1
|
Otani S, Louise Jespersen M, Brinch C, Duus Møller F, Pilgaard B, Egholm Bruun Jensen E, Leekitcharoenphon P, Aaby Svendsen C, Aarestrup AH, Sonda T, Sylvina TJ, Leach J, Piel A, Stewart F, Sapountzis P, Kazyoba PE, Kumburu H, Aarestrup FM. Genomic and functional co-diversification imprint African Hominidae microbiomes to signal dietary and lifestyle adaptations. Gut Microbes 2025; 17:2484385. [PMID: 40164980 PMCID: PMC11959905 DOI: 10.1080/19490976.2025.2484385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
In the diverse landscape of African hominids, the obligate relationship between the host and its microbiome narrates signals of adaptation and co-evolution. Sequencing 546 African hominid metagenomes, including those from indigenous Hadza and wild chimpanzees, identified similar bacterial richness and diversity surpassing those of westernized populations. While hominids share core bacterial communities, they also harbor distinct, population-specific bacterial taxa tailored to specific diets, ecology and lifestyles, differentiating non-indigenous and indigenous humans and chimpanzees. Even amongst shared bacterial communities, several core bacteria have co-diversified to fulfil unique dietary degradation functions within their host populations. These co-evolutionary trends extend to non-bacterial elements, such as mitochondrial DNA, antimicrobial resistance, and parasites. Our findings indicate that microbiome-host co-adaptations have led to both taxonomic and within taxa functional displacements to meet host physiological demands. The microbiome, in turn, transcends its taxonomic interchangeable role, reflecting the lifestyle, ecology and dietary history of its host.
Collapse
Affiliation(s)
- Saria Otani
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Marie Louise Jespersen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Brinch
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Frederik Duus Møller
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Bo Pilgaard
- Department of Biotechnology and Biomedicine, Section for Protein Chemistry and Enzyme Technology, Technical University of Denmark, Lyngby, Denmark
| | - Emilie Egholm Bruun Jensen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Christina Aaby Svendsen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Amalie H. Aarestrup
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Tolbert Sonda
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute (KCRI), Moshi, Tanzania
- Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
- Department of Microbiology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Teresa J. Sylvina
- National Academies of Sciences, Engineering and Medicine, Washington, DC, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA
| | - Jeff Leach
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Alexander Piel
- Department of Human Origins, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| | - Fiona Stewart
- Department of Human Origins, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Paul E. Kazyoba
- National Institute for Medical Research, Dar-Es-Salaam, Tanzania
| | - Happiness Kumburu
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute (KCRI), Moshi, Tanzania
| | - Frank M. Aarestrup
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Schoultz I, Claesson MJ, Dominguez‐Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025; 297:560-583. [PMID: 40270478 PMCID: PMC12087861 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical SciencesFaculty of Medicine and Health Örebro UniversityOrebroSweden
| | | | - Maria Gloria Dominguez‐Bello
- Department of Biochemistry & Microbiology and of AnthropologyRutgers University–New BrunswickNew BrunswickNew JerseyUSA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic SaalfeldTeaching Hospital of the University JenaJenaGermany
| | - Katri Korpela
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - H. Roager
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
3
|
McDonald TK, Aqeel A, Neubert B, Bauer A, Jiang S, Osborne O, Ives N, Jiang D, Bucardo F, Gutiérrez L, Zambrana L, Jenkins K, Gilner J, Rodriguez J, Lai A, Smith JP, Song R, Ahsan K, Ahmed S, Soomro SI, Umrani F, Barratt M, Gordon JI, Ali A, Iqbal N, Hurst JH, Martin V, Shreffler W, Yuan Q, Brown JM, Surana NK, Vilchez S, Becker-Dreps S, David LA. Dietary plant diversity predicts early life microbiome maturation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.28.25323117. [PMID: 40093214 PMCID: PMC11908320 DOI: 10.1101/2025.02.28.25323117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Despite established links between the infant gut microbiome and health, how complementary feeding shapes colonization remains unclear. Using FoodSeq, a DNA-based dietary assessment technique, we surveyed food intake across 729 children (0-3 y) from North and Central America, Africa, and Asia. We detected 199 unique plant food sequences, with only eight staples shared across all countries. Despite this global variation, early-life diets followed a common trajectory: weaning stage emerged as the dominant dietary signature across populations. Crucially, dietary diversity did not correlate with gut microbial diversity. Instead, dietary diversity and weaning stage specifically predicted the abundance of adult-associated bacteria. Our findings support a two-stage maturation model: an initial milk-dominated phase, followed by a diet-responsive phase that yields adult-like communities. Monitoring and promoting plant dietary diversity may thus support timely microbiome maturation worldwide.
Collapse
|
4
|
Mies US, Zheng H, Platt K, Radek R, Paczia N, Treitli SC, Brune A. Comparative genomics of Elusimicrobiaceae (phylum Elusimicrobiota) and description of the isolates Elusimicrobium simillimum sp. nov., Elusimicrobium posterum sp. nov., and Parelusimicrobium proximum gen. nov. sp. nov. Syst Appl Microbiol 2025; 48:126606. [PMID: 40273542 DOI: 10.1016/j.syapm.2025.126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
The tree of life comprises many deep-branching lineages with no or only very few cultured representatives. One such lineage is the phylum Elusimicrobiota, which contains only two described species and whose biology has been only poorly explored. We isolated three new species from this phylum from the intestinal tracts of cockroaches. Like their closest relative, Elusimicrobium minutum, the only member of the family Elusimicrobiaceae described to date, they are small, pleomorphic gram-negative rods characterized by a distinct cell cycle, and like all ultramicrobacteria, they pass through a 0.22-μm filter membrane. Physiological characterization of all isolates revealed that they are obligately anaerobic fermenters that lack catalase and cytochrome c oxidase activities but can remove oxygen from their environment in a non-respiratory manner. Their substrate range is limited to a few hexoses, such as d-glucose, d-galactose, and N-acetyl-d-glucosamine, which are fermented to lactate, acetate, ethanol, and hydrogen as major products. Comparative genome analysis, which included more than 100 MAGs of uncultured lineages of Elusimicrobiaceae, revealed the underlying metabolic pathways and outlined a new phylogenomic framework of the family. Based on phylogenomic, physiological, and morphological evidence, we describe the new isolates as Parelusimicrobium proximum gen. nov., sp. nov., Elusimicrobium posterum sp. nov., and Elusimicrobium simillimum sp. nov. under the rules of ICNP. Based on high-quality genomes of all uncultured representatives, we propose a comprehensive taxonomy of all lineages in the family under the rules of SeqCode, including the new genera Avelusimicrobium, Proelusimicrobium, and the candidate genus "Pseudelusimicrobium".
Collapse
Affiliation(s)
- Undine S Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Hao Zheng
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany.
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Sebastian C Treitli
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| |
Collapse
|
5
|
Liu T, Kress AM, Debelius J, Zhao N, Smirnova E, Bandyopadhyay S, Bonham K, Comstock SS, Gill S, Gern JE, Koinis-Mitchell D, Klepac-Ceraj V, Lee-Sarwar K, Litonjua AA, McKee K, McCauley K, O’Connor TG, Rosas-Salazar C, Scheible K, Stanford JB, Moore B, Jacobson LP, Mueller NT. Maternal vaginal and fecal microbiota in later pregnancy contribute to child fecal microbiota development in the ECHO cohort. iScience 2025; 28:112211. [PMID: 40241748 PMCID: PMC12003000 DOI: 10.1016/j.isci.2025.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
There is growing interest in the use of microbial-seeding interventions to mitigate the impacts of prenatal antibiotics, C-section, and lack of breastfeeding on mother-child microbe sharing. However, the relative importance of maternal vaginal vs. fecal microbiota in this process is unclear. Analyzing 16S rRNA sequences from five US birth cohorts, we found that maternal vaginal and fecal microbiota became more similar as pregnancy progressed, and both niches influenced the child's fecal microbiota. The relative contribution of maternal vaginal microbiota increased when vaginal sampling occurred later in gestation. As children aged from birth to 5 years, their fecal microbiota increasingly resembled their mother's fecal microbiota as compared to vaginal microbiota. Patterns of sharing appeared to differ by prenatal antibiotic use, birth mode (C-section vs. vaginal), and breastfeeding. Our findings enhance understanding of niche-specific mother-child microbe sharing and may inform microbial-seeding interventions. Metagenomic studies are needed to identify specific shared strains.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amii M. Kress
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Justine Debelius
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sanjukta Bandyopadhyay
- Clinical and Translational Science Institute, University of Rochester, Rochester, NY 14642, USA
| | - Kevin Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Steven Gill
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - James E. Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daphne Koinis-Mitchell
- Department of Pediatrics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kimberly McKee
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kathryn McCauley
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, NY 14642, USA
| | | | - Kristin Scheible
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Joseph B. Stanford
- Department of Family and Preventive Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84132, USA
| | - Brianna Moore
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lisa P. Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - on behalf of program collaborators for Environmental Influences on Child Health Outcomes
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Clinical and Translational Science Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, NY 14642, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
- Department of Family and Preventive Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84132, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Bottacini F, Friess L, Carlson HK, Wong DPGH, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good BH, DeFelice B, Cava F, Scaria J, Sonnenburg JL, Van Sinderen D, Deutschbauer AM, Huang KC. Genome-scale resources in the infant gut symbiont Bifidobacterium breve reveal genetic determinants of colonization and host-microbe interactions. Cell 2025; 188:2003-2021.e19. [PMID: 40068681 DOI: 10.1016/j.cell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Char Wynter
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; College of Mathematics and Science, The University of Tennessee Southern, Pulaski, TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesca Bottacini
- School of Microbiology, University College Cork, Cork, Ireland; Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Juan Sanchez
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Morrison ML, Xue KS, Rosenberg NA. Quantifying compositional variability in microbial communities with FAVA. Proc Natl Acad Sci U S A 2025; 122:e2413211122. [PMID: 40063791 PMCID: PMC11929398 DOI: 10.1073/pnas.2413211122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
Microbial communities vary across space, time, and individual hosts, generating a need for statistical methods capable of quantifying variability across multiple microbiome samples at once. To understand heterogeneity across microbiome samples from different host individuals, sampling times, spatial locations, or experimental replicates, we present FAVA (FST-based Assessment of Variability across vectors of relative Abundances), a framework for characterizing compositional variability across two or more microbiome samples. FAVA quantifies variability across many samples of taxonomic or functional relative abundances in a single index ranging between 0 and 1, equaling 0 when all samples are identical and 1 when each sample is entirely composed of a single taxon (and at least two distinct taxa are present across samples). Its definition relies on the population-genetic statistic FST, with samples playing the role of "populations" and taxa playing the role of "alleles." Its mathematical properties allow users to compare datasets with different numbers of samples and taxonomic categories. We introduce extensions that incorporate phylogenetic similarity among taxa and spatial or temporal distances between samples. We demonstrate FAVA in two examples. First, we use FAVA to measure how the taxonomic and functional variability of gastrointestinal microbiomes across individuals from seven ruminant species changes along the gastrointestinal tract. Second, we use FAVA to quantify the increase in temporal variability of gut microbiomes in healthy humans following an antibiotic course and to measure the duration of the antibiotic's influence on temporal microbiome variability. We have implemented this tool in an R package, FAVA, for use in pipelines for the analysis of microbial relative abundances.
