1
|
Zhou B, Gui Q, Liu C, Guo H, Wang H, Cheng L, Fan Q, Ge X, Zhang Z, Ju B. Structure and function of an unusual R452-dependent monoclonal antibody against SARS-CoV-2. J Virol 2025; 99:e0184424. [PMID: 40197058 PMCID: PMC12090765 DOI: 10.1128/jvi.01844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is still a major public health concern worldwide. Currently, SARS-CoV-2 variants have been widely used to develop the updated vaccine. However, whether these mutated residues still have good immunogenicity remains elusive. In particular, we know little about what kind of antibodies can be induced by the infection or vaccination of SARS-CoV-2 variants and their biological characteristics. Here, we identified an R452-dependent monoclonal neutralizing antibody, ConD-852, from a primarily Delta variant-infected individual, indicating that the mutated R452 residue has good immunogenicity. We determined the high-resolution cryo-electron microscopy (cryo-EM) structure of ConD-852 complexed with the Delta receptor-binding domain (RBD), revealing how it binds to the R452-related epitopes and their detailed interactions. Interestingly, ConD-852 could only bind to the amino acid residue "R" at the 452 position on RBD, displaying a strict restriction to recognize SARS-CoV-2. Overall, our findings regarding ConD-852 confirmed the good immunogenicity of SARS-CoV-2 variants carrying the L452R mutation and enriched our knowledge of the binding model involving the neutralizing antibody and the mutated virus.IMPORTANCEAlthough SARS-CoV-2 variants have been widely used to update the COVID-19 vaccine candidate, whether these mutations still have good immunogenicity is unknown. This study demonstrates that the mutated R452 residue can induce potent neutralizing antibodies and reports a high-resolution cryo-EM structure of an R452-dependent monoclonal antibody binding to the epitopes around the R452 residue on SARS-CoV-2 RBD.
Collapse
Affiliation(s)
- Bing Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qi Gui
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Infectious Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Congcong Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huimin Guo
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qing Fan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Infectious Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Fan Q, Liu C, Guo H, Tang S, Wang H, Zhou B, Sun Y, Wang M, Ge X, Liu L, Ju B, Zhang Z. A distinctive IGHV3-66 SARS-CoV-2 neutralizing antibody elicited by primary infection with an Omicron variant. Structure 2025:S0969-2126(25)00139-X. [PMID: 40306272 DOI: 10.1016/j.str.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/24/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
SARS-CoV-2 Omicron sub-variants continuously evolve under the pressure of neutralizing antibodies (nAbs), eliminating numerous potential elite monoclonal nAbs. The IGHV3-53/3-66 public nAbs have great potential for neutralizing SARS-CoV-2. However, it has been unclear whether a primary Omicron infection could also induce IGHV3-53/3-66 nAbs. In this study, we report an IGHV3-66-encoding monoclonal nAb, ConBA-998, that was elicited by primary infection with BA.1. ConBA-998 is an Omicron-dependent nAb with high binding affinity that triggers the shedding of the S1 subunit from the spike protein. The cryo-electron microscopy (cryo-EM) structure revealed the interactions between ConBA-998 and the Omicron BA.1 spike protein. ConBA-998 has a distinctive binding mode to receptor-binding domain (RBD) that differs from canonical IGHV3-53/3-66 nAbs. Overall, our findings indicate that Omicron may elicit unique specific nAbs distinct from those induced by pre-Omicron variants, providing further insights into SARS-CoV-2 variant-specific antibody responses.
Collapse
Affiliation(s)
- Qing Fan
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Congcong Liu
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Huimin Guo
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Shilong Tang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Haiyan Wang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Bing Zhou
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Yuehong Sun
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Miao Wang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Xiangyang Ge
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Lei Liu
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China.
| | - Bin Ju
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China; Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province 518112, China.
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China; Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province 518112, China; Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province 518112, China.
| |
Collapse
|
3
|
Wang M, Liu C, Fan Q, Sun Y, Tang S, Guo H, Zhou B, Wang H, Ge X, Zhang Z, Ju B. Rapid clonal expansion and somatic hypermutation contribute to the fate of SARS-CoV-2 broadly neutralizing antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:278-289. [PMID: 40073246 DOI: 10.1093/jimmun/vkae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/09/2024] [Indexed: 03/14/2025]
Abstract
Several vaccines and immunization strategies, including inactivated vaccines, have proven effective in eliciting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing an opportunity to characterize the antibody response. In this study, we investigated the monoclonal antibody responses elicited by wild-type SARS-CoV-2 inactivated vaccination compared to those elicited by natural infection and mRNA vaccination. The analysis showed that antibodies encoded by biased germline genes were shared between SARS-CoV-2 vaccinated and naturally infected individuals. Among the 35 shared clonotypes identified, besides the well-known IGHV3-53 and IGHV1-58, we identified a class of IGHV4-59 antibodies characterized by rapid response and neutralizing activity, elicited by 3 doses of inactivated vaccine. Members of this lineage exhibited similar sensitivity against wild-type SARS-CoV-2, whereas different neutralizing activities against SARS-CoV-2 variants, especially against various Omicron subvariants, BA.1, BA.2, BA.2.12.1, BA.4/5, and BA.2.75. Structural analysis of BA.1 spike complexed with VacBB-639 revealed that the IGHV4-59-lineage antibodies belonged to the Class 2/3 group. Using sequence alignment, site-mutation assays, and functional verification, we identified two substitutions, N60K in HFR3 and S56G in HCDR2, contributing to opposite neutralization changes of IGHV4-59-lineage antibodies against these Omicron subvariants. These results demonstrate the importance of somatic hypermutation in the evolution of prototypical antigen-elicited antibodies in terms of their neutralization breadth and potency against SARS-CoV-2 Omicron variants.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Congcong Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qing Fan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuehong Sun
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shilong Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Huimin Guo
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Bing Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
5
|
Bangaru S, Jackson AM, Copps J, Fernández-Quintero ML, Torres JL, Richey ST, Nogal B, Sewall LM, de la Peña AT, Rehman A, Guebre-Xabier M, Girard B, Das R, Corbett-Helaire KS, Seder RA, Graham BS, Edwards DK, Patel N, Smith G, Ward AB. Structural serology of polyclonal antibody responses to mRNA-1273 and NVX-CoV2373 COVID-19 vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628030. [PMID: 39713412 PMCID: PMC11661243 DOI: 10.1101/2024.12.11.628030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Current COVID-19 vaccines are largely limited in their ability to induce broad, durable immunity against emerging viral variants. Design and development of improved vaccines utilizing existing platforms requires an in-depth understanding of the antigenic and immunogenic properties of available vaccines. Here we examined the antigenicity of two of the original COVID-19 vaccines, mRNA-1273 and NVX-CoV2373, by electron microscopy-based polyclonal epitope mapping (EMPEM) of serum from immunized non-human primates (NHPs) and clinical trial donors. Both vaccines induce diverse polyclonal antibody (pAb) responses to the N-terminal domain (NTD) in addition to the receptor-binding domain (RBD) of the Spike protein, with the NTD supersite being an immunodominant epitope. High-resolution cryo-EMPEM studies revealed extensive pAb responses to and around the supersite with unique angles of approach and engagement. NTD supersite pAbs were also the most susceptible to variant mutations compared to other specificities, indicating that ongoing Spike ectodomain-based vaccine design strategies should consider immuno-masking this site to prevent induction of these strain-specific responses.
Collapse
Affiliation(s)
- Sandhya Bangaru
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Abigail M. Jackson
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Monica L. Fernández-Quintero
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Jonathan L. Torres
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Sara T. Richey
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Bartek Nogal
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Leigh M. Sewall
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Alba Torrents de la Peña
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - Asma Rehman
- Novavax, Inc; 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | | | | | - Kizzmekia S. Corbett-Helaire
- Vaccine Research Center; National Institutes of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892, USA
- Current affiliation: Department of Immunology and Infectious Diseases; Harvard T.H. Chan School of Public Health; Boston, Massachusetts, 02115, USA
- Current affiliation: Howard Hughes Medical Institute; Chevy Chase, Maryland, 20815, USA
| | - Robert A. Seder
- Vaccine Research Center; National Institutes of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892, USA
| | - Barney S. Graham
- Vaccine Research Center; National Institutes of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892, USA
- Current affiliation: Department of Microbiology, Biochemistry & Immunology; Morehouse School of Medicine; Atlanta, Georgia, 30310, USA
| | | | - Nita Patel
- Novavax, Inc; 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Gale Smith
- Novavax, Inc; 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Andrew B. Ward
- Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Kuwata T, Kaku Y, Biswas S, Matsumoto K, Shimizu M, Kawanami Y, Uraki R, Okazaki K, Minami R, Nagasaki Y, Nagashima M, Yoshida I, Sadamasu K, Yoshimura K, Ito M, Kiso M, Yamayoshi S, Imai M, Ikeda T, Sato K, Toyoda M, Ueno T, Inoue T, Tanaka Y, Kimura KT, Hashiguchi T, Sugita Y, Noda T, Morioka H, Kawaoka Y, Matsushita S. Induction of IGHV3-53 public antibodies with broadly neutralising activity against SARS-CoV-2 including Omicron subvariants in a Delta breakthrough infection case. EBioMedicine 2024; 110:105439. [PMID: 39488016 PMCID: PMC11565539 DOI: 10.1016/j.ebiom.2024.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Emergence of SARS-CoV-2 variants that escape neutralising antibodies hampers the development of vaccines and therapeutic antibodies against SARS-CoV-2. IGHV3-53/3-66-derived public antibodies, which are generally specific to the prototype virus and are frequently induced in infected or vaccinated individuals, show minimal affinity maturation and high potency against prototype SARS-CoV-2. METHODS Monoclonal antibodies isolated from a Delta breakthrough infection case were analysed for cross-neutralising activities against SARS-CoV-2 variants. The broadly neutralising antibody K4-66 was further analysed in a hamster model, and the effect of somatic hypermutations was assessed using the inferred germline precursor. FINDINGS Antibodies derived from IGHV3-53/3-66 showed broader neutralising activity than antibodies derived from IGHV1-69 and other IGHV genes. IGHV3-53/3-66 antibodies neutralised the Delta variant better than the IGHV1-69 antibodies, suggesting that the IGHV3-53/3-66 antibodies were further maturated by Delta breakthrough infection. One IGHV3-53/3-66 antibody, K4-66, neutralised all Omicron subvariants tested, including EG.5.1, BA.2.86, and JN.1, and decreased the viral load in the lungs of hamsters infected with Omicron subvariant XBB.1.5. The importance of somatic hypermutations was demonstrated by the loss of neutralising activity of the inferred germline precursor of K4-66 against Beta and Omicron variants. INTERPRETATION Broadly neutralising IGHV3-53/3-66 antibodies have potential as a target for the development of effective vaccines and therapeutic antibodies against newly emerging SARS-CoV-2 variants. FUNDING This work was supported by grants from AMED (JP23ym0126048, JP22ym0126048, JP21ym0126048, JP23wm0125002, JP233fa627001, JP223fa627009, JP24jf0126002, and JP22fk0108572), and the JSPS (JP21H02970, JK23K20041, and JPJSCCA20240006).
