1
|
Kotagiri P, Rae WM, Bergamaschi L, Pombal D, Lee JY, Noor NM, Sojwal RS, Rubin SJS, Unger LW, Tolmeijer SH, Manferrari G, Bashford-Rogers RJM, Bingham DB, Stift A, Rogalla S, Gubatan J, Lee JC, Smith KGC, McKinney EF, Boyd SD, Lyons PA. Disease-specific B cell clones are shared between patients with Crohn's disease. Nat Commun 2025; 16:3689. [PMID: 40246842 PMCID: PMC12006383 DOI: 10.1038/s41467-025-58977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
B cells have important functions in gut homeostasis, and dysregulated B cell populations are frequently observed in patients with inflammatory bowel diseases, including both ulcerative colitis (UC) and Crohn's disease (CD). How these B cell perturbations contribute to disease remains largely unknown. Here, we perform deep sequencing of the B cell receptor (BCR) repertoire in four cohorts of patients with CD, together with healthy controls and patients with UC. We identify BCR clones that are shared between patients with CD but not found in healthy individuals nor in patients with UC, indicating CD-associated B cell immune responses. Shared clones are present in the inflamed gut mucosa, draining intestinal lymph nodes and blood, suggesting the presence of common CD-associated antigens that drive B cell responses in CD patients.
Collapse
Affiliation(s)
- Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
| | - William M Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Discovery Sciences, AstraZeneca, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Diana Pombal
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Nurulamin M Noor
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Raoul S Sojwal
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Sofie H Tolmeijer
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Giulia Manferrari
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Rachael J M Bashford-Rogers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - David B Bingham
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Anton Stift
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan Rogalla
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- The Francis Crick Institute and UCL Institute of Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| |
Collapse
|
2
|
Cvijović I, Swift M, Quake SR. Long-term B cell memory emerges at uniform relative rates in the human immune response. Proc Natl Acad Sci U S A 2025; 122:e2406474122. [PMID: 40020190 PMCID: PMC11892634 DOI: 10.1073/pnas.2406474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/13/2025] [Indexed: 03/12/2025] Open
Abstract
B cells generate pathogen-specific antibodies and play an essential role in providing adaptive protection against infection. Antibody genes are modified in evolutionary processes acting on the B cell populations within an individual. These populations proliferate, differentiate, and migrate to long-term niches in the body. However, the dynamics of these processes in the human immune system are primarily inferred from mouse studies. We addressed this gap by sequencing the antibody repertoire and transcriptomes from single B cells in four immune-rich tissues from six individuals. We find that B cells descended from the same pre-B cell ("lineages") often colocalize within the same tissue, with the bone marrow harboring the largest excess of lineages without representation in other tissues. Within lineages, cells with different levels of somatic hypermutation are uniformly distributed among tissues and functional states. This suggests that the relative probabilities of localization and differentiation outcomes change negligibly during affinity maturation, and quantitatively agrees with a simple dynamical model of B cell differentiation. While lineages strongly colocalize, we find individual B cells nevertheless appear to make independent differentiation decisions. Proliferative antibody-secreting cells, however, deviate from these global patterns. These cells are often clonally expanded, their clones appear universally distributed among all sampled organs, and form lineages with an excess of cells of the same type. Collectively, our findings show the limits of peripheral blood monitoring of the immune repertoire, and provide a probabilistic model of the dynamics of antibody memory formation in humans.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Applied Physics, Stanford University, Stanford, CA94305
| | - Michael Swift
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- The Chan Zuckerberg Initiative, Redwood City, CA94063
| |
Collapse
|
3
|
Sira EMJS, Fajardo LE, Banico EC, Odchimar NMO, Orosco FL. Design of a Multiepitope Pan-Proteomic mRNA Vaccine Construct Against African Swine Fever Virus: A Reverse Vaccinology Approach. Vet Med Int 2025; 2025:2638167. [PMID: 39803351 PMCID: PMC11724734 DOI: 10.1155/vmi/2638167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks. The use of mRNA vaccines eliminates these risks offering a safe, cost-effective, and efficient vaccine strategy against ASFV. In this study, a reverse vaccinology approach was used to design a multiepitope pan-proteomic mRNA vaccine against ASFV. Various bioinformatics tools were employed to predict epitopes for cytotoxic T lymphocytes, helper T lymphocytes, and B lymphocytes. A 50S ribosomal L7/L12 protein adjuvant, 5' cap, poly(A) tail, signal peptide, and MHC-I-targeting domain were incorporated into the design using appropriate linkers to increase immunogenicity, stability, and recognition efficiency. The physicochemical properties of the final construct were evaluated, and docking analyses were done with Toll-like receptors (TLRs) 3, 4, and 7 to evaluate binding affinity. A molecular dynamics simulation was then performed to determine binding stability, while immune simulations evaluated host's immune response. Based on 100 ASFV proteomes, six epitopes that induce cytotoxic T-cell responses, five epitopes that induce helper T-cell responses, and four epitopes that induce antibody production were predicted. The designed vaccine construct was found to be nonallergenic, antigenic, and stable when bound to TLR4 while the binding pocket analyses of the vaccine construct to TLR3 and TLR7 indicate high translation efficiency. Immune simulations demonstrated successful induction of immune responses and generation of antigen-specific memory cells. In conclusion, this study introduces an mRNA vaccine construct as a potential disease control strategy against ASF for in vitro confirmation.
Collapse
Affiliation(s)
- Ella Mae Joy S. Sira
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Lauren Emily Fajardo
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Edward C. Banico
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Nyzar Mabeth O. Odchimar
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Fredmoore L. Orosco
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines
- Department of Science and Technology, S&T Fellows Program, Bicutan, Taguig 1634, Philippines
| |
Collapse
|
4
|
Csepregi L, Hoehn K, Neumeier D, Taft JM, Friedensohn S, Weber CR, Kummer A, Sesterhenn F, Correia BE, Reddy ST. The physiological landscape and specificity of antibody repertoires are consolidated by multiple immunizations. eLife 2024; 13:e92718. [PMID: 39693231 DOI: 10.7554/elife.92718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kenneth Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Arkadij Kummer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
5
|
Parikh UM, Heaps AL, Moisi D, Gordon KC, Mellors JW, Choudhary MC, Deo R, Moser C, Klekotka P, Landay AL, Currier JS, Eron JJ, Chew KW, Smith DM, Li JZ, Sieg SF, Team ACTIV-2/A5401 Study. Comparison Study of the Bio-Plex and Meso Scale Multiplexed SARS-CoV-2 Serology Assays Reveals Evidence of Diminished Host Antibody Responses to SARS-CoV-2 after Monoclonal Antibody Treatment. Pathog Immun 2024; 9:58-78. [PMID: 39165724 PMCID: PMC11335343 DOI: 10.20411/pai.v9i2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 08/22/2024] Open
Abstract
Background Assessing the breadth and duration of antigen-specific binding antibodies provides valuable information for evaluating interventions to treat or prevent SARS-CoV-2 infection. Multiplex immunoassays are a convenient method for rapid measurement of antibody responses but can sometimes provide discordant results, and antibody positive percent agreement for COVID-19 diagnosis can vary depending on assay type, disease severity, and population sampled. Therefore, we compared two assays marked for research applications, MSD and Bio-Plex Pro, to evaluate qualitative interpretation of serostatus and quantitative detection of antibodies of varying isotypes (IgG, IgM, and IgA) against receptor binding domain (RBD) and nucleocapsid (N) antigens. Methods Specimens from ACTIV-2/A5401, a placebo-controlled clinical trial of the SARSCoV-2 monoclonal antibody (mAb) bamlanivimab to prevent COVID-19 disease progression, were used to evaluate the concordance of the Bio-Rad Bio-Plex Pro Human SARS-CoV-2 Serology Assay and the Meso Scale Discovery (MSD) V-PLEX COVID-19 Panel 1 serology assay in detecting and quantifying IgG, IgA, and IgM binding anti-SARS-CoV-2 antibody responses against the RBD and N antigens. Data were disaggregated by study arm, bamlanivimab dose, days post-enrollment, and presence of emerging resistance. Results We observed 90.5% (412 of 455 tests) concordance for anti-RBD IgG and 87% (396 of 455) concordance for anti-N IgG in classifying samples as negative or positive based on assay-defined cutoffs. Antibody levels converted to the WHO standard BAU/mL were significantly correlated for all isotypes (IgG, IgM, and IgA) and SARS-CoV-2 antigen targets (RBD and N) tested that were common between the two assays (Spearman r 0.65 to 0.92, P < 0.0001). Both assays uncovered evidence of diminished host-derived IgG immune responses in participants treated with bamlanivimab compared to placebo. Assessment of immune responses in the four individuals treated with the 700 mg of bamlanivimab with emerging mAb resistance demonstrated a stronger anti-N IgG response (MSD) at day 28 (median 2.18 log BAU/mL) compared to participants treated with bamlanivimab who did not develop resistance (median 1.55 log BAU/mL). Conclusions These data demonstrate the utility in using multiplex immunoassays for characterizing the immune responses with and without treatment in a study population and provide evidence that monoclonal antibody treatment in acute COVID-19 may have a modest negative impact on development of host IgG responses.