Collapse
|
8
|
Deng L, Taelman S, Olm MR, Toe LC, Balini E, Ouédraogo LO, Bastos-Moreira Y, Argaw A, Tesfamariam K, Sonnenburg ED, Hanley-Cook GT, Ouédraogo M, Ganaba R, Van Criekinge W, Huybregts L, Stock M, Kolsteren P, Sonnenburg JL, Lachat C, Dailey-Chwalibóg T. Maternal balanced energy-protein supplementation reshapes the maternal gut microbiome and enhances carbohydrate metabolism in infants: a randomized controlled trial. Nat Commun 2025; 16:2683. [PMID: 40102379 PMCID: PMC11920048 DOI: 10.1038/s41467-025-57838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Balanced energy-protein (BEP) supplementation during pregnancy and lactation can improve birth outcomes and infant growth, with the gut microbiome as a potential mediator. The MISAME-III randomized controlled trial (ClinicalTrial.gov: NCT03533712) assessed the effect of BEP supplementation, provided during pregnancy and the first six months of lactation, on small-for-gestational age prevalence and length-for-age Z-scores at six months in rural Burkina Faso. Nested within MISAME-III, this sub-study examines the impact of BEP supplementation on maternal and infant gut microbiomes and their mediating role in birth outcomes and infant growth. A total of 152 mother-infant dyads (n = 71 intervention, n = 81 control) were included for metagenomic sequencing, with stool samples collected at the second and third trimesters, and at 1-2 and 5-6 months postpartum. BEP supplementation significantly altered maternal gut microbiome diversity, composition, and function, particularly those with immune-modulatory properties. Pathways linked to lipopolysaccharide biosynthesis were depleted and the species Bacteroides fragilis was enriched in BEP-supplemented mothers. Maternal BEP supplementation also accelerated infant microbiome changes and enhanced carbohydrate metabolism. Causal mediation analyses identified specific taxa mediating the effect of BEP on birth outcomes and infant growth. These findings suggest that maternal supplementation modulates gut microbiome composition and influences early-life development in resource-limited settings.
Collapse
Affiliation(s)
- Lishi Deng
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Steff Taelman
- BIOBIX, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
- BioLizard nv, 9000, Ghent, Belgium
| | - Matthew R Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Institut de Recherche en Sciences de la Santé (IRSS), Unité Nutrition et Maladies Métaboliques, Bobo-Dioulasso, Burkina Faso
| | | | - Lionel Olivier Ouédraogo
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Yuri Bastos-Moreira
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Alemayehu Argaw
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Kokeb Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Giles T Hanley-Cook
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Moctar Ouédraogo
- Agence de Formation de Recherche et d'Expertise en Santé pour l'Afrique (AFRICSanté), Bobo-Dioulasso, Burkina Faso
| | - Rasmané Ganaba
- Agence de Formation de Recherche et d'Expertise en Santé pour l'Afrique (AFRICSanté), Bobo-Dioulasso, Burkina Faso
| | - Wim Van Criekinge
- BIOBIX, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Lieven Huybregts
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Nutrition, Diets, and Health Unit, International Food Policy Research Institute (IFPRI), Washington, DC, USA
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Patrick Kolsteren
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Trenton Dailey-Chwalibóg
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
- Agence de Formation de Recherche et d'Expertise en Santé pour l'Afrique (AFRICSanté), Bobo-Dioulasso, Burkina Faso.
| |
Collapse
|
9
|
Zeng S, Wang H, Mu D, Wang S. The African gut microbiome: A window into the hidden human microbial diversity. Cell Host Microbe 2025; 33:320-322. [PMID: 40081329 DOI: 10.1016/j.chom.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025]
Abstract
Studies on industrialized populations have uncovered gut microbiome diversity and its disease associations. However, non-industrialized populations remain underrepresented. In a recent paper, Maghini et al. present findings from the AWI-Gen 2 Microbiome Project, substantially expanding our knowledge of the African gut bacterial and viral diversity and its linkage with HIV infection.
Collapse
Affiliation(s)
- Shuqin Zeng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Shaopu Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Zhu LT, Zhao L, Zhu Y, Xu XL, Lin JJ, Duan YF, Long L, Wu YY, Xu WJ, Chen JY, Yin YH, Obeten AU, Huang Q. Disruption and adaptation: infant gut microbiota's dynamic response to SARS-CoV-2 infection. MICROBIOME 2025; 13:72. [PMID: 40069800 PMCID: PMC11895207 DOI: 10.1186/s40168-025-02029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/04/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND The responses of the infant gut microbiota to infection significantly disrupt the natural intrahost evolutionary processes of the microbiome. Here, we collected a 16-month longitudinal cohort of infant gut microbiomes affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Then, we developed a multicriteria approach to identify core interaction network driving community dynamics under environmental disturbances, which we termed the Conserved Variated Interaction Group (CVIgroup). RESULTS The CVIgroup showed significant advantages on pinpointing a sparse set associated with the disturbances, as validated both our own and publicly available datasets. Leveraging the Oxford Nanopore Technology, we found this group facilitates the ecosystem's adaptation to environmental disruptions by enhancing the mobility of mobile genetic elements, including the reinforcement of the twin-arginine translocation pathway in response to increased virulence factors. Furthermore, the CVIgroup serves as an effective indicator of ecosystem health. The timescale for the gut microbiota's adaptation extends beyond 10 months. Members of the CVIgroup, such as Bacteroides thetaiotaomicron and Faecalibacterium, exhibit varying degrees of genomic structural variants, which contribute to guiding the community toward a new stable state rather than returning to its original configuration. CONCLUSIONS Collectively, the CVIgroup offers a snapshot of the gut microbiota's adaptive response to environmental disturbances. The disruption and subsequent adaptation of the gut microbiota in infants after COVID-19 infection underscores the necessity of re-evaluating reference standards in the context of the post-pandemic era. Video Abstract.
Collapse
Affiliation(s)
- Li-Ting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Zhu
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xue-Li Xu
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Jing Lin
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yi-Fang Duan
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lu Long
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Yu Wu
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Wen-Juan Xu
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Yu Chen
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yu-Han Yin
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Alex Ujong Obeten
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|
11
|
Tisza MJ, Lloyd RE, Hoffman K, Smith DP, Rewers M, Javornik Cregeen SJ, Petrosino JF. Longitudinal phage-bacteria dynamics in the early life gut microbiome. Nat Microbiol 2025; 10:420-430. [PMID: 39856391 PMCID: PMC11790489 DOI: 10.1038/s41564-024-01906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Microbial colonization of the human gut occurs soon after birth, proceeds through well-studied phases and is affected by lifestyle and other factors. Less is known about phage community dynamics during infant gut colonization due to small study sizes, an inability to leverage large databases and a lack of appropriate bioinformatics tools. Here we reanalysed whole microbial community shotgun sequencing data of 12,262 longitudinal samples from 887 children from four countries across four years of life as part of the The Environmental Determinants of Diabetes in the Young (TEDDY) study. We developed an extensive metagenome-assembled genome catalogue using the Marker-MAGu pipeline, which comprised 49,111 phage taxa from existing human microbiome datasets. This was used to identify phage marker genes and their integration into the MetaPhlAn 4 bacterial marker gene database enabled simultaneous assessment of phage and bacterial dynamics. We found that individual children are colonized by hundreds of different phages, which are more transitory than bacteria, accumulating a more diverse phage community over time. Type 1 diabetes correlated with a decreased rate of change in bacterial and viral communities in children aged one and two. The addition of phage data improved the ability of machine learning models to discriminate samples by country. Finally, although phage populations were specific to individuals, we observed trends of phage ecological succession that correlated well with putative host bacteria. This resource improves our understanding of phage-bacteria interactions in the developing early life microbiome.
Collapse
Affiliation(s)
- Michael J Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Lloyd
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristi Hoffman
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Daniel P Smith
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Sara J Javornik Cregeen
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Zhao J, Guo Y, Jiang Q, Lan H, Hung WL, Lynch B. Bifidobacterium longum subsp. infantis YLGB-1496-Toxicological evaluation. J Appl Toxicol 2025; 45:230-244. [PMID: 39252460 DOI: 10.1002/jat.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/11/2024]
Abstract
Bifidobacterium infantis YLGB-1496, originally isolated from breast milk from a Taiwanese mother, is under study for use as a probiotic. As part of safety assessment, an Ames, in vivo mouse micronucleus, and in vivo mouse spermatocyte chromosome aberration assay were conducted along with a 13-week oral rat toxicity study. B. infantis YLGB-1496 had no activity in any of the genotoxicity assays. Administration of the bacteria to Sprague-Dawley rats at doses ranging from 0 to 1.5 g/kg bw/day had no treatment-related effects on any of the endpoints measured. There appear to be no concerns for translocation or pathogenicity of B. infantis YLGB-1496 based on extensive experience with the species in general. The results of the current investigations support potential use of B. infantis YLGB-1496 as a probiotic in infant formula.