Collapse
Affiliation(s)
- Takeo Kuwata
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Yu Kaku
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shashwata Biswas
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kaho Matsumoto
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mikiko Shimizu
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yoko Kawanami
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Ryuta Uraki
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyo Okazaki
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Minami
- Internal Medicine, Clinical Research Institute, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Yoji Nagasaki
- Internal Medicine, Clinical Research Institute, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Isao Yoshida
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Mutsumi Ito
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mako Toyoda
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kanako Tarakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuzo Matsushita
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Fischer K, Lulla A, So TY, Pereyra-Gerber P, Raybould MIJ, Kohler TN, Yam-Puc JC, Kaminski TS, Hughes R, Pyeatt GL, Leiss-Maier F, Brear P, Matheson NJ, Deane CM, Hyvönen M, Thaventhiran JED, Hollfelder F. Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells. Nat Biotechnol 2024:10.1038/s41587-024-02346-5. [PMID: 39143416 DOI: 10.1038/s41587-024-02346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Monoclonal antibodies are increasingly used to prevent and treat viral infections and are pivotal in pandemic response efforts. Antibody-secreting cells (ASCs; plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methods to study antigen-specific ASCs either have low throughput, require expensive and labor-intensive screening or are technically demanding and therefore not widely accessible. Here we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs. Our approach combines microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 with high affinity (<1 pM) and neutralizing capacity (<100 ng ml-1) in 2 weeks with a high hit rate (>85% of characterized antibodies bound the target). By facilitating access to the underexplored ASC compartment, the approach enables efficient antibody discovery and immunological studies into the generation of protective antibodies.
Collapse
Affiliation(s)
- Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tsz Y So
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Hughes
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | | | | | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
8
|
Garg R, Liu Q, Van Kessel J, Asavajaru A, Uhlemann EM, Joessel M, Hamonic G, Khatooni Z, Kroeker A, Lew J, Scruten E, Pennington P, Deck W, Prysliak T, Nickol M, Apel F, Courant T, Kelvin AA, Van Kessel A, Collin N, Gerdts V, Köster W, Falzarano D, Racine T, Banerjee A. Efficacy of a stable broadly protective subunit vaccine platform against SARS-CoV-2 variants of concern. Vaccine 2024; 42:125980. [PMID: 38769033 DOI: 10.1016/j.vaccine.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The emergence and ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid vaccine development platforms that can be updated to counteract emerging variants of currently circulating and future emerging coronaviruses. Here we report the development of a "train model" subunit vaccine platform that contains a SARS-CoV-2 Wuhan S1 protein (the "engine") linked to a series of flexible receptor binding domains (RBDs; the "cars") derived from SARS-CoV-2 variants of concern (VOCs). We demonstrate that these linked subunit vaccines when combined with Sepivac SWE™, a squalene in water emulsion (SWE) adjuvant, are immunogenic in Syrian hamsters and subsequently provide protection from infection with SARS-CoV-2 VOCs Omicron (BA.1), Delta, and Beta. Importantly, the bivalent and trivalent vaccine candidates offered protection against some heterologous SARS-CoV-2 VOCs that were not included in the vaccine design, demonstrating the potential for broad protection against a range of different VOCs. Furthermore, these formulated vaccine candidates were stable at 2-8 °C for up to 13 months post-formulation, highlighting their utility in low-resource settings. Indeed, our vaccine platform will enable the development of safe and broadly protective vaccines against emerging betacoronaviruses that pose a significant health risk for humans and agricultural animals.
Collapse
Affiliation(s)
- Ravendra Garg
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Akarin Asavajaru
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Eva-Maria Uhlemann
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Morgane Joessel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Erin Scruten
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Paul Pennington
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - William Deck
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Tracy Prysliak
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Michaela Nickol
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Falko Apel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Thomas Courant
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Nicolas Collin
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Trina Racine
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
9
|
Mühlemann B, Trimpert J, Walper F, Schmidt ML, Jansen J, Schroeder S, Jeworowski LM, Beheim-Schwarzbach J, Bleicker T, Niemeyer D, Richter A, Adler JM, Vidal RM, Langner C, Vladimirova D, Wilks SH, Smith DJ, Voß M, Paltzow L, Martínez Christophersen C, Rose R, Krumbholz A, Jones TC, Corman VM, Drosten C. Antigenic cartography using variant-specific hamster sera reveals substantial antigenic variation among Omicron subvariants. Proc Natl Acad Sci U S A 2024; 121:e2310917121. [PMID: 39078681 PMCID: PMC11317614 DOI: 10.1073/pnas.2310917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Felix Walper
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Marie L. Schmidt
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jenny Jansen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Simon Schroeder
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Lara M. Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Anja Richter
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | | | - Christine Langner
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Daria Vladimirova
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Lea Paltzow
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | - Terry C. Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Victor M. Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Labor Berlin–Charité Vivantes GmbH, Berlin13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| |
Collapse
|
10
|
de Lima VA, Nunes JPS, Rosa DS, Ferreira R, Oliva MLV, Andreata‐Santos R, Duarte‐Barbosa M, Janini LMR, Maricato JT, Akamatsu MA, Ho PL, Schenkman S. Development and characterization of a multimeric recombinant protein using the spike protein receptor binding domain as an antigen to induce SARS-CoV-2 neutralization. Immun Inflamm Dis 2024; 12:e1353. [PMID: 39056544 PMCID: PMC11273545 DOI: 10.1002/iid3.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.
Collapse
Affiliation(s)
- Veronica A. de Lima
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - João P. S. Nunes
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Daniela S. Rosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Rodrigo Ferreira
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Maria L. V. Oliva
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Robert Andreata‐Santos
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Marcia Duarte‐Barbosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Luiz M. R. Janini
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Juliana T. Maricato
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Milena A. Akamatsu
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Paulo L. Ho
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| |
Collapse
|
11
|
Tong Z, Tong J, Lei W, Xie Y, Cui Y, Jia G, Li S, Zhang Z, Cheng Z, Xing X, Ma H, Deng L, Zhang R, Zhao X, Liu K, Wang Q, Qi J, Huang H, Song R, Su Z, Wu G, Lou J, Gao GF. Deciphering a reliable synergistic bispecific strategy of rescuing antibodies for SARS-CoV-2 escape variants, including BA.2.86, EG.5.1, and JN.1. Cell Rep 2024; 43:114338. [PMID: 38850530 DOI: 10.1016/j.celrep.2024.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
The game between therapeutic monoclonal antibodies (mAbs) and continuously emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has favored the virus, as most therapeutic mAbs have been evaded. Addressing this challenge, we systematically explored a reproducible bispecific antibody (bsAb)-dependent synergistic effect in this study. It could effectively restore the neutralizing activity of the bsAb when any of its single mAbs is escaped by variants. This synergy is primarily attributed to the binding angle of receptor-binding domain (RBD)-5, facilitating inter-spike cross-linking and promoting cryptic epitope exposure that classical antibody cocktails cannot achieve. Furthermore, RBD-5 with RBD-2, RBD-6, and RBD-7, alongside RBD-8, also exhibit significantly enhanced effects. This study not only shifts the paradigm in understanding antibody interactions but paves the way for developing more effective therapeutic antibodies against rapidly mutating SARS-CoV-2, with Dia-19 already showing promise against emerging variants like BA.2.86, EG.5.1, and JN.1.
