1
|
Wang KL, Gao WS, Nasir A, Wang YF, Yuan M, Zhang ZZ, Bai Q, Li ZS. Sleep deprivation modulates pain sensitivity through alterations in lncRNA and mRNA expression in the nucleus accumbens and ventral midbrain. Neuropharmacology 2025; 275:110485. [PMID: 40311779 DOI: 10.1016/j.neuropharm.2025.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/01/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Sleep deprivation (SD) is a growing public health concern with implications for pain sensitivity and well-being. Although the relationship between sleep and pain is well understood, the underlying mechanisms remain largely unknown. This study investigates how SD influences pain sensitivity by modulating gene expression in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of mice. Using the CPW sleep deprivation model, mice were deprived of sleep for three days, simulating preoperative conditions. Behavioral tests revealed heightened mechanical and thermal hypersensitivity post-SD. Brain MRI, immunofluorescence, and RNA sequencing analyses showed significant changes in the expression of non-coding RNAs (ncRNAs) and mRNAs in NAc and VTA, implicating several pain-related genes. Functional enrichment analysis highlighted pathways associated with neurotransmission, inflammation, and stress response. The study identified Hcrt and Apoe as critical modulators of SD-induced hyperalgesia, with potential therapeutic implications for managing pain associated with SD. Findings suggest that overlapping pathways exist between sleep and pain sensitivity, offering insights into the molecular mechanisms that connect sleep disorders with heightened pain responses.
Collapse
Affiliation(s)
- Kai-Li Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei-Sen Gao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-Fang Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Yuan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen-Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhi-Song Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Varley TF, Sporns O, Stevenson NJ, Yrjölä P, Welch MG, Myers MM, Vanhatalo S, Tokariev A. Emergence of a synergistic scaffold in the brains of human infants. Commun Biol 2025; 8:743. [PMID: 40360743 PMCID: PMC12075868 DOI: 10.1038/s42003-025-08082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
The human brain is a complex organ comprising billions of interconnected neurons, which enables interaction with both physical and social environments. Neural dynamics of the whole brain go far beyond just the sum of its individual elements; a property known as "synergy". Previously it has been shown that synergy is crucial for many complex brain functions and cognition, however, it remains unknown how and when the large number of discrete neurons evolve into the unified system able to support synergistic interactions. Here we analyzed high-density electroencephalography data from the late fetal period to one month after term age. We found that the human brain transitions from a redundancy-dominated to a synergy-dominated system around birth. Frontal regions lead the emergence of a synergistic scaffold comprised of overlapping subsystems, while the integration of sensory areas developed gradually, from occipital to central regions. Strikingly, early developmental trajectories of brain synergy were modulated by environmental enrichment associated with enhanced mother-infant interactions, and the level of synergy near term equivalent age was associated with later neurocognitive development.
Collapse
Affiliation(s)
- Thomas F Varley
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, 47408, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05405, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Martha G Welch
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael M Myers
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Anton Tokariev
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA.
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.
- Early Brain Activity, Systems, and Health Group, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Tavakoli MR, Lyudchik J, Januszewski M, Vistunou V, Agudelo Dueñas N, Vorlaufer J, Sommer C, Kreuzinger C, Oliveira B, Cenameri A, Novarino G, Jain V, Danzl JG. Light-microscopy-based connectomic reconstruction of mammalian brain tissue. Nature 2025; 642:10.1038/s41586-025-08985-1. [PMID: 40335689 DOI: 10.1038/s41586-025-08985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
The information-processing capability of the brain's cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution1,2 with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner.
Collapse
Affiliation(s)
| | - Julia Lyudchik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Vitali Vistunou
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Jakob Vorlaufer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Bárbara Oliveira
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alban Cenameri
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Johann G Danzl
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
4
|
Marín O. Development of GABAergic Interneurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e70136. [PMID: 40356226 PMCID: PMC12069972 DOI: 10.1111/ejn.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
GABAergic interneurons are critical regulators of information processing in the cerebral cortex. They constitute a heterogeneous group of neurons with unique spatial and temporal capabilities to control information flow and influence neural network dynamics through inhibitory and disinhibitory mechanisms. Interneuron diversity is largely conserved between rodents and primates, which indicates that the addition of new types of GABAergic neurons is not the most critical innovation of the primate cortex. In contrast, interneurons are much more abundant and seem more widely interconnected in the cerebral cortex of primates than in rodents, suggesting selective evolutionary pressure in the mechanisms regulating the generation, survival and maturation of cortical interneurons. Recent studies are beginning to shed light on the cellular and molecular mechanisms controlling the development of cortical interneurons in humans, from their generation in the embryonic telencephalon to their early integration in cortical networks. These studies identified many features in the development of human cortical interneurons that are shared with other mammals, along with distinctive features that seem characteristic of the primate brain, such as a previously unrecognised protracted period of neurogenesis and migration that extends the earliest stages of interneuron development into the first months of postnatal life in humans.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Medical Research Council Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
5
|
Oláh G, Lákovics R, Shapira S, Leibner Y, Szücs A, Csajbók ÉA, Barzó P, Molnár G, Segev I, Tamás G. Accelerated signal propagation speed in human neocortical dendrites. eLife 2025; 13:RP93781. [PMID: 40272114 PMCID: PMC12021416 DOI: 10.7554/elife.93781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.
Collapse
Affiliation(s)
- Gáspár Oláh
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Rajmund Lákovics
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Sapir Shapira
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Yonatan Leibner
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Attila Szücs
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd UniversityBudapestHungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Pál Barzó
- Department of Neurosurgery, University of SzegedSzegedHungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Idan Segev
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| |
Collapse
|
6
|
Cheng Z, Zhu H, Feng S, Zhang Y, Xiong X. Cross-Species Multi-Omics Analysis Reveals Myeloid-Driven Endothelial Oxidative Stress in Ischemic Stroke. FRONT BIOSCI-LANDMRK 2025; 30:37429. [PMID: 40302336 DOI: 10.31083/fbl37429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Ischemic stroke is a leading cause of mortality and disability worldwide, yet the interplay between peripheral and central immune responses is still only partially understood. Emerging evidence suggests that myeloid cells, when activated in the periphery, infiltrate the ischemic brain and contribute to the disruption of the blood-brain barrier (BBB) through both inflammatory and metabolic mechanisms. METHODS In this study, we integrated bulk RNA-sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), spatial transcriptomics, and flow cytometry data from human and mouse models of ischemic stroke. Mouse stroke models were induced by transient middle cerebral artery occlusion (tMCAO), and brain tissues were later collected at specified time points for analysis. We examined time-dependent transcriptional changes in the peripheral blood, delineated cell-type-specific responses by single-cell profiling, and validated myeloid infiltration into the ischemic brain. We also investigated endothelial metabolic reprogramming and oxidative stress by combining scMetabolism analyses (a computational R package for inferring metabolic pathway activity at the single-cell level) with in vitro oxygen-glucose deprivation/reperfusion (OGD/R) experiments. RESULTS Cross-species bulk RNA-seq revealed a modest early immune shift at 3 h post-stroke, escalating significantly by 24 h, with robust myeloid-centric gene signatures conserved in humans and mice. Single-cell analyses confirmed a pronounced expansion of neutrophils, monocytes, and megakaryocytes in peripheral blood, coupled with a decrease in T and B lymphocytes. Spatial transcriptomics and flow cytometry demonstrated substantial infiltration of CD11b+ myeloid cells into the infarct core, which showed extensive interaction with endothelial cells. Endothelial scRNA-seq data showed reductions in the oxidative phosphorylation, glutathione, and nicotinate metabolic pathways, together with elevated pentose phosphate pathway activity, suggestive of oxidative stress and compromised antioxidant capacity. Functional scoring further indicated diminished endothelial inflammation/repair potential, while in vitro OGD/R experiments revealed morphological disruption, CD31 downregulation, and increased 4-hydroxynonenal (4-HNE), underscoring the importance of endothelial oxidative damage in BBB breakdown. CONCLUSIONS These multi-omics findings highlight the existence of a coordinated peripheral-central immune axis in ischemic stroke, wherein myeloid cell recruitment and endothelial metabolic vulnerability jointly exacerbate inflammation and oxidative stress. The targeting of endothelial oxidative injury and myeloid-endothelial crosstalk may represent a promising strategy to mitigate secondary brain injury in ischemic stroke.