Collapse
Affiliation(s)
- Urvi M. Parikh
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Amy L. Heaps
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Carlee Moser
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Alan L. Landay
- Department of Internal Medicine, Division of Geriatrics and Palliative Medicine, RUSH Medical College, Chicago, IL
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, CA
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Scott F. Sieg
- Case Western Reserve University and University Hospitals Cleveland, Cleveland, OH
| | - Team ACTIV-2/A5401 Study
- ACTIV-2/A5401 Study Team: David Smith, Kara Chew, Eric Daar, David Wohl, Judith Currier, Joseph Eron, Arzhang Cyrus Javan, Michael Hughes, Carlee Moser, Justin Ritz, Mark Giganti, Lara Hosey, Jhoanna Roa, Nilam Patel, Kelly Colsh, Irene Rwakazina, Justine Beck, Scott Sieg, Jonathan Li, Courtney Fletcher, William Fischer, Teresa Evering, Rachel Bender Ignacio, Sandra Cardoso, Katya Corado, Prasanna Jagannathan, Nikolaus Jilg, Alan Perelson, Sandy Pillay, Cynthia Riviere, Upinder Singh, Babafemi Taiwo, Joan Gottesman, Matthew Newell, Susan Pedersen, Joan Dragavon, Cheryl Jennings, Brian Greenfelder, William Murtaugh, Jan Kosmyna, Morgan Gapara, Akbar Shahkolahi
| |
Collapse
|
6
|
Yan X, Zhao X, Du Y, Wang H, Liu L, Wang Q, Liu J, Wei S. Dynamics of anti-SARS-CoV-2 IgG antibody responses following breakthrough infection and the predicted protective efficacy: A longitudinal community-based population study in China. Int J Infect Dis 2024; 145:107075. [PMID: 38697605 DOI: 10.1016/j.ijid.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES To assess the dynamics of the anti-SARS-CoV-2 IgG antibody levels and their efficacy against COVID-19. METHODS We conducted a longitudinal serological analysis of 852 breakthrough COVID-19 infections among the community-based population in Yichang, China. Anti-SARS-CoV-2 IgG levels were measured by chemiluminescence at approximately 3, 4, and 9 months after infection. A linear mixed model predicted IgG antibody decline over 18 months. The effectiveness of antibodies in preventing symptomatic and severe infections was determined using an existing meta-regression model. RESULTS IgG antibodies slowly declined after breakthrough infections. Initially high at around 3 months (339.44 AU/mL, IQR: 262.78-382.95 AU/mL), levels remained significant at 9 months (297.74 AU/mL, IQR: 213.22-360.62 AU/mL). The elderly (≥60 years) had lower antibody levels compared to the young (<20 years) (P < 0.001). The protective efficacy of antibodies against symptomatic and severe infections was lower in the elderly (≥60 years) (78.34% and 86.33%) compared to the young (<20 years) (96.56% and 98.75%) after 1 year. CONCLUSION The study indicated a slow decline in anti-SARS-CoV-2 IgG antibodies, maintaining considerable efficacy for over 1 year. However, lower levels in the elderly suggest reduced protective effects, underscoring the need for age-specific vaccination strategies.
Collapse
Affiliation(s)
- Xiaolong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhao
- Center for Disease Control and Prevention, Yichang, Hubei, China
| | - Yin Du
- Center for Disease Control and Prevention, Yichang, Hubei, China
| | - Hao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Liu
- Center for Disease Control and Prevention, Yichang, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Qaqish A, Abbas MM, Alkhateeb M, Al-Tamimi M, Mustafa M, Al-Shudifat AE, Tarawneh S, Dawoud R, Mryyian A, Al-Ajaleen M. Anti_spike and anti_nucleocapsid IgG responses to SARS-CoV-2 in children of Jordan. Heliyon 2024; 10:e30631. [PMID: 38765100 PMCID: PMC11101777 DOI: 10.1016/j.heliyon.2024.e30631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Background It is proven that children have significantly milder COVID-19 disease compared to adults. Various immunological characteristics influence this age-related difference in protection against COVID-19. Pediatric COVID-19 in Jordan is extremely under reported. Objectives The primary goal of this work is to identify the anti_S and anti_N antibody responses in a random group of children in Jordan and compare it to that of naturally infected-unvaccinated adults. Methods 151 unvaccinated children, 4 days to 18 years old, were screened for anti_S and anti_N antibodies. History of COVID-19 infection or exposure to infection and symptom severity were reported by parents on a special questionnaire. Results 78.9 % and 65.3 % of participants were seropositive for anti_S IgG and anti_N Abs, respectively. There was a remarkable association between age and anti_S IgG and anti_N IgG antibody titers, as children aged 12 years or older had increased anti_S IgG titers (mean = 19.3 BAU/mL) compared to younger groups (means of 10.15, 9.24, 7.91 BAU/mL for age groups 6-12, 1-6, less than 1 year, respectively). Gender did not show a statistically important role in anti_S and anti_N IgG seropositivity rates or titers. Children displayed significantly elevated anti_S titers (mean = 13.23 BAU/mL) compared to naturally infected adults (mean = 9.72 BAU/mL), in contrast, adults' anti_N titers (mean = 39.64 U/mL) were significantly higher compared to those of children (mean = 10.77 U/mL). Conclusions The current work provides evidence of distinctly robust and persistent humoral immunity displayed by high anti_S and anti_N IgG in children, even >12 months post-infection. Age was the only factor that had a significant statistical impact on anti_S and anti_N Ab levels among the pediatric group in this study. Children exhibited significantly higher anti_S titers than naturally infected adults. In contrast, adults' anti_N titers were significantly higher. Such information can assist direct pediatric SARS-CoV-2 immunization programs, with implications for creating age-targeted strategies for diagnostic and population protection measures.
Collapse
Affiliation(s)
- Arwa Qaqish
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Cellular Therapy and Applied Genomics, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Manal Mohammad Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Alkhateeb
- Department of Internal Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mohammad Al-Tamimi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Minas Mustafa
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Abdel-Ellah Al-Shudifat
- Department of Internal and Family Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Shahd Tarawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Rand Dawoud
- Institute for Family Health, King Hussein Foundation, Amman, Jordan
| | - Amel Mryyian
- Department of Pediatrics, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mu'ath Al-Ajaleen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
8
|
Zaslavsky ME, Craig E, Michuda JK, Sehgal N, Ram-Mohan N, Lee JY, Nguyen KD, Hoh RA, Pham TD, Röltgen K, Lam B, Parsons ES, Macwana SR, DeJager W, Drapeau EM, Roskin KM, Cunningham-Rundles C, Moody MA, Haynes BF, Goldman JD, Heath JR, Nadeau KC, Pinsky BA, Blish CA, Hensley SE, Jensen K, Meyer E, Balboni I, Utz PJ, Merrill JT, Guthridge JM, James JA, Yang S, Tibshirani R, Kundaje A, Boyd SD. Disease diagnostics using machine learning of immune receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.04.26.489314. [PMID: 35547855 PMCID: PMC9094102 DOI: 10.1101/2022.04.26.489314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clinical diagnosis typically incorporates physical examination, patient history, and various laboratory tests and imaging studies, but makes limited use of the human system's own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis (Mal-ID) , an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to SARS-CoV-2, Influenza, and HIV, highlight antigen-specific receptors, and reveal distinct characteristics of Systemic Lupus Erythematosus and Type-1 Diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of human immune responses.