Collapse
Affiliation(s)
- Zhou Tong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shanxi Academy of Advanced Research and Innovation, Xinhua Road, Taiyuan, Shanxi 030032, China
| | - Jianyu Tong
- Shanxi Academy of Advanced Research and Innovation, Xinhua Road, Taiyuan, Shanxi 030032, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingzi Cui
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zezhong Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhimin Cheng
- Shanxi Academy of Advanced Research and Innovation, Xinhua Road, Taiyuan, Shanxi 030032, China
| | - Xiao Xing
- Shanxi Academy of Advanced Research and Innovation, Xinhua Road, Taiyuan, Shanxi 030032, China
| | - Haiyun Ma
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Lan Deng
- Sunshine Guojian Pharmaceutical (Shanghai) Co., Ltd., a 3SBio, Inc., company, 399 Libing Road, Shanghai 201203, China
| | - Rong Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haomin Huang
- Sunshine Guojian Pharmaceutical (Shanghai) Co., Ltd., a 3SBio, Inc., company, 399 Libing Road, Shanghai 201203, China
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Lou
- Sunshine Guojian Pharmaceutical (Shanghai) Co., Ltd., a 3SBio, Inc., company, 399 Libing Road, Shanghai 201203, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar MS, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative analysis of SARS-CoV-2 neutralization titers reveals consistency between human and animal model serum and across assays. Sci Transl Med 2024; 16:eadl1722. [PMID: 38748773 DOI: 10.1126/scitranslmed.adl1722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
13
|
Gao F, Zheng M, Fan J, Ding Y, Liu X, Zhang M, Zhang X, Dong J, Zhou X, Luo J, Li X. A trimeric spike-based COVID-19 vaccine candidate induces broad neutralization against SARS-CoV-2 variants. Hum Vaccin Immunother 2023; 19:2186110. [PMID: 36882925 PMCID: PMC10026892 DOI: 10.1080/21645515.2023.2186110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2 infection has an impact on global public health and social economy. The emerging immune escape of SARS-CoV-2 variants pose great challenges to the development of vaccines based on original strains. The development of second-generation COVID-19 vaccines to induce immune responses with broad-spectrum protective effects is a matter of great urgency. Here, a prefusion-stabilized spike (S) trimer protein based on B.1.351 variant was expressed and prepared with CpG7909/aluminum hydroxide dual adjuvant to investigate the immunogenicity in mice. The results showed that the candidate vaccine could induce a significant receptor binding domain-specific antibody response and a substantial interferon-γ-mediated immune response. Furthermore, the candidate vaccine also elicited robust cross-neutralization against the pseudoviruses of the original strain, Beta variant, Delta variant and Omicron variant. The vaccine strategy of S-trimer protein formulated with CpG7909/aluminum hydroxide dual adjuvant may be considered a means to increase vaccine effectiveness against future variants.
Collapse
Affiliation(s)
- Feixia Gao
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Mei Zheng
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Jiangfeng Fan
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Yahong Ding
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xueying Liu
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xin Zhang
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Jinrong Dong
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xu Zhou
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Jian Luo
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xiuling Li
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| |
Collapse
|
14
|
Korenkov M, Zehner M, Cohen-Dvashi H, Borenstein-Katz A, Kottege L, Janicki H, Vanshylla K, Weber T, Gruell H, Koch M, Diskin R, Kreer C, Klein F. Somatic hypermutation introduces bystander mutations that prepare SARS-CoV-2 antibodies for emerging variants. Immunity 2023; 56:2803-2815.e6. [PMID: 38035879 DOI: 10.1016/j.immuni.2023.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2-neutralizing antibodies (nAbs). However, several potent SARS-CoV-2 antibodies carry no or only a few mutations, leaving the question of how ongoing SHM affects neutralization unclear. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, for some antibodies, including antibodies of the public clonotype VH1-58, neutralization of Wu01 remained unaffected. Although mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical for Omicron BA.1/BA.2 neutralization. We exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2 neutralizer. These findings broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation but also contributes to antibody diversification, thus increasing the chances of neutralizing viral escape variants.
Collapse
Affiliation(s)
- Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hadas Cohen-Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Aliza Borenstein-Katz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lisa Kottege
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
15
|
Ghosh MK, Tabassum S, Basu M. COVID‐19 and cancer: Dichotomy of the menacing dilemma. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic brought about unprecedented challenges to global healthcare systems. Among the most vulnerable populations are cancer patients, who face dilemmas due to their compromised immune systems and the intricate interplay with the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. This comprehensive review delves into the multifaceted relationship between COVID‐19 and cancer. Through an analysis of existing literature and clinical data, this review unravels the structural intricacies of the virus and examines its profound implications for cancer patients, thereby bridging the knowledge gap between virology and oncology. The review commences with an introduction regarding the COVID‐19 pandemic and cancer. It then transitions into a detailed examination of the SARS‐CoV‐2 virus and its variants such as Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 lineage). Subsequently, an insightful analysis of the impact of COVID‐19 on major cancer types (viz., Lung, Colon, Brain, and gastrointestinal cancer) is elaborated. Finally, the therapeutic avenues, oncological care, and management are discussed. The nexus between COVID‐19 and cancer adds a layer of complexity to patient care, emphasizing the importance of tailored approaches for those grappling with both conditions. Amid the landscape defined by the evolving viral strains, this review navigates through the multifaceted implications of COVID‐19 on cancer patients and underscores the significance of integrating virology and oncology.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Malini Basu
- Department of Microbiology Dhruba Chand Halder College Dakshin Barasat West Bengal India
| |
Collapse
|
16
|
Suvorov A, Loginova S, Leontieva G, Gupalova T, Desheva Y, Korzhevskii D, Kramskaya T, Bormotova E, Koroleva I, Kopteva O, Kirik O, Shchukina V, Savenko S, Kutaev D, Borisevitch S. SARS-CoV-2 Spike Protein-Expressing Enterococcus for Oral Vaccination: Immunogenicity and Protection. Vaccines (Basel) 2023; 11:1714. [PMID: 38006046 PMCID: PMC10675790 DOI: 10.3390/vaccines11111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The declaration of the conclusion of the COVID-19 pandemic notwithstanding, coronavirus remains prevalent in circulation, and the potential emergence of novel variants of concern introduces the possibility of new outbreaks. Moreover, it is not clear how quickly and to what extent the effectiveness of vaccination will decline as the virus continues to mutate. One possible solution to combat the rapidly mutating coronavirus is the creation of safe vaccine platforms that can be rapidly adapted to deliver new, specific antigens in response to viral mutations. Recombinant probiotic microorganisms that can produce viral antigens by inserting specific viral DNA fragments into their genome show promise as a platform and vector for mucosal vaccine antigen delivery. The authors of this study have developed a convenient and universal technique for inserting the DNA sequences of pathogenic bacteria and viruses into the gene that encodes the pili protein of the probiotic strain E. faecium L3. The paper presents data on the immunogenic properties of two E. faecium L3 vaccine strains, which produce two different fragments of the coronavirus S1 protein, and provides an assessment of the protective efficacy of these oral vaccines against coronavirus infection in Syrian hamsters.
Collapse
Affiliation(s)
- Alexander Suvorov
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Svetlana Loginova
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Galina Leontieva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Tatiana Gupalova
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Yulia Desheva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Dmitry Korzhevskii
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Tatiana Kramskaya
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Elena Bormotova
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Irina Koroleva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Olga Kopteva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Olga Kirik
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Veronika Shchukina
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Sergey Savenko
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Dmitry Kutaev
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Sergey Borisevitch
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| |
Collapse
|
17
|
Reincke SM, von Wardenburg N, Homeyer MA, Kornau HC, Spagni G, Li LY, Kreye J, Sánchez-Sendín E, Blumenau S, Stappert D, Radbruch H, Hauser AE, Künkele A, Edes I, Schmitz D, Prüss H. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell 2023; 186:5084-5097.e18. [PMID: 37918394 DOI: 10.1016/j.cell.2023.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Anti-NMDA receptor (NMDAR) autoantibodies cause NMDAR encephalitis, the most common autoimmune encephalitis, leading to psychosis, seizures, and autonomic dysfunction. Current treatments comprise broad immunosuppression or non-selective antibody removal. We developed NMDAR-specific chimeric autoantibody receptor (NMDAR-CAAR) T cells to selectively eliminate anti-NMDAR B cells and disease-causing autoantibodies. NMDAR-CAARs consist of an extracellular multi-subunit NMDAR autoantigen fused to intracellular 4-1BB/CD3ζ domains. NMDAR-CAAR T cells recognize a large panel of human patient-derived autoantibodies, release effector molecules, proliferate, and selectively kill antigen-specific target cell lines even in the presence of high autoantibody concentrations. In a passive transfer mouse model, NMDAR-CAAR T cells led to depletion of an anti-NMDAR B cell line and sustained reduction of autoantibody levels without notable off-target toxicity. Treatment of patients may reduce side effects, prevent relapses, and improve long-term prognosis. Our preclinical work paves the way for CAAR T cell phase I/II trials in NMDAR encephalitis and further autoantibody-mediated diseases.