Collapse
Affiliation(s)
- Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Yueyi Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Qiuyue Jiang
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Wei-Lian Hung
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Barry Lynch
- Intertek Health Sciences Inc., Mississauga, ON, Canada
| |
Collapse
|
13
|
Panwar D, Briggs J, Fraser ASC, Stewart WA, Brumer H. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol 2025; 91:e0175924. [PMID: 39636128 PMCID: PMC11784079 DOI: 10.1128/aem.01759-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
There is growing interest in members of the genus Segatella (family Prevotellaceae) as members of a well-balanced human gut microbiota (HGM). Segatella are particularly associated with the consumption of a diet rich in plant polysaccharides comprising dietary fiber. However, understanding of the molecular basis of complex carbohydrate utilization in Segatella species is currently incomplete. Here, we used RNA sequencing (RNA-seq) of the type strain Segatella copri DSM 18205 (previously Prevotella copri CB7) to define precisely individual polysaccharide utilization loci (PULs) and associated carbohydrate-active enzymes (CAZymes) that are implicated in the catabolism of common fruit, vegetable, and grain polysaccharides (viz. mixed-linkage β-glucans, xyloglucans, xylans, pectins, and inulin). Although many commonalities were observed, several of these systems exhibited significant compositional and organizational differences vis-à-vis homologs in the better-studied Bacteroides (sister family Bacteroidaceae), which predominate in post-industrial HGM. Growth on β-mannans, β(1, 3)-galactans, and microbial β(1, 3)-glucans was not observed, due to an apparent lack of cognate PULs. Most notably, S. copri is unable to grow on starch, due to an incomplete starch utilization system (Sus). Subsequent transcriptional profiling of bellwether Ton-B-dependent transporter-encoding genes revealed that PUL upregulation is rapid and general upon transfer from glucose to plant polysaccharides, reflective of de-repression enabling substrate sensing. Distinct from previous observations of Bacteroides species, we were unable to observe clearly delineated substrate prioritization on a polysaccharide mixture designed to mimic in vitro diverse plant cell wall digesta. Finally, co-culture experiments generally indicated stable co-existence and lack of exclusive competition between S. copri and representative HGM Bacteroides species (Bacteroides thetaiotaomicron and Bacteroides ovatus) on individual polysaccharides, except in cases where corresponding PULs were obviously lacking. IMPORTANCE There is currently a great level of interest in improving the composition and function of the human gut microbiota (HGM) to improve health. The bacterium Segatella copri is prevalent in people who eat plant-rich diets and is therefore associated with a healthy lifestyle. On one hand, our study reveals the specific molecular systems that enable S. copri to proliferate on individual plant polysaccharides. On the other, a growing body of data suggests that the inability of S. copri to grow on starch and animal glycans, which dominate in post-industrial diets, as well as host mucin, contributes strongly to its displacement from the HGM by Bacteroides species, in the absence of direct antagonism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S. C. Fraser
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William A. Stewart
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Fahur Bottino G, Bonham KS, Patel F, McCann S, Zieff M, Naspolini N, Ho D, Portlock T, Joos R, Midani FS, Schüroff P, Das A, Shennon I, Wilson BC, O'Sullivan JM, Britton RA, Murray DM, Kiely ME, Taddei CR, Beltrão-Braga PCB, Campos AC, Polanczyk GV, Huttenhower C, Donald KA, Klepac-Ceraj V. Early life microbial succession in the gut follows common patterns in humans across the globe. Nat Commun 2025; 16:660. [PMID: 39809768 PMCID: PMC11733223 DOI: 10.1038/s41467-025-56072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life. Using 3154 samples from 1827 infants across 12 countries, we trained a random forest model, achieving a root mean square error of 2.56 months. We identified key taxonomic predictors of age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse human populations, suggesting universal developmental trajectories. Functional analysis confirmed trends in key microbial genes involved in feeding transitions and dietary exposures. This model provides a normative benchmark of "microbiome age" for assessing early gut maturation that may be used alongside other measures of child development.
Collapse
Affiliation(s)
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Fadheela Patel
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Shelley McCann
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Michal Zieff
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Nathalia Naspolini
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Daniel Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Theo Portlock
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Raphaela Joos
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Firas S Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Paulo Schüroff
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Anubhav Das
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Inoli Shennon
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Brooke C Wilson
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mairead E Kiely
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Carla R Taddei
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia C B Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Alline C Campos
- Pharmacology of Neuroplasticity Lab- Department of Pharmacology, Ribeirão Preto Medical School- University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| |
Collapse
|
16
|
Song C. Assembly Graph as the Rosetta Stone of Ecological Assembly. Environ Microbiol 2025; 27:e70030. [PMID: 39806523 DOI: 10.1111/1462-2920.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Ecological assembly-the process of ecological community formation through species introductions-has recently seen exciting theoretical advancements across dynamical, informational, and probabilistic approaches. However, these theories often remain inaccessible to non-theoreticians, and they lack a unifying lens. Here, I introduce the assembly graph as an integrative tool to connect these emerging theories. The assembly graph visually represents assembly dynamics, where nodes symbolise species combinations and edges represent transitions driven by species introductions. Through the lens of assembly graphs, I review how ecological processes reduce uncertainty in random species arrivals (informational approach), identify graphical properties that guarantee species coexistence and examine how the class of dynamical models constrain the topology of assembly graphs (dynamical approach), and quantify transition probabilities with incomplete information (probabilistic approach). To facilitate empirical testing, I also review methods to decompose complex assembly graphs into smaller, measurable components, as well as computational tools for deriving empirical assembly graphs. In sum, this math-light review of theoretical progress aims to catalyse empirical research towards a predictive understanding of ecological assembly.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
17
|
Peng Y, Zhu J, Wang S, Liu Y, Liu X, DeLeon O, Zhu W, Xu Z, Zhang X, Zhao S, Liang S, Li H, Ho B, Ching JYL, Cheung CP, Leung TF, Tam WH, Leung TY, Chang EB, Chan FKL, Zhang L, Ng SC, Tun HM. A metagenome-assembled genome inventory for children reveals early-life gut bacteriome and virome dynamics. Cell Host Microbe 2024; 32:2212-2230.e8. [PMID: 39591974 DOI: 10.1016/j.chom.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Existing microbiota databases are biased toward adult samples, hampering accurate profiling of the infant gut microbiome. Here, we generated a metagenome-assembled genome inventory for children (MAGIC) from a large collection of bulk and viral-like particle-enriched metagenomes from 0 to 7 years of age, encompassing 3,299 prokaryotic and 139,624 viral species-level genomes, 8.5% and 63.9% of which are unique to MAGIC. MAGIC improves early-life microbiome profiling, with the greatest improvement in read mapping observed in Africans. We then identified 54 candidate keystone species, including several Bifidobacterium spp. and four phages, forming guilds that fluctuated in abundance with time. Their abundances were reduced in preterm infants and were associated with childhood allergies. By analyzing the B. longum pangenome, we found evidence of phage-mediated evolution and quorum sensing-related ecological adaptation. Together, the MAGIC database recovers genomes that enable characterization of the dynamics of early-life microbiomes, identification of candidate keystone species, and strain-level study of target species.
Collapse
Affiliation(s)
- Ye Peng
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xin Liu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Orlando DeLeon
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, The University of Chicago, Chicago, IL 60637, USA
| | - Wenyi Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xi Zhang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Suisha Liang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Hang Li
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Brian Ho
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Jessica Yuet-Ling Ching
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ting Fan Leung
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, The University of Chicago, Chicago, IL 60637, USA
| | - Francis Ka Leung Chan
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| | - Hein Min Tun
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
18
|
Ouédraogo LO, Deng L, Ouattara CA, Compaoré A, Ouédraogo M, Argaw A, Lachat C, Houpt ER, Saidi Q, Haerynck F, Sonnenburg J, Azad MB, Tavernier SJ, Bastos-Moreira Y, Toe LC, Dailey-Chwalibóg T. Describing Biological Vulnerability in Small, Vulnerable Newborns in Urban Burkina Faso (DenBalo): Gut Microbiota, Immune System, and Breastmilk Assembly. Nutrients 2024; 16:4242. [PMID: 39683635 PMCID: PMC11644820 DOI: 10.3390/nu16234242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Small vulnerable newborns (SVNs), including those born preterm, small for gestational age, or with low birth weight, are at higher risk of neonatal mortality and long-term health complications. Early exposure to maternal vaginal microbiota and breastfeeding plays a critical role in the development of the neonatal microbiota and immune system, especially in low-resource settings like Burkina Faso, where neonatal mortality rates remain high. Objectives: The DenBalo study aims to investigate the role of maternal and neonatal factors, such as vaginal and gut microbiota, immune development, and early nutrition, in shaping health outcomes in SVNs and healthy infants. Methods: This prospective cohort observational study will recruit 141 mother-infant pairs (70 SVNs and 71 healthy controls) from four health centers in Bobo-Dioulasso, Burkina Faso. The mother-infant pairs will be followed for six months with anthropometric measurements and biospecimen collections, including blood, breast milk, saliva, stool, vaginal swabs, and placental biopsies. Multi-omics approaches, encompassing metagenomics, metabolomics, proteomics, and immune profiling, will be used to assess vaginal and gut microbiota composition and functionality, immune cell maturation, and cytokine levels at critical developmental stages. Conclusions: This study will generate comprehensive data on how microbiota, metabolomic, and proteomic profiles, along with immune system development, differ between SVNs and healthy infants. These findings will guide targeted interventions to improve neonatal health outcomes and reduce mortality, particularly in vulnerable populations.
Collapse
Affiliation(s)
- Lionel Olivier Ouédraogo
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Centre Muraz, Bobo-Dioulasso 01 BP 390, Burkina Faso
| | - Lishi Deng
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
| | - Cheick Ahmed Ouattara
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| | - Anderson Compaoré
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| | - Moctar Ouédraogo
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| | - Alemayehu Argaw
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (E.R.H.); (Q.S.)
| | - Queen Saidi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (E.R.H.); (Q.S.)