Collapse
|
9
|
Teng S, Hu Y, Wang Y, Tang Y, Wu Q, Zheng X, Lu R, Pan D, Liu F, Xie T, Wu C, Li YP, Liu W, Qu X. SARS-CoV-2 spike-reactive naïve B cells and pre-existing memory B cells contribute to antibody responses in unexposed individuals after vaccination. Front Immunol 2024; 15:1355949. [PMID: 38420128 PMCID: PMC10899457 DOI: 10.3389/fimmu.2024.1355949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Since December 2019, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has presented considerable public health challenges. Multiple vaccines have been used to induce neutralizing antibodies (nAbs) and memory B-cell responses against the viral spike (S) glycoprotein, and many essential epitopes have been defined. Previous reports have identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-reactive naïve B cells and preexisting memory B cells in unexposed individuals. However, the role of these spike-reactive B cells in vaccine-induced immunity remains unknown. Methods To elucidate the characteristics of preexisting SARS-CoV-2 S-reactive B cells as well as their maturation after antigen encounter, we assessed the relationship of spike-reactive B cells before and after vaccination in unexposed human individuals. We further characterized the sequence identity, targeting domain, broad-spectrum binding activity and neutralizing activity of these SARS-CoV-2 S-reactive B cells by isolating monoclonal antibodies (mAbs) from these B cells. Results The frequencies of both spike-reactive naïve B cells and preexisting memory B cells before vaccination correlated with the frequencies of spike-reactive memory B cells after vaccination. Isolated mAbs from spike-reactive naïve B cells before vaccination had fewer somatic hypermutations (SHMs) than mAbs isolated from spike-reactive memory B cells before and after vaccination, but bound SARS-CoV-2 spike in vitro. Intriguingly, these germline-like mAbs possessed broad binding profiles for SARS-CoV-2 and its variants, although with low or no neutralizing capacity. According to tracking of the evolution of IGHV4-4/IGKV3-20 lineage antibodies from a single donor, the lineage underwent SHMs and developed increased binding activity after vaccination. Discussion Our findings suggest that spike-reactive naïve B cells can be expanded and matured by vaccination and cocontribute to vaccine-elicited antibody responses with preexisting memory B cells. Selectively and precisely targeting spike-reactive B cells by rational antigen design may provide a novel strategy for next-generation SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Shishan Teng
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yabin Hu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - You Wang
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yinggen Tang
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Qian Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xingyu Zheng
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rui Lu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Dong Pan
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Fen Liu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Tianyi Xie
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Chanfeng Wu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wenpei Liu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
| | - Xiaowang Qu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
| |
Collapse
|
10
|
Röltgen K, Boyd SD. Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning. ANNUAL REVIEW OF PATHOLOGY 2024; 19:69-97. [PMID: 37738512 DOI: 10.1146/annurev-pathmechdis-031521-042754] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Wall SC, Suryadevara N, Kim C, Shiakolas AR, Holt CM, Irbe EB, Wasdin PT, Suresh YP, Binshtein E, Chen EC, Zost SJ, Canfield E, Crowe JE, Thompson-Arildsen MA, Sheward DJ, Carnahan RH, Georgiev IS. SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Rep Med 2023; 4:101267. [PMID: 37935199 PMCID: PMC10694659 DOI: 10.1016/j.xcrm.2023.101267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.
Collapse
Affiliation(s)
- Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma B Irbe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine C Chen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Canfield
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff LE, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Nguyen TT, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth. Cell 2023; 186:4632-4651.e23. [PMID: 37776858 PMCID: PMC10724861 DOI: 10.1016/j.cell.2023.08.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy" (iFIT), University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Allison R Burrell
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lindsay E Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine C Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Tran T Nguyen
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B Haslam
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mary A Staat
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Kiselev IN, Akberdin IR, Kolpakov FA. Delay-differential SEIR modeling for improved modelling of infection dynamics. Sci Rep 2023; 13:13439. [PMID: 37596296 PMCID: PMC10439236 DOI: 10.1038/s41598-023-40008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
SEIR (Susceptible-Exposed-Infected-Recovered) approach is a classic modeling method that is frequently used to study infectious diseases. However, in the vast majority of such models transitions from one population group to another are described using the mass-action law. That causes inability to reproduce observable dynamics of an infection such as the incubation period or progression of the disease's symptoms. In this paper, we propose a new approach to simulate the epidemic dynamics based on a system of differential equations with time delays and instant transitions to approximate durations of transition processes more correctly and make model parameters more clear. The suggested approach can be applied not only to Covid-19 but also to the study of other infectious diseases. We utilized it in the development of the delay-based model of the COVID-19 pandemic in Germany and France. The model takes into account testing of different population groups, symptoms progression from mild to critical, vaccination, duration of protective immunity and new virus strains. The stringency index was used as a generalized characteristic of the non-pharmaceutical government interventions in corresponding countries to contain the virus spread. The parameter identifiability analysis demonstrated that the presented modeling approach enables to significantly reduce the number of parameters and make them more identifiable. Both models are publicly available.
Collapse
Affiliation(s)
- I N Kiselev
- FRC for Information and Computational Technologies, Novosibirsk, Russia.
- Sirius University of Science and Technology, Sirius, Russia.
- BIOSOFT.RU, Ltd, Novosibirsk, Russia.
| | - I R Akberdin
- Sirius University of Science and Technology, Sirius, Russia
- BIOSOFT.RU, Ltd, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - F A Kolpakov
- FRC for Information and Computational Technologies, Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
- BIOSOFT.RU, Ltd, Novosibirsk, Russia
| |
Collapse
|
14
|
N’Guessan A, Kailasam S, Mostefai F, Poujol R, Grenier JC, Ismailova N, Contini P, De Palma R, Haber C, Stadler V, Bourque G, Hussin JG, Shapiro BJ, Fritz JH, Piccirillo CA. Selection for immune evasion in SARS-CoV-2 revealed by high-resolution epitope mapping and sequence analysis. iScience 2023; 26:107394. [PMID: 37599818 PMCID: PMC10433132 DOI: 10.1016/j.isci.2023.107394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Here, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses. Applying a high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses allowed identification of B cell epitopes and relate them to their evolutionary and structural properties. We identify hotspots of pre-existing immunity and identify cross-reactive epitopes that contribute to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves, and SARS-CoV-2 variants. Lastly, we show that mutations in spike and nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.