Collapse
Affiliation(s)
- S Momsen Reincke
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Niels von Wardenburg
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marie A Homeyer
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregorio Spagni
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | - Lucie Y Li
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Sánchez-Sendín
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Sonja Blumenau
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Stappert
- German Center for Neurodegenerative Diseases (DZNE), CRFS, LAT, Bonn, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Immune Dynamics, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), 10117 Berlin, Germany
| | - Inan Edes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Karkanitsa M, Li Y, Valenti S, Spathies J, Kelly S, Hunsberger S, Yee L, Croker JA, Wang J, Alfonso AL, Faust M, Mehalko J, Drew M, Denson JP, Putman Z, Fathi P, Ngo TB, Siripong N, Baus HA, Petersen B, Ford EW, Sundaresan V, Josyula A, Han A, Giurgea LT, Rosas LA, Bean R, Athota R, Czajkowski L, Klumpp-Thomas C, Cervantes-Medina A, Gouzoulis M, Reed S, Graubard B, Hall MD, Kalish H, Esposito D, Kimberly RP, Reis S, Sadtler K, Memoli MJ. Dynamics of SARS-CoV-2 Seroprevalence in a Large US population Over a Period of 12 Months. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.20.23297329. [PMID: 37904956 PMCID: PMC10614993 DOI: 10.1101/2023.10.20.23297329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Due to a combination of asymptomatic or undiagnosed infections, the proportion of the United States population infected with SARS-CoV-2 was unclear from the beginning of the pandemic. We previously established a platform to screen for SARS-CoV-2 positivity across a representative proportion of the US population, from which we reported that almost 17 million Americans were estimated to have had undocumented infections in the Spring of 2020. Since then, vaccine rollout and prevalence of different SARS-CoV-2 variants have further altered seropositivity trends within the United States population. To explore the longitudinal impacts of the pandemic and vaccine responses on seropositivity, we re-enrolled participants from our baseline study in a 6- and 12- month follow-up study to develop a longitudinal antibody profile capable of representing seropositivity within the United States during a critical period just prior to and during the initiation of vaccine rollout. Initial measurements showed that, since July 2020, seropositivity elevated within this population from 4.8% at baseline to 36.2% and 89.3% at 6 and 12 months, respectively. We also evaluated nucleocapsid seropositivity and compared to spike seropositivity to identify trends in infection versus vaccination relative to baseline. These data serve as a window into a critical timeframe within the COVID-19 pandemic response and serve as a resource that could be used in subsequent respiratory illness outbreaks.
Collapse
Affiliation(s)
- Maria Karkanitsa
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Yan Li
- Joint Program in Survey Methodology, Department of Epidemiology and Biostatistics, University of Maryland College Park, College Park, MD 20742
| | - Shannon Valenti
- Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA 15213
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science (BEPS), NIBIB, NIH, Bethesda MD 20894
| | - Sophie Kelly
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science (BEPS), NIBIB, NIH, Bethesda MD 20894
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20894
| | - Laura Yee
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, MD 20894
| | - Jennifer A. Croker
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Andrea Lucia Alfonso
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Mondreakest Faust
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Jennifer Mehalko
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Matthew Drew
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - John-Paul Denson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Zoe Putman
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Parinaz Fathi
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Tran B. Ngo
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Nalyn Siripong
- Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA 15213
| | - Holly Ann Baus
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda MD 20894
| | - Brian Petersen
- Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA 15213
| | - Eric W. Ford
- Department of Health Care Organization, and Policy, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vanathi Sundaresan
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Aditya Josyula
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Alison Han
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Luca T. Giurgea
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Luz Angela Rosas
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Rachel Bean
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Rani Athota
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Lindsay Czajkowski
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850
| | | | - Monica Gouzoulis
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Susan Reed
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| | - Barry Graubard
- Division of Cancer Epidemiology & Genetics, Biostatistics Branch, NCI, NIH, Bethesda, MD 20894
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science (BEPS), NIBIB, NIH, Bethesda MD 20894
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Robert P. Kimberly
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven Reis
- Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA 15213
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda MD 20894
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20894
| |
Collapse
|
19
|
Guerra D, Beaumont T, Radić L, Kerster G, van der Straten K, Yuan M, Torres JL, Lee WH, Liu H, Poniman M, Bontjer I, Burger JA, Claireaux M, Caniels TG, Snitselaar JL, Bijl TP, Kruijer S, Ozorowski G, Gideonse D, Sliepen K, Ward AB, Eggink D, de Bree GJ, Wilson IA, Sanders RW, van Gils MJ. Broad SARS-CoV-2 neutralization by monoclonal and bispecific antibodies derived from a Gamma-infected individual. iScience 2023; 26:108009. [PMID: 37841584 PMCID: PMC10570122 DOI: 10.1016/j.isci.2023.108009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has remained a medical threat due to the evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants. A stabilized spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants, with COVA309-35 being the most potent against the autologous virus, as well as Omicron BA.1 and BA.2, and COVA309-22 having binding and neutralization activity against Omicron BA.4/5, BQ.1.1, and XBB.1. When combining the COVA309 mAbs as cocktails or bispecific antibodies, the breadth and potency were improved. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Denise Guerra
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Gius Kerster
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meliawati Poniman
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Judith A. Burger
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tom G. Caniels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Jonne L. Snitselaar
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tom P.L. Bijl
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sabine Kruijer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Gideonse
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dirk Eggink
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Padhi AK, Kalita P, Maurya S, Poluri KM, Tripathi T. From De Novo Design to Redesign: Harnessing Computational Protein Design for Understanding SARS-CoV-2 Molecular Mechanisms and Developing Therapeutics. J Phys Chem B 2023; 127:8717-8735. [PMID: 37815479 DOI: 10.1021/acs.jpcb.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The continuous emergence of novel SARS-CoV-2 variants and subvariants serves as compelling evidence that COVID-19 is an ongoing concern. The swift, well-coordinated response to the pandemic highlights how technological advancements can accelerate the detection, monitoring, and treatment of the disease. Robust surveillance systems have been established to understand the clinical characteristics of new variants, although the unpredictable nature of these variants presents significant challenges. Some variants have shown resistance to current treatments, but innovative technologies like computational protein design (CPD) offer promising solutions and versatile therapeutics against SARS-CoV-2. Advances in computing power, coupled with open-source platforms like AlphaFold and RFdiffusion (employing deep neural network and diffusion generative models), among many others, have accelerated the design of protein therapeutics with precise structures and intended functions. CPD has played a pivotal role in developing peptide inhibitors, mini proteins, protein mimics, decoy receptors, nanobodies, monoclonal antibodies, identifying drug-resistance mutations, and even redesigning native SARS-CoV-2 proteins. Pending regulatory approval, these designed therapies hold the potential for a lasting impact on human health and sustainability. As SARS-CoV-2 continues to evolve, use of such technologies enables the ongoing development of alternative strategies, thus equipping us for the "New Normal".
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
21
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
22
|
Vinzón SE, Lopez MV, Cafferata EGA, Soto AS, Berguer PM, Vazquez L, Nusblat L, Pontoriero AV, Belotti EM, Salvetti NR, Viale DL, Vilardo AE, Avaro MM, Benedetti E, Russo ML, Dattero ME, Carobene M, Sánchez-Lamas M, Afonso J, Heitrich M, Cristófalo AE, Otero LH, Baumeister EG, Ortega HH, Edelstein A, Podhajcer OL. Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. NPJ Vaccines 2023; 8:149. [PMID: 37794010 PMCID: PMC10550992 DOI: 10.1038/s41541-023-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - María V Lopez
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariadna S Soto
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Paula M Berguer
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Luciana Vazquez
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Leonora Nusblat
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Andrea V Pontoriero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Eduardo M Belotti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Natalia R Salvetti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Diego L Viale
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariel E Vilardo
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Martin M Avaro
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mara L Russo
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - María E Dattero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| | | | - Jimena Afonso
- Area de Bioterio, Fundación Instituto Leloir; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Alejandro E Cristófalo
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
| | - Lisandro H Otero
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud, CONICET, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Elsa G Baumeister
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Alexis Edelstein
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, García-Bernalt Diego J, Lin J, Wu TC, Marches F, Chaussabel D, Yu P, Salner A, Aucello G, Koff J, Hudson B, Church SE, Gorman K, Anguiano E, García-Sastre A, Williams A, Schotsaert M, Palucka K. Spatiotemporally organized immunomodulatory response to SARS-CoV-2 virus in primary human broncho-alveolar epithelia. iScience 2023; 26:107374. [PMID: 37520727 PMCID: PMC10374611 DOI: 10.1016/j.isci.2023.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression toward severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.
Collapse
Affiliation(s)
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Megan Callender
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew Coxe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter Yu
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Andrew Salner
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Gabrielle Aucello
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jonathan Koff
- Adult Cystic Fibrosis Program, Yale University, New Haven, CT 06519, USA
| | - Briana Hudson
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Sarah E. Church
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Kara Gorman
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
24
|
Beitari S, Duque D, Bavananthasivam J, Hewitt M, Sandhu JK, Hadžisejdić I, Tran A. Cross protection to SARS-CoV-2 variants in hamsters with naturally-acquired immunity. Virol J 2023; 20:167. [PMID: 37507719 PMCID: PMC10386765 DOI: 10.1186/s12985-023-02136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Since SARS-CoV-2 was first reported in late 2019, multiple variations of the original virus have emerged. Each variant harbors accumulations of mutations, particularly within the spike glycoprotein, that are associated with increased viral transmissibility and escape immunity. The different mutations in the spike protein of different variants shape the subsequent antibody and T cell responses, such that exposure to different spike proteins can result in reduced or enhanced responses to heterologous variants further down the line. Globally, people have been exposed and re-exposed to multiple variations of the Ancestral strain, including the five variants of concerns. Studies have shown that the protective immune response of an individual is influenced by which strain or combination of strains they are exposed to. The initial exposure to a specific strain may also shape their subsequent immune patterns and response to later infections with a heterologous virus. Most immunological observations were carried out early during the pandemic when the Ancestral strain was circulating. However, SARS-CoV-2 variants exhibit varying patterns of disease severity, waning immunity, immune evasion and sensitivity to therapeutics. Here we investigated the cross-protection in hamsters previously infected with a variant of concern (VOC) and subsequently re-infected with a heterologous variant. We also determined if cross-protection and immunity were dependent on the specific virus to which the hamster was first exposed. We further profiled the host cytokine response induced by each SARS-CoV-2 variants as well as subsequent to re-infection. A comparative analysis of the three VOCs revealed that Alpha variant was the most pathogenic VOC to emerge. We showed that naturally acquired immunity protected hamsters from subsequent re-infection with heterologous SARS-CoV-2 variant, regardless which variant the animal was first exposed to. Our study supports observations that heterologous infection of different SARS-CoV-2 variants do not exacerbate disease in subsequent re-infections. The continual emergence of new SARS-CoV-2 variants mandates a better understanding of cross-protection and immune imprinting in infected individuals. Such information is essential to guide vaccine strategy and public policy to emerging SARS-CoV-2 VOCs and future novel pandemic coronaviruses.