Collapse
Affiliation(s)
- Ziqi Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China
| |
Collapse
|
7
|
Ramsden CE, Cutler RG, Li X, Keyes GS. HYPOTHESIS: Lipid-protecting disulfide bridges are the missing molecular link between ApoE4 and sporadic Alzheimer's disease in humans. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102681. [PMID: 40209641 DOI: 10.1016/j.plefa.2025.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with transport and protection of highly vulnerable lipids that are required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. APOE allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the specific molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide-linked dimers and multimers. Here we propose the overarching hypothesis that super-ability (for ApoE2), intermediate ability (for ApoE3) or inability (for ApoE4) to form lipid-protecting intermolecular disulfide bridges, is the central molecular determinant accounting for the disparate effects of APOE alleles on AD risk and amyloid-β and Tau pathologies in humans. We posit that presence and abundance of Cys in human ApoE3 and ApoE2 respectively, conceal and protect vulnerable lipids transported by ApoE from peroxidation by enabling formation of disulfide-linked homo- and heteromeric ApoE complexes. We thus propose that inability to form intermolecular disulfide bridges makes ApoE4-containing lipoproteins uniquely vulnerable to peroxidation and its downstream consequences. Consistent with our model, we found that brain-enriched polyunsaturated fatty acid-containing phospholipids induce disulfide-dependent dimerization and multimerization of ApoE3 and ApoE2 (but not ApoE4). By contrast, incubation with the peroxidation-resistant lipid DMPC or cholesterol alone had minimal effects on dimerization. These novel concepts and findings are integrated into our unifying model implicating peroxidation of ApoE-containing lipoproteins, with consequent ApoE receptor-ligand disruption, as initiating molecular events that ultimately lead to AD in humans.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD 21224, USA; NIH, Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
| | - Roy G Cutler
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Xiufeng Li
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Petkova MD, Schuhknecht GFP. A map of neural signals and circuits traces the logic of brain computation. Nature 2025; 640:319-321. [PMID: 40205221 DOI: 10.1038/d41586-025-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
|
9
|
Brecht M. Large brains: Big unknowns in cellular neuroscience. Curr Opin Neurobiol 2025; 91:102981. [PMID: 39978220 DOI: 10.1016/j.conb.2025.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
Contemporary cellular neuroscience is strong on small but weak on large brains. Large brains have lower neuronal densities than smaller brains. We outline opposing functional interpretations of this result. Analysis of human brains supports the idea that dendritic complexity matters and might even correlate with intellectual ability. Cortical connectomics revealed an elaboration of disinhibitory motifs in human brains. There is disagreement as to whether glia-to-neuron ratios differ between small and large brains. The elaborate myeloarchitecture of the human brain has long been recognized and novel evidence indicates myelin might play nonconventional structural functions in larger brains. Three-dimensional body-part models in the cortex of tactile specialists point to the significance of the three-dimensional structure of cortical networks. The comparative assessment of brain performance remains one of the biggest challenges in neurobiology. Understanding cellular differences between small and large brains is a neglected, yet fundamental issue for neuroscience and translation.
Collapse
Affiliation(s)
- Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Du C, Sun Y, Wang J, Zhang Q, Zeng Y. Synapses mediate the effects of different types of stress on working memory: a brain-inspired spiking neural network study. Front Cell Neurosci 2025; 19:1534839. [PMID: 40177582 PMCID: PMC11961926 DOI: 10.3389/fncel.2025.1534839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Acute stress results from sudden short-term events, and individuals need to quickly adjust their physiological and psychological to re-establish balance. Chronic stress, on the other hand, results in long-term physiological and psychological burdens due to the continued existence of stressors, making it difficult for individuals to recover and prone to pathological symptoms. Both types of stress can affect working memory and change cognitive function. In this study, we explored the impact of acute and chronic stress on synaptic modulation using a biologically inspired, data-driven rodent prefrontal neural network model. The model consists of a specific number of excitatory and inhibitory neurons that are connected through AMPA, NMDA, and GABA synapses. The study used a short-term recall to simulate working memory tasks and assess the ability of neuronal populations to maintain information over time. The results showed that acute stress can enhance working memory information retention by enhancing AMPA and NMDA synaptic currents. In contrast, chronic stress reduces dendritic spine density and weakens the regulatory effect of GABA currents on working memory tasks. In addition, this structural damage can be complemented by strong connections between excitatory neurons with the same selectivity. These findings provide a reference scheme for understanding the neural basis of working memory under different stress conditions.
Collapse
Affiliation(s)
- Chengcheng Du
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
| | - Yinqian Sun
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
| | - Jihang Wang
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
| | - Qian Zhang
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zeng
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Duinkerken BHP, Kievits AJ, Wolters AHG, van Beijeren Bergen En Henegouwen D, Kuipers J, Hoogenboom JP, Giepmans BNG. Sample Processing and Benchmarking for Multibeam Optical Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf024. [PMID: 40173053 DOI: 10.1093/mam/ozaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
Electron microscopy (EM) is an indispensable technique to visualize biological ultrastructure in health and disease. High-throughput EM further enables larger scales and volumes to be recorded within feasible timeframes. Multibeam optical scanning transmission EM (OSTEM) utilizes multiple beamlets and optical separation of the transmitted electrons to increase imaging throughput with transmission-based imaging. However, the compatibility of multibeam OSTEM with routine sample preparation protocols and the effect of machine settings on image quality remain largely unknown. Here, we show multibeam OSTEM to be an order of magnitude faster than (scanning) transmission EM while yielding comparable high-quality images of tissue processed with standard high-contrast staining protocols. Multibeam OSTEM benefits from embedding approaches that introduce high contrast but is flexible in the type of stain used. Optimal results are obtained using an acceleration voltage of 5 kV, where section thickness and pixel dwell time require a balance between throughput and image quality. Our results show high-throughput EM with imaging quality comparable with commonly used transmission-based modalities, enabling biological ultrastructure analysis across larger scales and volumes.
Collapse
Affiliation(s)
- B H Peter Duinkerken
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Arent J Kievits
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, Delft, CJ 2628, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Daan van Beijeren Bergen En Henegouwen
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Jacob P Hoogenboom
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, Delft, CJ 2628, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| |
Collapse
|
12
|
Takács V, Papp P, Orosz Á, Bardóczi Z, Zsoldos T, Zichó K, Watanabe M, Maglóczky Z, Gombás P, Freund TF, Nyiri G. Absolute Number of Three Populations of Interneurons and All GABAergic Synapses in the Human Hippocampus. J Neurosci 2025; 45:e0372242024. [PMID: 39809540 PMCID: PMC11884393 DOI: 10.1523/jneurosci.0372-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
The human hippocampus, essential for learning and memory, is implicated in numerous neurological and psychiatric disorders, each linked to specific neuronal subpopulations. Advancing our understanding of hippocampal function requires computational models grounded in precise quantitative neuronal data. While extensive data exist on the neuronal composition and synaptic architecture of the rodent hippocampus, analogous quantitative data for the human hippocampus remain very limited. Given the critical role of local GABAergic interneurons in modulating hippocampal functions, we employed unbiased stereological techniques to estimate the density and total number of three major GABAergic cell types in the male and female human hippocampus: parvalbumin (PV)-expressing, somatostatin (SOM)-positive, and calretinin (CR)-positive interneurons. Our findings reveal an estimated 49,400 PV-positive, 141,500 SOM-positive, and 250,600 CR-positive interneurons per hippocampal hemisphere. Notably, CR-positive interneurons, which are primarily interneuron-selective in rodents, were present in humans at a higher proportion. Additionally, using three-dimensional electron microscopy, we estimated ∼25 billion GABAergic synapses per hippocampal hemisphere, with PV-positive boutons comprising ∼3.5 billion synapses, or 14% of the total GABAergic synapses. These findings contribute crucial quantitative insights for modeling human hippocampal circuits and understanding its complex regulatory dynamics.