Collapse
Affiliation(s)
- Arnaud N’Guessan
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Senthilkumar Kailasam
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Fatima Mostefai
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Raphaël Poujol
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Nailya Ismailova
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Paola Contini
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | - Raffaele De Palma
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | | | | | - Guillaume Bourque
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Julie G. Hussin
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program of the Research Institute of McGill Health Center, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| |
Collapse
|
15
|
Rotulo GA, Palma P. Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatr Res 2023; 94:434-442. [PMID: 36879079 PMCID: PMC9987407 DOI: 10.1038/s41390-023-02549-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Coronavirus disease 2019 in children presents with milder clinical manifestations than in adults. On the other hand, the presence of a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), in the period after infection suggests a particular susceptibility of some children toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Both protective factors that prevent evolution to severe forms and risk factors for post-infectious conditions are likely to be found in age-related differences in the immune system. The prompt innate response with type I IFN production and the generation of neutralizing antibodies play a crucial role in containing the infection. The greater number of naive and regulatory cells in children helps to avoid the cytokine storm while the causes of the intense inflammatory response in MIS-C need to be elucidated. This review aims to analyze the main results of the recent literature assessing immune response to SARS-CoV-2 over the pediatric age group. We summarized such observations by dividing them into innate and acquired immunity, then reporting how altered immune responses can determine post-infectious conditions. IMPACT: The main immune markers of acute SARS-CoV-2 infection in children are summarized in this review. This paper reports a broad overview of age-related differences in the immune response to SARS-CoV-2 and emerging post-infection conditions. A summary of currently available therapies for the pediatric age group is provided.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", 00185, Rome, Italy.
| |
Collapse
|
16
|
Rodriguez OL, Safonova Y, Silver CA, Shields K, Gibson WS, Kos JT, Tieri D, Ke H, Jackson KJL, Boyd SD, Smith ML, Marasco WA, Watson CT. Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire. Nat Commun 2023; 14:4419. [PMID: 37479682 PMCID: PMC10362067 DOI: 10.1038/s41467-023-40070-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Variation in the antibody response has been linked to differential outcomes in disease, and suboptimal vaccine and therapeutic responsiveness, the determinants of which have not been fully elucidated. Countering models that presume antibodies are generated largely by stochastic processes, we demonstrate that polymorphisms within the immunoglobulin heavy chain locus (IGH) impact the naive and antigen-experienced antibody repertoire, indicating that genetics predisposes individuals to mount qualitatively and quantitatively different antibody responses. We pair recently developed long-read genomic sequencing methods with antibody repertoire profiling to comprehensively resolve IGH genetic variation, including novel structural variants, single nucleotide variants, and genes and alleles. We show that IGH germline variants determine the presence and frequency of antibody genes in the expressed repertoire, including those enriched in functional elements linked to V(D)J recombination, and overlapping disease-associated variants. These results illuminate the power of leveraging IGH genetics to better understand the regulation, function, and dynamics of the antibody response in disease.
Collapse
Affiliation(s)
- Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Catherine A Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - William S Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Justin T Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
17
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff L, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Systems biological assessment of the temporal dynamics of immunity to a viral infection in the first weeks and months of life. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285133. [PMID: 36778389 PMCID: PMC9915811 DOI: 10.1101/2023.01.28.23285133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, Tuebingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, Tuebingen, Germany
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsay Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katherine C. Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R. Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C. Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taia T. Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Katoh H, Komura D, Furuya G, Ishikawa S. Immune repertoire profiling for disease pathobiology. Pathol Int 2023; 73:1-11. [PMID: 36342353 PMCID: PMC10099665 DOI: 10.1111/pin.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Lymphocytes consist of highly heterogeneous populations, each expressing a specific cell surface receptor corresponding to a particular antigen. Lymphocytes are both the cause and regulator of various diseases, including autoimmune/allergic diseases, lifestyle diseases, neurodegenerative diseases, and cancers. Recently, immune repertoire sequencing has attracted much attention because it helps obtain global profiles of the immune receptor sequences of infiltrating T and B cells in specimens. Immune repertoire sequencing not only helps deepen our understanding of the molecular mechanisms of immune-related pathology but also assists in discovering novel therapeutic modalities for diseases, thereby shedding colorful light on otherwise tiny monotonous cells when observed under a microscope. In this review article, we introduce and detail the background and methodology of immune repertoire sequencing and summarize recent scientific achievements in association with human diseases. Future perspectives on this genetic technique in the field of histopathological research will also be discussed.
Collapse
Affiliation(s)
- Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genta Furuya
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Taft JM, Weber CR, Gao B, Ehling RA, Han J, Frei L, Metcalfe SW, Overath MD, Yermanos A, Kelton W, Reddy ST. Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain. Cell 2022; 185:4008-4022.e14. [PMID: 36150393 PMCID: PMC9428596 DOI: 10.1016/j.cell.2022.08.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 01/26/2023]
Abstract
The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.
Collapse
Affiliation(s)
- Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Cédric R Weber
- Alloy Therapeutics (Switzerland) AG, Basel 4058, Switzerland
| | - Beichen Gao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland
| | - Sean W Metcalfe
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Max D Overath
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland; Department of Biology, Institute of Microbiology and Immunology, ETH Zurich, Zurich 8093, Switzerland; Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Botnar Research Centre for Child Health, Basel 4058, Switzerland.
| |
Collapse
|
20
|
Gurevich M, Zilkha‐Falb R, Sonis P, Magalashvili D, Dolev M, Mandel M, Menascu S, Achiron A. COVID-19 Alpha Variant (B.1.1.7): Humoral, memory B and T cells in COVID-19 pediatric convalescents. Pediatr Allergy Immunol 2022; 33:e13863. [PMID: 36282137 PMCID: PMC9827896 DOI: 10.1111/pai.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Studies of anti-SARS-CoV-2 humoral and adaptive response in COVID-19 non-vaccinated pediatric convalescents are controversial and further evidence from the pediatric population are needed. OBJECTIVES To elucidate SARS-CoV-2 humoral and memory B- and T-cells responses in pediatric convalescents as compared with the adult. METHODS Blood samples were obtained from 80 non-vaccinated, IgG-positive, COVID-19 convalescents (age 8.0-61.0 years), 4.0 months from onset. Frequency of responders and magnitudes of SARS-COV-2 IgG, memory B-cells (MBC) and IFNg- and IL2-secreting memory T-cells (MTC) in response to immuno-dominant peptide pools in pediatric, young adults and middle-aged adults with onset age 8-18 years (N = 20), 19-39 years (N = 30) and 40-61 years (N = 30), respectively, were analyzed. SARS-CoV-2 IgG were detected by ELISA (Euroimmun, Germany). MBC, IFNg-, IL2- and IFNg+IL2-secreting MTC (IFNg-MTC, IL2-MTC and IFNg+IL2-MTC) were detected using FluoroSpot (Mabtech, Sweden). RESULTS MBC level was lower in pediatric as compared with the middle-aged adults (median 12.75 interquartile range [IQR] 4.27-33.7 and 32.0 IQR 6.0-124.2, respectively, p = .003). MBC level in young adults was lower than in middle-aged adults (median 18.5 IQR 1.7-43.8 and 32.0 IQR 6.0-124.2, respectively, p = .006). The level of IL2-MTC was lower in the pediatric group as compared with middle aged-adults (median 2.1 IQR 0-16.9 and 28.6 IQR 11-49.6, respectively, p < .03) and in young adults lower than in middle-aged adults (median 1.45 IQR 0-18.6 and 28.6 IQR 11-49.6, respectively, p = .02). In addition, the level of IFNg-MTC was lower in pediatric as compared with young adults (median 4.25 IQR 0.0-15.0 and 20.9 IQR 0-75.2, respectively, p = .05). The level of IgG was comparable between pediatric and both young and middle-aged adult groups (4.82 ± 2.95, 3.70 ± 2.65 and 4.9 ± 2.94, respectively, p > .34). CONCLUSION Non-vaccinated COVID-19 pediatric convalescents have lower adaptive immune responses than adults sustaining the recommendation for vaccination of the pediatric population.
Collapse
Affiliation(s)
- Michael Gurevich
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Rina Zilkha‐Falb
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - Polina Sonis
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - David Magalashvili
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - Mark Dolev
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Mathilda Mandel
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Shay Menascu
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Anat Achiron
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
21
|
Fraley ER, Khanal S, Pierce SH, LeMaster CA, McLennan R, Pastinen T, Bradley T. Effects of Prior Infection with SARS-CoV-2 on B Cell Receptor Repertoire Response during Vaccination. Vaccines (Basel) 2022; 10:1477. [PMID: 36146555 PMCID: PMC9506540 DOI: 10.3390/vaccines10091477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding the B cell response to SARS-CoV-2 vaccines is a high priority. High-throughput sequencing of the B cell receptor (BCR) repertoire allows for dynamic characterization of B cell response. Here, we sequenced the BCR repertoire of individuals vaccinated by the Pfizer SARS-CoV-2 mRNA vaccine. We compared BCR repertoires of individuals with previous COVID-19 infection (seropositive) to individuals without previous infection (seronegative). We discovered that vaccine-induced expanded IgG clonotypes had shorter heavy-chain complementarity determining region 3 (HCDR3), and for seropositive individuals, these expanded clonotypes had higher somatic hypermutation (SHM) than seronegative individuals. We uncovered shared clonotypes present in multiple individuals, including 28 clonotypes present across all individuals. These 28 shared clonotypes had higher SHM and shorter HCDR3 lengths compared to the rest of the BCR repertoire. Shared clonotypes were present across both serotypes, indicating convergent evolution due to SARS-CoV-2 vaccination independent of prior viral exposure.