Collapse
Affiliation(s)
- Saina Beitari
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Diana Duque
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Jegarubee Bavananthasivam
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Melissa Hewitt
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Jagdeep K Sandhu
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Ita Hadžisejdić
- Clinical Department of Pathology and Cytology, University of Rijeka, Rijeka, Croatia
| | - Anh Tran
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada.
| |
Collapse
|
25
|
Hamza S, Martynova E, Garanina E, Shakirova V, Bilalova A, Moiseeva S, Khaertynova I, Ohlopkova O, Blatt N, Markelova M, Khaiboullina S. Neutralizing Antibodies in COVID-19 Serum from Tatarstan, Russia. Int J Mol Sci 2023; 24:10181. [PMID: 37373331 DOI: 10.3390/ijms241210181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The severity of COVID-19 is a result of the complex interplay between various branches of the immune system. However, our understanding of the role of neutralizing antibodies and the activation of cellular immune response in COVID-19 pathogenesis remains limited. In this study, we investigated neutralizing antibodies in patients with mild, moderate, and severe COVID-19, analyzing their cross-reactivity with the Wuhan and Omicron variants. We also assessed the activation of the immune response by measuring serum cytokines in patients with mild, moderate, and severe COVID-19. Our findings suggest the early activation of neutralizing antibodies in moderate COVID-19 compared to mild cases. We also observed a strong correlation between the cross-reactivity of neutralizing antibodies to the Omicron and Wuhan variants and the severity of the disease. In addition, we found that Th1 lymphocyte activation was present in mild and moderate cases, while inflammasomes and Th17 lymphocytes were activated in severe COVID-19. In conclusion, our data indicate that the early activation of neutralizing antibodies is evident in moderate COVID-19, and there is a strong correlation between the cross-reactivity of neutralizing antibodies and the severity of the disease. Our findings suggest that the Th1 immune response may play a protective role, while inflammasome and Th17 activation may be involved in severe COVID-19.
Collapse
Affiliation(s)
- Shaimaa Hamza
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Ekaterina Martynova
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Ekaterina Garanina
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Venera Shakirova
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Alisa Bilalova
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Svetlana Moiseeva
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Ilsiyar Khaertynova
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Olesia Ohlopkova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Nataliya Blatt
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Maria Markelova
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Svetlana Khaiboullina
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| |
Collapse
|
26
|
Berry C, Pavot V, Anosova NG, Kishko M, Li L, Tibbitts T, Raillard A, Gautheron S, Cummings S, Bangari DS, Kar S, Atyeo C, Deng Y, Alter G, Gutzeit C, Koutsoukos M, Chicz RM, Lecouturier V. Beta-containing bivalent SARS-CoV-2 protein vaccine elicits durable broad neutralization in macaques and protection in hamsters. COMMUNICATIONS MEDICINE 2023; 3:75. [PMID: 37237062 PMCID: PMC10212738 DOI: 10.1038/s43856-023-00302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC. METHODS We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the ancestral D614 and the variant Beta strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting. RESULTS We show that a primary immunization with the bivalent CoV2 preS dTM-AS03 elicits broader and durable (1 year) neutralizing antibody responses against VOC including Omicron BA.1 and BA.4/5, and SARS-CoV-1 as compared to the ancestral D614 or Beta variant monovalent vaccines in naïve non-human primates. In addition, the bivalent formulation confers protection against viral challenge with SARS-CoV-2 prototype D614G strain as well as Alpha and Beta variant strains in hamsters. CONCLUSIONS Our findings demonstrate the potential of a Beta-containing bivalent CoV2 preS dTM-AS03 formulation to provide broad and durable immunogenicity, as well as protection against VOC in naïve populations.
Collapse
Affiliation(s)
| | | | | | | | - Lu Li
- Sanofi, Vaccines R&D, Cambridge, MA, USA
| | | | | | | | | | | | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
27
|
Song G, Yuan M, Liu H, Capozzola T, Lin RN, Torres JL, He WT, Musharrafieh R, Dueker K, Zhou P, Callaghan S, Mishra N, Yong P, Anzanello F, Avillion G, Vo AL, Li X, Makhdoomi M, Feng Z, Zhu X, Peng L, Nemazee D, Safonova Y, Briney B, Ward AB, Burton DR, Wilson IA, Andrabi R. Broadly neutralizing antibodies targeting a conserved silent face of spike RBD resist extreme SARS-CoV-2 antigenic drift. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538488. [PMID: 37162858 PMCID: PMC10168401 DOI: 10.1101/2023.04.26.538488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.
Collapse
Affiliation(s)
- Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan N. Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nitesh Mishra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Avillion
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anh Lina Vo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Muzamil Makhdoomi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Lead Contact
| |
Collapse
|
28
|
Kreye J, Reincke SM, Edelburg S, Jeworowski LM, Kornau HC, Trimpert J, Hombach P, Halbe S, Nölle V, Meyer M, Kattenbach S, Sánchez-Sendin E, Schmidt ML, Schwarz T, Rose R, Krumbholz A, Merz S, Adler JM, Eschke K, Abdelgawad A, Schmitz D, Sander LE, Janssen U, Corman VM, Prüss H. Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron. iScience 2023; 26:106323. [PMID: 36925720 PMCID: PMC9979625 DOI: 10.1016/j.isci.2023.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/15/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefan Edelburg
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Lara M Jeworowski
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center (NWFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Peter Hombach
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Sophia Halbe
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Martin Meyer
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marie L Schmidt
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
- Labor Dr. Krause & Kollegen MVZ GmbH, 24106 Kiel, Germany
| | - Sophie Merz
- IDEXX Laboratories, 70806 Kornwestheim, Germany
| | - Julia M Adler
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Kathrin Eschke
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Azza Abdelgawad
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center (NWFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Uwe Janssen
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Victor M Corman
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
29
|
Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJ, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC. Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. J Clin Invest 2023; 133:e166844. [PMID: 36862518 PMCID: PMC10104900 DOI: 10.1172/jci166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joshua J.C. McGrath
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - G. Dewey Wilbanks
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Min Huang
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nai-Ying Zheng
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven A. Erickson
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, Illinois, USA
| | - Yanbin Fu
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gagandeep Singh
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
| | - Brian Monahan
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Jacob Mauldin
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Komal Srivastava
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Viviana Simon
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
- The Global Health and Emerging Pathogens Institute, and
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
30
|
Rahman MS, Hoque MN, Chowdhury SR, Siddique MM, Islam OK, Galib SM, Islam MT, Hossain MA. Temporal dynamics and fatality of SARS-CoV-2 variants in Bangladesh. Health Sci Rep 2023; 6:e1209. [PMID: 37077184 PMCID: PMC10108430 DOI: 10.1002/hsr2.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Background and Aims Since the beginning of the SARS-CoV-2 pandemic, multiple new variants have emerged posing an increased risk to global public health. This study aimed to investigate SARS-CoV-2 variants, their temporal dynamics, infection rate (IFR) and case fatality rate (CFR) in Bangladesh by analyzing the published genomes. Methods We retrieved 6610 complete whole genome sequences of the SARS-CoV-2 from the GISAID (Global Initiative on Sharing all Influenza Data) platform from March 2020 to October 2022, and performed different in-silico bioinformatics analyses. The clade and Pango lineages were assigned by using Nextclade v2.8.1. SARS-CoV-2 infections and fatality data were collected from the Institute of Epidemiology Disease Control and Research (IEDCR), Bangladesh. The average IFR was calculated from the monthly COVID-19 cases and population size while average CFR was calculated from the number of monthly deaths and number of confirmed COVID-19 cases. Results SARS-CoV-2 first emerged in Bangladesh on March 3, 2020 and created three pandemic waves so far. The phylogenetic analysis revealed multiple introductions of SARS-CoV-2 variant(s) into Bangladesh with at least 22 Nextstrain clades and 107 Pangolin lineages with respect to the SARS-CoV-2 reference genome of Wuhan/Hu-1/2019. The Delta variant was detected as the most predominant (48.06%) variant followed by Omicron (27.88%), Beta (7.65%), Alpha (1.56%), Eta (0.33%) and Gamma (0.03%) variant. The overall IFR and CFR from circulating variants were 13.59% and 1.45%, respectively. A time-dependent monthly analysis showed significant variations in the IFR (p = 0.012, Kruskal-Wallis test) and CFR (p = 0.032, Kruskal-Wallis test) throughout the study period. We found the highest IFR (14.35%) in 2020 while Delta (20A) and Beta (20H) variants were circulating in Bangladesh. Remarkably, the highest CFR (1.91%) from SARS-CoV-2 variants was recorded in 2021. Conclusion Our findings highlight the importance of genomic surveillance for careful monitoring of variants of concern emergence to interpret correctly their relative IFR and CFR, and thus, for implementation of strengthened public health and social measures to control the spread of the virus. Furthermore, the results of the present study may provide important context for sequence-based inference in SARS-CoV-2 variant(s) evolution and clinical epidemiology beyond Bangladesh.