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL) at Ghent University Hospital (UZGent), 9000 Ghent, Belgium; (F.H.); (S.J.T.)
| | - Justin Sonnenburg
- Department of Microbiology and Immunology and Center for Human Microbiome Studies, Stanford University, Stanford, CA 94305, USA;
| | - Meghan B. Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Manitoba Interdisciplinary Lactation Center (MILC), Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Simon J. Tavernier
- Primary Immunodeficiency Research Lab (PIRL) at Ghent University Hospital (UZGent), 9000 Ghent, Belgium; (F.H.); (S.J.T.)
- Center for Primary Immunodeficiency, Ghent University Hospital, 9000 Ghent, Belgium
- Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Yuri Bastos-Moreira
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Center of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
| | - Trenton Dailey-Chwalibóg
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| |
Collapse
|
19
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
20
|
Yang R, Shi Z, Li Y, Huang X, Li Y, Li X, Chen Q, Hu Y, Li X. Research focus and emerging trends of the gut microbiome and infant: a bibliometric analysis from 2004 to 2024. Front Microbiol 2024; 15:1459867. [PMID: 39633813 PMCID: PMC11615055 DOI: 10.3389/fmicb.2024.1459867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Over the past two decades, gut microbiota has demonstrated unprecedented potential in human diseases and health. The gut microbiota in early life is crucial for later health outcomes. This study aims to reveal the knowledge collaboration network, research hotspots, and explore the emerging trends in the fields of infant and gut microbiome using bibliometric analysis. Method We searched the literature on infant and gut microbiome in the Web of Science Core Collection (WOSCC) database from 2004 to 2024. CiteSpace V (version: 6.3.R1) and VOSview (version: 1.6.20) were used to display the top authors, journals, institutions, countries, authors, keywords, co-cited articles, and potential trends. Results A total of 9,899 documents were retrieved from the Web of Science Core Collection. The United States, China, and Italy were the three most productive countries with 3,163, 1,510, and 660 publications. The University of California System was the most prolific institution (524 publications). Van Sinderen, Douwe from University College Cork of Ireland was the most impactful author. Many studies have focused on atopic dermatitis (AD), necrotizing enterocolitis (NEC), as well as the immune mechanisms and microbial treatments for these diseases, such as probiotic strains mixtures and human milk oligosaccharides (HMOs). The mother-to-infant microbiome transmission, chain fatty acids, and butyrate maybe the emerging trends. Conclusion This study provided an overview of the knowledge structure of infant and gut microbiome, as well as a reference for future research.
Collapse
Affiliation(s)
- Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zeyao Shi
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xi Huang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingxin Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiong Chen
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanling Hu
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaowen Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
21
|
Ma X, Mo J, Shi L, Cheng Y, Feng J, Qin J, Su W, Lv J, Li S, Li Q, Tan H, Han B. Isolation and characterization of Bifidobacterium spp. from breast milk with different human milk oligosaccharides utilization and anti-inflammatory capacity. Food Res Int 2024; 196:115092. [PMID: 39614508 DOI: 10.1016/j.foodres.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Breast milk is the best source of nutrition for infants. Human milk oligosaccharides (HMOs) and the corresponding HMOs-consuming Bifidobacterium positively influence infant health. This study aims to isolate and characterize Bifidobacterium from breast milk of healthy Chinese mothers, identifying the most efficacious strains for inclusion in simulated maternal milk formulas. Nine Bifidobacterium strains (two of B. breve and seven of B. infantis) were isolated, exhibiting a broad spectrum of probiotic potential. This included tolerance to simulated infant gastrointestinal conditions, notable adhesion, antibacterial, antioxidant activities, and HMOs utilization ability. Lacto-N-Tetraose (LNT) is preferred in early growth among Bifidobacterium isolates. B. breve showed a preference for LNT, whereas B. infantis showed a preference for fucosylated HMOs, and displayed reduced utilization of sialylated HMOs. They also exhibited robust safety profiles, including no hemolytic activity, an appropriate D/L lactate-producing ratio, and non-toxicity in an acute oral toxicity assay on mice. It is noteworthy that B. breve N-90, O-147, B. infantis O-161 and R-1 exhibited anti-inflammatory effects in LPS-induced RAW 264.7 cells. Specifically, a notable reduction in TNF-α levels was observed in pre-treatment, while a decrease in IL-1β and IL-6 levels in co-treatment. B. breve N-90 and B. infantis R-1 were identified finally as promising probiotic candidates. Their whole-genome sequencing analysis confirmed presence of functional genes associated with gastrointestinal colonization, antioxidation, and glycoside hydrolase activity on HMOs. The annotation for antibiotic resistance and virulence genes concurred with phenotypes, further validating the safety. Breast milk is a good source for Bifidobacteria isolation, while Bifidobacteria utilize HMOs in a strain-dependent manner. The two selected strains, B. breve N-90 and B. infantis R-1, are potential candidates for inclusion in simulated maternal milk formulas and deserved further in vivo investigation for their health-promoting effects.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianhui Mo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Feng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiale Qin
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanghong Su
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Qiang Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Hui Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
22
|
Hill JH, Round JL. Intestinal fungal-host interactions in promoting and maintaining health. Cell Host Microbe 2024; 32:1668-1680. [PMID: 39389031 DOI: 10.1016/j.chom.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The resident microbiota are a key component of a healthy organism. The vast majority of microbiome studies have focused on bacterial members, which constitute a significant portion of resident microbial biomass. Recent studies have demonstrated how the fungal component of the microbiota, or the mycobiome, influences mammalian biology despite its low abundance compared to other microbes. Fungi are known for their pathogenic potential, yet fungi are also prominent colonizers in healthy states, highlighting their duality. We summarize the characteristics that define the gut mycobiome across life, the factors that can impact its composition, and studies that identify mechanisms of how fungi confer health benefits. The goal of this review is to synthesize our knowledge regarding the composition and function of a healthy mycobiome with a view to inspiring future therapeutic advances.
Collapse
Affiliation(s)
- Jennifer H Hill
- University of Colorado Boulder, BioFrontiers Institute, Department of Molecular, Cellular & Developmental Biology, Boulder, CO 80303, USA.
| | - June L Round
- University of Utah, School of Medicine, Department of Pathology, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Thänert R, Schwartz DJ, Keen EC, Hall-Moore C, Wang B, Shaikh N, Ning J, Rouggly-Nickless LC, Thänert A, Ferreiro A, Fishbein SRS, Sullivan JE, Radmacher P, Escobedo M, Warner BB, Tarr PI, Dantas G. Clinical sequelae of gut microbiome development and disruption in hospitalized preterm infants. Cell Host Microbe 2024; 32:1822-1837.e5. [PMID: 39197454 PMCID: PMC11466706 DOI: 10.1016/j.chom.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Aberrant preterm infant gut microbiota assembly predisposes to early-life disorders and persistent health problems. Here, we characterize gut microbiome dynamics over the first 3 months of life in 236 preterm infants hospitalized in three neonatal intensive care units using shotgun metagenomics of 2,512 stools and metatranscriptomics of 1,381 stools. Strain tracking, taxonomic and functional profiling, and comprehensive clinical metadata identify Enterobacteriaceae, enterococci, and staphylococci as primarily exploiting available niches to populate the gut microbiome. Clostridioides difficile lineages persist between individuals in single centers, and Staphylococcus epidermidis lineages persist within and, unexpectedly, between centers. Collectively, antibiotic and non-antibiotic medications influence gut microbiome composition to greater extents than maternal or baseline variables. Finally, we identify a persistent low-diversity gut microbiome in neonates who develop necrotizing enterocolitis after day of life 40. Overall, we comprehensively describe gut microbiome dynamics in response to medical interventions in preterm, hospitalized neonates.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew J Schwartz
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Anna Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janice E Sullivan
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY 40202, USA
| | - Paula Radmacher
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY 40202, USA
| | - Marilyn Escobedo
- Department of Pediatrics, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
24
|
Chac D, Slater DM, Guillaume Y, Dunmire CN, Ternier R, Vissières K, Juin S, Lucien MAB, Boncy J, Sanchez VM, Dumayas MG, Augustin GC, Bhuiyan TR, Qadri F, Chowdhury F, Khan AI, Weil AA, Ivers LC, Harris JB. Association between chlorine-treated drinking water, the gut microbiome, and enteric pathogen burden in young children in Haiti: An observational study. Int J Infect Dis 2024; 147:107165. [PMID: 38977240 PMCID: PMC11500667 DOI: 10.1016/j.ijid.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE The effects of sanitation and hygiene interventions on the gut microbiome and enteric pathogen burden are not well understood. We measured the association between free chlorine residue (FCR) levels in drinking water, microbiome composition, and stool enteric pathogens in infants and young children in Haiti. METHODS FCR levels were measured in household drinking water and enteric pathogen burden was evaluated using multiplex RT-PCR of stool among 131 children from one month to five years of age living in Mirebalais, Haiti. Microbiome profiling was performed using metagenomic sequencing. RESULTS Most individuals lived in households with undetectable FCR measured in the drinking water (112/131, 86%). Detection of enteric pathogen DNA in stool was common and did not correlate with household water FCR. The infant microbiome in households with detectable FCR demonstrated reduced richness (fewer total number of species, P = 0.04 Kruskall-Wallis test) and less diversity by Inverse Simpson measures (P = 0.05) than households with undetectable FCR. Infants in households with a detectable FCR were more likely to have abundant Bifidobacterium. Using in vitro susceptibility testing, we found that some Bifidobacterium species were resistant to chlorine. CONCLUSIONS FCR in household drinking water did not correlate with enteric pathogen burden in our study.