Collapse
Affiliation(s)
- Elizabeth R. Fraley
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Santosh Khanal
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Stephen H. Pierce
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cas A. LeMaster
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
22
|
Patel H, McArdle A, Seaby E, Levin M, Whittaker E. The immunopathogenesis of SARS-CoV-2 infection in children: diagnostics, treatment and prevention. Clin Transl Immunology 2022; 11:e1405. [PMID: 35903804 PMCID: PMC9314314 DOI: 10.1002/cti2.1405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/21/2021] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Symptoms and outcomes for paediatric COVID-19 differ vastly from those for adults, with much lower morbidity and mortality. Immunopathogenesis drives severe outcomes in adults, and it is likely that age-related differences in both the innate and specific immune responses underlie much of the variation. Understanding the protective features of the paediatric immune system may be crucial to better elucidate disease severity in adult COVID-19 and may pave the way for novel therapeutic approaches. However, as well as uncommon cases of severe paediatric acute COVID-19, there have been children who have presented with delayed multisystem inflammation, including cardiac, gastrointestinal, skin, mucosa and central nervous system involvement. The occurrence of coronary artery aneurysms has drawn comparisons with Kawasaki Disease, but similarities with the inflammatory phase of adult acute COVID-19 have also been drawn. In this review, we summarise findings from studies investigating pre-existing immunity, cytokine profiles, innate, B-cell, antibody, T-cell and vaccine responses in children with acute COVID-19 and multisystem inflammation, compared with COVID-19 adults and controls. We further consider the relevance to therapeutics in the context of limited evidence in children and highlight key questions to be answered about the immune response of children to SARS-CoV-2.
Collapse
Affiliation(s)
- Harsita Patel
- Department of Infectious Disease, Section of Paediatric Infectious DiseaseImperial College LondonLondonUK
| | - Andrew McArdle
- Department of Infectious Disease, Section of Paediatric Infectious DiseaseImperial College LondonLondonUK
| | - Eleanor Seaby
- Department of Infectious Disease, Section of Paediatric Infectious DiseaseImperial College LondonLondonUK
- Genomic Informatics GroupUniversity of SouthamptonSouthamptonUK
- Translational Genomics GroupBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Michael Levin
- Department of Infectious Disease, Section of Paediatric Infectious DiseaseImperial College LondonLondonUK
- Department of PaediatricsImperial College Healthcare NHS TrustLondonUK
| | - Elizabeth Whittaker
- Department of Infectious Disease, Section of Paediatric Infectious DiseaseImperial College LondonLondonUK
- Department of PaediatricsImperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
23
|
Di Chiara C, Cantarutti A, Costenaro P, Donà D, Bonfante F, Cosma C, Ferrarese M, Cozzani S, Petrara MR, Carmona F, Liberati C, Palma P, Di Salvo G, De Rossi A, Plebani M, Padoan A, Giaquinto C. Long-term Immune Response to SARS-CoV-2 Infection Among Children and Adults After Mild Infection. JAMA Netw Open 2022; 5:e2221616. [PMID: 35816313 PMCID: PMC9280400 DOI: 10.1001/jamanetworkopen.2022.21616] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Understanding the long-term immune response against SARS-CoV-2 infection in children is crucial to optimize vaccination strategies. Although it is known that SARS-CoV-2 antibodies may persist in adults 12 months after infection, data are limited in the pediatric population. OBJECTIVE To examine long-term anti-SARS-CoV-2 spike receptor-binding domain (S-RBD) IgG kinetics in children after SARS-CoV-2 infection. DESIGN, SETTING, AND PARTICIPANTS In this single-center, prospective cohort study, patients were enrolled consecutively from April 1, 2020, to August 31, 2021, at the COVID-19 Family Cluster Follow-up Clinic, Department of Women's and Children's Health, University Hospital of Padua. A cohort of 252 COVID-19 family clusters underwent serologic follow-up at 1 to 4, 5 to 10, and more than 10 months after infection with quantification of anti-S-RBD IgG by chemiluminescent immunoassay. EXPOSURES SARS-CoV-2 infection. RESULTS Among 902 study participants, 697 had confirmed SARS-CoV-2 infection, including 351 children or older siblings (mean [SD] age, 8.6 [5.1] years) and 346 parents (mean [SD] age, 42.5 [7.1] years). Among 697 cases, 674 (96.7%) were asymptomatic or mild. Children had significantly higher S-RBD IgG titers than older patients across all follow-up time points, with an overall median S-RBD IgG titer in patients younger than 3 years 5-fold higher than adults (304.8 [IQR, 139.0-516.6] kBAU/L vs 55.6 [24.2-136.0] kBAU/L, P < .001). Longitudinal analysis of 56 study participants sampled at least twice during follow-up demonstrated the persistence of antibodies up to 10 months from infection in all age classes, despite a progressive decline over time. CONCLUSIONS AND RELEVANCE In this cohort study of Italian children and adults following SARS-CoV-2 infection different kinetics of SARS-CoV-2 antibodies were found across several age classes of individuals with asymptomatic or mild COVID-19, which could help in optimizing COVID-19 vaccination strategies and prevention policies. This work provides further evidence of sustained immune response in children up to 1 year after primary SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Costanza Di Chiara
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Anna Cantarutti
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, Laboratory of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy
| | - Paola Costenaro
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Daniele Donà
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Francesco Bonfante
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Chiara Cosma
- Department of Laboratory Medicine, University-Hospital of Padua, Padua, Italy
| | - Martina Ferrarese
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Sandra Cozzani
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Maria Raffaella Petrara
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padua, Italy
| | | | - Cecilia Liberati
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Di Salvo
- Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padua, Italy
- Istituto Oncologico Veneto - IRCCS, Padua, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University-Hospital of Padua, Padua, Italy
- Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Padoan
- Department of Medicine, University of Padua, Padua, Italy
| | - Carlo Giaquinto
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Brüssow H. COVID-19 and children: medical impact and collateral damage. Microb Biotechnol 2022; 15:1035-1049. [PMID: 35182108 PMCID: PMC8966019 DOI: 10.1111/1751-7915.14018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Children mostly experience mild SARS-CoV-2 infections, but the extent of paediatric COVID-19 disease differs between geographical regions and the distinct pandemic waves. Not all infections in children are mild, some children even show a strong inflammatory reaction resulting in a multisystem inflammatory syndrome. The assessments of paediatric vaccination depend on the efficacy of protection conferred by vaccination, the risk of adverse reactions and whether children contribute to herd immunity against COVID-19. Children were also the target of consequential public health actions such as school closure which caused substantial harm to children (educational deficits, sociopsychological problems) and working parents. It is, therefore, important to understand the transmission dynamics of SARS-CoV-2 infections by children to assess the efficacy of school closures and paediatric vaccination. The societal restrictions to contain the COVID-19 pandemic had additional negative effects on children's health, such as missed routine vaccinations, nutritional deprivation and lesser mother-child medical care in developing countries causing increased child mortality as a collateral damage. In this complex epidemiological context, it is important to have an evidence-based approach to public health approaches. The present review summaries pertinent published data on the role of children in the pandemic, whether they are drivers or followers of the infection chains and whether they are (after elderlies) major sufferers or mere bystanders of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
25
|
Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185:1208-1222.e21. [PMID: 35305314 DOI: 10.1016/j.cell.2022.02.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.