Collapse
Affiliation(s)
- Virág Takács
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Péter Papp
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Zsuzsanna Bardóczi
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Tamás Zsoldos
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Krisztián Zichó
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Hokkaido University, Sapporo 060-8638, Japan
| | - Zsófia Maglóczky
- Human Brain Research Laboratory, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Péter Gombás
- Department of Pathology, St. Borbála Hospital, Tatabánya 2800, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| |
Collapse
|
13
|
Liu B, White AJ, Lo CC. Augmenting flexibility: mutual inhibition between inhibitory neurons expands functional diversity. iScience 2025; 28:111718. [PMID: 39898045 PMCID: PMC11787539 DOI: 10.1016/j.isci.2024.111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/06/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Recent advances in microcircuit analysis of nervous systems have revealed a plethora of mutual connections between inhibitory interneurons across many different species and brain regions. The abundance of these mutual connections has not been fully explained. Strikingly, we show that neural circuits with mutually inhibitory connections are able to rapidly and flexibly switch between distinct functions. That is, multiple functions coexist for a single set of synaptic weights. Here, we develop a theoretical framework to explain how inhibitory recurrent circuits give rise to this flexibility and show that mutual inhibition doubles the number of cusp bifurcations in small neural circuits. As a concrete example, we study a class of functional motifs we call coupled recurrent inhibitory and recurrent excitatory loops (CRIRELs). These CRIRELs have the advantage of being both multi-functional and controllable, performing a plethora of functions, including decisions, memory, toggle, and so forth. Finally, we demonstrate how mutual inhibition maximizes storage capacity for larger networks.
Collapse
Affiliation(s)
- Belle Liu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu City 30080, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu City 30080, Taiwan
| | - Alexander James White
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu City 30080, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu City 30080, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu City 30080, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu City 30080, Taiwan
| |
Collapse
|
14
|
Han X, Li PH, Wang S, Blakely T, Aggarwal S, Gopalani B, Sanchez M, Schalek R, Meirovitch Y, Lin Z, Berger D, Wu Y, Aly F, Bay S, Delatour B, Lafaye P, Pfister H, Wei D, Jain V, Ploegh H, Lichtman J. Mapping Alzheimer's Molecular Pathologies in Large-Scale Connectomics Data: A Publicly Accessible Correlative Microscopy Resource. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.24.563674. [PMID: 37961104 PMCID: PMC10634883 DOI: 10.1101/2023.10.24.563674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Connectomics using volume-electron-microscopy enables mapping and analysis of neuronal networks, revealing insights into neural circuit function and dysfunction. In Alzheimer's disease (AD), where amyloid-β (Aβ) and hyperphosphorylated-Tau (pTau) are implicated, connectomics offers an approach to unravel how these molecules contribute to circuit alterations by enabling the study of these molecules within the context of the complete local neuronal and glial milieu. We present a volumetric-correlated-light-and-electron microscopy (vCLEM) protocol using fluorescent nanobodies to localize Aβ and pTau within a large-scale connectomics dataset from the hippocampus of the 3xTg AD mouse model. A key outcome of this work is a publicly accessible vCLEM dataset, featuring fluorescent labeling of Aβ and pTau in the ultrastructural context with segmented neurons, glia, and synapses. This dataset provides a unique resource for exploring AD pathology in the context of connectomics and fosters collaborative opportunities in neurodegenerative disease research. As a proof-of-principle, we uncovered new localizations of Aβ and pTau, including pTau-positive spine-like protrusions at the axon initial segment and changes in the number and size of synapses near Aβ plaques. Our vCLEM approach facilitates the discovery of both molecular and structural alterations within large-scale EM data, advancing connectomics research in Alzheimer's and other neurodegenerative diseases.
Collapse
|
15
|
Almeida GM, Silva BM, Arruda E, Sebollela A. Human brain tissue cultures: a unique ex vivo model to unravel the pathogenesis of neurotropic arboviruses. Curr Opin Virol 2025; 70:101453. [PMID: 39954607 DOI: 10.1016/j.coviro.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Arboviruses are transmitted by arthropods, and their spread from endemic to nonendemic regions has been accelerated by deforestation, climate change, and global mobility. Arbovirus infection in human results in symptoms ranging from mild to life-threatening, with the impairment of central nervous system functions being reported in severe cases. Despite its clinical relevance, the mechanisms by which arboviruses led to neural dysfunction are still poorly understood. The lack of a widespread human central nervous system model to study the virus-host interaction challenges the advance of our knowledge on these mechanisms. In this context, human brain-derived ex vivo models have the advantage of preserving cellular diversity, cell connections, and tissue cytoarchitecture found in human brain, raising them as a powerful strategy to elucidate the cellular-molecular alterations underlying brain diseases. Here, we review recent advances in the field of neurotropic arboviruses obtained using ex vivo human brain tissue as the experimental model.
Collapse
Affiliation(s)
- Glaucia M Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruna M Silva
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Translational Medicine Research Plataform, Oswaldo Cruz Foundation, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
16
|
Plaza-Alonso S, Cano-Astorga N, DeFelipe J, Alonso-Nanclares L. Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex. eLife 2025; 14:e96144. [PMID: 39882848 PMCID: PMC11867616 DOI: 10.7554/elife.96144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.
Collapse
Affiliation(s)
- Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Nicolas Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| |
Collapse
|
17
|
Watson JF, Vargas-Barroso V, Morse-Mora RJ, Navas-Olive A, Tavakoli MR, Danzl JG, Tomschik M, Rössler K, Jonas P. Human hippocampal CA3 uses specific functional connectivity rules for efficient associative memory. Cell 2025; 188:501-514.e18. [PMID: 39667938 DOI: 10.1016/j.cell.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Our brain has remarkable computational power, generating sophisticated behaviors, storing memories over an individual's lifetime, and producing higher cognitive functions. However, little of our neuroscience knowledge covers the human brain. Is this organ truly unique, or is it a scaled version of the extensively studied rodent brain? Combining multicellular patch-clamp recording with expansion-based superresolution microscopy and full-scale modeling, we determined the cellular and microcircuit properties of the human hippocampal CA3 region, a fundamental circuit for memory storage. In contrast to neocortical networks, human hippocampal CA3 displayed sparse connectivity, providing a circuit architecture that maximizes associational power. Human synapses showed unique reliability, high precision, and long integration times, exhibiting both species- and circuit-specific properties. Together with expanded neuronal numbers, these circuit characteristics greatly enhanced the memory storage capacity of CA3. Our results reveal distinct microcircuit properties of the human hippocampus and begin to unravel the inner workings of our most complex organ.