Collapse
Affiliation(s)
- M. Shaminur Rahman
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive HealthBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Susmita Roy Chowdhury
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Md. Moradul Siddique
- Department of Computer Science and EngineeringJashore University of Science and TechnologyJashoreBangladesh
| | - Ovinu Kibria Islam
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Syed Md. Galib
- Department of Computer Science and EngineeringJashore University of Science and TechnologyJashoreBangladesh
| | - Md. Tanvir Islam
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - M. Anwar Hossain
- Department of MicrobiologyUniversity of DhakaDhakaBangladesh
- Jashore University of Science and TechnologyJashoreBangladesh
| |
Collapse
|
31
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, Diego JGB, Lin J, Wu TC, Marches F, Chaussabel D, Yu P, Salner A, Aucello G, Koff J, Hudson B, Church SE, Gorman K, Anguiano E, García-Sastre A, Williams A, Schotsaert M, Palucka K. Spatiotemporally organized immunomodulatory response to SARS-CoV-2 virus in primary human broncho-alveolar epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534980. [PMID: 37034597 PMCID: PMC10081226 DOI: 10.1101/2023.03.30.534980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression towards severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.
Collapse
|
32
|
Paz M, Moreno P, Moratorio G. Perspective Chapter: Real-Time Genomic Surveillance for SARS-CoV-2 on Center Stage. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The course of the COVID-19 pandemic depends not only on how the SARS-CoV-2 virus mutates but on the actions taken to respond to it. Important public health decisions can only be taken if we know viral dynamics, viral variants distribution, and whether new variants are emerging that may be more transmissible or/and more virulent, displaying evasion to vaccines or antiviral treatments. This situation has put the use of different approaches, such as molecular techniques and real-time genomic sequencing, to support public health decision-making on center stage. To achieve this, robust programs based on: (i) diagnostic capacity; (ii) high-throughput sequencing technologies; and (iii) high-performance bioinformatic resources, need to be established. This chapter focuses on how SARS-CoV-2 evolved since its discovery and it summarizes the scientific efforts to obtain genomic data as the virus spread throughout the globe.
Collapse
|
33
|
Rapid evaluation of heterologous chimeric RBD-dimer mRNA vaccine for currently-epidemic Omicron sub-variants as booster shot after inactivated vaccine. BIOSAFETY AND HEALTH 2023; 5:89-100. [PMID: 37123450 PMCID: PMC9979697 DOI: 10.1016/j.bsheal.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
With continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the severe immune escape of Omicron sub-variants urges the development of next-generation broad-spectrum vaccines, especially as booster jabs after high-level vaccination coverage of inactivated vaccines in China and many other countries. Previously, we developed a coronavirus disease 2019 (COVID-19) protein subunit vaccine ZF2001® based on the tandem homo-prototype receptor-binding domain (RBD)-dimer of the SARS-CoV-2 spike protein. We upgraded the antigen into a hetero-chimeric prototype (PT)-Beta or Delta-BA.1 RBD-dimer to broaden the cross-protection efficacy and prove its efficiency with protein subunit and mRNA vaccine platforms. Herein, we further explored the hetero-chimeric RBD-dimer mRNA vaccines and evaluated their broad-spectrum activities as booster jabs following two doses of inactivated vaccine in mice. Our data demonstrated that the chimeric vaccines significantly boosted neutralizing antibody levels and specific T-cell responses against the variants, and PT-Beta was superior to Delta-BA.1 RBD as a booster in mice, shedding light on the antigen design for the next-generation COVID-19 vaccines.
Collapse
|
34
|
Yu H, Liu B, Zhang Y, Gao X, Wang Q, Xiang H, Peng X, Xie C, Wang Y, Hu P, Shi J, Shi Q, Zheng P, Feng C, Tang G, Liu X, Guo L, Lin X, Li J, Liu C, Huang Y, Yang N, Chen Q, Li Z, Su M, Yan Q, Pei R, Chen X, Liu L, Hu F, Liang D, Ke B, Ke C, Li F, He J, Wang M, Chen L, Xiong X, Tang X. Somatically hypermutated antibodies isolated from SARS-CoV-2 Delta infected patients cross-neutralize heterologous variants. Nat Commun 2023; 14:1058. [PMID: 36828833 PMCID: PMC9951844 DOI: 10.1038/s41467-023-36761-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
SARS-CoV-2 Omicron variants feature highly mutated spike proteins with extraordinary abilities in evading antibodies isolated earlier in the pandemic. Investigation of memory B cells from patients primarily with breakthrough infections with the Delta variant enables isolation of a number of neutralizing antibodies cross-reactive to heterologous variants of concern (VOCs) including Omicron variants (BA.1-BA.4). Structural studies identify altered complementarity determining region (CDR) amino acids and highly unusual heavy chain CDR2 insertions respectively in two representative cross-neutralizing antibodies-YB9-258 and YB13-292. These features are putatively introduced by somatic hypermutation and they are heavily involved in epitope recognition to broaden neutralization breadth. Previously, insertions/deletions were rarely reported for antiviral antibodies except for those induced by HIV-1 chronic infections. These data provide molecular mechanisms for cross-neutralization of heterologous SARS-CoV-2 variants by antibodies isolated from Delta variant infected patients with implications for future vaccination strategy.
Collapse
Affiliation(s)
- Haisheng Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Banghui Liu
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China
| | - Yudi Zhang
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xijie Gao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiaofang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Caixia Xie
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yaping Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peiyu Hu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Jingrong Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Quan Shi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Pingqian Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Chengqian Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guofang Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaopan Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Liliangzi Guo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiumei Lin
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yaling Huang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Zimu Li
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China
| | - Mengzhen Su
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Qihong Yan
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinwen Chen
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dan Liang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jun He
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China.
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.
| | - Ling Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Xiaoli Xiong
- The State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, the Chinese Academy of Sciences, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China.
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
35
|
Andreano E, Paciello I, Pierleoni G, Piccini G, Abbiento V, Antonelli G, Pileri P, Manganaro N, Pantano E, Maccari G, Marchese S, Donnici L, Benincasa L, Giglioli G, Leonardi M, De Santi C, Fabbiani M, Rancan I, Tumbarello M, Montagnani F, Sala C, Medini D, De Francesco R, Montomoli E, Rappuoli R. B cell analyses after SARS-CoV-2 mRNA third vaccination reveals a hybrid immunity like antibody response. Nat Commun 2023; 14:53. [PMID: 36599850 DOI: 10.1038/s41467-022-35781-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | - Valentina Abbiento
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giada Antonelli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | | | | | - Concetta De Santi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Ilaria Rancan
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Mario Tumbarello
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Raffaele De Francesco
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Emanuele Montomoli
- VisMederi Research S.r.l., Siena, Italy
- VisMederi S.r.l, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| |
Collapse
|
36
|
Wang E. Prediction of antibody binding to SARS-CoV-2 RBDs. BIOINFORMATICS ADVANCES 2023; 3:vbac103. [PMID: 36698760 PMCID: PMC9868522 DOI: 10.1093/bioadv/vbac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Summary The ability to predict antibody-antigen binding is essential for computational models of antibody affinity maturation and protein design. While most models aim to predict binding for arbitrary antigens and antibodies, the global impact of SARS-CoV-2 on public health and the availability of associated data suggest that a SARS-CoV-2-specific model would be highly beneficial. In this work, we present a neural network model, trained on ∼315 000 datapoints from deep mutational scanning experiments, that predicts escape fractions of SARS-CoV-2 RBDs binding to arbitrary antibodies. The antibody embeddings within the model constitute an effective sequence space, which correlates with the Hamming distance, suggesting that these embeddings may be useful for downstream tasks such as binding prediction. Indeed, the model achieves Spearman correlation coefficients of 0.46 and 0.52 on two held-out test sets. By comparison, correlation coefficients calculated using existing structure and sequence-based models do not exceed 0.28. The correlation coefficient against dissociation constants of antibodies binding to SARS-CoV-2 RBD variants is 0.46. Additionally, the residue-level escapes are highest in the antibody epitope, correlating well with experimentally measured escapes. We further study the effect of antibody chain use, embedding dimension size and feed-forward and convolutional architectures on the model results. Lastly, we find that the inference time of our model is significantly faster than previous models, suggesting that it could be a useful tool for the accurate and rapid prediction of antibodies binding to SARS-CoV-2 RBDs. Availability and implementation The model and associated code are available for download at https://github.com/ericzwang/RBD_AB. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Eric Wang
- To whom correspondence should be addressed.
| |
Collapse
|
37
|
Duong SL, Prüss H. Molecular disease mechanisms of human antineuronal monoclonal autoantibodies. Trends Mol Med 2023; 29:20-34. [PMID: 36280535 DOI: 10.1016/j.molmed.2022.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
Abstract
Autoantibodies targeting brain antigens can mediate a wide range of neurological symptoms ranging from epileptic seizures to psychosis to dementia. Although earlier experimental work indicated that autoantibodies can be directly pathogenic, detailed studies on disease mechanisms, biophysical autoantibody properties, and target interactions were hampered by the availability of human material and the paucity of monospecific disease-related autoantibodies. The emerging generation of patient-derived monoclonal autoantibodies (mAbs) provides a novel platform for the detailed characterization of immunobiology and autoantibody pathogenicity in vitro and in animal models. This Feature Review focuses on recent advances in mAb generation and discusses their potential as powerful scientific tools for high-resolution imaging, antigenic target identification, atomic-level structural analyses, and the development of antibody-selective immunotherapies.