Collapse
|
26
|
Abstract
Children were initially considered unsusceptible to severe COVID-19. Our knowledge after two years has changed dramatically, but there are still many unknowns. Here, we report the current knowledge about why children generally experience a milder COVID-19 course and highlight research questions about pediatric infection that require answers.
Collapse
|
27
|
Jannuzzi P, Panza GA. The Association between Contact with Children and the Clinical Course of COVID-19. Epidemiol Infect 2022; 150:1-23. [PMID: 35249579 PMCID: PMC8943224 DOI: 10.1017/s0950268822000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
We examined the association between contact with children and the clinical course of COVID-19 among COVID-19-positive adult patients. Participants completed a survey to assess demographics, medical information related to their COVID-19 diagnosis, contact with children at home and at the workplace. Patients were aged 45.68 ± 14.38 years, mostly female (72.1%), 842 were not hospitalized and 167 were hospitalized. At home, there were no differences between groups for the number of child contact hours or total child hours (hours × number of children) per week (P s > 0.05). The number of children at home was greater among patients not hospitalized (P < 0.05), however this was no longer significant after controlling for covariates (P > 0.05). At the workplace, there were no differences between groups (all P s > 0.05). Sub-group analysis found the proportion of patients that were treated in the intensive care unit (ICU) was greater among patients with no child contact (P < 0.05). A secondary analysis found that patients with no child contact had an increased likelihood of thromboembolism (P < 0.05) and a trend towards more overall COVID-19-related complications (P = 0.076). Overall, an association between contact with children and hospitalization was not found when adjusting for covariates. Sub-group analysis indicated a possible protective effect for more severe disease; however, these findings need further study.
Collapse
Affiliation(s)
- Peter Jannuzzi
- Integrated Care Partners, Hartford HealthCare, Hartford, CT, USA
- Unionville Pediatrics, LLC, Unionville, CT, USA
| | | |
Collapse
|
28
|
Toh ZQ, Anderson J, Mazarakis N, Neeland M, Higgins RA, Rautenbacher K, Dohle K, Nguyen J, Overmars I, Donato C, Sarkar S, Clifford V, Daley A, Nicholson S, Mordant FL, Subbarao K, Burgner DP, Curtis N, Bines JE, McNab S, Steer AC, Mulholland K, Tosif S, Crawford NW, Pellicci DG, Do LAH, Licciardi PV. Comparison of Seroconversion in Children and Adults With Mild COVID-19. JAMA Netw Open 2022; 5:e221313. [PMID: 35262717 PMCID: PMC8908077 DOI: 10.1001/jamanetworkopen.2022.1313] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE The immune response in children with SARS-CoV-2 infection is not well understood. OBJECTIVE To compare seroconversion in nonhospitalized children and adults with mild SARS-CoV-2 infection and identify factors that are associated with seroconversion. DESIGN, SETTING, AND PARTICIPANTS This household cohort study of SARS-CoV-2 infection collected weekly nasopharyngeal and throat swabs and blood samples during the acute (median, 7 days for children and 12 days for adults [IQR, 4-13] days) and convalescent (median, 41 [IQR, 31-49] days) periods after polymerase chain reaction (PCR) diagnosis for analysis. Participants were recruited at The Royal Children's Hospital, Melbourne, Australia, from May 10 to October 28, 2020. Participants included patients who had a SARS-CoV-2-positive nasopharyngeal or oropharyngeal swab specimen using PCR analysis. MAIN OUTCOMES AND MEASURES SARS-CoV-2 immunoglobulin G (IgG) and cellular (T cell and B cell) responses in children and adults. Seroconversion was defined by seropositivity in all 3 (an in-house enzyme-linked immunosorbent assay [ELISA] and 2 commercial assays: a SARS-CoV-2 S1/S2 IgG assay and a SARS-CoV-2 antibody ELISA) serological assays. RESULTS Among 108 participants with SARS-CoV-2-positive PCR findings, 57 were children (35 boys [61.4%]; median age, 4 [IQR, 2-10] years) and 51 were adults (28 women [54.9%]; median age, 37 [IQR, 34-45] years). Using the 3 established serological assays, a lower proportion of children had seroconversion to IgG compared with adults (20 of 54 [37.0%] vs 32 of 42 [76.2%]; P < .001). This result was not associated with viral load, which was similar in children and adults (mean [SD] cycle threshold [Ct] value, 28.58 [6.83] vs 24.14 [8.47]; P = .09). In addition, age and sex were not associated with seroconversion within children (median age, 4 [IQR, 2-14] years for both seropositive and seronegative groups; seroconversion by sex, 10 of 21 girls [47.6%] vs 10 of 33 boys [30.3%]) or adults (median ages, 37 years for seropositive and 40 years for seronegative adults [IQR, 34-39 years]; seroconversion by sex, 18 of 24 women [75.0%] vs 14 of 18 men [77.8%]) (P > .05 for all comparisons between seronegative and seropositive groups). Symptomatic adults had 3-fold higher SARS-CoV-2 IgG levels than asymptomatic adults (median, 227.5 [IQR, 133.7-521.6] vs 75.3 [IQR, 36.9-113.6] IU/mL), whereas no differences were observed in children regardless of symptoms. Moreover, differences in cellular immune responses were observed in adults compared with children with seroconversion. CONCLUSIONS AND RELEVANCE The findings of this cohort study suggest that among patients with mild COVID-19, children may be less likely to have seroconversion than adults despite similar viral loads. This finding has implications for future protection after SARS-CoV-2 infection in children and for interpretation of serosurveys that involve children. Further research to understand why seroconversion and development of symptoms are potentially less likely in children after SARS-CoV-2 infection and to compare vaccine responses may be of clinical and scientific importance.
Collapse
Affiliation(s)
- Zheng Quan Toh
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jeremy Anderson
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Nadia Mazarakis
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Melanie Neeland
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Rachel A. Higgins
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Karin Rautenbacher
- Laboratory Services, The Royal Children’s Hospital, Melbourne, Australia
| | - Kate Dohle
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Jill Nguyen
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Isabella Overmars
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Celeste Donato
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sohinee Sarkar
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Vanessa Clifford
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Andrew Daley
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Francesca L. Mordant
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO (World Health Organization) Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Burgner
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Nigel Curtis
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Julie E. Bines
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Gastroenterology, The Royal Children’s Hospital, Melbourne, Australia
| | - Sarah McNab
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Andrew C. Steer
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Kim Mulholland
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shidan Tosif
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Nigel W. Crawford
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Daniel G. Pellicci
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lien Anh Ha Do
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul V. Licciardi
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
29
|
Kotagiri P, Mescia F, Rae WM, Bergamaschi L, Tuong ZK, Turner L, Hunter K, Gerber PP, Hosmillo M, Hess C, Clatworthy MR, Goodfellow IG, Matheson NJ, McKinney EF, Wills MR, Gupta RK, Bradley JR, Bashford-Rogers RJM, Lyons PA, Smith KGC. B cell receptor repertoire kinetics after SARS-CoV-2 infection and vaccination. Cell Rep 2022; 38:110393. [PMID: 35143756 PMCID: PMC8801326 DOI: 10.1016/j.celrep.2022.110393] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/28/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.