Collapse
Affiliation(s)
- Jake F Watson
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria.
| | | | | | - Andrea Navas-Olive
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria
| | - Mojtaba R Tavakoli
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Tomschik
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Jonas
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria.
| |
Collapse
|
18
|
Ramsden CE, Cutler RG, Li X, Keyes GS. Lipid-protecting disulfide bridges are the missing molecular link between ApoE4 and sporadic Alzheimer's disease in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633633. [PMID: 39868210 PMCID: PMC11761642 DOI: 10.1101/2025.01.17.633633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with the transport and protection of highly vulnerable lipids required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. Human APOE allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the specific molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide bridge-linked dimers and multimers. Here we propose the overarching hypothesis that the super-ability (for ApoE2), intermediate ability (for ApoE3) or inability (for ApoE4) to form lipid-protecting intermolecular disulfide bridges, is the central molecular determinant accounting for the disparate effects of APOE alleles on AD risk and amyloid-β and Tau pathologies in humans. We posit that presence and abundance of Cys in human ApoE3 and ApoE2 respectively, conceal and protect vulnerable lipids transported by ApoE from peroxidation by enabling formation of ApoE homo-dimers/multimers and heteromeric ApoE complexes such as ApoE-ApoJ and ApoE-ApoD. We thus propose that the inability to form intermolecular disulfide bridges makes ApoE4-containing lipoproteins uniquely vulnerable to peroxidation and its downstream consequences. Consistent with our model, we found that brain-enriched polyunsaturated fatty acid-containing phospholipids induce disulfide-dependent dimerization and multimerization of ApoE3 and ApoE2 (but not ApoE4). By contrast, incubation with the peroxidation-resistant lipid DMPC or cholesterol alone had minimal effects on dimerization. These novel concepts and findings are integrated into our unifying model implicating peroxidation of ApoE-containing lipoproteins, with consequent ApoE receptor-ligand disruption, as the initiating molecular events that ultimately lead to AD in humans.
Collapse
Affiliation(s)
- Christopher E. Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Roy G. Cutler
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Xiufeng Li
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Gregory S. Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| |
Collapse
|
19
|
Micheva KD, Simhal AK, Schardt J, Smith SJ, Weinberg RJ, Owen SF. Data-driven synapse classification reveals a logic of glutamate receptor diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628056. [PMID: 39713368 PMCID: PMC11661198 DOI: 10.1101/2024.12.11.628056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenna Schardt
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27514
| | - Scott F. Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Lead contact
| |
Collapse
|
20
|
Venkataramani V, Yang Y, Ille S, Suchorska B, Loges S, Tost H, Sahm F, Pfister SM, Trumpp A, Krieg SM, Kuner T, Wick W, Winkler F. Cancer Neuroscience of Brain Tumors: From Multicellular Networks to Neuroscience-Instructed Cancer Therapies. Cancer Discov 2025; 15:39-51. [PMID: 39801234 DOI: 10.1158/2159-8290.cd-24-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 05/02/2025]
Abstract
Deepening our understanding of neuro-cancer interactions can innovate brain tumor treatment. This mini review unfolds the most relevant and recent insights into the neural mechanisms contributing to brain tumor initiation, progression, and resistance, including synaptic connections between neurons and cancer cells, paracrine neuro-cancer signaling, and cancer cells' intrinsic neural properties. We explain the basic and clinical-translational relevance of these findings, identify unresolved questions and particularly interesting future research avenues, such as central nervous system neuro-immunooncology, and discuss the potential transferability to extracranial cancers. Lastly, we conceptualize ways toward clinical trials and develop a roadmap toward neuroscience-instructed brain tumor therapies. Significance: Neural influences on brain tumors drive their growth and invasion. Herein, we develop a roadmap to use these fundamentally new insights into brain tumor biology for improved outcomes.
Collapse
Affiliation(s)
- Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yvonne Yang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim University Medical Center, University of Heidelberg, Mannheim, Germany
- Department of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGMBH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Shi S, Chen T, Su H, Zhao M. Exploring Cortical Interneurons in Substance Use Disorder: From Mechanisms to Therapeutic Perspectives. Neuroscientist 2025:10738584241310156. [PMID: 39772845 DOI: 10.1177/10738584241310156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Interneurons (INs) play a crucial role in the regulation of neural activity within the medial prefrontal cortex (mPFC), a brain region critically involved in executive functions and behavioral control. In recent preclinical studies, dysregulation of INs in the mPFC has been implicated in the pathophysiology of substance use disorder, characterized by vulnerability to chronic drug use. Here, we explore the diversity of mPFC INs and their connectivity and roles in vulnerability to addiction. We also discuss how these INs change over time with drug exposure. Finally, we focus on noninvasive brain stimulation as a therapeutic approach for targeting INs in substance use disorder, highlighting its potential to restore neural circuits.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Russo S, Stanley GB, Najafi F. Spike reliability is cell type specific and shapes excitation and inhibition in the cortex. Sci Rep 2025; 15:350. [PMID: 39747147 PMCID: PMC11697241 DOI: 10.1038/s41598-024-82536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Neurons encode information in the highly variable spiking activity of neuronal populations, so that different repetitions of the same stimulus can generate action potentials that vary significantly in terms of the count and timing. How does spiking variability originate, and does it have a functional purpose? Leveraging large-scale intracellular electrophysiological data, we relate the spiking reliability of cortical neurons in-vitro during the intracellular injection of current resembling synaptic inputs to their morphologic, electrophysiologic, and transcriptomic classes. Our findings demonstrate that parvalbumin+ (PV) interneurons, a subclass of inhibitory neurons, show high reliability compared to other neuronal subclasses, particularly excitatory neurons. Through computational modeling, we predict that the high reliability of PV interneurons allows for strong and precise inhibition in downstream neurons, while the lower reliability of excitatory neurons allows for integrating multiple synaptic inputs leading to a spiking rate code. These findings illuminate how spiking variability in different neuronal classes affect information propagation in the brain, leading to precise inhibition and spiking rate codes.
Collapse
Affiliation(s)
- Simone Russo
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, GA, 30332-0535, Atlanta, USA.
- Allen Institute, Brain and Consciousness Program, Seattle, WA, USA.
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, GA, 30332-0535, Atlanta, USA
| | - Farzaneh Najafi
- School of Biological Sciences, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332-0535, GA, USA.
| |
Collapse
|
23
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
24
|
Eddings CR, Fan M, Imoto Y, Itoh K, McDonald X, Eilers J, Anderson WS, Worley PF, Lippmann K, Nauen DW, Watanabe S. Ultrastructural membrane dynamics of mouse and human cortical synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630393. [PMID: 39763840 PMCID: PMC11703259 DOI: 10.1101/2024.12.26.630393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Live human brain tissues provide unique opportunities for understanding the physiology and pathophysiology of synaptic transmission. Investigations have been limited to anatomy, electrophysiology, and protein localization-while crucial parameters such as synaptic vesicle dynamics were not visualized. Here we utilize zap-and-freeze time-resolved electron microscopy to overcome this hurdle. First we validate the approach with acute mouse brain slices to demonstrate that axons parallel to the electrical field can be stimulated to produce calcium signaling. Next we show that ultrafast endocytosis is induced and can be captured in both mouse and human brain slices. Crucially, in both species a protein essential for ultrafast endocytosis Dynamin 1xA (Dyn1xA) localizes to the region peripheral to the active zone, the putative endocytic zone, indicating a likely mechanism conservation between mouse and human. This approach has the potential to reveal dynamic, high-resolution information about synaptic membrane trafficking in intact human brain slices.