Collapse
Affiliation(s)
- Denise Chac
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Damien M Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Yodeline Guillaume
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ralph Ternier
- Partners In Health/Zanmi Lasante, Croix des Bouquets, Haiti
| | | | - Stanley Juin
- United States Centers for Disease Control and Prevention, Port-au-Prince, Haiti
| | | | - Jacques Boncy
- National Laboratory of Public Health, Port-au-Prince, Haiti
| | - Vanessa M Sanchez
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Mia G Dumayas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Taufiqur R Bhuiyan
- International Center for Diarrheal Disease Research, Bangladesh, Vaccine Sciences, Dhaka, Bangladesh
| | - Firdausi Qadri
- International Center for Diarrheal Disease Research, Bangladesh, Vaccine Sciences, Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Center for Diarrheal Disease Research, Bangladesh, Vaccine Sciences, Dhaka, Bangladesh
| | - Ashraful I Khan
- International Center for Diarrheal Disease Research, Bangladesh, Vaccine Sciences, Dhaka, Bangladesh
| | - Ana A Weil
- Department of Medicine, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Louise C Ivers
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Center for Global Health, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Shao Y, Garcia-Mauriño C, Clare S, Dawson NJR, Mu A, Adoum A, Harcourt K, Liu J, Browne HP, Stares MD, Rodger A, Brocklehurst P, Field N, Lawley TD. Primary succession of Bifidobacteria drives pathogen resistance in neonatal microbiota assembly. Nat Microbiol 2024; 9:2570-2582. [PMID: 39242817 PMCID: PMC11445081 DOI: 10.1038/s41564-024-01804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Human microbiota assembly commences at birth, seeded by both maternal and environmental microorganisms. Ecological theory postulates that primary colonizers dictate microbial community assembly outcomes, yet such microbial priority effects in the human gut remain underexplored. Here using longitudinal faecal metagenomics, we characterized neonatal microbiota assembly for a cohort of 1,288 neonates from the UK. We show that the pioneering neonatal gut microbiota can be stratified into one of three distinct community states, each dominated by a single microbial species and influenced by clinical and host factors, such as maternal age, ethnicity and parity. A community state dominated by Enterococcus faecalis displayed stochastic microbiota assembly with persistent high pathogen loads into infancy. In contrast, community states dominated by Bifidobacterium, specifically B. longum and particularly B. breve, exhibited a stable assembly trajectory and long-term pathogen colonization resistance, probably due to strain-specific functional adaptions to a breast milk-rich neonatal diet. Consistent with our human cohort observation, B. breve demonstrated priority effects and conferred pathogen colonization resistance in a germ-free mouse model. Our findings solidify the crucial role of Bifidobacteria as primary colonizers in shaping the microbiota assembly and functions in early life.
Collapse
Affiliation(s)
- Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| | | | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas J R Dawson
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Andre Mu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Anne Adoum
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Katherine Harcourt
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Junyan Liu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Mark D Stares
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK
| | - Peter Brocklehurst
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Nigel Field
- Institute for Global Health, University College London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
26
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
27
|
Dalby MJ, Kiu R, Serghiou IR, Miyazaki A, Acford-Palmer H, Tung R, Caim S, Phillips S, Kujawska M, Matsui M, Iwamoto A, Taking B, Cox SE, Hall LJ. Faecal microbiota and cytokine profiles of rural Cambodian infants linked to diet and diarrhoeal episodes. NPJ Biofilms Microbiomes 2024; 10:85. [PMID: 39277573 PMCID: PMC11401897 DOI: 10.1038/s41522-024-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
The gut microbiota of infants in low- to middle-income countries is underrepresented in microbiome research. This study explored the faecal microbiota composition and faecal cytokine profiles in a cohort of infants in a rural province of Cambodia and investigated the impact of sample storage conditions and infant environment on microbiota composition. Faecal samples collected at three time points from 32 infants were analysed for microbiota composition using 16S rRNA amplicon sequencing and concentrations of faecal cytokines. Faecal bacterial isolates were subjected to whole genome sequencing and genomic analysis. We compared the effects of two sample collection methods due to the challenges of faecal sample collection in a rural location. Storage of faecal samples in a DNA preservation solution preserved Bacteroides abundance. Microbiota analysis of preserved samples showed that Bifidobacterium was the most abundant genus with Bifidobacterium longum the most abundant species, with higher abundance in breast-fed infants. Most infants had detectable pathogenic taxa, with Shigella and Klebsiella more abundant in infants with recent diarrhoeal illness. Neither antibiotics nor infant growth were associated with gut microbiota composition. Genomic analysis of isolates showed gene clusters encoding the ability to digest human milk oligosaccharides in B. longum and B. breve isolates. Antibiotic-resistant genes were present in both potentially pathogenic species and in Bifidobacterium. Faecal concentrations of Interlukin-1alpha and vascular endothelial growth factor were higher in breast-fed infants. This study provides insights into an underrepresented population of rural Cambodian infants, showing pathogen exposure and breastfeeding impact gut microbiota composition and faecal immune profiles.
Collapse
Affiliation(s)
- Matthew J Dalby
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Raymond Kiu
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Iliana R Serghiou
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Asuka Miyazaki
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
| | - Holly Acford-Palmer
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Rathavy Tung
- National Maternal and Child Health Centre, Ministry of Health, Phnom Penh, Cambodia
| | - Shabhonam Caim
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Sarah Phillips
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Magdalena Kujawska
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, 80333, Germany
| | - Mitsuaki Matsui
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
| | - Azusa Iwamoto
- Bureau of International Health Cooperation, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Bunsreng Taking
- Kampong Cham Provincial Health Department, Ministry of Health, Kampong Cham, Cambodia
| | - Sharon E Cox
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Lindsay J Hall
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, 80333, Germany.
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
28
|
Chen N, Hao L, Zhang Z, Qin C, Jie Z, Pan H, Duan J, Huang X, Zhang Y, Gao H, Lu R, Sun T, Yang H, Shi J, Liang M, Guo J, Gao Q, Zhao X, Dou Z, Xiao L, Zhang S, Jin X, Xu X, Yang H, Wang J, Jia H, Zhang T, Kristiansen K, Chen C, Zhu L. Insights into the assembly of the neovaginal microbiota in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome patients. Nat Commun 2024; 15:7808. [PMID: 39242555 PMCID: PMC11379825 DOI: 10.1038/s41467-024-52102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Neovaginas are surgically constructed to correct uterovaginal agenesis in women with Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome or as part of gender-affirming surgery for transfeminine individuals. Understanding the assembly of the neovaginal microbiota is crucial for guiding its management. To address this, we conducted a longitudinal study on MRKH patients following laparoscopic peritoneal vaginoplasty. Our findings reveal that the early microbial assemblage exhibited stochastic characteristics, accompanied with a notable bloom of Enterococcus faecalis and genital Mycoplasmas. While both the pre-surgery dimple microbiota and the fecal microbiota constituted the primary species pool, the neovaginal microbiota developed into a microbiota that resembled that of a normal vagina at 6-12 months post-surgery, albeit with a bacterial vaginosis (BV)-like structure. By 2-4 years post-surgery, the neovaginal microbiota had further evolved into a structure closely resembling with the homeostatic pre-surgery dimple microbiota. This concords with the development of the squamous epithelium in the neovagina and highlights the pivotal roles of progressive selective forces imposed by the evolving neovaginal environment and the colonization tropism of vaginal species. Notably, we observed that strains of Lactobacillus crispatus colonizing the neovagina primarily originated from the dimple. Since L. crispatus is generally associated with vaginal health, this finding suggests potential avenues for future research to promote its colonization.
Collapse
Affiliation(s)
- Na Chen
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Lilan Hao
- BGI-Research, Shenzhen, 518083, China
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China
| | - Zhe Zhang
- BGI-Research, Shenzhen, 518083, China
| | - Chenglu Qin
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Zhuye Jie
- BGI-Research, Shenzhen, 518083, China
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hongxin Pan
- Department of Gynecology, Southern University of Science and Technology Hospital, 6019 liuxian street, Shenzhen, 518000, China
| | - Jiali Duan
- Chinese Academy of Medical Sciences & Peking Union Medical College, 4+4 Medical Doctor Program, No.9 Dongdansantiao, 100730, Beijing, China
| | - Xincheng Huang
- BGI-Research, Shenzhen, 518083, China
- China National GeneBank, BGI-Research, Shenzhen, 518210, China
| | - Yunhong Zhang
- Social Affairs Bureau of Suzhou National New and Hi-tech Industrial Development Zone, Suzhou, 215163, China
| | - Hongqin Gao
- Suzhou National New and Hi-tech Industrial Development Zone Center for Maternal and Child Health and Family Planning Service, Suzhou, 215163, China
| | - Ruike Lu
- Suzhou National New and Hi-tech Industrial Development Zone Center for Maternal and Child Health and Family Planning Service, Suzhou, 215163, China
| | - Tianshu Sun
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Hua Yang
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Jinqiu Shi
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Maolian Liang
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Jianbin Guo
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Qianqian Gao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Xiaoyue Zhao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Zhiyuan Dou
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Liang Xiao
- BGI-Research, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Research, Shenzhen, 518083, China
| | | | - Xin Jin
- BGI-Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Research, Shenzhen, 518083, China
| | - Huanming Yang
- BGI-Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Jian Wang
- BGI-Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Huijue Jia
- BGI-Research, Shenzhen, 518083, China
- School of Life Sciences, Fudan University, Shanghai, 200433, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Tao Zhang
- BGI Research, Wuhan, 430074, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, Shenzhen, Guangdong, 518083, China.
| | - Karsten Kristiansen
- BGI-Research, Shenzhen, 518083, China.
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China.
| | - Chen Chen
- BGI-Research, Shenzhen, 518083, China.
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Lan Zhu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China.
| |
Collapse
|
29
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
30
|
Tripp P, Davis EC, Gurung M, Rosa F, Bode L, Fox R, LeRoith T, Simecka C, Seppo AE, Järvinen KM, Yeruva L. Infant Microbiota Communities and Human Milk Oligosaccharide Supplementation Independently and Synergistically Shape Metabolite Production and Immune Responses in Healthy Mice. J Nutr 2024; 154:2871-2886. [PMID: 39069270 PMCID: PMC11393170 DOI: 10.1016/j.tjnut.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Multiple studies have demonstrated associations between the early-life gut microbiome and incidence of inflammatory and autoimmune disease in childhood. Although microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific communities of bacteria promote immune maturation or drive immune dysfunction in infancy. OBJECTIVES In this study, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice. METHODS Germ-free mice were inoculated with fecal slurries from Bifidobacterium longum subspecies infantis positive (BIP) or B. longum subspecies infantis negative (BIN) breastfed infants; half of the mice in each group were also supplemented with a pool of human milk oligosaccharides (HMOs) for 14 d. Cecal microbiome composition and metabolite production, systemic and mucosal immune outcomes, and intestinal morphology were assessed at the end of the study. RESULTS The results showed that inoculation with a BIP microbiome results in a remarkably distinct microbial community characterized by higher relative abundances of cecal Clostridium senu stricto, Ruminococcus gnavus, Cellulosilyticum sp., and Erysipelatoclostridium sp. The BIP microbiome produced 2-fold higher concentrations of cecal butyrate, promoted branched short-chain fatty acid (SCFA) production, and further modulated serotonin, kynurenine, and indole metabolism relative to BIN mice. Further, the BIP microbiome increased the proportions of innate and adaptive immune cells in spleen, while HMO supplementation increased proliferation of mesenteric lymph node cells to phorbol myristate acetate and lipopolysaccharide and increased serum IgA and IgG concentrations. CONCLUSIONS Different microbiome compositions and HMO supplementation can modulate SCFA and tryptophan metabolism and innate and adaptive immunity in young, healthy mice, with potentially important implications for early childhood health.