Collapse
Affiliation(s)
- Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - William M Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Zewen K Tuong
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1RQ, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Kelvin Hunter
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Pehuén P Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland; Botnar Research Centre for Child Health (BRCCH) University Basel and ETH Zurich, Basel 4059, Switzerland
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1RQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; NHS Blood and Transplant, Cambridge CB2 1PT, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | | | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| |
Collapse
|
30
|
Abstract
Adaptive immune responses play critical roles in viral clearance and protection against re-infection, and SARS-CoV-2 is no exception. What is exceptional is the rapid characterization of the immune response to the virus performed by researchers during the first 20 months of the pandemic. This has given us a more detailed understanding of SARS-CoV-2 compared to many viruses that have been with us for a long time. Furthermore, effective COVID-19 vaccines were developed in record time, and their rollout worldwide is already making a significant difference, although major challenges remain in terms of equal access. The pandemic has engaged scientists and the public alike, and terms such as seroprevalence, neutralizing antibodies, antibody escape and vaccine certificates have become familiar to a broad community. Here, we review key findings concerning B cell and antibody (Ab) responses to SARS-CoV-2, focusing on non-severe cases and anti-spike (S) Ab responses in particular, the latter being central to protective immunity induced by infection or vaccination. The emergence of viral variants that have acquired mutations in S acutely highlights the need for continued characterization of both emerging variants and Ab responses against these during the evolving pathogen-immune system arms race.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
31
|
Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, Flem-Karlsen K, Frank R, Mehta BB, Vu MH, Zengin T, Gutierrez-Marcos J, Lund-Johansen F, Andersen JT, Greiff V. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs 2022; 14:2008790. [PMID: 35293269 PMCID: PMC8928824 DOI: 10.1080/19420862.2021.2008790] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
Collapse
Affiliation(s)
- Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Habib Bashour
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Philippe A. Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eva Smorodina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | | | - Karine Flem-Karlsen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Robert Frank
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Norway
| | - Talip Zengin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Bioinformatics, Mugla Sitki Kocman University, Turkey
| | | | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Swadling L, Diniz MO, Schmidt NM, Amin OE, Chandran A, Shaw E, Pade C, Gibbons JM, Le Bert N, Tan AT, Jeffery-Smith A, Tan CCS, Tham CYL, Kucykowicz S, Aidoo-Micah G, Rosenheim J, Davies J, Johnson M, Jensen MP, Joy G, McCoy LE, Valdes AM, Chain BM, Goldblatt D, Altmann DM, Boyton RJ, Manisty C, Treibel TA, Moon JC, van Dorp L, Balloux F, McKnight Á, Noursadeghi M, Bertoletti A, Maini MK. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 2022; 601:110-117. [PMID: 34758478 PMCID: PMC8732273 DOI: 10.1038/s41586-021-04186-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, University College London, London, UK.
| | - Mariana O Diniz
- Division of Infection and Immunity, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection and Immunity, University College London, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity, University College London, London, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London, UK
| | - Emily Shaw
- Division of Infection and Immunity, University College London, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Anthony T Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Anna Jeffery-Smith
- Division of Infection and Immunity, University College London, London, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cedric C S Tan
- UCL Genetics Institute, University College London, London, UK
| | - Christine Y L Tham
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | | | | | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Jessica Davies
- Division of Infection and Immunity, University College London, London, UK
| | - Marina Johnson
- Great Ormond Street Institute of Child Health NIHR Biomedical Research Centre, University College London, London, UK
| | - Melanie P Jensen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Cellular Pathology, Northwest London Pathology, Imperial College London NHS Trust, London, UK
| | - George Joy
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - Ana M Valdes
- Academic Rheumatology, Clinical Sciences, Nottingham City Hospital, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Benjamin M Chain
- Division of Infection and Immunity, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health NIHR Biomedical Research Centre, University College London, London, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Lung Division, Royal Brompton & Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charlotte Manisty
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Thomas A Treibel
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | | | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network, A*STAR, Singapore, Singapore
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
33
|
Human immune diversity: from evolution to modernity. Nat Immunol 2021; 22:1479-1489. [PMID: 34795445 DOI: 10.1038/s41590-021-01058-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
The extreme diversity of the human immune system, forged and maintained throughout evolutionary history, provides a potent defense against opportunistic pathogens. At the same time, this immune variation is the substrate upon which a plethora of immune-associated diseases develop. Genetic analysis suggests that thousands of individually weak loci together drive up to half of the observed immune variation. Intense selection maintains this genetic diversity, even selecting for the introgressed Neanderthal or Denisovan alleles that have reintroduced variation lost during the out-of-Africa migration. Variations in age, sex, diet, environmental exposure, and microbiome each potentially explain the residual variation, with proof-of-concept studies demonstrating both plausible mechanisms and correlative associations. The confounding interaction of many of these variables currently makes it difficult to assign definitive contributions. Here, we review the current state of play in the field, identify the key unknowns in the causality of immune variation, and identify the multidisciplinary pathways toward an improved understanding.
Collapse
|
34
|
Liu Y, Budylowski P, Dong S, Li Z, Goroshko S, Leung LYT, Grunebaum E, Campisi P, Propst EJ, Wolter NE, Rini JM, Zia A, Ostrowski M, Ehrhardt GRA. SARS-CoV-2-Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. THE JOURNAL OF IMMUNOLOGY 2021; 207:2581-2588. [PMID: 34607939 DOI: 10.4049/jimmunol.2100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a respiratory pathogen that can cause severe disease in at-risk populations but results in asymptomatic infections or a mild course of disease in the majority of cases. We report the identification of SARS-CoV-2-reactive B cells in human tonsillar tissue obtained from children who were negative for coronavirus disease 2019 prior to the pandemic and the generation of mAbs recognizing the SARS-CoV-2 Spike protein from these B cells. These Abs showed reduced binding to Spike proteins of SARS-CoV-2 variants and did not recognize Spike proteins of endemic coronaviruses, but subsets reacted with commensal microbiota and exhibited SARS-CoV-2-neutralizing potential. Our study demonstrates pre-existing SARS-CoV-2-reactive Abs in various B cell populations in the upper respiratory tract lymphoid tissue that may lead to the rapid engagement of the pathogen and contribute to prevent manifestations of symptomatic or severe disease.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sofiya Goroshko
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Y T Leung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Paolo Campisi
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Evan J Propst
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Nikolas E Wolter
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; and
| | - Amin Zia
- dYcode.bio, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
35
|
Camerini D, Randall AZ, Trappl-Kimmons K, Oberai A, Hung C, Edgar J, Shandling A, Huynh V, Teng AA, Hermanson G, Pablo JV, Stumpf MM, Lester SN, Harcourt J, Tamin A, Rasheed M, Thornburg NJ, Satheshkumar PS, Liang X, Kennedy RB, Yee A, Townsend M, Campo JJ. Mapping SARS-CoV-2 Antibody Epitopes in COVID-19 Patients with a Multi-Coronavirus Protein Microarray. Microbiol Spectr 2021; 9:e0141621. [PMID: 34704808 PMCID: PMC8549749 DOI: 10.1128/spectrum.01416-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
The rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the COVID-19 pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of various lengths, and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multicoronavirus arrays to identify specific antibody reactivity. High-level IgG, IgM, and IgA reactivity to structural proteins S, M, and N of SARS-CoV-2, as well as accessory proteins such as ORF3a and ORF7a, were observed that were specific to COVID-19 patients. Antibody reactivity against overlapping 100-, 50-, and 30-amino acid fragments of SARS-CoV-2 proteins was used to identify antigenic regions. Numerous proteins of SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and the endemic human coronaviruses HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM, and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. Whereas unexposed individuals had minimal reactivity against SARS-CoV-2 proteins that poorly correlated with reactivity against HCoV-NL63 and HCoV-OC43 S2 and N proteins, COVID-19 patient sera had higher correlation between SARS-CoV-2 and HCoV responses, suggesting that de novo antibodies against SARS-CoV-2 cross-react with HCoV epitopes. Array responses were compared with validated spike protein-specific IgG enzyme-linked immunosorbent assays (ELISAs), showing agreement between orthologous methods. SARS-CoV-2 microneutralization titers were low in the COVID-19 patient sera but correlated with array responses against S and N proteins. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients. IMPORTANCE With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses. These data and the multi-coronavirus protein microarray tool will help guide further studies of the antibody response to COVID-19 and to vaccination against this worldwide pandemic.