Collapse
Affiliation(s)
- Sophie L Duong
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany.
| |
Collapse
|
38
|
Balasubramaniyam A, Ryan E, Brown D, Hamza T, Harrison W, Gan M, Sankhala RS, Chen WH, Martinez EJ, Jensen JL, Dussupt V, Mendez-Rivera L, Mayer S, King J, Michael NL, Regules J, Krebs S, Rao M, Matyas GR, Joyce MG, Batchelor AH, Gromowski GD, Dutta S. Unglycosylated Soluble SARS-CoV-2 Receptor Binding Domain (RBD) Produced in E. coli Combined with the Army Liposomal Formulation Containing QS21 (ALFQ) Elicits Neutralizing Antibodies against Mismatched Variants. Vaccines (Basel) 2022; 11:vaccines11010042. [PMID: 36679887 PMCID: PMC9864931 DOI: 10.3390/vaccines11010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of novel potentially pandemic pathogens necessitates the rapid manufacture and deployment of effective, stable, and locally manufacturable vaccines on a global scale. In this study, the ability of the Escherichia coli expression system to produce the receptor binding domain (RBD) of the SARS-CoV-2 spike protein was evaluated. The RBD of the original Wuhan-Hu1 variant and of the Alpha and Beta variants of concern (VoC) were expressed in E. coli, and their biochemical and immunological profiles were compared to RBD produced in mammalian cells. The E. coli-produced RBD variants recapitulated the structural character of mammalian-expressed RBD and bound to human angiotensin converting enzyme (ACE2) receptor and a panel of neutralizing SARS-CoV-2 monoclonal antibodies. A pilot vaccination in mice with bacterial RBDs formulated with a novel liposomal adjuvant, Army Liposomal Formulation containing QS21 (ALFQ), induced polyclonal antibodies that inhibited RBD association to ACE2 in vitro and potently neutralized homologous and heterologous SARS-CoV-2 pseudoviruses. Although all vaccines induced neutralization of the non-vaccine Delta variant, only the Beta RBD vaccine produced in E. coli and mammalian cells effectively neutralized the Omicron BA.1 pseudovirus. These outcomes warrant further exploration of E. coli as an expression platform for non-glycosylated, soluble immunogens for future rapid response to emerging pandemic pathogens.
Collapse
Affiliation(s)
- Arasu Balasubramaniyam
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Emma Ryan
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dallas Brown
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Therwa Hamza
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - William Harrison
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael Gan
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Elizabeth J. Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jaime L. Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sandra Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jason Regules
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shelly Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Adrian H. Batchelor
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sheetij Dutta
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-301-319-9154
| |
Collapse
|
39
|
Lima NS, Musayev M, Johnston TS, Wagner DA, Henry AR, Wang L, Yang ES, Zhang Y, Birungi K, Black WP, O'Dell S, Schmidt SD, Moon D, Lorang CG, Zhao B, Chen M, Boswell KL, Roberts-Torres J, Davis RL, Peyton L, Narpala SR, O'Connell S, Serebryannyy L, Wang J, Schrager A, Talana CA, Shimberg G, Leung K, Shi W, Khashab R, Biber A, Zilberman T, Rhein J, Vetter S, Ahmed A, Novik L, Widge A, Gordon I, Guech M, Teng IT, Phung E, Ruckwardt TJ, Pegu A, Misasi J, Doria-Rose NA, Gaudinski M, Koup RA, Kwong PD, McDermott AB, Amit S, Schacker TW, Levy I, Mascola JR, Sullivan NJ, Schramm CA, Douek DC. Primary exposure to SARS-CoV-2 variants elicits convergent epitope specificities, immunoglobulin V gene usage and public B cell clones. Nat Commun 2022; 13:7733. [PMID: 36517467 PMCID: PMC9748393 DOI: 10.1038/s41467-022-35456-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.
Collapse
Affiliation(s)
- Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maryam Musayev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevina Birungi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Walker P Black
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rachel L Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander Schrager
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Geoffrey Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rawan Khashab
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
| | - Asaf Biber
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tal Zilberman
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Joshua Rhein
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Sara Vetter
- Minnesota Department of Health, St Paul, MN, 55164, USA
| | - Afeefa Ahmed
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mercy Guech
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan, 5262112, Israel
| | - Timothy W Schacker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Itzchak Levy
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Yuan M, Wang Y, Lv H, Tan TJC, Wilson IA, Wu NC. Molecular analysis of a public cross-neutralizing antibody response to SARS-CoV-2. Cell Rep 2022; 41:111650. [PMID: 36335937 PMCID: PMC9606039 DOI: 10.1016/j.celrep.2022.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concerns (VOCs) continue to emerge, cross-neutralizing antibody responses become key toward next-generation design of a more universal COVID-19 vaccine. By analyzing published data from the literature, we report here that the combination of germline genes IGHV2-5/IGLV2-14 represents a public antibody response to the receptor-binding domain (RBD) that potently cross-neutralizes a broad range of VOCs, including Omicron and its sub-lineages. Detailed molecular analysis shows that the complementarity-determining region H3 sequences of IGHV2-5/IGLV2-14-encoded RBD antibodies have a preferred length of 11 amino acids and a conserved HxIxxI motif. In addition, these antibodies have a strong allelic preference due to an allelic polymorphism at amino acid residue 54 of IGHV2-5, which is located at the paratope. These findings have important implications for understanding cross-neutralizing antibody responses to SARS-CoV-2 and its heterogenicity at the population level as well as the development of a universal COVID-19 vaccine.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2022; 22:e311-e326. [PMID: 35803289 PMCID: PMC9255948 DOI: 10.1016/s1473-3099(22)00311-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Emiliano Cappello
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
42
|
Guerra D, Beaumont T, RadiÄ L, Kerster G, van der Straten K, Yuan M, Torres JL, Lee WH, Liu H, Poniman M, Bontjer I, Burger JA, Claireaux M, Caniels TG, Snitselaar JL, Bijl TPL, Kruijer S, Ozorowski G, Gideonse D, Sliepen K, Ward AB, Eggink D, de Bree GJ, Wilson IA, Sanders RW, van Gils MJ. Broad SARS-CoV-2 Neutralization by Monoclonal and Bispecific Antibodies Derived from a Gamma-infected Individual. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.14.512216. [PMID: 36263063 PMCID: PMC9580383 DOI: 10.1101/2022.10.14.512216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The worldwide pandemic caused by SARS-CoV-2 has remained a human medical threat due to the continued evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants for therapeutic and prophylactic use. A stabilized autologous SARS-CoV-2 spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants of concern, with COVA309-35 being the most potent against the autologous virus, as well as against Omicron BA.1 and BA.2. When combining the COVA309 mAbs as cocktails or bispecific antibody formats, the breadth and potency was significantly improved against all tested variants. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.
Collapse
|
43
|
Wang Z, Muecksch F, Muenn F, Cho A, Zong S, Raspe R, Ramos V, Johnson B, Ben Tanfous T, DaSilva J, Bednarski E, Guzman-Cardozo C, Turroja M, Millard KG, Tober-Lau P, Hillus D, Yao KH, Shimeliovich I, Dizon J, Kaczynska A, Jankovic M, Gazumyan A, Oliveira TY, Caskey M, Bieniasz PD, Hatziioannou T, Kurth F, Sander LE, Nussenzweig MC, Gaebler C. Humoral immunity to SARS-CoV-2 elicited by combination COVID-19 vaccination regimens. J Exp Med 2022; 219:e20220826. [PMID: 36006380 PMCID: PMC9418484 DOI: 10.1084/jem.20220826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
The SARS-CoV-2 pandemic prompted a global vaccination effort and the development of numerous COVID-19 vaccines at an unprecedented scale and pace. As a result, current COVID-19 vaccination regimens comprise diverse vaccine modalities, immunogen combinations, and dosing intervals. Here, we compare vaccine-specific antibody and memory B cell responses following two-dose mRNA, single-dose Ad26.COV.2S, and two-dose ChAdOx1, or combination ChAdOx1/mRNA vaccination. Plasma-neutralizing activity, as well as the magnitude, clonal composition, and antibody maturation of the RBD-specific memory B cell compartments, showed substantial differences between the vaccination regimens. While individual monoclonal antibodies derived from memory B cells exhibited similar binding affinities and neutralizing potency against Wuhan-Hu-1 SARS-CoV-2, there were significant differences in epitope specificity and neutralizing breadth against viral variants of concern. Although the ChAdOx1 vaccine was inferior to mRNA and Ad26.COV.2S in several respects, biochemical and structural analyses revealed enrichment in a subgroup of memory B cell neutralizing antibodies with distinct RBD-binding properties resulting in remarkable potency and breadth.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Friederike Muenn
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Shuai Zong
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Brianna Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | | | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Katrina G. Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - David Hillus
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Juan Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anna Kaczynska
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | | | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Vesin B, Lopez J, Noirat A, Authié P, Fert I, Le Chevalier F, Moncoq F, Nemirov K, Blanc C, Planchais C, Mouquet H, Guinet F, Hardy D, Vives FL, Gerke C, Anna F, Bourgine M, Majlessi L, Charneau P. An intranasal lentiviral booster reinforces the waning mRNA vaccine-induced SARS-CoV-2 immunity that it targets to lung mucosa. Mol Ther 2022; 30:2984-2997. [PMID: 35484842 PMCID: PMC9044714 DOI: 10.1016/j.ymthe.2022.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues and new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern emerge, the adaptive immunity initially induced by the first-generation COVID-19 vaccines starts waning and needs to be strengthened and broadened in specificity. Vaccination by the nasal route induces mucosal, humoral, and cellular immunity at the entry point of SARS-CoV-2 into the host organism and has been shown to be the most effective for reducing viral transmission. The lentiviral vaccination vector (LV) is particularly suitable for this route of immunization owing to its non-cytopathic, non-replicative, and scarcely inflammatory properties. Here, to set up an optimized cross-protective intranasal booster against COVID-19, we generated an LV encoding stabilized spike of SARS-CoV-2 Beta variant (LV::SBeta-2P). mRNA vaccine-primed and -boosted mice, with waning primary humoral immunity at 4 months after vaccination, were boosted intranasally with LV::SBeta-2P. A strong boost effect was detected on cross-sero-neutralizing activity and systemic T cell immunity. In addition, mucosal anti-spike IgG and IgA, lung-resident B cells, and effector memory and resident T cells were efficiently induced, correlating with complete pulmonary protection against the SARS-CoV-2 Delta variant, demonstrating the suitability of the LV::SBeta-2P vaccine candidate as an intranasal booster against COVID-19. LV::SBeta-2P vaccination was also fully protective against Omicron infection of the lungs and central nervous system, in the highly susceptible B6.K18-hACE2IP-THV transgenic mice.