Collapse
Affiliation(s)
- Patricia Tripp
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States
| | - Manoj Gurung
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Fernanda Rosa
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, United States; Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Renee Fox
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Christy Simecka
- Division of Laboratory Animal Medicine University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| | - Laxmi Yeruva
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States.
| |
Collapse
|
31
|
Wang Z, Li S, Zhang S, Zhang T, Wu Y, Liu A, Wang K, Ji X, Cao H, Zhang Y, Tan EK, Wang Y, Wang Y, Liu W. Hosts manipulate lifestyle switch and pathogenicity heterogeneity of opportunistic pathogens in the single-cell resolution. eLife 2024; 13:RP96789. [PMID: 39190452 PMCID: PMC11349298 DOI: 10.7554/elife.96789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Host-microbe interactions are virtually bidirectional, but how the host affects their microbiome is poorly understood. Here, we report that the host is a critical modulator to regulate the lifestyle switch and pathogenicity heterogeneity of the opportunistic pathogens Serratia marcescens utilizing the Drosophila and bacterium model system. First, we find that Drosophila larvae efficiently outcompete S. marcescens and typically drive a bacterial switch from pathogenicity to commensalism toward the fly. Furthermore, Drosophila larvae reshape the transcriptomic and metabolic profiles of S. marcescens characterized by a lifestyle switch. More importantly, the host alters pathogenicity and heterogeneity of S. marcescens in the single-cell resolution. Finally, we find that larvae-derived AMPs are required to recapitulate the response of S. marcescens to larvae. Altogether, our findings provide an insight into the pivotal roles of the host in harnessing the life history and heterogeneity of symbiotic bacterial cells, advancing knowledge of the reciprocal relationships between the host and pathogen.
Collapse
Affiliation(s)
- Ziguang Wang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
- College of Life Sciences, Nankai UniversityTianjinChina
- First Clinical Medical College, Mudanjiang Medical CollegeMudanjiangChina
| | - Shuai Li
- Bioinformatics Center, College of Biology, Hunan UniversityChangshaChina
| | - Sheng Zhang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Tianyu Zhang
- Liangzhu Laboratory, Zhejiang UniversityHangzhouChina
| | - Yujie Wu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Anqi Liu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Kui Wang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Xiaowen Ji
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Haiqun Cao
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yinglao Zhang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital CampusSingaporeSingapore
| | | | - Yirong Wang
- Bioinformatics Center, College of Biology, Hunan UniversityChangshaChina
| | - Wei Liu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
32
|
De Bruyn F, James K, Cottenet G, Dominick M, Katja J. Combining Bifidobacterium longum subsp. infantis and human milk oligosaccharides synergistically increases short chain fatty acid production ex vivo. Commun Biol 2024; 7:943. [PMID: 39098939 PMCID: PMC11298527 DOI: 10.1038/s42003-024-06628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
To enhance health benefits, a probiotic can be co-administered with a metabolizable prebiotic forming a synergistic synbiotic. We assessed the synergies resulting from combining Bifidobacterium longum subsp. infantis LMG 11588 and an age-adapted blend of six human milk oligosaccharides (HMOs) in ex vivo colonic incubation bioreactors seeded with fecal background microbiota from infant and toddler donors. When HMOs were combined with B. infantis LMG 11588, they were rapidly and completely consumed. This resulted in increased short chain fatty acid (SCFA) production compared to the summed SCFA production from individual ingredients (synergy). Remarkably, HMOs were partially consumed for specific infant donors in the absence of B. infantis LMG 11588, yet all donors showed increased SCFA production upon B. infantis LMG 11588 supplementation. We found specific bacterial taxa associated with the differential response pattern to HMOs. Our study shows the importance of carefully selecting pre- and probiotic into a synergistic synbiotic that could benefit infants.
Collapse
Affiliation(s)
- Florac De Bruyn
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland.
| | - Kieran James
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| | - Geoffrey Cottenet
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Route du Jorat 57, CH-1000, Lausanne, Switzerland
| | - Maes Dominick
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| | - Johnson Katja
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| |
Collapse
|
33
|
Ramsteijn AS, Louis P. Dietary fibre optimisation in support of global health. Microb Biotechnol 2024; 17:e14542. [PMID: 39096198 PMCID: PMC11297433 DOI: 10.1111/1751-7915.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
The human gut microbiota influences its host via multiple molecular pathways, including immune system interactions, the provision of nutrients and regulation of host physiology. Dietary fibre plays a crucial role in maintaining a healthy microbiota as its primary nutrient and energy source. Industrialisation has led to a massive decrease of habitual fibre intake in recent times, and fibre intakes across the world are below the national recommendations. This goes hand in hand with other factors in industrialised societies that may negatively affect the gut microbiota, such as medication and increased hygiene. Non-communicable diseases are on the rise in urbanised societies and the optimisation of dietary fibre intake can help to improve global health and prevent disease. Early life interventions shape the developing microbiota to counteract malnutrition, both in the context of industrialised nations with an overabundance of cheap, highly processed foods, as well as in Low- and Middle-Income Countries (LMICs). Adequate fibre intake should, however, be maintained across the life course to promote health. Here we will discuss the current state of dietary fibre research in the global context and consider different intervention approaches.
Collapse
Affiliation(s)
| | - Petra Louis
- Rowett Institute, University of AberdeenAberdeenUK
| |
Collapse
|
34
|
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med 2024; 30:2133-2147. [PMID: 39085420 DOI: 10.1038/s41591-024-03165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
35
|
Wang J, Li Y, Mu Y, Huang K, Li D, Lan C, Cui Y, Wang J. Missing microbes in infants and children in the COVID-19 pandemic: a study of 1,126 participants in Beijing, China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1739-1750. [PMID: 38748355 DOI: 10.1007/s11427-023-2488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/16/2023] [Indexed: 08/09/2024]
Abstract
The COVID-19 pandemic has caused many fatalities worldwide and continues to affect the health of the recovered patients in the form of long-COVID. In this study, we compared the gut microbiome of uninfected infants and children before the pandemic began (BEFORE cohort, n=906) to that of after the pandemic (AFTER cohort, n=220) to examine the potential impact of social distancing and life habit changes on infant/children gut microbiome. Based on 16S rRNA sequencing, we found a significant change in microbiome composition after the pandemic, with Bacteroides enterotype increasing to 35.45% from 30.46% before the pandemic. qPCR quantification indicated that the bacterial loads of seven keystone taxa decreased by 91.69%-19.58%. Quantitative microbiome profiling, used to enhance the resolution in detecting microbiome differences, revealed a greater explained variance of pandemic on microbiome compared to gender, as well as a significant decrease in bacterial loads in 15 of the 20 major genera. The random forest age-predictor indicated the gut microbiomes were less mature in the after-pandemic cohort than in the before-pandemic cohort in the children group (3-12 years old) and had features of a significantly younger age (average of 1.86 years). Lastly, body weight and height were significantly lower in the after-pandemic cohort than in the before-pandemic cohort in infants (<1 year of age), which was associated with a decrease in bacterial loads in the fecal microbiome.
Collapse
Affiliation(s)
- Jiejing Wang
- CAS Key Lab for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuejuan Li
- CAS Key Lab for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Mu
- Beijing Dr. CUIYUTAO Clinic, Beijing, 100028, China
| | - Kefei Huang
- Beijing Dr. CUIYUTAO Clinic, Beijing, 100028, China
| | - Danyi Li
- R-Institute Co. Ltd., Beijing, 100011, China
| | - Canhui Lan
- R-Institute Co. Ltd., Beijing, 100011, China
| | - Yutao Cui
- Beijing Dr. CUIYUTAO Clinic, Beijing, 100028, China.