Collapse
Affiliation(s)
- Chelsy R Eddings
- Department of Cell Biology, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Minghua Fan
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Yuuta Imoto
- Department of Cell Biology, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Kie Itoh
- Department of Cell Biology, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Xiomara McDonald
- Department of Cell Biology, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - William S Anderson
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, 21205, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore MD, 21205, USA
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland, 21205, USA
| | - Kristina Lippmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - David W Nauen
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland, 21205, USA
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland, 21205, USA
| | - Shigeki Watanabe
- Department of Cell Biology, The Johns Hopkins University, Baltimore MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore MD, 21205, USA
- The Center for Cell Dynamics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
25
|
Aizenbud I, Yoeli D, Beniaguev D, de Kock CPJ, London M, Segev I. What makes human cortical pyramidal neurons functionally complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628883. [PMID: 39763809 PMCID: PMC11702691 DOI: 10.1101/2024.12.17.628883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Humans exhibit unique cognitive abilities within the animal kingdom, but the neural mechanisms driving these advanced capabilities remain poorly understood. Human cortical neurons differ from those of other species, such as rodents, in both their morphological and physiological characteristics. Could the distinct properties of human cortical neurons help explain the superior cognitive capabilities of humans? Understanding this relationship requires a metric to quantify how neuronal properties contribute to the functional complexity of single neurons, yet no such standardized measure currently exists. Here, we propose the Functional Complexity Index (FCI), a generalized, deep learning-based framework to assess the input-output complexity of neurons. By comparing the FCI of cortical pyramidal neurons from different layers in rats and humans, we identified key morpho-electrical factors that underlie functional complexity. Human cortical pyramidal neurons were found to be significantly more functionally complex than their rat counterparts, primarily due to differences in dendritic membrane area and branching pattern, as well as density and nonlinearity of NMDA-mediated synaptic receptors. These findings reveal the structural-biophysical basis for the enhanced functional properties of human neurons.
Collapse
Affiliation(s)
- Ido Aizenbud
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniela Yoeli
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Beniaguev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christiaan PJ de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU Amsterdam
| | - Michael London
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Kanari L, Shi Y, Arnaudon A, Barros-Zulaica N, Benavides-Piccione R, Coggan JS, DeFelipe J, Hess K, Mansvelder HD, Mertens EJ, Meystre J, de Campos Perin R, Pezzoli M, Daniel RT, Stoop R, Segev I, Markram H, de Kock CP. Of mice and men: Dendritic architecture differentiates human from mice neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557170. [PMID: 39763990 PMCID: PMC11702562 DOI: 10.1101/2023.09.11.557170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The organizational principles that distinguish the human brain from other species have been a long-standing enigma in neuroscience. Focusing on the uniquely evolved human cortical layers 2 and 3, we computationally reconstruct the cortical architecture for mice and humans. We show that human pyramidal cells form highly complex networks, demonstrated by the increased number and simplex dimension compared to mice. This is surprising because human pyramidal cells are much sparser in the cortex. We show that the number and size of neurons fail to account for this increased network complexity, suggesting that another morphological property is a key determinant of network connectivity. Topological comparison of dendritic structure reveals much higher perisomatic (basal and oblique) branching density in human pyramidal cells. Using topological tools we quantitatively show that this neuronal structural property directly impacts network complexity, including the formation of a rich subnetwork structure. We conclude that greater dendritic complexity, a defining attribute of human L2 and 3 neurons, may provide the human cortex with enhanced computational capacity and cognitive flexibility.
Collapse
Affiliation(s)
- Lida Kanari
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Alexis Arnaudon
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Natalí Barros-Zulaica
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Kathryn Hess
- Laboratory for Topology and Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Huib D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Eline J. Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Julie Meystre
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rodrigo de Campos Perin
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maurizio Pezzoli
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Roy Thomas Daniel
- Department of Clinical Neurosciences, Neurosurgery Unit, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ron Stoop
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Idan Segev
- Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190501 Jerusalem, Israel
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Christiaan P.J. de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
27
|
Borghi F, Nieus TR, Galli DE, Milani P. Brain-like hardware, do we need it? Front Neurosci 2024; 18:1465789. [PMID: 39741531 PMCID: PMC11685757 DOI: 10.3389/fnins.2024.1465789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
The brain's ability to perform efficient and fault-tolerant data processing is strongly related to its peculiar interconnected adaptive architecture, based on redundant neural circuits interacting at different scales. By emulating the brain's processing and learning mechanisms, computing technologies strive to achieve higher levels of energy efficiency and computational performance. Although efforts to address neuromorphic solutions through hardware based on top-down CMOS-based technologies have obtained interesting results in terms of energetic efficiency improvement, the replication of brain's self-assembled and redundant architectures is not considered in the roadmaps of data processing electronics. The exploration of solutions based on self-assembled elemental blocks to mimic biological networks' complexity is explored in the general frame of unconventional computing and it has not reached yet a maturity stage enabling a benchmark with standard electronic approaches in terms of performances, compatibility and scalability. Here we discuss some aspects related to advantages and disadvantages in the emulation of the brain for neuromorphic hardware. We also discuss possible directions in terms of hybrid hardware solutions where self-assembled substrates coexist and integrate with conventional electronics in view of neuromorphic architectures.
Collapse
Affiliation(s)
- Francesca Borghi
- CIMAINA and Dipartimento di Fisica “A. Pontremoli”, Università degli Studi di Milano, Milan, Italy
| | - Thierry R. Nieus
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Davide E. Galli
- CIMAINA and Dipartimento di Fisica “A. Pontremoli”, Università degli Studi di Milano, Milan, Italy
| | - Paolo Milani
- CIMAINA and Dipartimento di Fisica “A. Pontremoli”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Kuang S, Yang J, Shen Z, Xia J, Lin Z. Single-Cell and Spatial Multi-Omics Analysis Reveal That Targeting JAG1 in Epithelial Cells Reduces Periodontal Inflammation and Alveolar Bone Loss. Int J Mol Sci 2024; 25:13255. [PMID: 39769019 PMCID: PMC11675447 DOI: 10.3390/ijms252413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Mucosal immunity plays a critical role in the pathogenesis of inflammatory immune diseases. This study leverages single-cell RNA sequencing, spatial transcriptomics, and spatial proteomics to compare the cellular mechanisms involved in periodontitis between humans and mice, aiming to develop precise strategies to protect the gingival mucosal barrier. We identified key conserved and divergent features in cellular landscapes and transcriptional profiles across the two species, underscoring the complexity of inflammatory responses and immune dynamics in periodontitis. Additionally, we revealed a novel regulatory mechanism by which epithelial cells modulate macrophage behavior and inflammation through the JAG1-Notch pathway. Validation through animal experiments revealed that JAG1 inhibition reduces inflammation in epithelial cells, mitigating periodontitis. Our findings advance the understanding of periodontal disease pathogenesis and highlight the importance of integrating human and animal model data to develop treatments aligned with human physiology, offering potential therapeutic targets for controlling inflammation and enhancing tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, China; (S.K.); (J.Y.); (Z.S.)
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, China; (S.K.); (J.Y.); (Z.S.)
| |
Collapse
|
29
|
Bertolli A, Halhouli O, Liu-Martínez Y, Blaine B, Thangavel R, Zhang Q, Emmons E, Narayanan NS, Gumusoglu SB, Geerling JC, Aldridge GM. Renovating the Barnes maze for mouse models of Dementia with STARR FIELD: A 4-day protocol that probes learning rate, retention and cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.625516. [PMID: 39651256 PMCID: PMC11623659 DOI: 10.1101/2024.11.30.625516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Land-based mazes that require spatial cues to identify the location of a hiding-place are a low-stress method to evaluate learning rate and memory retention in mice. One version, the Barnes maze, allows quantification of naturalistic exploratory behaviors not evident in water-based tasks. As the task relies on innate behaviors, it does not require overtraining, making it more feasible to examine early learning and non-memory executive functions that are characteristic of some non-amnestic dementias. However, because it is difficult to hide odor cues in the traditional version of the maze, learning rate during individual trials can be difficult to interpret. We designed and tested the use of 3D-printed escape shuttles that can be made in duplicate, as well as a docking tunnel that allows mice to self-exit the maze to improve reproducibility and limit experimenter influence. In combination with maze turning and escape tunnel caps, we show our shuttles mitigate the possibility of undesired cues. We then compare use of our 4-day protocol across several mouse models of cognitive impairment. We demonstrate an additional stage, the STARR protocol (Spatial Training and Rapid Reversal), to better challenge executive functions such as working memory and behavioral flexibility. We examine commonly used outcome measures across mice with and without access to spatial cues, as well as across mouse models of cognitive impairment to demonstrate the use of our 4-day protocol. Overall, this protocol provides detailed instructions to build and perform a robust spatial maze that can help expand the range of deficits identified. Our findings will aid in interpretation of traditional protocols, as well as provide an updated method to screen for both amnestic and non-amnestic cognitive changes.