Collapse
Affiliation(s)
- Benjamin Vesin
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Jodie Lopez
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Amandine Noirat
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Fanny Moncoq
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Catherine Blanc
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Université de Paris, Immunology Department, Institut Pasteur, INSERM U1222, Paris F-75015, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Université de Paris, Immunology Department, Institut Pasteur, INSERM U1222, Paris F-75015, France
| | - Françoise Guinet
- Lymphocytes and Immunity Unit, Université de Paris, Immunology Department, Institut Pasteur, Paris F-75015, France
| | - David Hardy
- Histopathology Platform, Institut Pasteur, Paris F-75015, France
| | | | - Christiane Gerke
- Institut Pasteur, Université de Paris, Innovation Office, Vaccine Programs, Institut Pasteur, Paris F-75015, France
| | - François Anna
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Maryline Bourgine
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France.
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Virology Department, 28 rue du Dr. Roux, Paris F-75015, France
| |
Collapse
|
45
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
46
|
Moyo-Gwete T, Madzivhandila M, Mkhize NN, Kgagudi P, Ayres F, Lambson BE, Manamela NP, Richardson SI, Makhado Z, van der Mescht MA, de Beer Z, de Villiers TR, Burgers WA, Ntusi NAB, Rossouw T, Ueckermann V, Boswell MT, Moore PL. Shared N417-Dependent Epitope on the SARS-CoV-2 Omicron, Beta, and Delta Plus Variants. J Virol 2022; 96:e0055822. [PMID: 35867572 PMCID: PMC9364786 DOI: 10.1128/jvi.00558-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.
Collapse
Affiliation(s)
- Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mashudu Madzivhandila
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N. Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prudence Kgagudi
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwen E. Lambson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I. Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Theresa Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
47
|
Kaku CI, Bergeron AJ, Ahlm C, Normark J, Sakharkar M, Forsell MNE, Walker LM. Recall of preexisting cross-reactive B cell memory after Omicron BA.1 breakthrough infection. Sci Immunol 2022; 7:eabq3511. [PMID: 35549299 PMCID: PMC9097882 DOI: 10.1126/sciimmunol.abq3511] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
Abstract
Understanding immune responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection will facilitate the development of next-generation vaccines. Here, we profiled spike (S)-specific B cell responses after Omicron/BA.1 infection in messenger RNA-vaccinated donors. The acute antibody response was characterized by high levels of somatic hypermutation and a bias toward recognition of ancestral SARS-CoV-2 strains, suggesting the early activation of vaccine-induced memory B cells. BA.1 breakthrough infection induced a shift in B cell immunodominance hierarchy from the S2 subunit, which is highly conserved across SARS-CoV-2 variants of concern (VOCs), and toward the antigenically variable receptor binding domain (RBD). A large proportion of RBD-directed neutralizing antibodies isolated from BA.1 breakthrough infection donors displayed convergent sequence features and broadly recognized SARS-CoV-2 VOCs. Together, these findings provide insights into the role of preexisting immunity in shaping the B cell response to heterologous SARS-CoV-2 variant exposure.
Collapse
Affiliation(s)
| | - Alan J. Bergeron
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, USA
| | - Clas Ahlm
- Division of Immunology, Department of Clinical Microbiology, Umea University, Umea
| | - Johan Normark
- Division of Immunology, Department of Clinical Microbiology, Umea University, Umea
| | | | | | | |
Collapse
|
48
|
Agudelo M, Muecksch F, Schaefer-Babajew D, Cho A, DaSilva J, Bednarski E, Ramos V, Oliveira TY, Cipolla M, Gazumyan A, Zong S, Rodrigues DA, Lira GS, Conde L, Aguiar RS, Ferreira OC, Tanuri A, Affonso KC, Galliez RM, Castineiras TMPP, Echevarria-Lima J, Bozza MT, Vale AM, Bieniasz PD, Hatziioannou T, Nussenzweig MC. Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. J Exp Med 2022; 219:213338. [PMID: 35796685 PMCID: PMC9270183 DOI: 10.1084/jem.20220367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a global problem in part because of the emergence of variants of concern that evade neutralization by antibodies elicited by prior infection or vaccination. Here we report on human neutralizing antibody and memory responses to the Gamma variant in a cohort of hospitalized individuals. Plasma from infected individuals potently neutralized viruses pseudotyped with Gamma SARS-CoV-2 spike protein, but neutralizing activity against Wuhan-Hu-1-1, Beta, Delta, or Omicron was significantly lower. Monoclonal antibodies from memory B cells also neutralized Gamma and Beta pseudoviruses more effectively than Wuhan-Hu-1. 69% and 34% of Gamma-neutralizing antibodies failed to neutralize Delta or Wuhan-Hu-1. Although Class 1 and 2 antibodies dominate the response to Wuhan-Hu-1 or Beta, 54% of antibodies elicited by Gamma infection recognized Class 3 epitopes. The results have implications for variant-specific vaccines and infections, suggesting that exposure to variants generally provides more limited protection to other variants.
Collapse
Affiliation(s)
- Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | | | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY,Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Shuai Zong
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Danielle A.S. Rodrigues
- Laboratório de Biologia de Linfócitos, Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme S. Lira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Laboratório de Biologia de Linfócitos, Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Departamento de Genética, Ecologia e Evolução, Insituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Orlando C. Ferreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Affonso
- Núcleo de Vigilância Hospitalar, Hospital Federal do Andaraí, Ministério de Saúde, Rio de Janeiro, Brazil
| | - Rafael M. Galliez
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana Echevarria-Lima
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Torres Bozza
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M. Vale
- Laboratório de Biologia de Linfócitos, Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY,Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | | | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY,Howard Hughes Medical Institute, The Rockefeller University, New York, NY,Correspondence to Michel C. Nussenzweig:
| |
Collapse
|
49
|
Reincke SM, Prüss H, Wilson IA, Kreye J. Antigenic imprinting in SARS-CoV-2. Clin Transl Med 2022; 12:e923. [PMID: 35808842 PMCID: PMC9270639 DOI: 10.1002/ctm2.923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- S. Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE), BerlinGermany
- Department of Neurology and Experimental NeurologyCharité—Universitätsmedizin BerlinBerlinGermany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE), BerlinGermany
- Department of Neurology and Experimental NeurologyCharité—Universitätsmedizin BerlinBerlinGermany
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE), BerlinGermany
- Department of Neurology and Experimental NeurologyCharité—Universitätsmedizin BerlinBerlinGermany
- Department of Pediatric NeurologyCharité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
50
|
Lima NS, Musayev M, Johnston TS, Wagner DA, Henry AR, Wang L, Yang ES, Zhang Y, Birungi K, Black WP, O’Dell S, Schmidt SD, Moon D, Lorang CG, Zhao B, Chen M, Boswell KL, Roberts-Torres J, Davis RL, Peyton L, Narpala SR, O’Connell S, Wang J, Schrager A, Talana CA, Leung K, Shi W, Khashab R, Biber A, Zilberman T, Rhein J, Vetter S, Ahmed A, Novik L, Widge A, Gordon I, Guech M, Teng IT, Phung E, Ruckwardt TJ, Pegu A, Misasi J, Doria-Rose NA, Gaudinski M, Koup RA, Kwong PD, McDermott AB, Amit S, Schacker TW, Levy I, Mascola JR, Sullivan NJ, Schramm CA, Douek DC. Primary exposure to SARS-CoV-2 variants elicits convergent epitope specificities, immunoglobulin V gene usage and public B cell clones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.28.486152. [PMID: 35378757 PMCID: PMC8978934 DOI: 10.1101/2022.03.28.486152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. The basis for such cross-protection at the molecular level is incompletely understood. Here we characterized the repertoire and epitope specificity of antibodies elicited by Beta, Gamma and ancestral variant infection and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a high-throughput approach to obtain immunoglobulin sequences and produce monoclonal antibodies for functional assessment from single B cells. Infection with any variant elicited similar cross-binding antibody responses exhibiting a remarkably conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may represent a general immunological principle that accounts for the continued efficacy of vaccines based on a single ancestral variant.
Collapse
Affiliation(s)
- Noemia S. Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Maryam Musayev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Timothy S. Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Danielle A. Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Amy R. Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kevina Birungi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Walker P. Black
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Cynthia G. Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kristin L. Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Rachel L. Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Alexander Schrager
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Rawan Khashab
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Asaf Biber
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Zilberman
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joshua Rhein
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sara Vetter
- Minnesota Department of Health, St Paul, MN 55164, USA
| | - Afeefa Ahmed
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Mercy Guech
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Martin Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan 5262112, Israel
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Itzchak Levy
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| |
Collapse
|