| | - Jun Wang
- CAS Key Lab for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Arzamasov AA, Rodionov DA, Hibberd MC, Guruge JL, Kazanov MD, Leyn SA, Kent JE, Sejane K, Bode L, Barratt MJ, Gordon JI, Osterman AL. Integrative genomic reconstruction of carbohydrate utilization networks in bifidobacteria: global trends, local variability, and dietary adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602360. [PMID: 39005317 PMCID: PMC11245093 DOI: 10.1101/2024.07.06.602360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bifidobacteria are among the earliest colonizers of the human gut, conferring numerous health benefits. While multiple Bifidobacterium strains are used as probiotics, accumulating evidence suggests that the individual responses to probiotic supplementation may vary, likely due to a variety of factors, including strain type(s), gut community composition, dietary habits of the consumer, and other health/lifestyle conditions. Given the saccharolytic nature of bifidobacteria, the carbohydrate composition of the diet is one of the primary factors dictating the colonization efficiency of Bifidobacterium strains. Therefore, a comprehensive understanding of bifidobacterial glycan metabolism at the strain level is necessary to rationally design probiotic or synbiotic formulations that combine bacterial strains with glycans that match their nutrient preferences. In this study, we systematically reconstructed 66 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the representation of 565 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 2973 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs). Our analysis uncovered substantial heterogeneity in the predicted glycan utilization capabilities at the species and strain level and revealed the presence of a yet undescribed phenotypically distinct subspecies-level clade within the Bifidobacterium longum species. We also identified Bangladeshi isolates harboring unique gene clusters tentatively implicated in the breakdown of xyloglucan and human milk oligosaccharides. Predicted carbohydrate utilization phenotypes were experimentally characterized and validated. Our large-scale genomic analysis considerably expands the knowledge of carbohydrate metabolism in bifidobacteria and provides a foundation for rationally designing single- or multi-strain probiotic formulations of a given bifidobacterial species as well as synbiotic combinations of bifidobacterial strains matched with their preferred carbohydrate substrates.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janaki L Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey, 34956
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - James E Kent
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kristija Sejane
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
37
|
Morrison ML, Xue KS, Rosenberg NA. Quantifying compositional variability in microbial communities with FAVA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601929. [PMID: 39005283 PMCID: PMC11244974 DOI: 10.1101/2024.07.03.601929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Microbial communities vary across space, time, and individual hosts, presenting new challenges for the development of statistics measuring the variability of community composition. To understand differences across microbiome samples from different host individuals, sampling times, spatial locations, or experimental replicates, we present FAVA, a new normalized measure for characterizing compositional variability across multiple microbiome samples. FAVA quantifies variability across many samples of taxonomic or functional relative abundances in a single index ranging between 0 and 1, equaling 0 when all samples are identical and equaling 1 when each sample is entirely comprised of a single taxon. Its definition relies on the population-genetic statisticF S T , with samples playing the role of "populations" and taxa playing the role of "alleles." Its convenient mathematical properties allow users to compare disparate data sets. For example, FAVA values are commensurable across different numbers of taxonomic categories and different numbers of samples considered. We introduce extensions that incorporate phylogenetic similarity among taxa and spatial or temporal distances between samples. We illustrate how FAVA can be used to describe across-individual taxonomic variability in ruminant microbiomes at different regions along the gastrointestinal tract. In a second example, a longitudinal analysis of gut microbiomes of healthy human adults taking an antibiotic, we use FAVA to quantify the increase in temporal variability of microbiomes following the antibiotic course and to measure the duration of the antibiotic's influence on microbial variability. We have implemented this tool in an R package, FAVA, which can fit easily into existing pipelines for the analysis of microbial relative abundances.
Collapse
Affiliation(s)
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305 USA
| | | |
Collapse
|
38
|
Xu J, Duar RM, Quah B, Gong M, Tin F, Chan P, Sim CK, Tan KH, Chong YS, Gluckman PD, Frese SA, Kyle D, Karnani N. Delayed colonization of Bifidobacterium spp. and low prevalence of B. infantis among infants of Asian ancestry born in Singapore: insights from the GUSTO cohort study. Front Pediatr 2024; 12:1421051. [PMID: 38915873 PMCID: PMC11194334 DOI: 10.3389/fped.2024.1421051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background The loss of ancestral microbes, or the "disappearing microbiota hypothesis" has been proposed to play a critical role in the rise of inflammatory and immune diseases in developed nations. The effect of this loss is most consequential during early-life, as initial colonizers of the newborn gut contribute significantly to the development of the immune system. Methods In this longitudinal study (day 3, week 3, and month 3 post-birth) of infants of Asian ancestry born in Singapore, we studied how generational immigration status and common perinatal factors affect bifidobacteria and Bifidobacterium longum subsp. infantis (B. infantis) colonization. Cohort registry identifier: NCT01174875. Results Our findings show that first-generation migratory status, perinatal antibiotics usage, and cesarean section birth, significantly influenced the abundance and acquisition of bifidobacteria in the infant gut. Most importantly, 95.6% of the infants surveyed in this study had undetectable B. infantis, an early and beneficial colonizer of infant gut due to its ability to metabolize the wide variety of human milk oligosaccharides present in breastmilk and its ability to shape the development of a healthy immune system. A comparative analysis of B. infantis in 12 countries by their GDP per capita showed a remarkably low prevalence of this microbe in advanced economies, especially Singapore. Conclusion This study provides new insights into infant gut microbiota colonization, showing the impact of generational immigration on early-life gut microbiota acquisition. It also warrants the need to closely monitor the declining prevalence of beneficial microbes such as B. infantis in developed nations and its potential link to increasing autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Jia Xu
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | | | - Baoling Quah
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Min Gong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Felicia Tin
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Penny Chan
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kiat Sim
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Kok Hian Tan
- SingHealth Duke-NUS Institute for Patient Safety and Quality, Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D. Gluckman
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Centre for SPDS Centre for Informed Futures, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Steven A. Frese
- Department of Nutrition, University of Nevada, Reno, NV, United States
| | - David Kyle
- Infinant Health, Inc., Davis, CA, United States
| | - Neerja Karnani
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
40
|
Bellomo AR, Rotondi G, Rago P, Bloise S, Di Ruzza L, Zingoni A, Di Valerio S, Valzano E, Di Pierro F, Cazzaniga M, Bertuccioli A, Guasti L, Zerbinati N, Lubrano R. Effect of Bifidobacterium bifidum Supplementation in Newborns Born from Cesarean Section on Atopy, Respiratory Tract Infections, and Dyspeptic Syndromes: A Multicenter, Randomized, and Controlled Clinical Trial. Microorganisms 2024; 12:1093. [PMID: 38930475 PMCID: PMC11205812 DOI: 10.3390/microorganisms12061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Cesarean section is considered a possible trigger of atopy and gut dysbiosis in newborns. Bifidobacteria, and specifically B. bifidum, are thought to play a central role in reducing the risk of atopy and in favoring gut eubiosis in children. Nonetheless, no trial has ever prospectively investigated the role played by this single bacterial species in preventing atopic manifestations in children born by cesarean section, and all the results published so far refer to mixtures of probiotics. We have therefore evaluated the impact of 6 months of supplementation with B. bifidum PRL2010 on the incidence, in the first year of life, of atopy, respiratory tract infections, and dyspeptic syndromes in 164 children born by cesarean (versus 249 untreated controls). The results of our multicenter, randomized, and controlled trial have shown that the probiotic supplementation significantly reduced the incidence of atopic dermatitis, upper and lower respiratory tract infections, and signs and symptoms of dyspeptic syndromes. Concerning the gut microbiota, B. bifidum supplementation significantly increased α-biodiversity and the relative values of the phyla Bacteroidota and Actinomycetota, of the genus Bacteroides, Bifidobacterium and of the species B. bifidum and reduced the relative content of Escherichia/Shigella and Haemophilus. A 6-month supplementation with B. bifidum in children born by cesarean section reduces the risk of gut dysbiosis and has a positive clinical impact that remains observable in the following 6 months of follow-up.
Collapse
Affiliation(s)
- Anna Rita Bellomo
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Giulia Rotondi
- Pediatric Surgery Unit, Gaslini Children Hospital and Research Institute, 16147 Genoa, Italy
| | - Prudenza Rago
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Silvia Bloise
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Luigi Di Ruzza
- UOC Pediatria e Nido, Ospedale S.S. Trinità, 03039 Sora, Italy
| | - Annamaria Zingoni
- UOC Pediatria e Neonatologia, Ospedale G.B. Grassi, 00122 Ostia, Italy
| | - Susanna Di Valerio
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Eliana Valzano
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Riccardo Lubrano
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| |
Collapse
|
41
|
Hilliard MA, Sela DA. Transmission and Persistence of Infant Gut-Associated Bifidobacteria. Microorganisms 2024; 12:879. [PMID: 38792709 PMCID: PMC11124121 DOI: 10.3390/microorganisms12050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Bifidobacterium infantis are the primary colonizers of the infant gut, yet scientific research addressing the transmission of the genus Bifidobacterium to infants remains incomplete. This review examines microbial reservoirs of infant-type Bifidobacterium that potentially contribute to infant gut colonization. Accordingly, strain inheritance from mother to infant via the fecal-oral route is likely contingent on the bifidobacterial strain and phenotype, whereas transmission via the vaginal microbiota may be restricted to Bifidobacterium breve. Additional reservoirs include breastmilk, horizontal transfer from the environment, and potentially in utero transfer. Given that diet is a strong predictor of Bifidobacterium colonization in early life and the absence of Bifidobacterium is observed regardless of breastfeeding, it is likely that additional factors are responsible for bifidobacterial colonization early in life.
Collapse
Affiliation(s)
- Margaret A. Hilliard
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology & Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
42
|
Li B, Zhang B, Zhang F, Liu X, Zhang Y, Peng W, Teng D, Mao R, Yang N, Hao Y, Wang J. Interaction between Dietary Lactoferrin and Gut Microbiota in Host Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7596-7606. [PMID: 38557058 DOI: 10.1021/acs.jafc.3c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.
Collapse
Affiliation(s)
- Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Bo Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Fuli Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Weifeng Peng
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Da Teng
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ruoyu Mao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Na Yang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ya Hao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Jianhua Wang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| |
Collapse
|
43
|
Yang S, Wu S, Zhao F, Zhao Z, Shen X, Yu X, Zhang M, Wen F, Sun Z, Menghe B. Diversity Analysis of Intestinal Bifidobacteria in the Hohhot Population. Microorganisms 2024; 12:756. [PMID: 38674700 PMCID: PMC11051944 DOI: 10.3390/microorganisms12040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Bifidobacterium plays a pivotal role within the gut microbiota, significantly affecting host health through its abundance and composition in the intestine. Factors such as age, gender, and living environment exert considerable influence on the gut microbiota, yet scant attention has been directed towards understanding the specific effects of these factors on the Bifidobacterium population. Therefore, this study focused on 98 adult fecal samples to conduct absolute and relative quantitative analyses of bifidobacteria. (2) Methods: Using droplet digital PCR and the PacBio Sequel II sequencing platform, this study sought to determine the influence of various factors, including living environment, age, and BMI, on the absolute content and biodiversity of intestinal bifidobacteria. (3) Results: Quantitative results indicated that the bifidobacteria content in the intestinal tract ranged from 106 to 109 CFU/g. Notably, the number of bifidobacteria in the intestinal tract of the school population surpassed that of the off-campus population significantly (p = 0.003). Additionally, the group of young people exhibited a significantly higher count of bifidobacteria than the middle-aged and elderly groups (p = 0.041). The normal-weight group displayed a significantly higher bifidobacteria count than the obese group (p = 0.027). Further analysis of the relative abundance of bifidobacteria under different influencing factors revealed that the living environment emerged as the primary factor affecting the intestinal bifidobacteria structure (p = 0.046, R2 = 2.411). Moreover, the diversity of bifidobacteria in the intestinal tract of college students surpassed that in the out-of-school population (p = 0.034). This was characterized by a notable increase in 11 strains, including B. longum, B. bifidum, and B. pseudolongum, in the intestinal tract of college students, forming a more intricate intestinal bifidobacteria interaction network. (4) Conclusions: In summary, this study elucidated the principal factors affecting intestinal bifidobacteria and delineated their characteristics of intestinal bifidobacteria in diverse populations. By enriching the theory surrounding gut microbiota and health, this study provides essential data support for further investigations into the intricate dynamics of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bilige Menghe
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Y.); (S.W.); (F.W.)