Collapse
|
30
|
Chen J, Volkmann J, Ip CW. A framework for translational therapy development in deep brain stimulation. NPJ Parkinsons Dis 2024; 10:216. [PMID: 39516465 PMCID: PMC11549317 DOI: 10.1038/s41531-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for motor disorders like Parkinson's disease, but its mechanisms and effects on neurons and networks are not fully understood, limiting research-driven progress. This review presents a framework that combines neurophysiological insights and translational research to enhance DBS therapy, emphasizing biomarkers, device technology, and symptom-specific neuromodulation. It also examines the role of animal research in improving DBS, while acknowledging challenges in clinical translation.
Collapse
Affiliation(s)
- Jiazhi Chen
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
31
|
Zhang L, Cheng Y, Xue Z, Wu S, Qiu Z, Jiang H. Comparative Molecular Taxonomics of Neuron in Cingulate Cortex of Rhesus Monkey and Mouse via Single-Nucleus RNA Sequencing. Neurosci Bull 2024; 40:1751-1756. [PMID: 38780751 PMCID: PMC11607296 DOI: 10.1007/s12264-024-01209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/25/2023] [Indexed: 05/25/2024] Open
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shihao Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zilong Qiu
- Shanghai Jiao Tong University School of Medicine Songjiang Institute, Shanghai, 200025, China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
32
|
Pattadkal JJ, O'Shea RT, Hansel D, Taillefumier T, Brager D, Priebe NJ. Synchrony dynamics underlie irregular neocortical spiking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618398. [PMID: 39464165 PMCID: PMC11507790 DOI: 10.1101/2024.10.15.618398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cortical neurons are characterized by their variable spiking patterns. We challenge prevalent theories for the origin of spiking variability. We examine the specific hypothesis that cortical synchrony drives spiking variability in vivo . Using dynamic clamp, we demonstrate that intrinsic neuronal properties do not contribute substantially to spiking variability, but rather spiking variability emerges from weakly synchronous network drive. With large-scale electrophysiology we quantify the degree of synchrony and its time scale in cortical networks in vivo . We demonstrate that physiological levels of synchrony are sufficient to generate irregular responses found in vivo . Further, this synchrony shifts over timescales ranging from 25 to 200 ms, depending on the presence of external sensory input. Such shifts occur when the network moves from spontaneous to driven modes, leading naturally to a decline in response variability as observed across cortical areas. Finally, while individual neurons exhibit reliable responses to physiological drive, different neurons respond in a distinct fashion according to their intrinsic properties, contributing to stable synchrony across the neural network.
Collapse
|
33
|
Pronold J, van Meegen A, Shimoura RO, Vollenbröker H, Senden M, Hilgetag CC, Bakker R, van Albada SJ. Multi-scale spiking network model of human cerebral cortex. Cereb Cortex 2024; 34:bhae409. [PMID: 39428578 PMCID: PMC11491286 DOI: 10.1093/cercor/bhae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure. The model aggregates data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements and future in silico studies of human cortical structure, dynamics, and function.
Collapse
Affiliation(s)
- Jari Pronold
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- RWTH Aachen University, D-52062 Aachen, Germany
| | - Alexander van Meegen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Renan O Shimoura
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
| | - Hannah Vollenbröker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mario Senden
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, NL-6229 ER Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Centre, Maastricht University, NL-6229 ER Maastricht, The Netherlands
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, D-20246 Hamburg, Germany
| | - Rembrandt Bakker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, NL-6525 EN Nijmegen, The Netherlands
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
34
|
Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro MA, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GSXE, Seung HS, Murthy M. Neuronal wiring diagram of an adult brain. Nature 2024; 634:124-138. [PMID: 39358518 PMCID: PMC11446842 DOI: 10.1038/s41586-024-07558-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/10/2024] [Indexed: 10/04/2024]
Abstract
Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Will Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kai Kuehner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Ryan Morey
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Computer Science Department, Princeton University, Princeton, NJ, USA.
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
35
|
Brooks IA, Jedrasiak-Cape I, Rybicki-Kler C, Ekins TG, Ahmed OJ. Unique Transcriptomic Cell Types of the Granular Retrosplenial Cortex are Preserved Across Mice and Rats Despite Dramatic Changes in Key Marker Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613545. [PMID: 39345493 PMCID: PMC11429737 DOI: 10.1101/2024.09.17.613545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The granular retrosplenial cortex (RSG) supports key functions ranging from memory consolidation to spatial navigation. The mouse RSG contains several cell types that are remarkably distinct from those found in other cortical regions. This includes the physiologically and transcriptomically unique low rheobase neuron that is the dominant cell-type in RSG layers 2/3 (L2/3 LR), as well as the similarly exclusive pyramidal cells that comprise much of RSG layer 5a (L5a RSG). While the functions of the RSG are extensively studied in both mice and rats, it remains unknown if the transcriptomically unique cell types of the mouse RSG are evolutionarily conserved in rats. Here, we show that mouse and rat RSG not only contain the same cell types, but key subtypes including the L2/3 LR and L5a RSG neurons are amplified in their representations in rats compared to mice. This preservation of cell types in male and female rats happens despite dramatic changes in key cell-type-specific marker genes, with the Scnn1a expression that selectively tags mouse L5a RSG neurons completely absent in rats. Important for Cre-driver line development, we identify alternative, cross-species genes that can be used to selectively target the cell types of the RSG in both mice and rats. Our results show that the unique cell types of the RSG are evolutionarily conserved across millions of years of evolution between mice and rats, but also emphasize stark species-specific differences in marker genes that need to be considered when making cell-type-specific transgenic lines of mice versus rats.
Collapse
Affiliation(s)
- Isla A.W. Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | | | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
36
|
Al Harrach M, Yochum M, Ruffini G, Bartolomei F, Wendling F, Benquet P. NeoCoMM: A neocortical neuroinspired computational model for the reconstruction and simulation of epileptiform events. Comput Biol Med 2024; 180:108934. [PMID: 39079417 DOI: 10.1016/j.compbiomed.2024.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Understanding the pathophysiological dynamics that underline Interictal Epileptiform Events (IEEs) such as epileptic spikes, spike-and-waves or High-Frequency Oscillations (HFOs) is of major importance in the context of neocortical refractory epilepsy, as it paves the way for the development of novel therapies. Typically, these events are detected in Local Field Potential (LFP) recordings obtained through depth electrodes during pre-surgical investigations. Although essential, the underlying pathophysiological mechanisms for the generation of these epileptic neuromarkers remain unclear. The aim of this paper is to propose a novel neurophysiologically relevant reconstruction of the neocortical microcircuitry in the context of epilepsy. This reconstruction intends to facilitate the analysis of a comprehensive set of parameters encompassing physiological, morphological, and biophysical aspects that directly impact the generation and recording of different IEEs. METHOD a novel microscale computational model of an epileptic neocortical column was introduced. This model incorporates the intricate multilayered structure of the cortex and allows for the simulation of realistic interictal epileptic signals. The proposed model was validated through comparisons with real IEEs recorded using intracranial stereo-electroencephalography (SEEG) signals from both humans and animals. Using the model, the user can recreate epileptiform patterns observed in different species (human, rodent, and mouse) and study the intracellular activity associated with these patterns. RESULTS Our model allowed us to unravel the relationship between glutamatergic and GABAergic synaptic transmission of the epileptic neural network and the type of generated IEE. Moreover, sensitivity analyses allowed for the exploration of the pathophysiological parameters responsible for the transitions between these events. Finally, the presented modeling framework also provides an Electrode Tissue Model (ETI) that adds realism to the simulated signals and offers the possibility of studying their sensitivity to the electrode characteristics. CONCLUSION The model (NeoCoMM) presented in this work can be of great use in different applications since it offers an in silico framework for sensitivity analysis and hypothesis testing. It can also be used as a starting point for more complex studies.