Collapse
Affiliation(s)
- David Camerini
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
- University of California, Irvine, California, USA
| | - Arlo Z. Randall
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Amit Oberai
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Joshua Edgar
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Adam Shandling
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Vu Huynh
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Andy A. Teng
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Gary Hermanson
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Megan M. Stumpf
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandra N. Lester
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Azaibi Tamin
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mohammed Rasheed
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Xiaowu Liang
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Angela Yee
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Michael Townsend
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph J. Campo
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| |
Collapse
|
36
|
Deakin CT, Cornish GH, Ng KW, Faulkner N, Bolland W, Hope J, Rosa A, Harvey R, Hussain S, Earl C, Jebson BR, Wilkinson MGLL, Marshall LR, O'Brien K, Rosser EC, Radziszewska A, Peckham H, Patel H, Heaney J, Rickman H, Paraskevopoulou S, Houlihan CF, Spyer MJ, Gamblin SJ, McCauley J, Nastouli E, Levin M, Cherepanov P, Ciurtin C, Wedderburn LR, Kassiotis G. Favorable antibody responses to human coronaviruses in children and adolescents with autoimmune rheumatic diseases. MED 2021; 2:1093-1109.e6. [PMID: 34414384 PMCID: PMC8363467 DOI: 10.1016/j.medj.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Differences in humoral immunity to coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), between children and adults remain unexplained, and the effect of underlying immune dysfunction or suppression is unknown. Here, we sought to examine the antibody immune competence of children and adolescents with prevalent inflammatory rheumatic diseases, juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), and juvenile systemic lupus erythematosus (JSLE) against the seasonal human coronavirus (HCoV)-OC43 that frequently infects this age group. METHODS Sera were collected from JIA (n = 118), JDM (n = 49), and JSLE (n = 30) patients and from healthy control (n = 54) children and adolescents prior to the coronavirus disease 19 (COVID-19) pandemic. We used sensitive flow-cytometry-based assays to determine titers of antibodies that reacted with the spike and nucleoprotein of HCoV-OC43 and cross-reacted with the spike and nucleoprotein of SARS-CoV-2, and we compared them with respective titers in sera from patients with multisystem inflammatory syndrome in children and adolescents (MIS-C). FINDINGS Despite immune dysfunction and immunosuppressive treatment, JIA, JDM, and JSLE patients maintained comparable or stronger humoral responses than healthier peers, which was dominated by immunoglobulin G (IgG) antibodies to HCoV-OC43 spike, and harbored IgG antibodies that cross-reacted with SARS-CoV-2 spike. In contrast, responses to HCoV-OC43 and SARS-CoV-2 nucleoproteins exhibited delayed age-dependent class-switching and were not elevated in JIA, JDM, and JSLE patients, which argues against increased exposure. CONCLUSIONS Consequently, autoimmune rheumatic diseases and their treatment were associated with a favorable ratio of spike to nucleoprotein antibodies. FUNDING This work was supported by a Centre of Excellence Centre for Adolescent Rheumatology Versus Arthritis grant, 21593, UKRI funding reference MR/R013926/1, the Great Ormond Street Children's Charity, Cure JM Foundation, Myositis UK, Lupus UK, and the NIHR Biomedical Research Centres at GOSH and UCLH. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust.
Collapse
Affiliation(s)
- Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
- OPAL Rheumatology Ltd, Sydney, NSW, Australia
| | - Georgina H Cornish
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - William Bolland
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joshua Hope
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bethany R Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Meredyth G L L Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Lucy R Marshall
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Kathryn O'Brien
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | | | | | | | - Catherine F Houlihan
- UCLH NHS Trust, London NW1 2BU, UK
- Division of Infection and Immunity, UCL, London WC1E 6BT, UK
| | - Moira J Spyer
- UCLH NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street ICH, UCL, London WC1N 1EH, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleni Nastouli
- UCLH NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street ICH, UCL, London WC1N 1EH, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1NY, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1NY, UK
| |
Collapse
|
37
|
Blanchard-Rohner G, Didierlaurent A, Tilmanne A, Smeesters P, Marchant A. Pediatric COVID-19: Immunopathogenesis, Transmission and Prevention. Vaccines (Basel) 2021; 9:1002. [PMID: 34579240 PMCID: PMC8473426 DOI: 10.3390/vaccines9091002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Children are unique in the context of the COVID-19 pandemic. Overall, SARS-CoV-2 has a lower medical impact in children as compared to adults. A higher proportion of children than adults remain asymptomatic following SARS-CoV-2 infection and severe disease and death are also less common. This relative resistance contrasts with the high susceptibility of children to other respiratory tract infections. The mechanisms involved remain incompletely understood but could include the rapid development of a robust innate immune response. On the other hand, children develop a unique and severe complication, named multisystem inflammatory syndrome in children, several weeks after the onset of symptoms. Although children play an important role in the transmission of many pathogens, their contribution to the transmission of SARS-CoV-2 appears lower than that of adults. These unique aspects of COVID-19 in children must be considered in the benefit-risk analysis of vaccination. Several COVID-19 vaccines have been authorized for emergency use in adolescents and clinical studies are ongoing in children. As the vaccination of adolescents is rolled out in several countries, we shall learn about the impact of this strategy on the health of children and on transmission within communities.
Collapse
Affiliation(s)
- Geraldine Blanchard-Rohner
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
- Children’s Hospital of Geneva, 6, Rue Willy-Donzé, 1211 Geneva, Switzerland
| | - Arnaud Didierlaurent
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
| | - Anne Tilmanne
- Children’s Hospital Queen Fabiola, Université libre de Bruxelles, 1020 Brussels, Belgium; (A.T.); (P.S.)
| | - Pierre Smeesters
- Children’s Hospital Queen Fabiola, Université libre de Bruxelles, 1020 Brussels, Belgium; (A.T.); (P.S.)
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, 1050 Charleroi, Belgium;
| |
Collapse
|
38
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Abstract
Antibodies, and the B cell and plasma cell populations responsible for their production, are key components of the human immune system's response to SARS-CoV-2, which has caused the coronavirus disease 2019 (COVID-19) pandemic. Here, we review findings addressing the nature of antibody responses against SARS-CoV-2 and their role in protecting from infection or modulating COVID-19 disease severity. In just over a year, much has been learned, and replicated in independent studies, about human immune responses to this pathogen, contributing to the development of effective vaccines. Nevertheless, important questions remain about the duration and effectiveness of antibody responses, differences between immunity derived from infection compared to vaccination, the cellular basis for serological findings, and the extent to which viral variants will escape from current immunity.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sean N. Parker Center for Allergy & Asthma Research, Stanford, CA, USA.
| |
Collapse
|
40
|
Ng KW, Faulkner N, Wrobel AG, Gamblin SJ, Kassiotis G. Heterologous humoral immunity to human and zoonotic coronaviruses: Aiming for the achilles heel. Semin Immunol 2021; 55:101507. [PMID: 34716096 PMCID: PMC8542444 DOI: 10.1016/j.smim.2021.101507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/04/2023]
Abstract
Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, London, NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
41
|
Raybould MIJ, Rees AR, Deane CM. Current strategies for detecting functional convergence across B-cell receptor repertoires. MAbs 2021; 13:1996732. [PMID: 34781829 PMCID: PMC8604390 DOI: 10.1080/19420862.2021.1996732] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Convergence across B-cell receptor (BCR) and antibody repertoires has become instrumental in prioritizing candidates in recent rapid therapeutic antibody discovery campaigns. It has also increased our understanding of the immune system, providing evidence for the preferential selection of BCRs to particular (immunodominant) epitopes post vaccination/infection. These important implications for both drug discovery and immunology mean that it is essential to consider the optimal way to combine experimental and computational technology when probing BCR repertoires for convergence signatures. Here, we discuss the theoretical basis for observing BCR repertoire functional convergence and explore factors of study design that can impact functional signal. We also review the computational arsenal available to detect antibodies with similar functional properties, highlighting opportunities enabled by recent clustering algorithms that exploit structural similarities between BCRs. Finally, we suggest future areas of development that should increase the power of BCR repertoire functional clustering.
Collapse
Affiliation(s)
- Matthew I. J. Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|