiliation(s)
- Ming Cheng
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiarui Li
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiaxi Song
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Song
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Chen
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Tang
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xianwei Wang
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Hui Peng
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
41
|
Fol M, Karpik W, Zablotni A, Kulesza J, Kulesza E, Godkowicz M, Druszczynska M. Innate Lymphoid Cells and Their Role in the Immune Response to Infections. Cells 2024; 13:335. [PMID: 38391948 PMCID: PMC10886880 DOI: 10.3390/cells13040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Over the past decade, a group of lymphocyte-like cells called innate lymphoid cells (ILCs) has gained considerable attention due to their crucial role in regulating immunity and tissue homeostasis. ILCs, lacking antigen-specific receptors, are a group of functionally differentiated effector cells that act as tissue-resident sentinels against infections. Numerous studies have elucidated the characteristics of ILC subgroups, but the mechanisms controlling protective or pathological responses to pathogens still need to be better understood. This review summarizes the functions of ILCs in the immunology of infections caused by different intracellular and extracellular pathogens and discusses their possible therapeutic potential.
Collapse
Affiliation(s)
- Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| | - Wojciech Karpik
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| | - Agnieszka Zablotni
- Department of Bacterial Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Magdalena Godkowicz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| |
Collapse
|
42
|
Wang T, Wang Y, Zhang J, Yao Y. Role of trained innate immunity against mucosal cancer. Curr Opin Virol 2024; 64:101387. [PMID: 38364654 DOI: 10.1016/j.coviro.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Mucosal tissues are frequent targets of both primary and metastatic cancers. This has highlighted the significance of both innate and adaptive anti-cancer immunity at mucosal sites. Trained innate immunity (TII) is an emerging concept defined as enhanced reactivity of innate leukocytes long after a previous stimulation that induces prolonged epigenetic, transcriptional, and metabolic changes. Trained innate leukocytes can respond to heterologous targets due to their lacking of antigen-specificity in most cases. Emerging experimental and clinical data suggest that certain microbes or their products induce TII in mucosal-associated innate leukocytes which endows heterologous anti-tumor innate immunity, in both prophylactic and therapeutic scenarios. In this mini-review, we summarize updated findings on the significance of TII in mucosal cancers. We also attempt to raise a few key questions critical to our further understanding on the roles of TII in mucosal cancers, and to the potential application of TII as anti-cancer strategy.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanling Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jinjing Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yushi Yao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang 310023, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
43
|
Bai X, Fu R, Liu Y, Deng J, Fei Q, Duan Z, Zhu C, Fan D. Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis. J Pharm Anal 2024; 14:259-275. [PMID: 38464791 PMCID: PMC10921328 DOI: 10.1016/j.jpha.2023.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Xue Bai
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
44
|
Lee HG, Rone JM, Li Z, Akl CF, Shin SW, Lee JH, Flausino LE, Pernin F, Chao CC, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel J, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ. Disease-associated astrocyte epigenetic memory promotes CNS pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574196. [PMID: 38260616 PMCID: PMC10802318 DOI: 10.1101/2024.01.04.574196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.