Collapse
Affiliation(s)
- M Al Harrach
- University of Rennes, INSERM, LTSI-U1099, 35000 Rennes, France.
| | - M Yochum
- Neuroelectrics, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - G Ruffini
- Neuroelectrics, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - F Bartolomei
- Hopitaux de Marseille, Service d'Epileptologie et de Rythmologie Cerebrale, Hopital La Timone, Marseille, France
| | - F Wendling
- University of Rennes, INSERM, LTSI-U1099, 35000 Rennes, France
| | - P Benquet
- University of Rennes, INSERM, LTSI-U1099, 35000 Rennes, France
| |
Collapse
|
37
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques. Cell Rep 2024; 43:114519. [PMID: 39018243 PMCID: PMC11445748 DOI: 10.1016/j.celrep.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
Collapse
Affiliation(s)
- Saman Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
38
|
Lyu C, Li Z, Xu C, Wong KKL, Luginbuhl DJ, McLaughlin CN, Xie Q, Li T, Li H, Luo L. Dimensionality reduction simplifies synaptic partner matching in an olfactory circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609939. [PMID: 39253519 PMCID: PMC11383009 DOI: 10.1101/2024.08.27.609939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The distribution of postsynaptic partners in three-dimensional (3D) space presents complex choices for a navigating axon. Here, we discovered a dimensionality reduction principle in establishing the 3D glomerular map in the fly antennal lobe. Olfactory receptor neuron (ORN) axons first contact partner projection neuron (PN) dendrites at the 2D spherical surface of the antennal lobe during development, regardless of whether the adult glomeruli are at the surface or interior of the antennal lobe. Along the antennal lobe surface, axons of each ORN type take a specific 1D arc-shaped trajectory that precisely intersects with their partner PN dendrites. Altering axon trajectories compromises synaptic partner matching. Thus, a 3D search problem is reduced to 1D, which simplifies synaptic partner matching and may generalize to the wiring process of more complex brains.
Collapse
Affiliation(s)
- Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N. McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Present address: Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Present address: Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
39
|
Zheng Z, Own CS, Wanner AA, Koene RA, Hammerschmith EW, Silversmith WM, Kemnitz N, Lu R, Tank DW, Seung HS. Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy. Nat Commun 2024; 15:6860. [PMID: 39127683 PMCID: PMC11316758 DOI: 10.1038/s41467-024-50846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Serial section transmission electron microscopy (TEM) has proven to be one of the leading methods for millimeter-scale 3D imaging of brain tissues at nanoscale resolution. It is important to further improve imaging efficiency to acquire larger and more brain volumes. We report here a threefold increase in the speed of TEM by using a beam deflecting mechanism to enable highly efficient acquisition of multiple image tiles (nine) for each motion of the mechanical stage. For millimeter-scale areas, the duty cycle of imaging doubles to more than 30%, yielding a net average imaging rate of 0.3 gigapixels per second. If fully utilized, an array of four beam deflection TEMs should be capable of imaging a dataset of cubic millimeter scale in five weeks.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
40
|
Cho E, Kwon J, Lee G, Shin J, Lee H, Lee SH, Chung CK, Yoon J, Ho WK. Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy. Nat Commun 2024; 15:6683. [PMID: 39107293 PMCID: PMC11303528 DOI: 10.1038/s41467-024-51065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Focal cortical dysplasia type I (FCD I) is the most common cause of pharmaco-resistant epilepsy with the poorest prognosis. To understand the epileptogenic mechanisms of FCD I, we obtained tissue resected from patients with FCD I epilepsy, and from tumor patients as control. Using whole-cell patch clamp in acute human brain slices, we investigated the cellular properties of fast-spiking interneurons (FSINs) and pyramidal neurons (PNs) within the ictal onset zone. In FCD I epilepsy, FSINs exhibited lower firing rates from slower repolarization and action potential broadening, while PNs had increased firing. Importantly, excitatory synaptic drive of FSINs increased progressively with the scale of cortical activation as a general property across species, but this relationship was inverted towards net inhibition in FCD I epilepsy. Further comparison with intracranial electroencephalography (iEEG) from the same patients revealed that the spatial extent of pathological high-frequency oscillations (pHFO) was associated with synaptic events at FSINs.
Collapse
Affiliation(s)
- Eunhye Cho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jii Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Gyuwon Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jiwoo Shin
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hyunsu Lee
- Department of Physiology, Pusan National University School of Medicine, Busan, Korea
| | - Suk-Ho Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| | - Jaeyoung Yoon
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Won-Kyung Ho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.
| |
Collapse
|
41
|
Smith NR, Ameen S, Miller SN, Kasper JM, Schwarz JM, Hommel JD, Borzou A. The neuroanatomical organization of the hypothalamus is driven by spatial and topological efficiency. Front Syst Neurosci 2024; 18:1417346. [PMID: 39165582 PMCID: PMC11334159 DOI: 10.3389/fnsys.2024.1417346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
The hypothalamus in the mammalian brain is responsible for regulating functions associated with survival and reproduction representing a complex set of highly interconnected, yet anatomically and functionally distinct, sub-regions. It remains unclear what factors drive the spatial organization of sub-regions within the hypothalamus. One potential factor may be structural connectivity of the network that promotes efficient function with well-connected sub-regions placed closer together geometrically, i.e., the strongest axonal signal transferred through the shortest geometrical distance. To empirically test for such efficiency, we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas, which provides a structural connectivity map of mouse brain regions derived from a series of viral tracing experiments. Using both cost function minimization and comparison with a weighted, sphere-packing ensemble, we demonstrate that the sum of the distances between hypothalamic sub-regions are not close to the minimum possible distance, consistent with prior whole brain studies. However, if such distances are weighted by the inverse of the magnitude of the connectivity, their sum is among the lowest possible values. Specifically, the hypothalamus appears within the top 94th percentile of neural efficiencies of randomly packed configurations and within one standard deviation of the median efficiency when packings are optimized for maximal neural efficiency. Our results, therefore, indicate that a combination of geometrical and topological constraints help govern the structure of the hypothalamus.