| |
Collapse
|
44
|
Hu J, He K, Yang Y, Huang C, Dou Y, Wang H, Zhang G, Wang J, Niu C, Bi G, Zhang L, Zhu S. Amino acid formula induces microbiota dysbiosis and depressive-like behavior in mice. Cell Rep 2024; 43:113817. [PMID: 38412095 DOI: 10.1016/j.celrep.2024.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Amino acid formula (AAF) is increasingly consumed in infants with cow's milk protein allergy; however, the long-term influences on health are less described. In this study, we established a mouse model by subjecting neonatal mice to an amino acid diet (AAD) to mimic the feeding regimen of infants on AAF. Surprisingly, AAD-fed mice exhibited dysbiotic microbiota and increased neuronal activity in both the intestine and brain, as well as gastrointestinal peristalsis disorders and depressive-like behavior. Furthermore, fecal microbiota transplantation from AAD-fed mice or AAF-fed infants to recipient mice led to elevated neuronal activations and exacerbated depressive-like behaviors compared to that from normal chow-fed mice or cow's-milk-formula-fed infants, respectively. Our findings highlight the necessity to avoid the excessive use of AAF, which may influence the neuronal development and mental health of children.
Collapse
Affiliation(s)
- Ji Hu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Kaixin He
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yifei Yang
- School of Data Science, University of Science and Technology of China, Hefei, China
| | - Chuan Huang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiping Dou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hao Wang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guorong Zhang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jingyuan Wang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chaoshi Niu
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Guoqiang Bi
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lan Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China; School of Data Science, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
45
|
Zhang L, Agrawal M, Ng SC, Jess T. Early-life exposures and the microbiome: implications for IBD prevention. Gut 2024; 73:541-549. [PMID: 38123972 PMCID: PMC11150004 DOI: 10.1136/gutjnl-2023-330002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The early-life period is one of microbiome establishment and immune maturation. Early-life exposures are increasingly being recognised to play an important role in IBD risk. The composition of functions of the gut microbiome in the prenatal, perinatal, and postnatal period may be crucial towards development of health or disease, including IBD, later in life. We herein present a comprehensive summary of the interplay between early-life factors and microbiome perturbations, and their association with risk of IBD. In addition, we provide an overview of host and external factors in early life that are known to impact gut microbiome maturation and exposures implicated in IBD risk. Considering the emerging concept of IBD prevention, we propose strategies to minimise maternal and offspring exposure to potentially harmful variables and recommend protective measures during pregnancy and the postpartum period. This holistic view of early-life factors and microbiome signatures among mothers and their offspring will help frame our current understanding of their importance towards IBD pathogenesis and frame the roadmap for preventive strategies.
Collapse
Affiliation(s)
- Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York NY, New York, USA
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
46
|
Gaire TN, Scott HM, Noyes NR, Ericsson AC, Tokach MD, William H, Menegat MB, Vinasco J, Nagaraja TG, Volkova VV. Temporal dynamics of the fecal microbiome in female pigs from early life through estrus, parturition, and weaning of the first litter of piglets. Anim Microbiome 2024; 6:7. [PMID: 38383422 PMCID: PMC10882843 DOI: 10.1186/s42523-024-00294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Age-associated changes in the gastrointestinal microbiome of young pigs have been robustly described; however, the temporal dynamics of the fecal microbiome of the female pig from early life to first parity are not well understood. Our objective was to describe microbiome and antimicrobial resistance dynamics of the fecal microbiome of breeding sows from early life through estrus, parturition and weaning of the first litter of piglets (i.e., from 3 to 53 weeks of age). RESULTS Our analysis revealed that fecal bacterial populations in developing gilts undergo changes consistent with major maturation milestones. As the pigs progressed towards first estrus, the fecal bacteriome shifted from Rikenellaceae RC9 gut group- and UCG-002-dominated enterotypes to Treponema- and Clostridium sensu stricto 1-dominated enterotypes. After first estrus, the fecal bacteriome stabilized, with minimal changes in enterotype transition and associated microbial diversity from estrus to parturition and subsequent weaning of first litter piglets. Unlike bacterial communities, fecal fungal communities exhibited low diversity with high inter- and intra-pig variability and an increased relative abundance of certain taxa at parturition, including Candida spp. Counts of resistant fecal bacteria also fluctuated over time, and were highest in early life and subsequently abated as the pigs progressed to adulthood. CONCLUSIONS This study provides insights into how the fecal microbial community and antimicrobial resistance in female pigs change from three weeks of age throughout their first breeding lifetime. The fecal bacteriome enterotypes and diversity are found to be age-driven and established by the time of first estrus, with minimal changes observed during subsequent physiological stages, such as parturition and lactation, when compared to the earlier age-related shifts. The use of pigs as a model for humans is well-established, however, further studies are needed to understand how our results compare to the human microbiome dynamics. Our findings suggest that the fecal microbiome exhibited consistent changes across individual pigs and became more diverse with age, which is a beneficial characteristic for an animal model system.
Collapse
Affiliation(s)
- Tara N Gaire
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - H Morgan Scott
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Noelle R Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Michael D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Hayden William
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Mariana B Menegat
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Javier Vinasco
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Victoriya V Volkova
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
47
|
Olm MR, Mueller NT. Milk to mucus: How B. fragilis colonizes the gut. Cell Host Microbe 2024; 32:149-150. [PMID: 38359795 DOI: 10.1016/j.chom.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Human milk oligosaccharide (HMO) consumption by the infant microbiota is positively associated with immune health. In this issue of Cell Host & Microbe, Buzun et al. report a mechanism for HMO digestion by Bacteroides fragilis and demonstrate how the same pathway works on intestinal mucus to establish long-term gut residency.
Collapse
Affiliation(s)
- Matthew R Olm
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Noel T Mueller
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
48
|
Zhao L, Yang X, Liang Y, Zhang Z, Ding Y, Wang Y, Chen B, Wu J, Jin C, Zhao G, Li Z, Zhang L. Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Microbiol Spectr 2024; 12:e0317723. [PMID: 38193687 PMCID: PMC10846076 DOI: 10.1128/spectrum.03177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024] Open
Abstract
Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies.
Collapse
Affiliation(s)
- Lanlan Zhao
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yijia Liang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziyi Zhang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanwen Ding
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yihui Wang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Chen
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiacheng Wu
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuandi Jin
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ziyun Li
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lei Zhang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
49
|
Zhang H, Dong M, Zheng J, Yang Y, He J, Liu T, Wei H. Fecal bacteria-free filtrate transplantation is proved as an effective way for the recovery of radiation-induced individuals in mice. Front Cell Infect Microbiol 2024; 13:1343752. [PMID: 38357210 PMCID: PMC10864540 DOI: 10.3389/fcimb.2023.1343752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Background Ionizing radiation can cause intestinal microecological dysbiosis, resulting in changes in the composition and function of gut microbiota. Altered gut microbiota is closely related to the development and progression of radiation-induced intestinal damage. Although microbiota-oriented therapeutic options such as fecal microbiota transplantation (FMT) have shown some efficacy in treating radiation toxicity, safety concerns endure. Therefore, fecal bacteria-free filtrate transplantation (FFT), which has the potential to become a possible alternative therapy, is well worth investigating. Herein, we performed FFT in a mouse model of radiation exposure and monitored its effects on radiation damage phenotypes, gut microbiota, and metabolomic profiles to assess the effectiveness of FFT as an alternative therapy to FMT safety concerns. Results FFT treatment conferred radioprotection against radiation-induced toxicity, representing as better intestinal integrity, robust proinflammatory and anti-inflammatory cytokines homeostasis, and accompanied by significant shifts in gut microbiome. The bacterial compartment of recipients following FFT was characterized by an enrichment of radioprotective microorganisms (members of family Lachnospiraceae). Furthermore, metabolome data revealed increased levels of microbially generated short-chain fatty acids (SCFAs) in the feces of FFT mice. Conclusions FFT improves radiation-induced intestinal microecological dysbiosis by reshaping intestinal mucosal barrier function, gut microbiota configurations, and host metabolic profiles, highlighting FFT regimen as a promising safe alternative therapy for FMT is effective in the treatment of radiation intestinal injury.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yapeng Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Wei
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Ennis D, Shmorak S, Jantscher-Krenn E, Yassour M. Longitudinal quantification of Bifidobacterium longum subsp. infantis reveals late colonization in the infant gut independent of maternal milk HMO composition. Nat Commun 2024; 15:894. [PMID: 38291346 PMCID: PMC10827747 DOI: 10.1038/s41467-024-45209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Breast milk contains human milk oligosaccharides (HMOs) that cannot be digested by infants, yet nourish their developing gut microbiome. While Bifidobacterium are the best-known utilizers of individual HMOs, a longitudinal study examining the evolving microbial community at high-resolution coupled with mothers' milk HMO composition is lacking. Here, we developed a high-throughput method to quantify Bifidobacterium longum subsp. infantis (BL. infantis), a proficient HMO-utilizer, and applied it to a longitudinal cohort consisting of 21 mother-infant dyads. We observed substantial changes in the infant gut microbiome over the course of several months, while the HMO composition in mothers' milk remained relatively stable. Although Bifidobacterium species significantly influenced sample variation, no specific HMOs correlated with Bifidobacterium species abundance. Surprisingly, we found that BL. infantis colonization began late in the breastfeeding period both in our cohort and in other geographic locations, highlighting the importance of focusing on BL. infantis dynamics in the infant gut.
Collapse
Affiliation(s)
- Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|