Collapse
|
45
|
Wang J, Gao M, Cheng M, Luo J, Lu M, Xing X, Sun Y, Lu Y, Li X, Shi C, Wang J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Zeng Y, Wang C, Cao X. Single-Cell Transcriptional Analysis of Lamina Propria Lymphocytes in the Jejunum Reveals Innate Lymphoid Cell-like Cells in Pigs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:130-142. [PMID: 37975680 DOI: 10.4049/jimmunol.2300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Pigs are the most suitable model to study various therapeutic strategies and drugs for human beings, although knowledge about cell type-specific transcriptomes and heterogeneity is poorly available. Through single-cell RNA sequencing and flow cytometry analysis of the types in the jejunum of pigs, we found that innate lymphoid cells (ILCs) existed in the lamina propria lymphocytes (LPLs) of the jejunum. Then, through flow sorting of live/dead-lineage (Lin)-CD45+ cells and single-cell RNA sequencing, we found that ILCs in the porcine jejunum were mainly ILC3s, with a small number of NK cells, ILC1s, and ILC2s. ILCs coexpressed IL-7Rα, ID2, and other genes and differentially expressed RORC, GATA3, and other genes but did not express the CD3 gene. ILC3s can be divided into four subgroups, and genes such as CXCL8, CXCL2, IL-22, IL-17, and NCR2 are differentially expressed. To further detect and identify ILC3s, we verified the classification of ILCs in the porcine jejunum subgroup and the expression of related hallmark genes at the protein level by flow cytometry. For systematically characterizing ILCs in the porcine intestines, we combined our pig ILC dataset with publicly available human and mice ILC data and identified that the human and pig ILCs shared more common features than did those mouse ILCs in gene signatures and cell states. Our results showed in detail for the first time (to our knowledge) the gene expression of porcine jejunal ILCs, the subtype classification of ILCs, and the markers of various ILCs, which provide a basis for an in-depth exploration of porcine intestinal mucosal immunity.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiawei Luo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mei Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xinyuan Xing
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
46
|
Srivastava RK, Sapra L, Bhardwaj A, Mishra PK, Verma B, Baig Z. Unravelling the immunobiology of innate lymphoid cells (ILCs): Implications in health and disease. Cytokine Growth Factor Rev 2023; 74:56-75. [PMID: 37743134 DOI: 10.1016/j.cytogfr.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Innate lymphoid cells (ILCs), a growing class of immune cells, imitate the appearance and abilities of T cells. However, unlike T cells, ILCs lack acquired antigen receptors, and they also do not undergo clonal selection or proliferation in response to antigenic stimuli. Despite lacking antigen-specific receptors, ILCs respond quickly to signals from infected or damaged tissues and generate an array of cytokines that regulate the development of adaptive immune response. ILCs can be categorized into four types based on their signature cytokines and transcription factors: ILC1, ILC2, ILC3 (including Lymphoid Tissue inducer- LTi cells), and regulatory ILCs (ILCregs). ILCs play key functions in controlling and resolving inflammation, and variations in their proportion are linked to various pathological diseases including cancer, gastrointestinal, pulmonary, and skin diseases. We highlight current advancements in the biology and classification of ILCs in this review. Additionally, we provide a thorough overview of their contributions to several inflammatory bone-related pathologies, including osteoporosis, rheumatoid arthritis, periodontitis, and ankylosing spondylitis. Understanding the multiple functions of ILCs in both physiological and pathological conditions will further mobilize future research towards targeting ILCs for therapeutic purposes.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences(AIIMS), New Delhi-110029, India
| | - Zainab Baig
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
47
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
48
|
Santosa EK, Sun JC. Cardinal features of immune memory in innate lymphocytes. Nat Immunol 2023; 24:1803-1812. [PMID: 37828377 PMCID: PMC10998651 DOI: 10.1038/s41590-023-01607-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/28/2023] [Indexed: 10/14/2023]
Abstract
The ability of vertebrates to 'remember' previous infections had once been attributed exclusively to adaptive immunity. We now appreciate that innate lymphocytes also possess memory properties akin to those of adaptive immune cells. In this Review, we draw parallels from T cell biology to explore the key features of immune memory in innate lymphocytes, including quantity, quality, and location. We discuss the signals that trigger clonal or clonal-like expansion in innate lymphocytes, and highlight recent studies that shed light on the complex cellular and molecular crosstalk between metabolism, epigenetics, and transcription responsible for differentiating innate lymphocyte responses towards a memory fate. Additionally, we explore emerging evidence that activated innate lymphocytes relocate and establish themselves in specific peripheral tissues during infection, which may facilitate an accelerated response program akin to those of tissue-resident memory T cells.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
49
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
50
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|