Collapse
Affiliation(s)
- Nathan R. Smith
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shabeeb Ameen
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, United States
| | - Sierra N. Miller
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - James M. Kasper
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer M. Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Indian Creek Farm, Ithaca, NY, United States
| | - Jonathan D. Hommel
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
42
|
Liu Y, Wang XJ. Flexible gating between subspaces in a neural network model of internally guided task switching. Nat Commun 2024; 15:6497. [PMID: 39090084 PMCID: PMC11294624 DOI: 10.1038/s41467-024-50501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Behavioral flexibility relies on the brain's ability to switch rapidly between multiple tasks, even when the task rule is not explicitly cued but must be inferred through trial and error. The underlying neural circuit mechanism remains poorly understood. We investigated recurrent neural networks (RNNs) trained to perform an analog of the classic Wisconsin Card Sorting Test. The networks consist of two modules responsible for rule representation and sensorimotor mapping, respectively, where each module is comprised of a circuit with excitatory neurons and three major types of inhibitory neurons. We found that rule representation by self-sustained persistent activity across trials, error monitoring and gated sensorimotor mapping emerged from training. Systematic dissection of trained RNNs revealed a detailed circuit mechanism that is consistent across networks trained with different hyperparameters. The networks' dynamical trajectories for different rules resided in separate subspaces of population activity; the subspaces collapsed and performance was reduced to chance level when dendrite-targeting somatostatin-expressing interneurons were silenced, illustrating how a phenomenological description of representational subspaces is explained by a specific circuit mechanism.
Collapse
Affiliation(s)
- Yue Liu
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
43
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. Volume electron microscopy analysis of synapses in primary regions of the human cerebral cortex. Cereb Cortex 2024; 34:bhae312. [PMID: 39106175 PMCID: PMC11302151 DOI: 10.1093/cercor/bhae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024] Open
Abstract
Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University—Cajal Institute, Arzobispo Morcillo 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| |
Collapse
|
44
|
Yang D, Qi G, Ort J, Witzig V, Bak A, Delev D, Koch H, Feldmeyer D. Modulation of large rhythmic depolarizations in human large basket cells by norepinephrine and acetylcholine. Commun Biol 2024; 7:885. [PMID: 39033173 PMCID: PMC11271271 DOI: 10.1038/s42003-024-06546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Rhythmic brain activity is critical to many brain functions and is sensitive to neuromodulation, but so far very few studies have investigated this activity on the cellular level in vitro in human brain tissue samples. This study reveals and characterizes a novel rhythmic network activity in the human neocortex. Using intracellular patch-clamp recordings of human cortical neurons, we identify large rhythmic depolarizations (LRDs) driven by glutamate release but not by GABA. These LRDs are intricate events made up of multiple depolarizing phases, occurring at ~0.3 Hz, have large amplitudes and long decay times. Unlike human tissue, rat neocortex layers 2/3 exhibit no such activity under identical conditions. LRDs are mainly observed in a subset of L2/3 interneurons that receive substantial excitatory inputs and are likely large basket cells based on their morphology. LRDs are highly sensitive to norepinephrine (NE) and acetylcholine (ACh), two neuromodulators that affect network dynamics. NE increases LRD frequency through β-adrenergic receptor activity while ACh decreases it via M4 muscarinic receptor activation. Multi-electrode array recordings show that NE enhances and synchronizes oscillatory network activity, whereas ACh causes desynchronization. Thus, NE and ACh distinctly modulate LRDs, exerting specific control over human neocortical activity.
Collapse
Affiliation(s)
- Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Guanxiao Qi
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany
| | - Jonas Ort
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Bonn, Germany
| | - Victoria Witzig
- Department of Neurology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Aniella Bak
- Department of Neurology, Section Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Bonn, Germany
| | - Henner Koch
- Department of Neurology, Section Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, 52074, Aachen, Germany.
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany.
| |
Collapse
|
45
|
Turegano-Lopez M, de Las Pozas F, Santuy A, Rodriguez JR, DeFelipe J, Merchan-Perez A. Tracing nerve fibers with volume electron microscopy to quantitatively analyze brain connectivity. Commun Biol 2024; 7:796. [PMID: 38951162 PMCID: PMC11217374 DOI: 10.1038/s42003-024-06491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.
Collapse
Affiliation(s)
- Marta Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
| | - Felix de Las Pozas
- Visualization & Graphics Lab (VG-Lab), Universidad Rey Juan Carlos, C/Tulipán S/N, Móstoles, 28933, Madrid, Spain
| | - Andrea Santuy
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), San Cugat del Vallès, 08195, Barcelona, Spain
| | - Jose-Rodrigo Rodriguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain.
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
46
|
Liu G, Bandyadka S, McCall K. Protocol to analyze 3D neurodegenerative vacuoles in Drosophila melanogaster. STAR Protoc 2024; 5:103017. [PMID: 38635393 PMCID: PMC11043950 DOI: 10.1016/j.xpro.2024.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Vacuole formation is a key hallmark of age-dependent neurodegeneration in the Drosophila brain. Here, we present a protocol to analyze 3D neurodegenerative vacuoles in the whole-mount Drosophila melanogaster brain. We describe steps for whole-brain dissection, staining, 3D imaging, and z-stack image processing using Fiji ImageJ. We then detail procedures for annotating and 3D-reconstructing neurodegenerative vacuoles with WEBKNOSSOS and Python, and performing statistical analysis in Python. This protocol enables measurement of parameters such as the number and volume of each vacuole. For complete details on the use and execution of this protocol, please refer to Elguero et al.1.
Collapse
|
47
|
Ott CM, Torres R, Kuan TS, Kuan A, Buchanan J, Elabbady L, Seshamani S, Bodor AL, Collman F, Bock DD, Lee WC, da Costa NM, Lippincott-Schwartz J. Ultrastructural differences impact cilia shape and external exposure across cell classes in the visual cortex. Curr Biol 2024; 34:2418-2433.e4. [PMID: 38749425 PMCID: PMC11217952 DOI: 10.1016/j.cub.2024.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Russel Torres
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tung-Sheng Kuan
- Department of Physics, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Aaron Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - JoAnn Buchanan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leila Elabbady
- Allen Institute for Brain Science, Seattle, WA 98109, USA; University of Washington, Seattle, WA 98195, USA
| | | | - Agnes L Bodor
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Davi D Bock
- Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Wei Chung Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
49
|
Lu C, Chen K, Qiu H, Chen X, Chen G, Qi X, Jiang H. Diffusion-based deep learning method for augmenting ultrastructural imaging and volume electron microscopy. Nat Commun 2024; 15:4677. [PMID: 38824146 PMCID: PMC11144272 DOI: 10.1038/s41467-024-49125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Electron microscopy (EM) revolutionized the way to visualize cellular ultrastructure. Volume EM (vEM) has further broadened its three-dimensional nanoscale imaging capacity. However, intrinsic trade-offs between imaging speed and quality of EM restrict the attainable imaging area and volume. Isotropic imaging with vEM for large biological volumes remains unachievable. Here, we developed EMDiffuse, a suite of algorithms designed to enhance EM and vEM capabilities, leveraging the cutting-edge image generation diffusion model. EMDiffuse generates realistic predictions with high resolution ultrastructural details and exhibits robust transferability by taking only one pair of images of 3 megapixels to fine-tune in denoising and super-resolution tasks. EMDiffuse also demonstrated proficiency in the isotropic vEM reconstruction task, generating isotropic volume even in the absence of isotropic training data. We demonstrated the robustness of EMDiffuse by generating isotropic volumes from seven public datasets obtained from different vEM techniques and instruments. The generated isotropic volume enables accurate three-dimensional nanoscale ultrastructure analysis. EMDiffuse also features self-assessment functionalities on predictions' reliability. We envision EMDiffuse to pave the way for investigations of the intricate subcellular nanoscale ultrastructure within large volumes of biological systems.
Collapse
Affiliation(s)
- Chixiang Lu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kai Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiaojun Chen
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gu Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiaojuan Qi
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Hartung J, Schroeder A, Péréz Vázquez RA, Poorthuis RB, Letzkus JJ. Layer 1 NDNF interneurons are specialized top-down master regulators of cortical circuits. Cell Rep 2024; 43:114212. [PMID: 38743567 DOI: 10.1016/j.celrep.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.
Collapse
Affiliation(s)
- Jan Hartung
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany.
| | - Anna Schroeder
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | | | - Rogier B Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Johannes J Letzkus
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|